这是一篇来自已证抗体库的有关小鼠 Cd3g的综述,是根据563篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd3g 抗体。
Cd3g 同义词: Ctg-3; Ctg3; T3g

赛默飞世尔
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 s2b
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, 17A2)被用于被用于流式细胞仪在人类样本上 (图 s2b). Front Immunol (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 56-0032-82)被用于被用于流式细胞仪在小鼠样本上. Theranostics (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 Cd3g抗体(eBioscience, 47-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Cell Rep (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 4c
赛默飞世尔 Cd3g抗体(eBioscience, 48-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4c). Cells (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:800
赛默飞世尔 Cd3g抗体(eBioscience, 12-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:800. Cells (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 7f
赛默飞世尔 Cd3g抗体(Thermo Invitrogen, 300318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 7f). Arterioscler Thromb Vasc Biol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Aging Dis (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:500; 图 3c
赛默飞世尔 Cd3g抗体(THERMOFISHER, MA5-14,524)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Sci Rep (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 6f
赛默飞世尔 Cd3g抗体(Invitrogen, 35-0031-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6f). Cell Rep (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 3b
赛默飞世尔 Cd3g抗体(ThermoScientific, MA5-14524)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 3b). J Inflamm Res (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s5
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5). Nat Commun (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s7
赛默飞世尔 Cd3g抗体(eBioscience, 460032-80)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Mol Cancer (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd3g抗体(eBioscience, 25-0031-81)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Mol Gastroenterol Hepatol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1d, 3f
赛默飞世尔 Cd3g抗体(eBioscience/Thermo Scientific, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1d, 3f). Mucosal Immunol (2021) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100; 图 1d
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1d). Neuropathol Appl Neurobiol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:1000; 图 2i
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2i). Nat Commun (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 48-0031-82)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Acta Naturae (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 s6d
赛默飞世尔 Cd3g抗体(eBioscience, 11-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6d). Nat Commun (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3g抗体(Thermo Fisher, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell Death Dis (2021) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3g抗体(Invitrogen, 17A2)被用于被用于抑制或激活实验在小鼠样本上. Arthritis Res Ther (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Cd3g抗体(Invitrogen, 48-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Front Immunol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Cd3g抗体(eBioscience, 17-0031-83)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Blood (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
赛默飞世尔 Cd3g抗体(eBiosciences, 17-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). Nat Immunol (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(Invitrogen, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2021) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd3g抗体(eBioscience, 145-2 C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Cd3g抗体(Invitrogen, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Hepatol Commun (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(Thermo Fisher, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd3g抗体(eBioscience, 145?C2 C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, 145-C2 C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2a
  • 免疫组化; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2a) 和 被用于免疫组化在小鼠样本上. Cell (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). Sci Immunol (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔 Cd3g抗体(eBioscience, 16-0031)被用于被用于免疫组化在小鼠样本上 (图 4a). Basic Res Cardiol (2020) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2d
赛默飞世尔 Cd3g抗体(Thermo Fisher, 500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2d). elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4i
赛默飞世尔 Cd3g抗体(ThermoFisher, 14-0031-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4i). Nat Commun (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 人类; 1:100; 图 6a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). Front Immunol (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:300; 图 s7b
赛默飞世尔 Cd3g抗体(Invitrogen, 11-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s7b). Cell Res (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:100; 图 6e
赛默飞世尔 Cd3g抗体(eBioscience, 14-0032)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6e). Proc Natl Acad Sci U S A (2020) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 s3a, s20a, s20c
赛默飞世尔 Cd3g抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 s3a, s20a, s20c). Science (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s1). elife (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3g抗体(Thermo Fisher, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Sci Adv (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Acta Neuropathol (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd3g抗体(eBioscience, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:800; 图 s3a
赛默飞世尔 Cd3g抗体(eBioscience, 14?C0032-81)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 s3a). Nature (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:800; 图 s15b
赛默飞世尔 Cd3g抗体(Thermo Fisher, 48-0031-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s15b). Nat Commun (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s7c
赛默飞世尔 Cd3g抗体(ThermoFisher, 48-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s7c). Cell Rep (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 6
赛默飞世尔 Cd3g抗体(eBioscience, 17-0032)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6). JCI Insight (2020) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 e9g
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 e9g). Nature (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:50; 图 e1a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 e1a). Nature (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2019) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:200; 图 3h
赛默飞世尔 Cd3g抗体(Ebioscience, 14?C0032-81)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3h). Cell Stem Cell (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2k
赛默飞世尔 Cd3g抗体(eBioscience, 56-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2k). Sci Adv (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:40; 图 s3a
赛默飞世尔 Cd3g抗体(eBioscience, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 s3a). Nat Commun (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 s7d
赛默飞世尔 Cd3g抗体(Invitrogen, 35-0031-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7d). Cancer Cell (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 s7d
赛默飞世尔 Cd3g抗体(eBioscience, 50-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7d). Cancer Cell (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2e
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b
赛默飞世尔 Cd3g抗体(Themo, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b). elife (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3g, e7h
赛默飞世尔 Cd3g抗体(eBioscience, 48-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 3g, e7h). Nature (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 e2n
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e2n). Nature (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:1000; 图 e2j, e8a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 e2j, e8a). Nature (2019) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 s4a
赛默飞世尔 Cd3g抗体(Thermofisher, MA1-90582)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 s4a). Cancer Cell (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s1e
赛默飞世尔 Cd3g抗体(eBioscience, 11-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1e). Nat Commun (2019) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1a
赛默飞世尔 Cd3g抗体(eBioscience, eBio500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1a). J Exp Med (2019) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, HM3428)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Clin Invest (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, 12-0031-83)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Clin Invest (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:1000; 图 5a
赛默飞世尔 Cd3g抗体(eBioscience, 11-0031)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 5a). Cell (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 s3d
赛默飞世尔 Cd3g抗体(eBioscience, 48-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3d). Cell (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Immune Netw (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd3g抗体(eBioscience, 17-0031-83)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell (2019) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:400; 图 1a
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1a). Neuroscience (2019) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3g抗体(eBioscience, 2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e) 和 被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Commun (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2 C11)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Ann Rheum Dis (2019) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-石蜡切片; 小鼠; 图 4a
赛默飞世尔 Cd3g抗体(eBiosciences, ebio500A2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Ann Rheum Dis (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔 Cd3g抗体(Thermo Fisher, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Clin Invest (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 s3f
赛默飞世尔 Cd3g抗体(eBioscience, 56-0032-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3f). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS Pathog (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd3g抗体(eBioscience, 47-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 s3b
赛默飞世尔 Cd3g抗体(eBioscience, 45-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3b). Nat Commun (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Cd3g抗体(eBioscience, 145?\2C11)被用于被用于流式细胞仪在小鼠样本上 (图 6b). EMBO J (2019) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c) 和 被用于流式细胞仪在小鼠样本上 (图 6b). Front Microbiol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Obesity (Silver Spring) (2018) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:30; 图 s7c
赛默飞世尔 Cd3g抗体(eBioscience, 50-0032)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:30 (图 s7c). Cell Res (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s5b
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, 16-0031-82)被用于被用于抑制或激活实验在小鼠样本上 (图 s5b). Immunity (2018) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠; 图 s3b
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于抑制或激活实验在小鼠样本上 (图 s3b). Eur J Immunol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:250; 图 s11a
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, 47-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 s11a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:20; 图 2m
赛默飞世尔 Cd3g抗体(Thermo Fisher, SP7)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 2m). J Exp Med (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Front Immunol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd3g抗体(ThermoFisher, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS Pathog (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, Sp7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). J Clin Invest (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Stem Cell (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:150; 图 s3a
赛默飞世尔 Cd3g抗体(eBioscience, 17-0032-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s3a). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Cancer Res (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 5e
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在人类样本上 (图 5e). Mol Ther Methods Clin Dev (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s5d
赛默飞世尔 Cd3g抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). Science (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). Front Immunol (2018) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1b
赛默飞世尔 Cd3g抗体(Thermo Fisher, 17A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1b). J Clin Invest (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
赛默飞世尔 Cd3g抗体(eBiosciences, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Clin Invest (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell Metab (2018) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化; 小鼠; 图 s1b
赛默飞世尔 Cd3g抗体(eBioscience, eBio500A2)被用于被用于免疫组化在小鼠样本上 (图 s1b). Science (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS ONE (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1b
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1b). J Immunol (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s11c
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s11c). Science (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Cd3g抗体(eBiosciences, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Clin Invest (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
赛默飞世尔 Cd3g抗体(eBioscience, 12-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). Development (2018) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛默飞世尔 Cd3g抗体(eBioscience, eBio500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Proc Natl Acad Sci U S A (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4c
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). Nature (2018) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔 Cd3g抗体(eBiosciences, 11-0033-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nature (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd3g抗体(eBiosciences, 11-0031-85)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell (2018) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
赛默飞世尔 Cd3g抗体(ThermoFisher, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Cell (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Cell (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd3g抗体(ebioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫细胞化学; 小鼠; 1:50; 图 1g
赛默飞世尔 Cd3g抗体(eBioscience, 2C11)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1g). Nat Commun (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 图 s3b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2c11)被用于被用于免疫组化在小鼠样本上 (图 s3b). FASEB J (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3g抗体(eBioscience, 56-032)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Immunol (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Cd3g抗体(eBiosciences, 48-0032-80)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s6g
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s6g). Nature (2017) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔 Cd3g抗体(eBioscience, 11-0033-82)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBiosciences, 45-0031-80)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s15g
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 s15g). Science (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1.4b
赛默飞世尔 Cd3g抗体(eBiosciences, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1.4b). Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd3g抗体(ebioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 4b
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 4b). Int J Parasitol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 其他; 小鼠; 图 s2a
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于其他在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Nature (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s2d
赛默飞世尔 Cd3g抗体(eBiosciences, 16-0031-82)被用于被用于抑制或激活实验在小鼠样本上 (图 s2d). Science (2017) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠; 图 6e
赛默飞世尔 Cd3g抗体(eBioscience, 16-0032-85)被用于被用于抑制或激活实验在小鼠样本上 (图 6e). Oncogene (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s8i
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s8i). Nature (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 1:200; 图 9
赛默飞世尔 Cd3g抗体(eBioscience, 2C11)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 9). PLoS ONE (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:400; 图 s1c
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1c). Nat Commun (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3g抗体(eBiosciences, 11-0031-85)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Orthop Res (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1c,d
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd3g抗体(Affymetrix eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2g
赛默飞世尔 Cd3g抗体(eBiosciences, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2g). Nature (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(Ebioscience, 16-0031-82)被用于被用于抑制或激活实验在小鼠样本上 (图 3). Sci Rep (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 S6
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 S6). Sci Rep (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
赛默飞世尔 Cd3g抗体(eBioscience, 25-0031)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Nat Commun (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd3g抗体(eBioscience, 145.2C11)被用于被用于流式细胞仪在小鼠样本上 (图 7). PLoS ONE (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd3g抗体(eBioscience, 11-0031)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Sci Rep (2017) ncbi
大鼠 单克隆(CD3-12)
  • 免疫组化-冰冻切片; 猕猴; 图 2a
赛默飞世尔 Cd3g抗体(Thermo Fischer, CD3-12)被用于被用于免疫组化-冰冻切片在猕猴样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd3g抗体(eBioscience, 45-0031)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Cell Mol Life Sci (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3g抗体(eBiosciences, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Invest Ophthalmol Vis Sci (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd3g抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Leuk Res (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:80; 图 1e
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 1e). Nat Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 2f
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 2f). Front Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 1 ug/ml
赛默飞世尔 Cd3g抗体(eBioscience, 145-2 C11)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. elife (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2l
赛默飞世尔 Cd3g抗体(eBioscience, 17-0031-83)被用于被用于流式细胞仪在小鼠样本上 (图 2l). Sci Rep (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 4a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4a). Mol Vis (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 7G
赛默飞世尔 Cd3g抗体(eBioscience, 48-0032-80)被用于被用于流式细胞仪在小鼠样本上 (图 7G). J Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1h
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1h). J Exp Med (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5
赛默飞世尔 Cd3g抗体(Thermo Fischer Scientific, MA5-14524)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5). Oncotarget (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd3g抗体(eBioscience, 17-0032-80)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nucleic Acids Res (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3g抗体(eBioscience, 13-0031-75)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:300; 图 4a
赛默飞世尔 Cd3g抗体(eBioscience, 50-0032)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4a). J Exp Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 2b
赛默飞世尔 Cd3g抗体(eBiosciences, 2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 2b). Mol Cells (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s3e
赛默飞世尔 Cd3g抗体(Affymetrix eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 s3e). Nature (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5j
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5j). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 图 s1b
赛默飞世尔 Cd3g抗体(ThermoFisher, RM9107)被用于被用于免疫组化在小鼠样本上 (图 s1b). PLoS ONE (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd3g抗体(eBioscience, 12-0031)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Cell Mol Med (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Cd3g抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Nature (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 4c
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4c). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Nature (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1e
赛默飞世尔 Cd3g抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Glia (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 9a
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 9a) 和 被用于流式细胞仪在小鼠样本上 (图 s2c). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 人类; 1:150; 图 2b
赛默飞世尔 Cd3g抗体(Thermo-Fisher, SP7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:150 (图 2b). J Proteome Res (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Nat Commun (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3g抗体(eBioscience, 56-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 2C11)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上浓度为1:100. Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Immunol Cell Biol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s7h
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s7h). Nature (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
赛默飞世尔 Cd3g抗体(实验室视觉, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1a). Am J Pathol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1e
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1e). Nature (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Cd3g抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Clin Cancer Res (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 S3
赛默飞世尔 Cd3g抗体(eBioscience, clone 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 S3). PLoS ONE (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2h
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2h). J Leukoc Biol (2017) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 1:200; 表 1
赛默飞世尔 Cd3g抗体(eBiosciences, eBio500A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(Ebioscience, 11-0031)被用于被用于流式细胞仪在小鼠样本上. BMC Complement Altern Med (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:80; 图 10a
赛默飞世尔 Cd3g抗体(Ebioscience, 17-0032)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 10a). NMR Biomed (2016) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd3g抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 2b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 2b). J Exp Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Clin Invest (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3g抗体(eBiosciences, 45-0031-80)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4o
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4o). Am J Pathol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3g抗体(BD Pharmingen or eBioscience, 2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mol Cell Biol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 Cd3g抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 Cd3g抗体(Thermo Fisher, RM9107-S1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Exp Metastasis (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 8 ug/ml; 图 s5c
赛默飞世尔 Cd3g抗体(eBioscience, 16-0031-85)被用于被用于抑制或激活实验在小鼠样本上浓度为8 ug/ml (图 s5c). Sci Signal (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 3h
赛默飞世尔 Cd3g抗体(eBiosience, 16-0031-86)被用于被用于抑制或激活实验在小鼠样本上 (图 3h). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 ex1b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 ex1b). Nature (2016) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Cd3g抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Nature (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛默飞世尔 Cd3g抗体(Thermo Scientific, MA5-14524)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). JCI Insight (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 1 ug/ml
赛默飞世尔 Cd3g抗体(eBioscience, 16-0031)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 25-0031-82)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunity (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 12-0031-81)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 1h
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s1c
赛默飞世尔 Cd3g抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s1c). Oncotarget (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 1). Stem Cells Dev (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Bio Protoc (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3f). PLoS ONE (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 3b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 3b). Nat Commun (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:66; 图 2f
赛默飞世尔 Cd3g抗体(eBioscience, 45-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:66 (图 2f). Nat Cell Biol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s3
赛默飞世尔 Cd3g抗体(eBioscience, 17-0031-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 14-0032)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 5 ug/ml; 图 2
赛默飞世尔 Cd3g抗体(eBioscience, 2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml (图 2). Nat Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 图 4b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于免疫组化在小鼠样本上 (图 4b). Oncotarget (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 人类; 1:100; 图 s3
  • 流式细胞仪; 小鼠; 1:100; 图 s4
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s3) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4). Nat Commun (2016) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-冰冻切片; 小鼠; 图 3a
赛默飞世尔 Cd3g抗体(生活技术, 500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Eur J Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 s5
赛默飞世尔 Cd3g抗体(ebioscience, 45-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5). J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd3g抗体(eBioscience, 11-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Oncoimmunology (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s2c
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 s2c). Dev Cell (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:1000; 图 2c
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2c). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2b
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 流式细胞仪; 小鼠; 1:150; 图 4
赛默飞世尔 Cd3g抗体(Thermo Fischer Scientific, SP7)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 4). J Intern Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17-A2)被用于被用于流式细胞仪在小鼠样本上. J Transl Med (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 4
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 4). elife (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 4
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 4). J Exp Med (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 Cd3g抗体(Thermo Scientific, MA1-90582)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:200; 图 4
赛默飞世尔 Cd3g抗体(Neomarkers, RM-9107-5)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Peerj (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4b
赛默飞世尔 Cd3g抗体(Thermo Fisher, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4b). J Thorac Oncol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3g抗体(eBioscience, 12-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Rep (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 14-0032-85)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Science (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 11-0031-85)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(eBioscience, 46-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 3). Front Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1c
赛默飞世尔 Cd3g抗体(Fisher Scientific, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1c). J Leukoc Biol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫印迹; 大鼠; 1:100; 图 13
赛默飞世尔 Cd3g抗体(Thermo Scientific, RM9107)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 13). Nat Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫组化在小鼠样本上 (图 1). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
赛默飞世尔 Cd3g抗体(Thermo Fisher, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). APMIS (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 图 1d
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫组化在小鼠样本上 (图 1d). Science (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 4a
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C1)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Nat Genet (2016) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠; 图 4a
赛默飞世尔 Cd3g抗体(eBiosciences, 17A2)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Immunol Cell Biol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
赛默飞世尔 Cd3g抗体(Neomarkers, RM-9107-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Acta Neuropathol Commun (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 25-0031)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2016) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, HMb1-1)被用于被用于流式细胞仪在小鼠样本上. Mol Metab (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd3g抗体(eBioscience, 2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3g抗体(eBiosciences, 2C11)被用于被用于抑制或激活实验在小鼠样本上. Methods Mol Biol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔 Cd3g抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Exp Clin Cancer Res (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd3g抗体(eBioscience, 145-211)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd3g抗体(eBioscience, 25-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Infect Immun (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔 Cd3g抗体(Labvision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Nat Med (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2f
赛默飞世尔 Cd3g抗体(eBioscience, 12-0031)被用于被用于流式细胞仪在小鼠样本上 (图 2f). J Exp Med (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd3g抗体(eBioscience, 50-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:250; 表 1
赛默飞世尔 Cd3g抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (表 1). Medicine (Baltimore) (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 2
赛默飞世尔 Cd3g抗体(eBioscience, 47-0032-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:200; 图 2
赛默飞世尔 Cd3g抗体(eBioscience, 45-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 Cd3g抗体(eBioscience, 16003285)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cell Mol Immunol (2017) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 6a
赛默飞世尔 Cd3g抗体(Thermo, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Clin Exp Immunol (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:500; 图 3c, 3d
赛默飞世尔 Cd3g抗体(eBioscience, 12-0031)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 3c, 3d). Endocrinology (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 Cd3g抗体(eBioscience, 17-0032-82)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Gut (2016) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Cd3g抗体(eBiosciences, 45-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1f
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 1b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1f) 和 被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 1b). Nat Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3g抗体(eBioscience, 11-C0031)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd3g抗体(EBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Am J Transplant (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Retrovirology (2015) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(Caltag Laboratories, HM3421)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 s1
赛默飞世尔 Cd3g抗体(Thermo, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cell Mol Immunol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 图 4a
赛默飞世尔 Cd3g抗体(Thermo Scientific, MA1?C90582)被用于被用于免疫组化在人类样本上 (图 4a). Oncoimmunology (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Leukemia (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBiosciences, 48-003280)被用于被用于流式细胞仪在小鼠样本上. Autophagy (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 12-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化在人类样本上. World J Urol (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Nature (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 Cd3g抗体(ebiosciences, 145-2C11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Nat Biotechnol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 图 10b
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于免疫组化在小鼠样本上 (图 10b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 猕猴; 1:100
赛默飞世尔 Cd3g抗体(Lab Vision/NeoMarkers, SP7)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:100. PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd3g抗体(eBiosciences, 2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 7.5 ug/ml; 图 6a
赛默飞世尔 Cd3g抗体(Thermo Scientific, RM-9107-S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为7.5 ug/ml (图 6a). Vet Pathol (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 图 4h
赛默飞世尔 Cd3g抗体(ThermoFischer, SP7)被用于被用于免疫组化在人类样本上 (图 4h). Eur J Hum Genet (2016) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, SP-7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1). PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:12
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:12. PLoS ONE (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类
  • 免疫沉淀; 小鼠
赛默飞世尔 Cd3g抗体(Thermo Scientific, SP7)被用于被用于免疫组化在人类样本上 和 被用于免疫沉淀在小鼠样本上. Dig Dis Sci (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100
赛默飞世尔 Cd3g抗体(Lab Vision, SP7)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(Thermo Scientific, RM9107-s)被用于被用于免疫组化在小鼠样本上 (图 3). Cancer Biol Ther (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 8). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠; 1:100; 图 s3a
赛默飞世尔 Cd3g抗体(Neomarkers, RM9107)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3a). Nat Commun (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd3g抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上 (图 4). Infect Immun (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Bone Miner Res (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:25; 图 2d
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, RM9107S)被用于被用于免疫组化在人类样本上浓度为1:25 (图 2d). elife (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 表 1
赛默飞世尔 Cd3g抗体(NeoMarkers, RM 9107)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 1). Methods Mol Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Blood (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 2
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 2). Eur J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3g抗体(eBioscience (Affymetrix), 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3g抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Neuroinflammation (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3g抗体(BD/eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Hematol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 1 ug/ml
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. J Leukoc Biol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-自由浮动切片; 人类
赛默飞世尔 Cd3g抗体(Lab Vision, SP7)被用于被用于免疫组化-自由浮动切片在人类样本上. Arthritis Rheumatol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(Ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Cell Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Development (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Leukoc Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Cd3g抗体(eBioscience, 25-0031)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Nat Biotechnol (2015) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔 Cd3g抗体(Thermo Scientific Labvision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. J Am Acad Dermatol (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Cancer Res (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3g抗体(ebioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Natl Cancer Inst (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 1 ug/ml
  • 流式细胞仪; 小鼠; 1 ug/ml
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml 和 被用于流式细胞仪在小鼠样本上浓度为1 ug/ml. J Leukoc Biol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1e
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 1e). Nat Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Virol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3g抗体(生活技术, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2c11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Cd3g抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Immunol Immunother (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:300
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150
赛默飞世尔 Cd3g抗体(THERMO SC, SP7)被用于被用于免疫组化在人类样本上浓度为1:150. BMC Clin Pathol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). J Exp Med (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd3g抗体(ebioscience, 14-0031-82)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Clin Cancer Res (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 人类
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 50-0032-82)被用于被用于流式细胞仪在小鼠样本上. Nature (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 25-0031-82)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Mucosal Immunol (2015) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 s2c
赛默飞世尔 Cd3g抗体(eBioscience, 16-0031-85)被用于被用于抑制或激活实验在小鼠样本上 (图 s2c). Nat Immunol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:2000
赛默飞世尔 Cd3g抗体(Neomarkers, RM-9107-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. J Neurol Neurosurg Psychiatry (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔 Cd3g抗体(Labvision, RM-9107-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mucosal Immunol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Cd3g抗体(Fisher/Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 25-0031-81)被用于被用于免疫组化-冰冻切片在小鼠样本上. Gene Ther (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 16-0031-81)被用于被用于抑制或激活实验在小鼠样本上 (图 1). PLoS ONE (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS Pathog (2014) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔 Cd3g抗体(eBioscience, eBio500A2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Bone (2014) ncbi
大鼠 单克隆(17A2)
  • 免疫细胞化学; 人类; 表 2
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于免疫细胞化学在人类样本上 (表 2). J Clin Invest (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (表 1). Nat Immunol (2014) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd3g抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上 (表 1). Nat Immunol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Cd3g抗体(Thermo Fisher Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上. Circ Arrhythm Electrophysiol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100
赛默飞世尔 Cd3g抗体(Labvision/Thermo Scientific, SP7)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS Pathog (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 Cd3g抗体(Thermo Scientific, SP7)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Crohns Colitis (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2014) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 5 ug/ml
赛默飞世尔 Cd3g抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml. Immunology (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(Caltag, 1452C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于免疫细胞化学在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(ebioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
赛默飞世尔 Cd3g抗体(Lab Vision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). J Neuropathol Exp Neurol (2013) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nature (2013) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 1452C11)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
赛默飞世尔 Cd3g抗体(eBioscience, 11-0031-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). PLoS ONE (2013) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:1,000
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 14-0032-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1,000 和 被用于流式细胞仪在小鼠样本上. J Comp Neurol (2013) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3g抗体(eBiosciences, 140033)被用于被用于抑制或激活实验在小鼠样本上. Nature (2013) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
赛默飞世尔 Cd3g抗体(Neomarkers, RM-9107-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Brain (2013) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 Cd3g抗体(Labvision, SP7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). PLoS ONE (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 10 ug/ml
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml. J Immunol Methods (2013) ncbi
Syrian golden hamster 单克隆(500A2)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔 Cd3g抗体(Invitrogen, clone 500A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Immunol (2013) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(Caltag Laboratories, 500-A2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s3
赛默飞世尔 Cd3g抗体(Thermoscientific, RM-9107-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s3). PLoS Pathog (2012) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 s9
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在人类样本上 (图 s9). PLoS Pathog (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 13-0031)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2012) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔 Cd3g抗体(Thermo Scientific, RM-9107-S1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). PLoS Pathog (2012) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 小鼠
赛默飞世尔 Cd3g抗体(Neomarkers, RM9107)被用于被用于免疫组化在小鼠样本上. Oncotarget (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150; 图 2
赛默飞世尔 Cd3g抗体(Lab Vision, RM-9107)被用于被用于免疫组化在人类样本上浓度为1:150 (图 2). Breast Cancer Res (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 犬
赛默飞世尔 Cd3g抗体(eBiosciences, 13003185)被用于被用于流式细胞仪在犬样本上. J Biol Chem (2012) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Haematologica (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔 Cd3g抗体(Thermo Scientific, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Hum Pathol (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150; 图 5C
赛默飞世尔 Cd3g抗体(Thermo Scientific, RM-9107-S1)被用于被用于免疫组化在人类样本上浓度为1:150 (图 5C). Proc Natl Acad Sci U S A (2012) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, ebio 47-0032)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 Cd3g抗体(Lab vision, RM-9107)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Breast Cancer (Auckl) (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunol Cell Biol (2012) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔 Cd3g抗体(Thermo, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Int J Surg Pathol (2014) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫组化; 人类
赛默飞世尔 Cd3g抗体(Thermo Fisher, SP7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫组化在人类样本上. J Endocrinol (2011) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2010) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd3g抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2010) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd3g抗体(eBioscience, eBio500A2)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2010) ncbi
Syrian golden hamster 单克隆(eBio500A2 (500A2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 500A2)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2009) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2009) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2009) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
domestic rabbit 单克隆(SP7)
  • 免疫组化; 人类; 1:150; 图 1
赛默飞世尔 Cd3g抗体(Lab Vision, RM-9107)被用于被用于免疫组化在人类样本上浓度为1:150 (图 1). PLoS ONE (2008) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 100 ng/ml
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为100 ng/ml. Cell Res (2008) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 5 ug/ml
赛默飞世尔 Cd3g抗体(Invitrogen, 2C11)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. Mol Cell Biol (2008) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 17A2)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Mol Vis (2007) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(Invitrogen, 145.2C11)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2007) ncbi
Syrian golden hamster 单克隆(500A2)
  • 抑制或激活实验; 小鼠; 4 ug/ml
赛默飞世尔 Cd3g抗体(Invitrogen Life Technologies, 500A2)被用于被用于抑制或激活实验在小鼠样本上浓度为4 ug/ml. J Immunol (2007) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2007) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Virol (2006) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd3g抗体(Caltag Laboratories, 500A2)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2006) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). Int J Cancer (2006) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 5). Blood (2006) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2005) ncbi
仓鼠 单克隆(145-2C11)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于免疫组化-冰冻切片在小鼠样本上. Invest Ophthalmol Vis Sci (2005) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(eBiosciences, 145-2C11)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Cd3g抗体(eBioscience, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2005) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd3g抗体(Caltag, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Int Immunol (2002) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(caltag, 145 2C11)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (1995) ncbi
Syrian golden hamster 单克隆(500A2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd3g抗体(noco, 500A2)被用于被用于流式细胞仪在小鼠样本上. Nature (1987) ncbi
仓鼠 单克隆(145-2C11)
  • 流式细胞仪; 小鼠; 表 3
  • 免疫沉淀; 小鼠; 图 2
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 Cd3g抗体(noco, 145-2C11)被用于被用于流式细胞仪在小鼠样本上 (表 3), 被用于免疫沉淀在小鼠样本上 (图 2) 和 被用于免疫细胞化学在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (1987) ncbi
仓鼠 单克隆(145-2C11)
  • 抑制或激活实验; 小鼠; 图 2
赛默飞世尔 Cd3g抗体(noco, 145-2C11)被用于被用于抑制或激活实验在小鼠样本上 (图 2). J Immunol (1987) ncbi
Syrian golden hamster 单克隆(500A2)
  • 抑制或激活实验; 小鼠; 0.5-10 ug/ml; 图 1
赛默飞世尔 Cd3g抗体(noco, noca)被用于被用于抑制或激活实验在小鼠样本上浓度为0.5-10 ug/ml (图 1). Nature (1992) ncbi
BioLegend
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:100; 图 3
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Mol Psychiatry (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd3g抗体(BioLegend, 100241)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Cd3g抗体(Biolegend, 100219)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd3g抗体(BioLegend, 100206)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Brain Behav Immun (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(BioLegend, 100232)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd3g抗体(Biolegend, 100227)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int J Mol Sci (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd3g抗体(BioLegend, 100237)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Cd3g抗体(BioLegend, 100204)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Am J Cancer Res (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 2s1g
BioLegend Cd3g抗体(BioLegend, 100232)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2s1g). elife (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd3g抗体(BioLegend, 100229)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mucosal Immunol (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:150; 图 s4a
BioLegend Cd3g抗体(BioLegend, 100206)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s4a). Nat Commun (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1-1h
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 s1-1h). elife (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 5m
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5m). Aging Cell (2021) ncbi
大鼠 单克隆(17A2)
  • 免疫细胞化学; 人类; 1:100; 图 6a
BioLegend Cd3g抗体(BioLegend, 100210)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Nat Cancer (2021) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 3b
BioLegend Cd3g抗体(BioLegen, 100201)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 3b). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s5e
BioLegend Cd3g抗体(Biolegend, 100241)被用于被用于流式细胞仪在小鼠样本上 (图 s5e). Cell (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 s2c
BioLegend Cd3g抗体(Biolegend, 100236)被用于被用于流式细胞仪在人类样本上 (图 s2c). Cell Death Dis (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2a, s2b, s2c
BioLegend Cd3g抗体(Biolegend, 100204)被用于被用于流式细胞仪在小鼠样本上 (图 s2a, s2b, s2c). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(BioLegend, 100212)被用于被用于流式细胞仪在小鼠样本上. Br J Cancer (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(Biolegend, 100228)被用于被用于流式细胞仪在小鼠样本上. Commun Biol (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Cd3g抗体(Biolegend, 100206)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Front Immunol (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 s8a
BioLegend Cd3g抗体(BioLegend, 100220)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s8a). Nature (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 7a
BioLegend Cd3g抗体(BioLegend, 100203)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Neoplasia (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Aging Cell (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:50
BioLegend Cd3g抗体(Biolegend, 100249)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Nature (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s5e
BioLegend Cd3g抗体(Biolegend, 100221)被用于被用于流式细胞仪在小鼠样本上 (图 s5e). Nat Commun (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Mucosal Immunol (2021) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 图 3c
BioLegend Cd3g抗体(Biolegend, 100235)被用于被用于流式细胞仪在人类样本上 (图 3c). Nat Commun (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd3g抗体(BioLegend, 100229)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:250; 图 4g
BioLegend Cd3g抗体(Biolegend, 100214)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 4g). elife (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4f
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4f). J Clin Invest (2020) ncbi
大鼠 单克隆(17A2)
BioLegend Cd3g抗体(BioLegend, 17A2)被用于. Nature (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s17
BioLegend Cd3g抗体(BioLegend, 100201)被用于被用于流式细胞仪在小鼠样本上 (图 s17). Nat Commun (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd3g抗体(Biolegend, 100222)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Rep (2020) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 5a
BioLegend Cd3g抗体(Biolegend, 100218)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 5a). elife (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 4b, 4c, 4d
BioLegend Cd3g抗体(Biolegend, 100204)被用于被用于流式细胞仪在小鼠样本上 (图 4b, 4c, 4d). Front Cell Neurosci (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 3, 5
BioLegend Cd3g抗体(BioLegend, 100222)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3, 5). Nat Commun (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:50; 图 5d
BioLegend Cd3g抗体(BioLegend, 100210)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5d). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s3c, s4a
BioLegend Cd3g抗体(BioLegend, 100204)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s3c, s4a). Cancers (Basel) (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s19a
BioLegend Cd3g抗体(Biolegend, 100213)被用于被用于流式细胞仪在小鼠样本上 (图 s19a). Nat Commun (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s7c
BioLegend Cd3g抗体(Biolegend, 100215)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s7c). Cell Rep (2019) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 1:100; 图 6
BioLegend Cd3g抗体(Biolegend, 100240)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). JCI Insight (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 2a, 2f
BioLegend Cd3g抗体(BioLegend, 100205)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2f). J Exp Med (2020) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 8a, s3a, s3b
BioLegend Cd3g抗体(Biolegend, 100222)被用于被用于流式细胞仪在小鼠样本上 (图 8a, s3a, s3b). J Clin Invest (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
BioLegend Cd3g抗体(Biolegend, 100220)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). elife (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 e6f
BioLegend Cd3g抗体(Biolegend, 100210)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e6f). Nature (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 e3s, e3t
BioLegend Cd3g抗体(BioLegend, 100222)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3s, e3t). Nature (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Clin Invest (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 s8a
BioLegend Cd3g抗体(Biolegend, 100241)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s8a). Nat Commun (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd3g抗体(BioLegend, 100241)被用于被用于流式细胞仪在小鼠样本上 (图 3a). EMBO J (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2o
BioLegend Cd3g抗体(Biolegend, 100234)被用于被用于流式细胞仪在小鼠样本上 (图 s2o). JCI Insight (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 e7b
BioLegend Cd3g抗体(Biolegend, 100216)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e7b). Nature (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Cd3g抗体(BioLegend, 100229)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Immunity (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 sf8
BioLegend Cd3g抗体(Biolegend, 100218)被用于被用于流式细胞仪在小鼠样本上 (图 sf8). Sci Rep (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a, s2g
BioLegend Cd3g抗体(Biolegend, 100220)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a, s2g). Nat Commun (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 人类; 2.5 ug/ml; 图 6d
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在人类样本上浓度为2.5 ug/ml (图 6d). Cell Host Microbe (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 5 ug/ml; 图 s12
BioLegend Cd3g抗体(BioLegend, 100232)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml (图 s12). Science (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s7c
BioLegend Cd3g抗体(BioLegend, 100214)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell Metab (2019) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 图 3e
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd3g抗体(Biolegend, 100228)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e) 和 被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2019) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd3g抗体(Biolegend, 100232)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 2a, 3a
BioLegend Cd3g抗体(BioLegend, 100229)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 3a). Cell (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:400; 图 8c
BioLegend Cd3g抗体(BioLegend, 100235)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 8c). Front Immunol (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd3g抗体(BioLegend, 100203)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 s4d
BioLegend Cd3g抗体(BioLegend, 100221)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4d). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Cd3g抗体(BioLegend, 100206)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Mol Cell (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 s4
BioLegend Cd3g抗体(Biolegend, 100221)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 s4). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend Cd3g抗体(Biolegend, 100222)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). J Clin Invest (2018) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 图 2d
BioLegend Cd3g抗体(BioLegend, 100237)被用于被用于免疫组化在小鼠样本上 (图 2d). elife (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd3g抗体(BioLegend, 100237)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
BioLegend Cd3g抗体(Biolegend, 100204)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). Development (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd3g抗体(Biolegend, 100222)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Commun (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s10d
BioLegend Cd3g抗体(BioLegend, 100236)被用于被用于流式细胞仪在小鼠样本上 (图 s10d). Nature (2018) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Cd3g抗体(BioLegend, 100203)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 s7e
BioLegend Cd3g抗体(Biolegend, 100235)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7e). Nat Cell Biol (2017) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 图 3c
BioLegend Cd3g抗体(BioLegend, 100214)被用于被用于免疫组化在小鼠样本上 (图 3c). J Immunol (2017) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 图 s2d
BioLegend Cd3g抗体(BioLegend, 100210)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2d). Nature (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200; 图 3
BioLegend Cd3g抗体(BioLegend, 100219)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Front Immunol (2017) ncbi
大鼠 单克隆(17A2)
BioLegend Cd3g抗体(Biolegend, 100225)被用于. Nat Commun (2017) ncbi
大鼠 单克隆(17A2)
  • 免疫组化; 小鼠; 图 s1d
BioLegend Cd3g抗体(Biolegend, 100243)被用于被用于免疫组化在小鼠样本上 (图 s1d). Cell Stem Cell (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:80
BioLegend Cd3g抗体(Biolegend, 100237)被用于被用于流式细胞仪在小鼠样本上浓度为1:80. Nat Commun (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Cd3g抗体(BioLegend, 100218)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Immunol (2017) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1G
BioLegend Cd3g抗体(Biolegend, 100236)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend Cd3g抗体(BioLegend, 14A-2)被用于被用于流式细胞仪在小鼠样本上 (图 s7). J Clin Invest (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd3g抗体(BioLegend, 100222)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cell (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 大鼠; 图 6
BioLegend Cd3g抗体(Biolegend, 100205)被用于被用于流式细胞仪在大鼠样本上 (图 6). J Neuroinflammation (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:50; 图 s9d
BioLegend Cd3g抗体(BioLegend, 100220)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s9d). Nat Methods (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100; 图 1
BioLegend Cd3g抗体(BioLegend, 100204)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Exp Ther Med (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-冰冻切片; 小鼠; 图 2j
BioLegend Cd3g抗体(BioLegend, 100240)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2j). JCI Insight (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend Cd3g抗体(Biolegend, 100204)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Nat Commun (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd3g抗体(BioLegend, 100205)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd3g抗体(BioLegend, 17-2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Science (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(BioLegend, 100202)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 8a
BioLegend Cd3g抗体(BioLegend, 100214)被用于被用于流式细胞仪在小鼠样本上 (图 8a). J Biol Chem (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 9
BioLegend Cd3g抗体(BioLegend, I7A2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 9). PLoS ONE (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(17A2)
  • 抑制或激活实验; 小鼠; 图 3
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于抑制或激活实验在小鼠样本上 (图 3) 和 被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 3). Aging (Albany NY) (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2016) ncbi
大鼠 单克隆(17A2)
BioLegend Cd3g抗体(Biolegend, 100218)被用于. Sci Rep (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd3g抗体(biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Mucosal Immunol (2016) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:500; 图 s2
BioLegend Cd3g抗体(BioLegend, 100218)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(Biolegend, 17A2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(17A2)
  • 免疫组化-石蜡切片; 小鼠
BioLegend Cd3g抗体(BioLegend, 100210)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cardiovasc Res (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 3B
BioLegend Cd3g抗体(BioLegend, 100204)被用于被用于流式细胞仪在小鼠样本上 (图 3B). J Immunol (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(Biolegend, 100203)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Cd3g抗体(biolegend, 100235)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Appl Microbiol Biotechnol (2015) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(17A2)
  • 流式细胞仪; 小鼠
BioLegend Cd3g抗体(BioLegend, 17A2)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2014) ncbi
大鼠 单克隆(17A2)
BioLegend Cd3g抗体(Biolegend, 100222)被用于. J Vis Exp (2014) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(KT3)
  • 免疫组化-石蜡切片; 小鼠; 图 5
伯乐(Bio-Rad)公司 Cd3g抗体(AbD Serotec, KT3)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Cell Death Dis (2016) ncbi
大鼠 单克隆(KT3)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 4
伯乐(Bio-Rad)公司 Cd3g抗体(Serotec, MCA500G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 4). Oncotarget (2016) ncbi
大鼠 单克隆(KT3)
  • 免疫组化; 小鼠; 1:50; 图 4d
伯乐(Bio-Rad)公司 Cd3g抗体(AbD Serotec, KT3)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4d). PLoS ONE (2014) ncbi
大鼠 单克隆(KT3)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司 Cd3g抗体(Serotec, MCA500G)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(KT3)
  • 免疫细胞化学; 小鼠; 1:200
伯乐(Bio-Rad)公司 Cd3g抗体(Serotec, MCA500GA)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
文章列表
  1. Arinrad S, Wilke J, Seelbach A, Doeren J, Hindermann M, Butt U, et al. NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Mol Psychiatry. 2021;: pubmed 出版商
  2. Fahy N, Palomares Cabeza V, Lolli A, Witte Bouma J, Merino A, Ridwan Y, et al. Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of Endochondral Ossification in an Immunocompetent Xenogeneic Model. Front Immunol. 2021;12:715267 pubmed 出版商
  3. Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 2021;11:9162-9176 pubmed 出版商
  4. Liu Y, Du J, Liu X, Wang L, Han Y, Huang C, et al. MG149 inhibits histone acetyltransferase KAT8-mediated IL-33 acetylation to alleviate allergic airway inflammation and airway hyperresponsiveness. Signal Transduct Target Ther. 2021;6:321 pubmed 出版商
  5. Malenica I, Adam J, Corgnac S, Mezquita L, Auclin E, Damei I, et al. Integrin-αV-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat Commun. 2021;12:5209 pubmed 出版商
  6. Neumann S, Campbell K, Woodall M, Evans M, Clarkson A, Young S. Obesity Has a Systemic Effect on Immune Cells in Naïve and Cancer-Bearing Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  7. Cortés A, Solas M, Pejenaute A, Abellanas M, Garcia Lacarte M, Aymerich M, et al. Expression of Endothelial NOX5 Alters the Integrity of the Blood-Brain Barrier and Causes Loss of Memory in Aging Mice. Antioxidants (Basel). 2021;10: pubmed 出版商
  8. Zhang Y, McGrath K, Ayoub E, Kingsley P, Yu H, Fegan K, et al. Mds1CreERT2, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Rep. 2021;36:109562 pubmed 出版商
  9. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  10. Tillie R, Theelen T, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, et al. A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  11. Dhawan U, Bhattacharya P, Narayanan S, Manickam V, Aggarwal A, Subramanian M. Hypercholesterolemia Impairs Clearance of Neutrophil Extracellular Traps and Promotes Inflammation and Atherosclerotic Plaque Progression. Arterioscler Thromb Vasc Biol. 2021;41:2598-2615 pubmed 出版商
  12. Hoffman R, Huang S, Chalasani G, Vallejo A. Disparate Recruitment and Retention of Plasmacytoid Dendritic Cells to The Small Intestinal Mucosa between Young and Aged Mice. Aging Dis. 2021;12:1183-1196 pubmed 出版商
  13. Liot S, El Kholti N, Balas J, Genestier L, Verrier B, Valcourt U, et al. Development of thymic tumor in [LSL:KrasG12D; Pdx1-CRE] mice, an adverse effect associated with accelerated pancreatic carcinogenesis. Sci Rep. 2021;11:15075 pubmed 出版商
  14. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  15. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  16. Olson B, Zhu X, Norgard M, Diba P, Levasseur P, Buenafe A, et al. Chronic cerebral lipocalin 2 exposure elicits hippocampal neuronal dysfunction and cognitive impairment. Brain Behav Immun. 2021;97:102-118 pubmed 出版商
  17. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  18. Gehlsen U, Stary D, Maass M, Riesner K, Musial G, Stern M, et al. Ocular Graft-versus-Host Disease in a Chemotherapy-Based Minor-Mismatch Mouse Model Features Corneal (Lymph-) Angiogenesis. Int J Mol Sci. 2021;22: pubmed 出版商
  19. Al Ani M, Elemam N, Hachim I, Raju T, Muhammad J, Hachim M, et al. Molecular Examination of Differentially Expressed Genes in the Brains of Experimental Autoimmune Encephalomyelitis Mice Post Herceptin Treatment. J Inflamm Res. 2021;14:2601-2617 pubmed 出版商
  20. Ryu S, Shchukina I, Youm Y, Qing H, Hilliard B, Dlugos T, et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. elife. 2021;10: pubmed 出版商
  21. Lacy M, Burger C, Shami A, Ahmadsei M, Winkels H, Nitz K, et al. Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun. 2021;12:3754 pubmed 出版商
  22. Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, et al. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res. 2021;11:2005-2024 pubmed
  23. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  24. Zhang X, Liu X, Zhou W, Du Q, Yang M, Ding Y, et al. Blockade of IDO-Kynurenine-AhR Axis Ameliorated Colitis-Associated Colon Cancer via Inhibiting Immune Tolerance. Cell Mol Gastroenterol Hepatol. 2021;12:1179-1199 pubmed 出版商
  25. Oikonomou N, Schuijs M, Chatzigiagkos A, Androulidaki A, Aidinis V, Hammad H, et al. Airway epithelial cell necroptosis contributes to asthma exacerbation in a mouse model of house dust mite-induced allergic inflammation. Mucosal Immunol. 2021;14:1160-1171 pubmed 出版商
  26. Zimmer T, Broekaart D, Luinenburg M, Mijnsbergen C, Anink J, Sim N, et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol. 2021;47:826-839 pubmed 出版商
  27. Glassman C, Su L, Majri Morrison S, Winkelmann H, Mo F, Li P, et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. elife. 2021;10: pubmed 出版商
  28. Roca C, Burton O, Gergelits V, Prezzemolo T, Whyte C, Halpert R, et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12:2890 pubmed 出版商
  29. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  30. Kalinina A, Khromykh L, Kazansky D, Deykin A, Silaeva Y. Suppression of the Immune Response by Syngeneic Splenocytes Adoptively Transferred to Sublethally Irradiated Mice. Acta Naturae. 2021;13:116-126 pubmed 出版商
  31. Lin Q, Rong L, Jia X, Li R, Yu B, Hu J, et al. IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella. Nat Commun. 2021;12:2537 pubmed 出版商
  32. Geng G, Liu J, Xu C, Pei Y, Chen L, Mu C, et al. Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. elife. 2021;10: pubmed 出版商
  33. Piñeiro Hermida S, Martinez P, Blasco M. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell. 2021;20:e13352 pubmed 出版商
  34. Flamini S, Sergeev P, Viana de Barros Z, Mello T, Biagioli M, Paglialunga M, et al. Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis. 2021;12:421 pubmed 出版商
  35. Morel K, Sheahan A, Burkhart D, Baca S, Boufaied N, Liu Y, et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat Cancer. 2021;2:444-456 pubmed 出版商
  36. Go D, Lee S, Lee S, Woo S, Kim K, Kim K, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol. 2021;12:715-739 pubmed 出版商
  37. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  38. Lake C, Voss K, Bauman B, Pohida K, Jiang T, Dveksler G, et al. TIM-3 drives temporal differences in restimulation-induced cell death sensitivity in effector CD8+ T cells in conjunction with CEACAM1. Cell Death Dis. 2021;12:400 pubmed 出版商
  39. Zheng W, Song H, Luo Z, Wu H, Chen L, Wang Y, et al. Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  40. Akgul A, Maddaloni M, Jun S, Nelson A, Odreman V, Hoffman C, et al. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren's syndrome. Arthritis Res Ther. 2021;23:99 pubmed 出版商
  41. Lisk C, Yuen R, Kuniholm J, Antos D, Reiser M, Wetzler L. CD169+ Subcapsular Macrophage Role in Antigen Adjuvant Activity. Front Immunol. 2021;12:624197 pubmed 出版商
  42. Joseph R, Soundararajan R, Vasaikar S, Yang F, Allton K, Tian L, et al. CD8+ T cells inhibit metastasis and CXCL4 regulates its function. Br J Cancer. 2021;125:176-189 pubmed 出版商
  43. Barcia Durán J, Lu T, Houghton S, Geng F, Schreiner R, Xiang J, et al. Endothelial Jak3 expression enhances pro-hematopoietic angiocrine function in mice. Commun Biol. 2021;4:406 pubmed 出版商
  44. Sewastianik T, Straubhaar J, Zhao J, Samur M, Adler K, Tanton H, et al. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood. 2021;137:1905-1919 pubmed 出版商
  45. Guo S, Smeltz R, Nanajian A, Heller R. IL-15/IL-15Rα Heterodimeric Complex as Cancer Immunotherapy in Murine Breast Cancer Models. Front Immunol. 2020;11:614667 pubmed 出版商
  46. Ballet R, Brennan M, Brandl C, Feng N, Berri J, Cheng J, et al. A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Nat Immunol. 2021;22:381-390 pubmed 出版商
  47. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  48. Wang F, Ye W, Wang S, He Y, Zhong H, Wang Y, et al. Discovery of a new inhibitor targeting PD-L1 for cancer immunotherapy. Neoplasia. 2021;23:281-293 pubmed 出版商
  49. Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, et al. Targeting age-specific changes in CD4+ T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell. 2021;20:e13299 pubmed 出版商
  50. Sanmarco L, Wheeler M, Gutiérrez Vázquez C, Polonio C, Linnerbauer M, Pinho Ribeiro F, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature. 2021;: pubmed 出版商
  51. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  52. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  53. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  54. Gao L, Li B, Wang J, Shen D, Yang M, Sun R, et al. Activation of Liver X Receptor α Sensitizes Mice to T-Cell Mediated Hepatitis. Hepatol Commun. 2020;4:1664-1679 pubmed 出版商
  55. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  56. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  57. Ricci B, Tycksen E, Celik H, Belle J, Fontana F, Civitelli R, et al. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. elife. 2020;9: pubmed 出版商
  58. Florian M, Leins H, Gobs M, Han Y, Marka G, Soller K, et al. Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice. Aging Cell. 2020;:e13208 pubmed 出版商
  59. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  60. Piersma S, Poursine Laurent J, Yang L, Barber G, Parikh B, Yokoyama W. Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING. elife. 2020;9: pubmed 出版商
  61. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  62. Bhaskar A, Kumar S, Khan M, Singh A, Dwivedi V, Nandicoori V. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. elife. 2020;9: pubmed 出版商
  63. Harbour S, DiToro D, Witte S, Zindl C, Gao M, Schoeb T, et al. TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol. 2020;5: pubmed 出版商
  64. Lubos N, van der Gaag S, Gerçek M, Kant S, Leube R, Krusche C. Inflammation shapes pathogenesis of murine arrhythmogenic cardiomyopathy. Basic Res Cardiol. 2020;115:42 pubmed 出版商
  65. Cao W, Fang F, Gould T, Li X, Kim C, Gustafson C, et al. Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. J Clin Invest. 2020;130:3422-3436 pubmed 出版商
  66. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  67. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  68. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  69. Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol. 2020;11:366 pubmed 出版商
  70. Ramstead A, Wallace J, Lee S, Bauer K, Tang W, Ekiz H, et al. Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Rep. 2020;30:2889-2899.e6 pubmed 出版商
  71. Wei J, Mattapallil M, Horai R, Jittayasothorn Y, Modi A, Sen H, et al. A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina. elife. 2020;9: pubmed 出版商
  72. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  73. Lu H, Kim S, Steelman A, Tracy K, Zhou B, Michaud D, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020;117:5430-5441 pubmed 出版商
  74. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  75. Chen C, Chencheng Z, Cuiying L, Xiaokun G. Plasmacytoid Dendritic Cells Protect Against Middle Cerebral Artery Occlusion Induced Brain Injury by Priming Regulatory T Cells. Front Cell Neurosci. 2020;14:8 pubmed 出版商
  76. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  77. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  78. Tzeng S, Patel K, Wilson D, Meyer R, Rhodes K, Green J. In situ genetic engineering of tumors for long-lasting and systemic immunotherapy. Proc Natl Acad Sci U S A. 2020;117:4043-4052 pubmed 出版商
  79. Cohen G, Chandran P, Lorsung R, Tomlinson L, Sundby M, Burks S, et al. The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel). 2020;12: pubmed 出版商
  80. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  81. Williams G, Marmion D, Schonhoff A, Jurkuvenaite A, Won W, Standaert D, et al. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 2020;139:855-874 pubmed 出版商
  82. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  83. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676-681 pubmed 出版商
  84. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  85. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  86. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  87. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  88. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  89. Vagnozzi R, Maillet M, Sargent M, Khalil H, Johansen A, Schwanekamp J, et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577:405-409 pubmed 出版商
  90. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  91. Nagai J, Balestrieri B, Fanning L, Kyin T, Cirka H, Lin J, et al. P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation. J Clin Invest. 2019;129:5169-5186 pubmed 出版商
  92. Yadava K, Medina C, Ishak H, Gurevich I, Kuipers H, Shamskhou E, et al. Natural Tr1-like cells do not confer long-term tolerogenic memory. elife. 2019;8: pubmed 出版商
  93. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  94. Yoshimi A, Lin K, Wiseman D, Rahman M, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574:273-277 pubmed 出版商
  95. Sanz Ortega L, Rojas J, Portilla Y, Pérez Yagüe S, Barber D. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol. 2019;10:2073 pubmed 出版商
  96. Chen M, Reed R, Lane A. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell Stem Cell. 2019;25:501-513.e5 pubmed 出版商
  97. Rasoulouniriana D, Santana Magal N, Gutwillig A, Farhat Younis L, Wine Y, Saperia C, et al. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest. 2019;129:4151-4164 pubmed 出版商
  98. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  99. Clancy Thompson E, Chen G, LaMarche N, Ali L, Jeong H, Crowley S, et al. Transnuclear mice reveal Peyer's patch iNKT cells that regulate B-cell class switching to IgG1. EMBO J. 2019;38:e101260 pubmed 出版商
  100. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  101. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  102. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  103. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  104. Dangaj D, Bruand M, Grimm A, Ronet C, Barras D, Duttagupta P, et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell. 2019;35:885-900.e10 pubmed 出版商
  105. Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086 pubmed 出版商
  106. Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S, Rosenstiel P, et al. Fate-Mapping of GM-CSF Expression Identifies a Discrete Subset of Inflammation-Driving T Helper Cells Regulated by Cytokines IL-23 and IL-1β. Immunity. 2019;: pubmed 出版商
  107. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136 pubmed 出版商
  108. Walens A, DiMarco A, Lupo R, Kroger B, Damrauer J, Alvarez J. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. elife. 2019;8: pubmed 出版商
  109. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  110. Jacome Galarza C, Percin G, Muller J, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568:541-545 pubmed 出版商
  111. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  112. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  113. Bottermann M, Foss S, Caddy S, Clift D, van Tienen L, Vaysburd M, et al. Complement C4 Prevents Viral Infection through Capsid Inactivation. Cell Host Microbe. 2019;25:617-629.e7 pubmed 出版商
  114. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  115. Kumar P, Rajasekaran K, Nanbakhsh A, Gorski J, Thakar M, Malarkannan S. IL-27 promotes NK cell effector functions via Maf-Nrf2 pathway during influenza infection. Sci Rep. 2019;9:4984 pubmed 出版商
  116. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  117. Melo Gonzalez F, Kammoun H, Evren E, Dutton E, Papadopoulou M, Bradford B, et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J Exp Med. 2019;216:728-742 pubmed 出版商
  118. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  119. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  120. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  121. Davies A, Kim H, González Cano R, Choi J, Back S, Roh S, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176:716-728.e18 pubmed 出版商
  122. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  123. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  124. Collins P, Cella M, Porter S, Li S, Gurewitz G, Hong H, et al. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell. 2019;176:348-360.e12 pubmed 出版商
  125. Hu K, Huang Q, Liu C, Li Y, Liu Y, Wang H, et al. c-Jun/Bim Upregulation in Dopaminergic Neurons Promotes Neurodegeneration in the MPTP Mouse Model of Parkinson's Disease. Neuroscience. 2019;399:117-124 pubmed 出版商
  126. Percin G, Eitler J, Kranz A, Fu J, Pollard J, Naumann R, et al. CSF1R regulates the dendritic cell pool size in adult mice via embryo-derived tissue-resident macrophages. Nat Commun. 2018;9:5279 pubmed 出版商
  127. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  128. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  129. Nayar S, Campos J, Smith C, Iannizzotto V, Gardner D, Colafrancesco S, et al. Phosphatidylinositol 3-kinase delta pathway: a novel therapeutic target for Sjögren's syndrome. Ann Rheum Dis. 2019;78:249-260 pubmed 出版商
  130. Sharma D, Malik A, Guy C, Vogel P, Kanneganti T. TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy. J Clin Invest. 2019;129:150-162 pubmed 出版商
  131. Glal D, Sudhakar J, Lu H, Liu M, Chiang H, Liu Y, et al. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol. 2018;9:2522 pubmed 出版商
  132. Wilgenburg B, Loh L, Chen Z, Pediongco T, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9:4706 pubmed 出版商
  133. Jensen I, Winborn C, Fosdick M, Shao P, Tremblay M, Shan Q, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018;14:e1007405 pubmed 出版商
  134. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  135. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, et al. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun. 2018;9:4381 pubmed 出版商
  136. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  137. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  138. Abreu Mota T, Hagen K, Cooper K, Jahrling P, Tan G, Wirblich C, et al. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun. 2018;9:4223 pubmed 出版商
  139. Delgado Benito V, Rosen D, Wang Q, Gazumyan A, Pai J, Oliveira T, et al. The Chromatin Reader ZMYND8 Regulates Igh Enhancers to Promote Immunoglobulin Class Switch Recombination. Mol Cell. 2018;72:636-649.e8 pubmed 出版商
  140. Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons. Front Microbiol. 2018;9:2148 pubmed 出版商
  141. Stephens J, Bailey J, Hang H, Rittell V, Dietrich M, Mynatt R, et al. Adipose Tissue Dysfunction Occurs Independently of Obesity in Adipocyte-Specific Oncostatin Receptor Knockout Mice. Obesity (Silver Spring). 2018;26:1439-1447 pubmed 出版商
  142. Chen J, Cai Z, Bai M, Yu X, Zhang C, Cao C, et al. The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Res. 2018;28:981-995 pubmed 出版商
  143. Schrand B, Clark E, Levay A, Capote A, Martínez O, Brenneman R, et al. Hapten-mediated recruitment of polyclonal antibodies to tumors engenders antitumor immunity. Nat Commun. 2018;9:3348 pubmed 出版商
  144. Cheng Y, Zhu X, Wang X, Zhuang Q, Huyan X, Sun X, et al. Trichinella spiralis Infection Mitigates Collagen-Induced Arthritis via Programmed Death 1-Mediated Immunomodulation. Front Immunol. 2018;9:1566 pubmed 出版商
  145. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  146. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  147. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  148. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  149. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  150. Abel A, Tiwari A, Gerbec Z, Siebert J, Yang C, Schloemer N, et al. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol. 2018;9:1168 pubmed 出版商
  151. Gu C, Borjabad A, Hadas E, Kelschenbach J, Kim B, Chao W, et al. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog. 2018;14:e1007061 pubmed 出版商
  152. Honeycutt J, Liao B, Nixon C, Cleary R, Thayer W, Birath S, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862-2876 pubmed 出版商
  153. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  154. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  155. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  156. Li C, Psatha N, Wang H, Singh M, Samal H, Zhang W, et al. Integrating HDAd5/35++ Vectors as a New Platform for HSC Gene Therapy of Hemoglobinopathies. Mol Ther Methods Clin Dev. 2018;9:142-152 pubmed 出版商
  157. Donaldson G, Ladinsky M, Yu K, Sanders J, Yoo B, Chou W, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360:795-800 pubmed 出版商
  158. Kling J, Jordan M, Pitt L, Meiners J, Thanh Tran T, Tran L, et al. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling. Front Immunol. 2018;9:483 pubmed 出版商
  159. Vogl T, Stratis A, Wixler V, Voller T, Thurainayagam S, Jorch S, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128:1852-1866 pubmed 出版商
  160. Vigolo M, Chambers M, Willen L, Chevalley D, Maskos K, Lammens A, et al. A loop region of BAFF controls B cell survival and regulates recognition by different inhibitors. Nat Commun. 2018;9:1199 pubmed 出版商
  161. Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K, Mouhieddine T, et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest. 2018;128:2487-2499 pubmed 出版商
  162. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  163. Moriyama S, Brestoff J, Flamar A, Moeller J, Klose C, Rankin L, et al. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science. 2018;359:1056-1061 pubmed 出版商
  164. Metghalchi S, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS ONE. 2018;13:e0193737 pubmed 出版商
  165. Lee C, Zhang H, Singh S, Koo L, Kabat J, Tsang H, et al. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. elife. 2018;7: pubmed 出版商
  166. A Verghese D, Demir M, Chun N, Fribourg M, Cravedi P, Llaudó I, et al. T Cell Expression of C5a Receptor 2 Augments Murine Regulatory T Cell (TREG) Generation and TREG-Dependent Cardiac Allograft Survival. J Immunol. 2018;200:2186-2198 pubmed 出版商
  167. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  168. Böttcher J, Bonavita E, Chakravarty P, Blees H, Cabeza Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022-1037.e14 pubmed 出版商
  169. Dejea C, Fathi P, Craig J, Boleij A, Taddese R, Geis A, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592-597 pubmed 出版商
  170. Chennupati V, Veiga D, Maslowski K, Andina N, Tardivel A, Yu E, et al. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation. J Clin Invest. 2018;128:1597-1614 pubmed 出版商
  171. Solanki A, Yanez D, Ross S, Lau C, Papaioannou E, Li J, et al. Gli3 in fetal thymic epithelial cells promotes thymocyte positive selection and differentiation by repression of Shh. Development. 2018;145: pubmed 出版商
  172. Siracusa F, McGrath M, Maschmeyer P, Bardua M, Lehmann K, Heinz G, et al. Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow. Proc Natl Acad Sci U S A. 2018;115:1334-1339 pubmed 出版商
  173. Vo L, Kinney M, Liu X, Zhang Y, Barragan J, Sousa P, et al. Regulation of embryonic haematopoietic multipotency by EZH1. Nature. 2018;553:506-510 pubmed 出版商
  174. Teater M, Domínguez P, Redmond D, Chen Z, Ennishi D, Scott D, et al. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat Commun. 2018;9:222 pubmed 出版商
  175. Christ A, Günther P, Lauterbach M, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell. 2018;172:162-175.e14 pubmed 出版商
  176. Garaycoechea J, Crossan G, Langevin F, Mulderrig L, Louzada S, Yang F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature. 2018;553:171-177 pubmed 出版商
  177. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  178. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  179. Burrack A, Malhotra D, Dileepan T, Osum K, Swanson L, Fife B, et al. Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol. 2018;200:477-482 pubmed 出版商
  180. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  181. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  182. Widjaja Adhi M, Palczewski G, Dale K, Knauss E, Kelly M, Golczak M, et al. Transcription factor ISX mediates the cross talk between diet and immunity. Proc Natl Acad Sci U S A. 2017;114:11530-11535 pubmed 出版商
  183. Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed 出版商
  184. Bern M, Beckman D, Ebihara T, Taffner S, Poursine Laurent J, White J, et al. Immunoreceptor tyrosine-based inhibitory motif-dependent functions of an MHC class I-specific NK cell receptor. Proc Natl Acad Sci U S A. 2017;114:E8440-E8447 pubmed 出版商
  185. Cole C, Russler Germain D, Ketkar S, Verdoni A, Smith A, Bangert C, et al. Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies. J Clin Invest. 2017;127:3657-3674 pubmed 出版商
  186. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  187. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  188. Funken D, Ishikawa Ankerhold H, Uhl B, Lerchenberger M, Rentsch M, Mayr D, et al. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver. FASEB J. 2017;31:4796-4808 pubmed 出版商
  189. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  190. Alloatti A, Rookhuizen D, Joannas L, Carpier J, Iborra S, Magalhaes J, et al. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med. 2017;214:2231-2241 pubmed 出版商
  191. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017;545:500-504 pubmed 出版商
  192. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  193. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  194. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  195. Audzevich T, Bashford Rogers R, Mabbott N, Frampton D, Freeman T, Potocnik A, et al. Pre/pro-B cells generate macrophage populations during homeostasis and inflammation. Proc Natl Acad Sci U S A. 2017;114:E3954-E3963 pubmed 出版商
  196. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  197. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  198. van der Vlugt L, Obieglo K, Ozir Fazalalikhan A, Sparwasser T, Haeberlein S, Smits H. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol. 2017;47:545-554 pubmed 出版商
  199. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  200. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  201. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  202. Hérault A, Binnewies M, Leong S, Calero Nieto F, Zhang S, Kang Y, et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017;544:53-58 pubmed 出版商
  203. He W, Wang C, Mu R, Liang P, Huang Z, Zhang J, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene. 2017;36:4212-4223 pubmed 出版商
  204. Lefrançais E, Ortiz Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah D, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544:105-109 pubmed 出版商
  205. Tewes S, Gueler F, Chen R, Gutberlet M, Jang M, Meier M, et al. Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains. PLoS ONE. 2017;12:e0173248 pubmed 出版商
  206. Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715 pubmed 出版商
  207. Wagner J, Jaurich H, Wallner C, Abraham S, Becerikli M, Dadras M, et al. Diminished bone regeneration after debridement of posttraumatic osteomyelitis is accompanied by altered cytokine levels, elevated B cell activity, and increased osteoclast activity. J Orthop Res. 2017;35:2425-2434 pubmed 出版商
  208. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  209. Baranek T, Morello E, Valayer A, Aimar R, Bréa D, Henry C, et al. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol. 2017;8:123 pubmed 出版商
  210. Ho T, Warr M, Adelman E, Lansinger O, Flach J, Verovskaya E, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543:205-210 pubmed 出版商
  211. Wang H, Mo L, Xiao X, An S, Liu X, Ba J, et al. Pplase of Dermatophagoides farinae promotes ovalbumin-induced airway allergy by modulating the functions of dendritic cells in a mouse model. Sci Rep. 2017;7:43322 pubmed 出版商
  212. Stanley R, Piszczatowski R, Bartholdy B, Mitchell K, McKimpson W, Narayanagari S, et al. A myeloid tumor suppressor role for NOL3. J Exp Med. 2017;214:753-771 pubmed 出版商
  213. Sanges S, Jendoubi M, Kavian N, Hauspie C, Speca S, Crave J, et al. B Cell Homeostasis and Functional Properties Are Altered in an Hypochlorous Acid-Induced Murine Model of Systemic Sclerosis. Front Immunol. 2017;8:53 pubmed 出版商
  214. Huang A, Peng D, Guo H, Ben Y, Zuo X, Wu F, et al. A human programmed death-ligand 1-expressing mouse tumor model for evaluating the therapeutic efficacy of anti-human PD-L1 antibodies. Sci Rep. 2017;7:42687 pubmed 出版商
  215. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  216. Vaitaitis G, Yussman M, Waid D, Wagner D. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells. PLoS ONE. 2017;12:e0172037 pubmed 出版商
  217. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  218. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  219. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  220. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  221. Edwards R, Kopp S, Ifergan I, Shui J, Kronenberg M, Miller S, et al. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci. 2017;58:282-291 pubmed 出版商
  222. Hattori A, McSkimming D, Kannan N, Ito T. RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leuk Res. 2017;54:47-54 pubmed 出版商
  223. Goverse G, Molenaar R, Macia L, Tan J, Erkelens M, Konijn T, et al. Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. J Immunol. 2017;198:2172-2181 pubmed 出版商
  224. Dror E, Dalmas E, Meier D, Wueest S, Thévenet J, Thienel C, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18:283-292 pubmed 出版商
  225. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  226. Blanquiceth Y, Rodríguez Perea A, Tabares Guevara J, Correa L, Sánchez M, Ramirez Pineda J, et al. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma. Front Immunol. 2016;7:620 pubmed 出版商
  227. Araujo L, Khim P, Mkhikian H, Mortales C, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. elife. 2017;6: pubmed 出版商
  228. Atkin Smith G, Paone S, Zanker D, Duan M, Phan T, Chen W, et al. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci Rep. 2017;7:39846 pubmed 出版商
  229. Larabee C, Desai S, Agasing A, Georgescu C, Wren J, Axtell R, et al. Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis. Mol Vis. 2016;22:1503-1513 pubmed
  230. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475-489 pubmed 出版商
  231. Weindel C, Richey L, Mehta A, Shah M, Huber B. Autophagy in Dendritic Cells and B Cells Is Critical for the Inflammatory State of TLR7-Mediated Autoimmunity. J Immunol. 2017;198:1081-1092 pubmed 出版商
  232. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214:209-226 pubmed 出版商
  233. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  234. Zhang Y, Yu J, Grachtchouk V, Qin T, Lumeng C, Sartor M, et al. Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. Oncotarget. 2017;8:5761-5773 pubmed 出版商
  235. Lamprianou S, Gysemans C, Bou Saab J, Pontes H, Mathieu C, Meda P. Glibenclamide Prevents Diabetes in NOD Mice. PLoS ONE. 2016;11:e0168839 pubmed 出版商
  236. Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire L, et al. Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res. 2017;45:1281-1296 pubmed 出版商
  237. Gadani S, Smirnov I, Smith A, Overall C, Kipnis J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J Exp Med. 2017;214:285-296 pubmed 出版商
  238. Nair V, Song M, Ko M, Oh K. DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases. Mol Cells. 2016;39:888-897 pubmed 出版商
  239. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  240. Herzig Y, Nevo S, Bornstein C, Brezis M, Ben Hur S, Shkedy A, et al. Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nat Immunol. 2017;18:161-172 pubmed 出版商
  241. Bieber K, Witte M, Sun S, Hundt J, Kalies K, Dräger S, et al. T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita. Sci Rep. 2016;6:38357 pubmed 出版商
  242. Yanagisawa H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:L122-L130 pubmed 出版商
  243. Moroishi T, Hayashi T, Pan W, Fujita Y, Holt M, Qin J, et al. The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell. 2016;167:1525-1539.e17 pubmed 出版商
  244. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  245. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  246. Yu V, Yusuf R, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:1310-1322.e17 pubmed 出版商
  247. Meng C, Li Z, Fang W, Song Z, Yang D, Li D, et al. Cytochrome P450 26A1 modulates natural killer cells in mouse early pregnancy. J Cell Mol Med. 2017;21:697-710 pubmed 出版商
  248. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  249. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. 2016;126:4626-4639 pubmed 出版商
  250. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  251. Carroll V, Lafferty M, Marchionni L, Bryant J, Gallo R, Garzino Demo A. Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice. Proc Natl Acad Sci U S A. 2016;113:13168-13173 pubmed
  252. Dong L, Yu W, Zheng H, Loh M, Bunting S, Pauly M, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature. 2016;539:304-308 pubmed 出版商
  253. Michailidou I, Naessens D, Hametner S, Guldenaar W, Kooi E, Geurts J, et al. Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia. 2017;65:264-277 pubmed 出版商
  254. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  255. Massaad M, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest. 2016;126:4219-4236 pubmed 出版商
  256. Holzlechner M, Strasser K, Zareva E, Steinhäuser L, Birnleitner H, Beer A, et al. In Situ Characterization of Tissue-Resident Immune Cells by MALDI Mass Spectrometry Imaging. J Proteome Res. 2017;16:65-76 pubmed 出版商
  257. Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G, et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 2017;10:695-704 pubmed 出版商
  258. Georgiev H, Ravens I, Benarafa C, Forster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun. 2016;7:13116 pubmed 出版商
  259. Lopez Guadamillas E, Fernandez Marcos P, Pantoja C, Muñoz Martin M, Martinez D, Gomez Lopez G, et al. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPAR?. Sci Rep. 2016;6:34542 pubmed 出版商
  260. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  261. Ippagunta S, Gangwar R, Finkelstein D, Vogel P, Pelletier S, Gingras S, et al. Keratinocytes contribute intrinsically to psoriasis upon loss of Tnip1 function. Proc Natl Acad Sci U S A. 2016;113:E6162-E6171 pubmed
  262. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  263. Milanovic M, Heise N, De Silva N, Anderson M, Silva K, Carette A, et al. Differential requirements for the canonical NF-?B transcription factors c-REL and RELA during the generation and activation of mature B cells. Immunol Cell Biol. 2017;95:261-271 pubmed 出版商
  264. Kaneda M, Messer K, Ralainirina N, Li H, Leem C, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437-442 pubmed 出版商
  265. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  266. Rudemiller N, Patel M, Zhang J, Jeffs A, Karlovich N, Griffiths R, et al. C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent Kidney Injury by Limiting Renal Macrophage Infiltration. Am J Pathol. 2016;186:2846-2856 pubmed 出版商
  267. Eil R, Vodnala S, Clever D, Klebanoff C, Sukumar M, Pan J, et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature. 2016;537:539-543 pubmed 出版商
  268. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel A, et al. Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer. Clin Cancer Res. 2017;23:1220-1226 pubmed 出版商
  269. Uhde A, Herder V, Akram Khan M, Ciurkiewicz M, Schaudien D, Teich R, et al. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS ONE. 2016;11:e0161883 pubmed 出版商
  270. Xiong X, Gu L, Wang Y, Luo Y, Zhang H, Lee J, et al. Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms. J Neuroinflammation. 2016;13:241 pubmed 出版商
  271. Hoegl S, Ehrentraut H, Brodsky K, Victorino F, Golden Mason L, Eltzschig H, et al. NK cells regulate CXCR2+ neutrophil recruitment during acute lung injury. J Leukoc Biol. 2017;101:471-480 pubmed 出版商
  272. Chew W, Tabebordbar M, Cheng J, Mali P, Wu E, Ng A, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 2016;13:868-74 pubmed 出版商
  273. Xia G, Wu S, Zhang Y. Anti-4-1BB monoclonal antibodies attenuate concanavalin A-induced immune-mediated liver injury in mice. Exp Ther Med. 2016;12:1263-1268 pubmed
  274. Ushiki T, Huntington N, Glaser S, Kiu H, Georgiou A, Zhang J, et al. Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells. PLoS ONE. 2016;11:e0162111 pubmed 出版商
  275. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  276. Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med. 2016;16:334 pubmed 出版商
  277. Kong S, Yang Y, Xu Y, Wang Y, Zhang Y, Melo Cardenas J, et al. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas. Proc Natl Acad Sci U S A. 2016;113:10394-9 pubmed 出版商
  278. Guo H, Cranert S, Lu Y, Zhong M, Zhang S, Chen J, et al. Deletion of Slam locus in mice reveals inhibitory role of SLAM family in NK cell responses regulated by cytokines and LFA-1. J Exp Med. 2016;213:2187-207 pubmed 出版商
  279. Inoue T, Griffin D, Huq R, Samuel E, Ruano S, Stinnett G, et al. Characterization of a novel MR-detectable nanoantioxidant that mitigates the recall immune response. NMR Biomed. 2016;29:1436-44 pubmed 出版商
  280. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  281. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  282. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum R, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499 pubmed 出版商
  283. Henry E, Sy C, Inclan Rico J, Espinosa V, Ghanny S, Dwyer D, et al. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 2016;213:1663-73 pubmed 出版商
  284. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  285. Belinson H, Savage A, Fadrosh D, Kuo Y, Lin D, Valladares R, et al. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCI Insight. 2016;1: pubmed 出版商
  286. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  287. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  288. Chen S, Miyazaki M, Chandra V, Fisch K, Chang A, Murre C. Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol. 2016;36:2543-52 pubmed 出版商
  289. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  290. Schweiger T, Berghoff A, Glogner C, Glueck O, Rajky O, Traxler D, et al. Tumor-infiltrating lymphocyte subsets and tertiary lymphoid structures in pulmonary metastases from colorectal cancer. Clin Exp Metastasis. 2016;33:727-39 pubmed 出版商
  291. Weiss J, Chen W, Nyuydzefe M, Trzeciak A, Flynn R, Tonra J, et al. ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings. Sci Signal. 2016;9:ra73 pubmed 出版商
  292. Wang S, Xia P, Chen Y, Huang G, Xiong Z, Liu J, et al. Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection. Immunity. 2016;45:131-44 pubmed 出版商
  293. Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, et al. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun. 2016;7:12073 pubmed 出版商
  294. Hoppe P, Schwarzfischer M, Loeffler D, Kokkaliaris K, Hilsenbeck O, Moritz N, et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature. 2016;535:299-302 pubmed 出版商
  295. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  296. Stifter K, Schuster C, Schlosser M, Boehm B, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep. 2016;6:29419 pubmed 出版商
  297. Konkalmatt P, Asico L, Zhang Y, Yang Y, Drachenberg C, Zheng X, et al. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight. 2016;1: pubmed
  298. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  299. Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-?t ubiquitination. Nat Immunol. 2016;17:997-1004 pubmed 出版商
  300. Terashima A, Okamoto K, Nakashima T, Akira S, Ikuta K, Takayanagi H. Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity. 2016;44:1434-43 pubmed 出版商
  301. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  302. Ruhland M, Loza A, Capietto A, Luo X, Knolhoff B, Flanagan K, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762 pubmed 出版商
  303. Salvi V, Vermi W, Gianello V, Lonardi S, Gagliostro V, Naldini A, et al. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors. Oncotarget. 2016;7:39256-39269 pubmed 出版商
  304. Abramowski P, Krasemann S, Ernst T, Lange C, Ittrich H, Schweizer M, et al. Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells Dev. 2016;25:1134-48 pubmed 出版商
  305. Seehus C, Kaye J. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells. Bio Protoc. 2016;6: pubmed
  306. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  307. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  308. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  309. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  310. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  311. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  312. Rialdi A, Campisi L, Zhao N, Lagda A, Pietzsch C, Ho J, et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science. 2016;352:aad7993 pubmed 出版商
  313. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  314. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  315. Song Z, Li Z, Li D, Fang W, Liu H, Yang D, et al. Seminal plasma induces inflammation in the uterus through the ?? T/IL-17 pathway. Sci Rep. 2016;6:25118 pubmed 出版商
  316. Riabov V, Yin S, Song B, Avdic A, Schledzewski K, Ovsiy I, et al. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model. Oncotarget. 2016;7:31097-110 pubmed 出版商
  317. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  318. Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, et al. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol. 2016;46:1361-70 pubmed 出版商
  319. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  320. Vandenberk L, Garg A, Verschuere T, Koks C, Belmans J, Beullens M, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5:e1083669 pubmed
  321. Oudhoff M, Braam M, Freeman S, Wong D, Rattray D, Wang J, et al. SETD7 Controls Intestinal Regeneration and Tumorigenesis by Regulating Wnt/?-Catenin and Hippo/YAP Signaling. Dev Cell. 2016;37:47-57 pubmed 出版商
  322. Griffiths K, Dolezal O, Cao B, Nilsson S, See H, Pfleger K, et al. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4. J Biol Chem. 2016;291:12641-57 pubmed 出版商
  323. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  324. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  325. Gossmann J, Stolte M, Lohoff M, Yu P, Moll R, Finkernagel F, et al. A Gain-Of-Function Mutation in the Plcg2 Gene Protects Mice from Helicobacter felis-Induced Gastric MALT Lymphoma. PLoS ONE. 2016;11:e0150411 pubmed 出版商
  326. Marek I, Lichtneger T, Cordasic N, Hilgers K, Volkert G, Fahlbusch F, et al. Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS ONE. 2016;11:e0150471 pubmed 出版商
  327. Frodermann V, Van Duijn J, van Puijvelde G, van Santbrink P, Lagraauw H, de Vries M, et al. Heat-killed Staphylococcus aureus reduces atherosclerosis by inducing anti-inflammatory macrophages. J Intern Med. 2016;279:592-605 pubmed 出版商
  328. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, et al. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58 pubmed 出版商
  329. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  330. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  331. Singhal G, Fisher F, Chee M, Tan T, El Ouaamari A, Adams A, et al. Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas. PLoS ONE. 2016;11:e0148252 pubmed 出版商
  332. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  333. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  334. Gibson Corley K, Boyden A, Leidinger M, Lambertz A, Ofori Amanfo G, Naumann P, et al. A method for histopathological study of the multifocal nature of spinal cord lesions in murine experimental autoimmune encephalomyelitis. Peerj. 2016;4:e1600 pubmed 出版商
  335. Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, et al. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 2016;6:20588 pubmed 出版商
  336. Gillespie A, Teoh J, Lee H, Prince J, Stadnisky M, Anderson M, et al. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection. PLoS Pathog. 2016;12:e1005419 pubmed 出版商
  337. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  338. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  339. Tubo N, Fife B, Pagán A, Kotov D, Goldberg M, Jenkins M. Most microbe-specific naïve CD4? T cells produce memory cells during infection. Science. 2016;351:511-4 pubmed 出版商
  340. Caballero Franco C, Guma M, Choo M, Sano Y, Enzler T, Karin M, et al. Epithelial Control of Gut-Associated Lymphoid Tissue Formation through p38?-Dependent Restraint of NF-?B Signaling. J Immunol. 2016;196:2368-76 pubmed 出版商
  341. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  342. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  343. Wang L, Jiang Y, Song X, Guo C, Zhu F, Wang X, et al. Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis. 2016;7:e2055 pubmed 出版商
  344. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  345. Lu K, Tounsi A, Shridhar N, Küblbeck G, Klevenz A, Prokosch S, et al. Dickkopf-3 Contributes to the Regulation of Anti-Tumor Immune Responses by Mesenchymal Stem Cells. Front Immunol. 2015;6:645 pubmed 出版商
  346. Whibley N, Tritto E, Traggiai E, Kolbinger F, Moulin P, Brees D, et al. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis. J Leukoc Biol. 2016;99:1153-64 pubmed 出版商
  347. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22:175-82 pubmed 出版商
  348. Gallego Ortega D, Ledger A, Roden D, Law A, Magenau A, Kikhtyak Z, et al. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biol. 2015;13:e1002330 pubmed 出版商
  349. Zahavi T, Lanton T, Divon M, Salmon A, Peretz T, Galun E, et al. Sorafenib treatment during partial hepatectomy reduces tumorgenesis in an inflammation-associated liver cancer model. Oncotarget. 2016;7:4860-70 pubmed 出版商
  350. Egan C, Sodhi C, Good M, Lin J, Jia H, Yamaguchi Y, et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest. 2016;126:495-508 pubmed
  351. von Moltke J, Ji M, Liang H, Locksley R. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221-5 pubmed 出版商
  352. Ren Y, Wang N, Hu W, Zhang X, Xu J, Wan Y. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination. Sci Rep. 2015;5:18099 pubmed 出版商
  353. Liu T, Weng S, Wang M, Huang W. Nontuberculous mycobacterial infection with concurrent IgG4-related lymphadenopathy. APMIS. 2016;124:216-20 pubmed 出版商
  354. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  355. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  356. Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G. Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol. 2016;94:388-99 pubmed 出版商
  357. Höftberger R, Leisser M, Bauer J, Lassmann H. Autoimmune encephalitis in humans: how closely does it reflect multiple sclerosis ?. Acta Neuropathol Commun. 2015;3:80 pubmed 出版商
  358. Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, et al. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res. 2016;26:119-30 pubmed 出版商
  359. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  360. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler D, Höpken U, et al. Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE. 2015;10:e0143883 pubmed 出版商
  361. Zhong C, Cui K, Wilhelm C, Hu G, Mao K, Belkaid Y, et al. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol. 2016;17:169-78 pubmed 出版商
  362. Cole C, Verdoni A, Ketkar S, Leight E, Russler Germain D, Lamprecht T, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126:85-98 pubmed 出版商
  363. Skeldon A, Morizot A, Douglas T, Santoro N, Kursawe R, Kozlitina J, et al. Caspase-12, but Not Caspase-11, Inhibits Obesity and Insulin Resistance. J Immunol. 2016;196:437-47 pubmed 出版商
  364. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  365. Sekiya T, Yoshimura A. In Vitro Th Differentiation Protocol. Methods Mol Biol. 2016;1344:183-91 pubmed 出版商
  366. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  367. Li L, Xu L, Yan J, Zhen Z, Ji Y, Liu C, et al. CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:129 pubmed 出版商
  368. Stachtea X, Tykesson E, van Kuppevelt T, Feinstein R, Malmström A, Reijmers R, et al. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis. PLoS ONE. 2015;10:e0140279 pubmed 出版商
  369. Ruan S, Samuelson D, Assouline B, Morre M, Shellito J. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect Immun. 2016;84:108-19 pubmed 出版商
  370. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  371. Varney M, Niederkorn M, Konno H, Matsumura T, Gohda J, Yoshida N, et al. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med. 2015;212:1967-85 pubmed 出版商
  372. Alvarez S, Diaz M, Flach J, Rodriguez Acebes S, López Contreras A, Martinez D, et al. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality. Nat Commun. 2015;6:8548 pubmed 出版商
  373. Liu K, Yang K, Wu B, Chen H, Chen X, Chen X, et al. Tumor-Infiltrating Immune Cells Are Associated With Prognosis of Gastric Cancer. Medicine (Baltimore). 2015;94:e1631 pubmed 出版商
  374. Zanvit P, Konkel J, Jiao X, Kasagi S, Zhang D, Wu R, et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun. 2015;6:8424 pubmed 出版商
  375. Li S, Dislich B, Brakebusch C, Lichtenthaler S, Brocker T. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA. J Immunol. 2015;195:4244-56 pubmed 出版商
  376. Yeung H, Lo P, Ng D, Fong W. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol. 2017;14:223-234 pubmed 出版商
  377. Masek Hammerman K, Peeva E, Ahmad A, Menon S, Afsharvand M, Peng Qu R, et al. Monoclonal antibody against macrophage colony-stimulating factor suppresses circulating monocytes and tissue macrophage function but does not alter cell infiltration/activation in cutaneous lesions or clinical outcomes in patients with cutaneous lupu. Clin Exp Immunol. 2016;183:258-70 pubmed 出版商
  378. Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, et al. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy. Endocrinology. 2015;156:4281-92 pubmed 出版商
  379. Loyer X, Paradis V, Hénique C, Vion A, Colnot N, Guerin C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut. 2016;65:1882-1894 pubmed 出版商
  380. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  381. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol. 2015;16:1077-84 pubmed 出版商
  382. Wang X, Huang Z, Chen Y, Lu X, Zhu P, Wen K, et al. A Multiple Antigenic Peptide Mimicking Peptidoglycan Induced T Cell Responses to Protect Mice from Systemic Infection with Staphylococcus aureus. PLoS ONE. 2015;10:e0136888 pubmed 出版商
  383. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  384. Matsuda Y, Wang X, Oishi H, Guan Z, Saito M, Liu M, et al. Spleen Tyrosine Kinase Modulates Fibrous Airway Obliteration and Associated Lymphoid Neogenesis After Transplantation. Am J Transplant. 2016;16:342-52 pubmed 出版商
  385. Smith K, Filbey K, Reynolds L, Hewitson J, Harcus Y, Boon L, et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 2016;9:428-43 pubmed 出版商
  386. Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed 出版商
  387. Fujimura N, Xu B, Dalman J, Deng H, Aoyama K, Dalman R. CCR2 inhibition sequesters multiple subsets of leukocytes in the bone marrow. Sci Rep. 2015;5:11664 pubmed 出版商
  388. Vettorazzi S, Bode C, Dejager L, Frappart L, Shelest E, Klaßen C, et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat Commun. 2015;6:7796 pubmed 出版商
  389. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  390. Patyka M, Malamud D, Weissman D, Abrams W, Kurago Z. Periluminal Distribution of HIV-Binding Target Cells and Gp340 in the Oral, Cervical and Sigmoid/Rectal Mucosae: A Mapping Study. PLoS ONE. 2015;10:e0132942 pubmed 出版商
  391. Jiang Y, Gao Q, Wang L, Guo C, Zhu F, Wang B, et al. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice. Cell Mol Immunol. 2016;13:524-34 pubmed 出版商
  392. Jasinski Bergner S, Stoehr C, Bukur J, Massa C, Braun J, Hüttelmaier S, et al. Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology. 2015;4:e1008805 pubmed
  393. Saulep Easton D, Vincent F, Quah P, Wei A, Ting S, Croce C, et al. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia. 2016;30:163-72 pubmed 出版商
  394. Weindel C, Richey L, Bolland S, Mehta A, Kearney J, Huber B. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy. 2015;11:1010-24 pubmed 出版商
  395. Charmsaz S, Beckett K, Smith F, Bruedigam C, Moore A, Al Ejeh F, et al. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia. PLoS ONE. 2015;10:e0130692 pubmed 出版商
  396. Horn T, Laus J, Seitz A, Maurer T, Schmid S, Wolf P, et al. The prognostic effect of tumour-infiltrating lymphocytic subpopulations in bladder cancer. World J Urol. 2016;34:181-7 pubmed 出版商
  397. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed 出版商
  398. Hernández P, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol. 2015;16:698-707 pubmed 出版商
  399. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  400. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  401. Li Y, Kang G, Duan L, Lu W, Katze M, Lewis M, et al. SIV Infection of Lung Macrophages. PLoS ONE. 2015;10:e0125500 pubmed 出版商
  402. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  403. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  404. Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 2015;6:6970 pubmed 出版商
  405. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  406. Rogers R, Eastham Anderson J, DeVoss J, Lesch J, Yan D, Xu M, et al. Image Analysis-Based Approaches for Scoring Mouse Models of Colitis. Vet Pathol. 2016;53:200-10 pubmed 出版商
  407. Maiwald S, Motazacker M, van Capelleveen J, Sivapalaratnam S, van der Wal A, van der Loos C, et al. A rare variant in MCF2L identified using exclusion linkage in a pedigree with premature atherosclerosis. Eur J Hum Genet. 2016;24:86-91 pubmed 出版商
  408. Heinzmann D, Bangert A, Müller A, von Ungern Sternberg S, Emschermann F, Schönberger T, et al. The Novel Extracellular Cyclophilin A (CyPA) - Inhibitor MM284 Reduces Myocardial Inflammation and Remodeling in a Mouse Model of Troponin I -Induced Myocarditis. PLoS ONE. 2015;10:e0124606 pubmed 出版商
  409. Siegemund S, Shepherd J, Xiao C, Sauer K. hCD2-iCre and Vav-iCre mediated gene recombination patterns in murine hematopoietic cells. PLoS ONE. 2015;10:e0124661 pubmed 出版商
  410. Kim P, Nakano H, Das P, Chen M, Rowe R, Chou S, et al. Flow-induced protein kinase A-CREB pathway acts via BMP signaling to promote HSC emergence. J Exp Med. 2015;212:633-48 pubmed 出版商
  411. Wan W, Liu Q, Lionakis M, Marino A, Anderson S, Swamydas M, et al. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res. 2015;106:478-87 pubmed 出版商
  412. Lougaris V, Ravelli A, Villanacci V, Salemme M, Soresina A, Fuoti M, et al. Gastrointestinal Pathologic Abnormalities in Pediatric- and Adult-Onset Common Variable Immunodeficiency. Dig Dis Sci. 2015;60:2384-9 pubmed 出版商
  413. Yukl S, Shergill A, Girling V, Li Q, Killian M, Epling L, et al. Site-specific differences in T cell frequencies and phenotypes in the blood and gut of HIV-uninfected and ART-treated HIV+ adults. PLoS ONE. 2015;10:e0121290 pubmed 出版商
  414. McClintock S, Warner R, Ali S, Chekuri A, Dame M, Attili D, et al. Monoclonal antibodies specific for oncofetal antigen--immature laminin receptor protein: Effects on tumor growth and spread in two murine models. Cancer Biol Ther. 2015;16:724-32 pubmed 出版商
  415. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  416. Pone E, Lam T, Lou Z, Wang R, Chen Y, Liu D, et al. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. J Immunol. 2015;194:3065-78 pubmed 出版商
  417. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  418. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  419. Feuerstein R, Seidl M, Prinz M, Henneke P. MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection. J Immunol. 2015;194:2735-45 pubmed 出版商
  420. Zhan R, Han Q, Zhang C, Tian Z, Zhang J. Toll-Like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica serovar Typhimurium infection. Infect Immun. 2015;83:1641-9 pubmed 出版商
  421. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler T. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 2015;11:e1004481 pubmed 出版商
  422. Buchwald Z, Yang C, Nellore S, Shashkova E, Davis J, Cline A, et al. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res. 2015;30:1508-22 pubmed 出版商
  423. Hladik F, Burgener A, Ballweber L, Gottardo R, Vojtech L, Fourati S, et al. Mucosal effects of tenofovir 1% gel. elife. 2015;4: pubmed 出版商
  424. Crncec I, Pathria P, Svinka J, Eferl R. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol Biol. 2015;1267:145-64 pubmed 出版商
  425. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  426. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  427. Hill E, Ng T, Burton B, Oakley C, Malik K, Wraith D. Glycogen synthase kinase-3 controls IL-10 expression in CD4(+) effector T-cell subsets through epigenetic modification of the IL-10 promoter. Eur J Immunol. 2015;45:1103-15 pubmed 出版商
  428. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  429. Kanayama M, Inoue M, Danzaki K, Hammer G, He Y, Shinohara M. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 2015;6:5779 pubmed 出版商
  430. Das D, Feng Y, Mallis R, Li X, Keskin D, Hussey R, et al. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc Natl Acad Sci U S A. 2015;112:1517-22 pubmed 出版商
  431. Karsten C, Laumonnier Y, Eurich B, Ender F, Bröker K, Roy S, et al. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. J Immunol. 2015;194:1841-55 pubmed 出版商
  432. Spada R, Rojas J, Pérez Yagüe S, Mulens V, Cannata Ortiz P, Bragado R, et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol. 2015;97:583-98 pubmed 出版商
  433. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  434. Djukic M, Sostmann N, Bertsch T, Mecke M, Nessler S, Manig A, et al. Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice. J Neuroinflammation. 2015;12:208 pubmed 出版商
  435. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  436. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  437. Bende R, Slot L, Hoogeboom R, Wormhoudt T, Adeoye A, Guikema J, et al. Stereotypic rheumatoid factors that are frequently expressed in mucosa-associated lymphoid tissue-type lymphomas are rare in the labial salivary glands of patients with Sjögren's syndrome. Arthritis Rheumatol. 2015;67:1074-83 pubmed 出版商
  438. Ueno N, Lodoen M, Hickey G, Robey E, Coombes J. Toxoplasma gondii-infected natural killer cells display a hypermotility phenotype in vivo. Immunol Cell Biol. 2015;93:508-13 pubmed 出版商
  439. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  440. Evrard M, Chong S, Devi S, Chew W, Lee B, Poidinger M, et al. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol. 2015;97:611-9 pubmed 出版商
  441. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  442. Yin Y, Qin T, Wang X, Lin J, Yu Q, Yang Q. CpG DNA assists the whole inactivated H9N2 influenza virus in crossing the intestinal epithelial barriers via transepithelial uptake of dendritic cell dendrites. Mucosal Immunol. 2015;8:799-814 pubmed 出版商
  443. Kim J, Li W, Choi Y, Lewin S, Verbeke C, Dranoff G, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33:64-72 pubmed 出版商
  444. Peroni A, Colato C, Schena D, Rongioletti F, Girolomoni G. Histiocytoid Sweet syndrome is infiltrated predominantly by M2-like macrophages. J Am Acad Dermatol. 2015;72:131-9 pubmed 出版商
  445. Svatek R, Zhao X, Morales E, Jha M, Tseng T, Hugen C, et al. Sequential intravesical mitomycin plus Bacillus Calmette-Guérin for non-muscle-invasive urothelial bladder carcinoma: translational and phase I clinical trial. Clin Cancer Res. 2015;21:303-11 pubmed 出版商
  446. Kobold S, Steffen J, Chaloupka M, Grassmann S, Henkel J, Castoldi R, et al. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer. J Natl Cancer Inst. 2015;107:364 pubmed 出版商
  447. Fahl S, Harris B, Coffey F, Wiest D. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. J Immunol. 2015;194:200-9 pubmed
  448. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  449. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  450. Arndt B, Witkowski L, Ellwart J, Seissler J. CD8+ CD122+ PD-1- effector cells promote the development of diabetes in NOD mice. J Leukoc Biol. 2015;97:111-20 pubmed 出版商
  451. Cui Z, Han D, Sun X, Zhang M, Feng X, Sun C, et al. Mannose-modified chitosan microspheres enhance OprF-OprI-mediated protection of mice against Pseudomonas aeruginosa infection via induction of mucosal immunity. Appl Microbiol Biotechnol. 2015;99:667-80 pubmed 出版商
  452. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  453. Morales D, Monte K, Sun L, Struckhoff J, Agapov E, Holtzman M, et al. Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J Virol. 2015;89:337-49 pubmed 出版商
  454. Edwards C, Best S, Gun S, Claser C, James K, de Oca M, et al. Spatiotemporal requirements for IRF7 in mediating type I IFN-dependent susceptibility to blood-stage Plasmodium infection. Eur J Immunol. 2015;45:130-41 pubmed 出版商
  455. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  456. Novinger L, Ashikaga T, Krag D. Identification of tumor-binding scFv derived from clonally related B cells in tumor and lymph node of a patient with breast cancer. Cancer Immunol Immunother. 2015;64:29-39 pubmed 出版商
  457. Maneva Radicheva L, Amatya C, Parker C, Ellefson J, Radichev I, Raghavan A, et al. Autoimmune diabetes is suppressed by treatment with recombinant human tissue Kallikrein-1. PLoS ONE. 2014;9:e107213 pubmed 出版商
  458. Ramnath N, van de Luijtgaarden K, van der Pluijm I, van Nimwegen M, van Heijningen P, Swagemakers S, et al. Extracellular matrix defects in aneurysmal Fibulin-4 mice predispose to lung emphysema. PLoS ONE. 2014;9:e106054 pubmed 出版商
  459. Perino G, Ricciardi B, Jerabek S, Martignoni G, Wilner G, Maass D, et al. Implant based differences in adverse local tissue reaction in failed total hip arthroplasties: a morphological and immunohistochemical study. BMC Clin Pathol. 2014;14:39 pubmed 出版商
  460. Naik E, Webster J, DeVoss J, Liu J, Suriben R, Dixit V. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med. 2014;211:1947-55 pubmed 出版商
  461. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  462. Al Barwani F, Young S, Baird M, Larsen D, Ward V. Mannosylation of virus-like particles enhances internalization by antigen presenting cells. PLoS ONE. 2014;9:e104523 pubmed 出版商
  463. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  464. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  465. Flach J, Bakker S, Mohrin M, Conroy P, Pietras E, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198-202 pubmed 出版商
  466. Johannesson B, Sattler S, Semenova E, Pastore S, Kennedy Lydon T, Sampson R, et al. Insulin-like growth factor-1 induces regulatory T cell-mediated suppression of allergic contact dermatitis in mice. Dis Model Mech. 2014;7:977-85 pubmed 出版商
  467. Chung Y, Kim E, Abdel Wahab O. Femoral bone marrow aspiration in live mice. J Vis Exp. 2014;: pubmed 出版商
  468. Larsen J, Dall M, Antvorskov J, Weile C, Engkilde K, Josefsen K, et al. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion. Eur J Immunol. 2014;44:3056-67 pubmed 出版商
  469. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  470. Knoop K, McDonald K, McCrate S, McDole J, Newberry R. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015;8:198-210 pubmed 出版商
  471. Honjo K, Kubagawa Y, Suzuki Y, Takagi M, Ohno H, Bucy R, et al. Enhanced auto-antibody production and Mott cell formation in Fc?R-deficient autoimmune mice. Int Immunol. 2014;26:659-72 pubmed 出版商
  472. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  473. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  474. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  475. Zhou Q, Ho A, Schlitzer A, Tang Y, Wong K, Wong F, et al. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis. J Immunol. 2014;193:496-509 pubmed 出版商
  476. Mise Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, et al. NF-?B RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol. 2014;26:607-18 pubmed 出版商
  477. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15:676-86 pubmed 出版商
  478. Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. 2014;85:1386-95 pubmed 出版商
  479. Jakobsson T, Vedin L, Hassan T, Venteclef N, Greco D, D AMATO M, et al. The oxysterol receptor LXR? protects against DSS- and TNBS-induced colitis in mice. Mucosal Immunol. 2014;7:1416-28 pubmed 出版商
  480. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  481. Rocca C, Ur S, Harrison F, Cherqui S. rAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study. Gene Ther. 2014;21:618-28 pubmed 出版商
  482. Qian L, Zhang M, Wu S, Zhong Y, Van Tol E, Cai W. Alkylglycerols modulate the proliferation and differentiation of non-specific agonist and specific antigen-stimulated splenic lymphocytes. PLoS ONE. 2014;9:e96207 pubmed 出版商
  483. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  484. Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014;64:155-65 pubmed 出版商
  485. Koga T, Hedrich C, Mizui M, Yoshida N, Otomo K, Lieberman L, et al. CaMK4-dependent activation of AKT/mTOR and CREM-? underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124:2234-45 pubmed 出版商
  486. Vanoaica L, Richman L, Jaworski M, Darshan D, Luther S, Kühn L. Conditional deletion of ferritin h in mice reduces B and T lymphocyte populations. PLoS ONE. 2014;9:e89270 pubmed 出版商
  487. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  488. Rizzo S, Basso C, Troost D, Aronica E, Frigo A, Driessen A, et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2014;7:224-9 pubmed 出版商
  489. Wang B, Dai S, Dong Z, Sun Y, Song X, Guo C, et al. The modulation of endoplasmic reticulum stress by chemical chaperone upregulates immune negative cytokine IL-35 in apolipoprotein E-deficient mice. PLoS ONE. 2014;9:e87787 pubmed 出版商
  490. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  491. Naviglio S, Arrigo S, Martelossi S, Villanacci V, Tommasini A, Loganes C, et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8:770-4 pubmed 出版商
  492. Bashour K, Gondarenko A, Chen H, Shen K, Liu X, Huse M, et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proc Natl Acad Sci U S A. 2014;111:2241-6 pubmed 出版商
  493. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  494. Yang C, Li J, Chiu L, Lan J, Chen D, Chuang H, et al. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation. J Immunol. 2014;192:1547-57 pubmed 出版商
  495. Hu Y, Xiao H, Shi T, Oppenheim J, Chen X. Progranulin promotes tumour necrosis factor-induced proliferation of suppressive mouse CD4? Foxp3? regulatory T cells. Immunology. 2014;142:193-201 pubmed 出版商
  496. Walker C, Hautefort I, Dalton J, Overweg K, Egan C, Bongaerts R, et al. Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge. PLoS ONE. 2013;8:e84553 pubmed 出版商
  497. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  498. Murphy K, Erickson J, Johnson C, Seiler C, Bedi J, Hu P, et al. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol. 2014;192:224-33 pubmed 出版商
  499. Griffiths K, Stylianou E, Poyntz H, Betts G, Fletcher H, McShane H. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS ONE. 2013;8:e78312 pubmed 出版商
  500. Luan G, Gao Q, Guan Y, Zhai F, Zhou J, Liu C, et al. Upregulation of adenosine kinase in Rasmussen encephalitis. J Neuropathol Exp Neurol. 2013;72:1000-8 pubmed 出版商
  501. Nussbaum J, Van Dyken S, von Moltke J, Cheng L, Mohapatra A, Molofsky A, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245-8 pubmed 出版商
  502. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  503. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  504. Pioli P, Dahlem T, Weis J, Weis J. Deletion of Snai2 and Snai3 results in impaired physical development compounded by lymphocyte deficiency. PLoS ONE. 2013;8:e69216 pubmed 出版商
  505. Rommel P, Bosque D, Gitlin A, Croft G, Heintz N, Casellas R, et al. Fate mapping for activation-induced cytidine deaminase (AID) marks non-lymphoid cells during mouse development. PLoS ONE. 2013;8:e69208 pubmed 出版商
  506. Gautron L, Rutkowski J, Burton M, Wei W, Wan Y, Elmquist J. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol. 2013;521:3741-67 pubmed 出版商
  507. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  508. Fischer M, Wimmer I, Hoftberger R, Gerlach S, Haider L, Zrzavy T, et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013;136:1799-815 pubmed 出版商
  509. Nichele I, Zamo A, Bertolaso A, Bifari F, Tinelli M, Franchini M, et al. VR09 cell line: an EBV-positive lymphoblastoid cell line with in vivo characteristics of diffuse large B cell lymphoma of activated B-cell type. PLoS ONE. 2012;7:e52811 pubmed 出版商
  510. Kłossowicz M, Scirka B, Suchanek J, Marek Bukowiec K, Kisielow P, Aguado E, et al. Assessment of caspase mediated degradation of linker for activation of T cells (LAT) at a single cell level. J Immunol Methods. 2013;389:9-17 pubmed 出版商
  511. Irla M, Guenot J, Sealy G, Reith W, Imhof B, Serge A. Three-dimensional visualization of the mouse thymus organization in health and immunodeficiency. J Immunol. 2013;190:586-96 pubmed 出版商
  512. Yassai M, Cooley B, Gorski J. Developmental dynamics of post-selection thymic DN iNKT. PLoS ONE. 2012;7:e43509 pubmed 出版商
  513. O CONNOR T, Frei N, Sponarova J, Schwarz P, Heikenwalder M, Aguzzi A. Lymphotoxin, but not TNF, is required for prion invasion of lymph nodes. PLoS Pathog. 2012;8:e1002867 pubmed 出版商
  514. Daigneault M, de Silva T, Bewley M, Preston J, Marriott H, Mitchell A, et al. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection. PLoS Pathog. 2012;8:e1002814 pubmed 出版商
  515. Golias J, Schwarzer M, Wallner M, Kverka M, Kozakova H, Srůtková D, et al. Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS ONE. 2012;7:e37156 pubmed 出版商
  516. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  517. Chevrier S, Genton C, Malissen B, Malissen M, Acha Orbea H. Dominant Role of CD80-CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LAT(Y136F) CD4(+) T Cells. Front Immunol. 2012;3:27 pubmed 出版商
  518. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney N, Schuijs M, et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7:e32371 pubmed 出版商
  519. Zeng M, Southern P, Reilly C, Beilman G, Chipman J, Schacker T, et al. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8:e1002437 pubmed 出版商
  520. Schneckenleithner C, Bago Horvath Z, Dolznig H, Neugebauer N, Kollmann K, Kolbe T, et al. Putting the brakes on mammary tumorigenesis: loss of STAT1 predisposes to intraepithelial neoplasias. Oncotarget. 2011;2:1043-54 pubmed
  521. West N, Milne K, Truong P, MacPherson N, Nelson B, Watson P. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13:R126 pubmed 出版商
  522. Badeaux A, Yang Y, Cardenas K, Vemulapalli V, Chen K, Kusewitt D, et al. Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J Biol Chem. 2012;287:429-37 pubmed 出版商
  523. Randall K, Chan S, Ma C, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208:2305-20 pubmed 出版商
  524. Galand C, Donnou S, Crozet L, Brunet S, Touitou V, Ouakrim H, et al. Th17 cells are involved in the local control of tumor progression in primary intraocular lymphoma. PLoS ONE. 2011;6:e24622 pubmed 出版商
  525. Ripich T, Jessberger R. SWAP-70 regulates erythropoiesis by controlling ?4 integrin. Haematologica. 2011;96:1743-52 pubmed 出版商
  526. Ota N, Wong K, Valdez P, Zheng Y, Crellin N, Diehl L, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12:941-8 pubmed 出版商
  527. Lorenzi L, Lonardi S, Petrilli G, Tanda F, Bella M, Laurino L, et al. Folliculocentric B-cell-rich follicular dendritic cells sarcoma: a hitherto unreported morphological variant mimicking lymphoproliferative disorders. Hum Pathol. 2012;43:209-15 pubmed 出版商
  528. Deswal S, Schulze A, Hofer T, Schamel W. Quantitative analysis of protein phosphorylations and interactions by multi-colour IP-FCM as an input for kinetic modelling of signalling networks. PLoS ONE. 2011;6:e22928 pubmed 出版商
  529. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  530. Hemmers S, Teijaro J, Arandjelovic S, Mowen K. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS ONE. 2011;6:e22043 pubmed 出版商
  531. West N, Panet Raymond V, Truong P, Alexander C, Babinszky S, Milne K, et al. Intratumoral Immune Responses Can Distinguish New Primary and True Recurrence Types of Ipsilateral Breast Tumor Recurrences (IBTR). Breast Cancer (Auckl). 2011;5:105-15 pubmed 出版商
  532. Yan S, Wang L, Liu N, Wang Y, Chu Y. Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol Cell Biol. 2012;90:421-8 pubmed 出版商
  533. Tousif S, Singh Y, Prasad D, Sharma P, Van Kaer L, Das G. T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS ONE. 2011;6:e19864 pubmed 出版商
  534. Petrilli G, Lorenzi L, Paracchini R, Ubiali A, Schumacher R, Cabassa P, et al. Epstein-Barr virus-associated adrenal smooth muscle tumors and disseminated diffuse large B-cell lymphoma in a child with common variable immunodeficiency: a case report and review of the literature. Int J Surg Pathol. 2014;22:712-21 pubmed 出版商
  535. Reuwer A, van Eijk M, Houttuijn Bloemendaal F, van der Loos C, Claessen N, Teeling P, et al. The prolactin receptor is expressed in macrophages within human carotid atherosclerotic plaques: a role for prolactin in atherogenesis?. J Endocrinol. 2011;208:107-17 pubmed 出版商
  536. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  537. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  538. Zou Y, Chen T, Han M, Wang H, Yan W, Song G, et al. Increased killing of liver NK cells by Fas/Fas ligand and NKG2D/NKG2D ligand contributes to hepatocyte necrosis in virus-induced liver failure. J Immunol. 2010;184:466-75 pubmed 出版商
  539. MANICONE A, Huizar I, McGuire J. Matrilysin (Matrix Metalloproteinase-7) regulates anti-inflammatory and antifibrotic pulmonary dendritic cells that express CD103 (alpha(E)beta(7)-integrin). Am J Pathol. 2009;175:2319-31 pubmed 出版商
  540. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  541. Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ruegg C, Christofori G. Myeloid cells contribute to tumor lymphangiogenesis. PLoS ONE. 2009;4:e7067 pubmed 出版商
  542. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  543. Milne K, Barnes R, Girardin A, Mawer M, Nesslinger N, Ng A, et al. Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS ONE. 2008;3:e3409 pubmed 出版商
  544. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  545. Gwack Y, Srikanth S, Oh Hora M, Hogan P, Lamperti E, Yamashita M, et al. Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol. 2008;28:5209-22 pubmed 出版商
  546. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  547. Jiang L, Yang P, He H, Li B, Lin X, Hou S, et al. Increased expression of Foxp3 in splenic CD8+ T cells from mice with anterior chamber-associated immune deviation. Mol Vis. 2007;13:968-74 pubmed
  548. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225-32 pubmed
  549. Sevigny C, Li L, Awad A, Huang L, McDuffie M, Linden J, et al. Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J Immunol. 2007;178:4240-9 pubmed
  550. Xin K, Mizukami H, Urabe M, Toda Y, Shinoda K, Yoshida A, et al. Induction of robust immune responses against human immunodeficiency virus is supported by the inherent tropism of adeno-associated virus type 5 for dendritic cells. J Virol. 2006;80:11899-910 pubmed
  551. Day Y, Huang L, Ye H, Li L, Linden J, Okusa M. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol. 2006;176:3108-14 pubmed
  552. Geng H, Zhang G, Xiao H, Yuan Y, Li D, Zhang H, et al. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer. 2006;118:2657-64 pubmed
  553. Gupta R, Karpatkin S, Basch R. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood. 2006;107:1837-46 pubmed
  554. Krieg C, Han P, Stone R, Goularte O, Kaye J. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol. 2005;175:6420-7 pubmed
  555. Takeuchi A, Usui Y, Takeuchi M, Hattori T, Kezuka T, Suzuki J, et al. CCR5-deficient mice develop experimental autoimmune uveoretinitis in the context of a deviant effector response. Invest Ophthalmol Vis Sci. 2005;46:3753-60 pubmed
  556. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed
  557. Nakae S, Suto H, Kakurai M, Sedgwick J, Tsai M, Galli S. Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proc Natl Acad Sci U S A. 2005;102:6467-72 pubmed
  558. Futagawa T, Akiba H, Kodama T, Takeda K, Hosoda Y, Yagita H, et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol. 2002;14:275-86 pubmed
  559. Lepault F, Gagnerault M, Faveeuw C, Bazin H, Boitard C. Lack of L-selectin expression by cells transferring diabetes in NOD mice: insights into the mechanisms involved in diabetes prevention by Mel-14 antibody treatment. Eur J Immunol. 1995;25:1502-7 pubmed
  560. Havran W, Poenie M, Kimura J, Tsien R, Weiss A, Allison J. Expression and function of the CD3-antigen receptor on murine CD4+8+ thymocytes. Nature. 1987;330:170-3 pubmed
  561. Leo O, Foo M, Sachs D, Samelson L, Bluestone J. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987;84:1374-8 pubmed
  562. Samelson L, O Shea J, Luong H, Ross P, Urdahl K, Klausner R, et al. T cell antigen receptor phosphorylation induced by an anti-receptor antibody. J Immunol. 1987;139:2708-14 pubmed
  563. Harding F, McArthur J, Gross J, Raulet D, Allison J. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992;356:607-9 pubmed