这是一篇来自已证抗体库的有关小鼠 Cd4的综述,是根据1538篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd4 抗体。
Cd4 同义词: L3T4; Ly-4

其他
  • 流式细胞仪; 小鼠; 图 1b
Cd4抗体(Biolegend, RM 4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). JCI Insight (2019) ncbi
  • 流式细胞仪; 小鼠; 1:200; 图 3b
Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3b). Nat Commun (2019) ncbi
  • 流式细胞仪; 小鼠; 图 3a
Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nature (2019) ncbi
BioLegend
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3i
BioLegend Cd4抗体(BioLegend, 100405)被用于被用于流式细胞仪在小鼠样本上 (图 3i). Ann Clin Transl Neurol (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(BioLegend, 100433)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. elife (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6e, 6f, 6g, 6h
BioLegend Cd4抗体(BioLegend, 100509)被用于被用于流式细胞仪在小鼠样本上 (图 6e, 6f, 6g, 6h). Allergy Asthma Immunol Res (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Front Immunol (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd4抗体(BioLegend, 100434)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Immunol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, 100544)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunother Cancer (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend Cd4抗体(Biolegend, 100407)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Adv Sci (Weinh) (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100531)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Cell Infect Microbiol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Leukemia (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 6h
BioLegend Cd4抗体(Biolegend, 100453)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6h). PLoS Biol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Front Immunol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
BioLegend Cd4抗体(BioLegend, 100530)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). Cell Rep (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend Cd4抗体(BioLegend, 100526)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Sci Adv (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, 100408)被用于被用于流式细胞仪在小鼠样本上 (图 2a). iScience (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Theranostics (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2k
BioLegend Cd4抗体(Biolegend, 100510)被用于被用于流式细胞仪在小鼠样本上 (图 2k). Cell Rep (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a, 4e, s4a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 4e, s4a). Proc Natl Acad Sci U S A (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Front Immunol (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b, 2c, 2e, 7d
BioLegend Cd4抗体(Biolegend, 100408)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 2c, 2e, 7d). PLoS Pathog (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b, 2c, 2e, 7d
BioLegend Cd4抗体(Biolegend, 100548)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 2c, 2e, 7d). PLoS Pathog (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3e, 3f
BioLegend Cd4抗体(BioLegend, 100536)被用于被用于流式细胞仪在小鼠样本上 (图 3e, 3f). Clin Transl Med (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3d, 4b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3d, 4b). Int J Mol Sci (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1a, 4c
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, 4c). J Immunother Cancer (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 s5c, s6b
BioLegend Cd4抗体(BioLegend, 100526)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s5c, s6b). Cell Rep (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 s5e
BioLegend Cd4抗体(BioLegend, 100405)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5e). Nat Commun (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a, 5e
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 5e). Oncoimmunology (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1f
BioLegend Cd4抗体(BioLegend, 100413)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). Cell Rep Med (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Cd4抗体(Biolegend, 100537)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Oncoimmunology (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3). In Vivo (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e5e, 4b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e5e, 4b). Nature (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Nat Commun (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 1e
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1e). PLoS Pathog (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:50; 图 s6f
BioLegend Cd4抗体(Biolegend, 100526)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s6f). Nat Commun (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b, 4c
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 4c). Basic Res Cardiol (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend Cd4抗体(BioLegend, 100443)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Immunol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6d, 6e
BioLegend Cd4抗体(BioLegend, 100509)被用于被用于流式细胞仪在小鼠样本上 (图 6d, 6e). Mol Ther Nucleic Acids (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 4a
BioLegend Cd4抗体(BioLegend, 100413)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 4a). Sci Transl Med (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 4c
BioLegend Cd4抗体(BioLegend, 100537)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4c). J Biol Chem (2022) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 1c, 4a
BioLegend Cd4抗体(BioLegend, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 1c, 4a). Sci Rep (2022) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 人类; 图 s7a
BioLegend Cd4抗体(BioLegend, 100406)被用于被用于免疫组化在人类样本上 (图 s7a). J Clin Invest (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend Cd4抗体(BioLegend, 100406)被用于被用于流式细胞仪在小鼠样本上 (图 6f). J Immunother Cancer (2022) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 小鼠; 图 6i
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6i) 和 被用于流式细胞仪在小鼠样本上 (图 2a). JCI Insight (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Helicobacter (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:800; 图 s2a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s2a). Immunol Cell Biol (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s8f, s8g, s9a
BioLegend Cd4抗体(BioLegend, 100430)被用于被用于流式细胞仪在小鼠样本上 (图 s8f, s8g, s9a). J Clin Invest (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2c, 3a, 3b
BioLegend Cd4抗体(Biolegend, 100510)被用于被用于流式细胞仪在小鼠样本上 (图 2c, 3a, 3b). Nat Commun (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Oncoimmunology (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd4抗体(Biolegend, 100407)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Nanotechnol (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 2l, e5a, e5d
BioLegend Cd4抗体(BioLegend, 100433)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2l, e5a, e5d). EMBO Mol Med (2022) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 1:1000; 图 2d
BioLegend Cd4抗体(BioLegend, H129.19)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2d). Mol Psychiatry (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd4抗体(BioLegend, 100447)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). iScience (2021) ncbi
大鼠 单克隆(RM4-5)
  • 其他; 小鼠
BioLegend Cd4抗体(BioLegend, 100561)被用于被用于其他在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Immunother Cancer (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Int J Mol Sci (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd4抗体(Biolegend, 100412)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:1000; 图 s2d
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s2d). Sci Adv (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100404)被用于被用于流式细胞仪在小鼠样本上. Immunity (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:1000; 图 s6g
BioLegend Cd4抗体(Biolegend, 100516)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s6g). Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(BioLegend, 100536)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Cd4抗体(Biolegend, 100426)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Endocrinol Metab (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5i
BioLegend Cd4抗体(BioLegend, 100551)被用于被用于流式细胞仪在小鼠样本上 (图 5i). Nat Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 500 ug/ml; 图 2e
BioLegend Cd4抗体(BioLegend, 100406)被用于被用于流式细胞仪在小鼠样本上浓度为500 ug/ml (图 2e). Sci Rep (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5b, 5h
BioLegend Cd4抗体(Biolegend, 100406)被用于被用于流式细胞仪在小鼠样本上 (图 5b, 5h). J Immunother Cancer (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend Cd4抗体(BioLegend, 100 531)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1a, s2b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, s2b). Int J Mol Sci (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, 100506)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 s7h
BioLegend Cd4抗体(Biolegend, 100428)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7h). Cell Rep (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400
BioLegend Cd4抗体(Biolegend, 100512)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3c, 4a
BioLegend Cd4抗体(BioLegend, 100405)被用于被用于流式细胞仪在小鼠样本上 (图 3c, 4a). Cell Death Discov (2021) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 1:1000; 图 6a
BioLegend Cd4抗体(Biolegend, H129.19)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 6a). Acta Neuropathol Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Animals (Basel) (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100546)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd4抗体(Biolegend, 100509)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int J Mol Sci (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6a). BMC Cancer (2021) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 1:100; 图 5c
BioLegend Cd4抗体(BioLegend, 116008)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5c). iScience (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 s22b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s22b). Nat Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Cd4抗体(BioLegend, 100408)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Am J Cancer Res (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd4抗体(Biolegend, 100438)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Mol Cancer (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, 100407)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Transl Oncol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:1000; 图 e6a
BioLegend Cd4抗体(Biolegend, 100516)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 e6a). Nat Cancer (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 6e
BioLegend Cd4抗体(Biolegend, 100428)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6e). Front Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Cd4抗体(Biolegend, 100449)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1s2a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1s2a). elife (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 6d
BioLegend Cd4抗体(BioLegend, 100430)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6d). Cell Prolif (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 2s3e
BioLegend Cd4抗体(BioLegend, 100427)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2s3e). elife (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Cd4抗体(BioLegend, 100552)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mucosal Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Cd4抗体(BioLegend, 100437)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mucosal Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:1000; 图 s4a
BioLegend Cd4抗体(BioLegend, 100423)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s4a). Nat Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a, 5b, 5f
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a, 5b, 5f). Front Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Front Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 免疫细胞化学; 人类; 1:100; 图 6a
BioLegend Cd4抗体(BioLegend, 100446)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Nat Cancer (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类
BioLegend Cd4抗体(Biolegend, 100552)被用于被用于流式细胞仪在人类样本上. J Immunother Cancer (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3h
BioLegend Cd4抗体(Biolegend, 100449)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Cell (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, 100548)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Rep (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a, s2b, s2c
BioLegend Cd4抗体(Biolegend, 100422)被用于被用于流式细胞仪在小鼠样本上 (图 s2a, s2b, s2c). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 7b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 7b). Front Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100425)被用于被用于流式细胞仪在小鼠样本上. Br J Cancer (2021) ncbi
大鼠 单克隆(RM4-5)
  • mass cytometry; 小鼠
BioLegend Cd4抗体(BioLegend, 100506)被用于被用于mass cytometry在小鼠样本上. Br J Cancer (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend Cd4抗体(Biolegend, 100,510)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Am J Cancer Res (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(Biolegend, 100540)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Commun Biol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd4抗体(BioLegend, 100433)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • mass cytometry; 小鼠; 图 s3
BioLegend Cd4抗体(Biolegend, 100561)被用于被用于mass cytometry在小鼠样本上 (图 s3). EMBO J (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, 100548)被用于被用于流式细胞仪在小鼠样本上. Cell Rep Med (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). JCI Insight (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Am Heart Assoc (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s6d
BioLegend Cd4抗体(Biolegend, 100446)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). JCI Insight (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类; 1:1000; 图 5a
BioLegend Cd4抗体(Biolegend, 100428)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 5a). PLoS Biol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 12e, 12f
BioLegend Cd4抗体(BioLegend, 100433)被用于被用于流式细胞仪在小鼠样本上 (图 12e, 12f). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd4抗体(Biolegend, 100510)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Cd4抗体(Biolegend, 100406)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Front Immunol (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 1a, 4d
BioLegend Cd4抗体(Biolegend, 100453)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a, 4d). Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Autoimmun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
BioLegend Cd4抗体(BioLegend, 100563)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). Nat Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 s16a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s16a). Sci Transl Med (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:50; 图 7
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd4抗体(BioLegend, 100512)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:400
BioLegend Cd4抗体(BioLegend, 100412)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nature (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(BioLegend, 100550)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nature (2021) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 1:400
BioLegend Cd4抗体(BioLegend, 130308)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nature (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(Biolegend, 100516)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nature (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s9b
BioLegend Cd4抗体(BioLegend, 100414)被用于被用于流式细胞仪在小鼠样本上 (图 s9b). Sci Adv (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 7a
BioLegend Cd4抗体(BioLegend, 100407)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Neoplasia (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2f, s7c
BioLegend Cd4抗体(Biolegend, 100455)被用于被用于流式细胞仪在小鼠样本上 (图 s2f, s7c). Sci Adv (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:250; 图 6d
BioLegend Cd4抗体(BioLegend, 100432)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 6d). Cancer Res (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Immunother Cancer (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Cd4抗体(Biolegend, 100413)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Theranostics (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s12
BioLegend Cd4抗体(Biolegend, 100447)被用于被用于流式细胞仪在小鼠样本上 (图 s12). Sci Rep (2021) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 图 3e
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e). Science (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). Science (2021) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
BioLegend Cd4抗体(Biolegend, 100505)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). Cancers (Basel) (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). elife (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 s3g
BioLegend Cd4抗体(Biolegend, 100413)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3g). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, 100427)被用于被用于流式细胞仪在小鼠样本上. J Hematol Oncol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a, 2e, s2b
BioLegend Cd4抗体(Biolegend, 100428)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2e, s2b). Nat Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100404)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Cd4抗体(Biolegend, 100406)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Theranostics (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Aging Cell (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a, 4b, s2
BioLegend Cd4抗体(Biolegend, 100528)被用于被用于流式细胞仪在小鼠样本上 (图 4a, 4b, s2). Diabetes (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s5e
BioLegend Cd4抗体(Biolegend, 100540)被用于被用于流式细胞仪在小鼠样本上 (图 s5e). Nat Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:250; 图 s8b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 s8b). Nat Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 s2-1c
BioLegend Cd4抗体(Biolegend, 100411)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2-1c). elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 2g
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2g). Nature (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2, s4a, s4b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2, s4a, s4b). Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:400; 图 2b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2b). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Cd4抗体(BioLegend, 100548)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Cancer Res (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 7a, 7b, s18, s20
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 7a, 7b, s18, s20). J Clin Invest (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Cd4抗体(Biolegend, 100455)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nat Commun (2020) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 图 1c
BioLegend Cd4抗体(Biolegend, 100506)被用于被用于免疫组化在小鼠样本上 (图 1c). Cell (2020) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠
BioLegend Cd4抗体(BioLegend, 100449)被用于被用于免疫组化在小鼠样本上. Cell (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:250; 图 4g
  • 免疫组化; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, 100433)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 4g) 和 被用于免疫组化在小鼠样本上 (图 2a). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:250; 图 4g
  • 免疫组化; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, 100510)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 4g) 和 被用于免疫组化在小鼠样本上 (图 2a). elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫组化在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1s1a
BioLegend Cd4抗体(Biolegend, 100422)被用于被用于流式细胞仪在小鼠样本上 (图 1s1a). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Am J Transplant (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1s3, 4c
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1s3, 4c). elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunother Cancer (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Cd4抗体(Biolegend, 100566)被用于被用于流式细胞仪在小鼠样本上 (图 4d). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:500; 图 1j
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 1j). J Allergy Clin Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类; 1:75
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在人类样本上浓度为1:75. Nature (2020) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 图 4h
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫组化在小鼠样本上 (图 4h). Nat Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). BMC Immunol (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3b, 3e
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3b, 3e). World J Gastroenterol (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400-1:800; 图 3a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400-1:800 (图 3a). elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s17
BioLegend Cd4抗体(BioLegend, 100425)被用于被用于流式细胞仪在小鼠样本上 (图 s17). Nat Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 s3d
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3d). Commun Biol (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a, 5d
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 5d). BMC Biol (2020) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd4抗体(BioLegend, 130308)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Oncoimmunology (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 7b). PLoS Pathog (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Sci Adv (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd4抗体(Biolegend, 100428)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Rep (2020) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3d
BioLegend Cd4抗体(Biolegend, 100505)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3d). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
BioLegend Cd4抗体(Biolegend, 100537)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Nat Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 5 ug/ml; 图 2j, 3a, s3a, s12r
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml (图 2j, 3a, s3a, s12r). Science (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4b, 4c, 4d
BioLegend Cd4抗体(Biolegend, 100432)被用于被用于流式细胞仪在小鼠样本上 (图 4b, 4c, 4d). Front Cell Neurosci (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 s4, s6
BioLegend Cd4抗体(BioLegend, 100546)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s4, s6). Nat Commun (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s3c, s4a
BioLegend Cd4抗体(BioLegend, 100516)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s3c, s4a). Cancers (Basel) (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
BioLegend Cd4抗体(BioLegend, 100510)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). Nat Commun (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Front Immunol (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 s8, s17b
BioLegend Cd4抗体(Biolegend, 100512)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s8, s17b). Nat Commun (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6c, s6b
BioLegend Cd4抗体(Biolegend, 100566)被用于被用于流式细胞仪在小鼠样本上 (图 6c, s6b). Nat Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6b). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s16a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s16a). Nat Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s16c
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s16c). Nat Commun (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:150; 图 s5a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s5a). Mol Ther Methods Clin Dev (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 7b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 7b). elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 s19d
BioLegend Cd4抗体(Biolegend, 100449)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s19d). Nat Commun (2020) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 s19a
BioLegend Cd4抗体(Biolegend, 116011)被用于被用于流式细胞仪在小鼠样本上 (图 s19a). Nat Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1a, s4e
BioLegend Cd4抗体(Biolegend, GK 1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, s4e). J Neuroinflammation (2020) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 5f
BioLegend Cd4抗体(BioLegend, 100559)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5f). Cell (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s12a
BioLegend Cd4抗体(Biolegend, 100412)被用于被用于流式细胞仪在小鼠样本上 (图 s12a). Nat Commun (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 4s1
BioLegend Cd4抗体(BioLegend, 100433)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4s1). elife (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Adv (2019) ncbi
大鼠 单克隆(RM4-5)
  • mass cytometry; 小鼠; 3 ug/ml; 图 5d
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于mass cytometry在小鼠样本上浓度为3 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Cd4抗体(Biolegend, 100552)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell Rep (2019) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Cd4抗体(Biolegend, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 4d). BMC Immunol (2019) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 1:400; 图 s4a
BioLegend Cd4抗体(Biolegend, RM4-4)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s4a). Cell Rep (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:70; 图 3g
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:70 (图 3g). Cancer Sci (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e2a, e5h
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e2a, e5h). Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a, 2f
BioLegend Cd4抗体(BioLegend, 100432)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2f). J Exp Med (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd4抗体(BioLegend, 100548)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Science (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e3d
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e3d). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
BioLegend Cd4抗体(Biolegend, 100552)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). elife (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 e10
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 e10). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, 100536)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Rep (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, 100407)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Rep (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2c
BioLegend Cd4抗体(Biolegend, 100559)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 4d
BioLegend Cd4抗体(Biolegend, 100540)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4d). Nat Commun (2019) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 3a, 3e, 4a
BioLegend Cd4抗体(BioLegend, RM 4-4)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3e, 4a). J Clin Invest (2019) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Cd4抗体(Biolegend, 116008)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
BioLegend Cd4抗体(Biolegend, 100536)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Cd4抗体(BioLegend, 100561)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegend Cd4抗体(Biolegend, 100548)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 3b
BioLegend Cd4抗体(Biolegend, 100536)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3b). Nat Commun (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 3e
BioLegend Cd4抗体(BioLegend, 100412)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3e). Nat Commun (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(Biolegend, RM 4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). JCI Insight (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 e7b
BioLegend Cd4抗体(Biolegend, 100411)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e7b). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Clin Invest (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Cd4抗体(BioLegend, 100408)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Immunity (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 s5a, s6a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5a, s6a). Science (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 s7e
BioLegend Cd4抗体(Biolegend, 100428)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7e). Cancer Cell (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Aging Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:2000; 图 e5c
BioLegend Cd4抗体(BioLegend, 100516)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000 (图 e5c). Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a, 3b, 4g, s7f
BioLegend Cd4抗体(BioLegend, 100412)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3b, 4g, s7f). Immunity (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a, 3b, 4g, s7f
BioLegend Cd4抗体(BioLegend, 100548)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3b, 4g, s7f). Immunity (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1e
BioLegend Cd4抗体(Biolegend, 100421)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Front Immunol (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend Cd4抗体(Biolegend, 100423)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Sci Rep (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 1d, 2a
BioLegend Cd4抗体(Biolegend, 100543)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1d, 2a). Nat Commun (2019) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 s6k
BioLegend Cd4抗体(Biolegend, 116007)被用于被用于流式细胞仪在小鼠样本上 (图 s6k). Cell (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类; 图 s7a
BioLegend Cd4抗体(Biolegend, 100455)被用于被用于流式细胞仪在人类样本上 (图 s7a). Cell (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s6d
BioLegend Cd4抗体(Biolegend, 100447)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 s2o
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2o). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s7c
BioLegend Cd4抗体(BioLegend, 100527)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell Metab (2019) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 3s1b
BioLegend Cd4抗体(BioLegend, 116014)被用于被用于流式细胞仪在小鼠样本上 (图 3s1b). elife (2019) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 图 3e
BioLegend Cd4抗体(Biolegend, GK 1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s6d
BioLegend Cd4抗体(Biolegend, 100552)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s4c
BioLegend Cd4抗体(Biolegend, 100536)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). Cell Rep (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 6s1
BioLegend Cd4抗体(Biolegend, 100414)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6s1). elife (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 2e
BioLegend Cd4抗体(BioLegend, 100411)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2e). elife (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:50; 图 s3d
BioLegend Cd4抗体(BioLegend, 100510)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s3d). Cell (2019) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). J Exp Med (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Exp Med (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, 100432)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunity (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Immunol (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e1b, e1c, e1d
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e1b, e1c, e1d). Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2c, 2d
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2c, 2d). Front Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Int J Cancer (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Science (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, GK15)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-石蜡切片; 小鼠; 图 6g
BioLegend Cd4抗体(Biolegend, 100402)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6g). Cell Rep (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, 100526)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Rep (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd4抗体(Biolegend, 100531)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd4抗体(BioLegend, 100510)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Cyst Fibros (2019) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 3a, 3f, s2b
BioLegend Cd4抗体(BioLegend, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3f, s2b). JCI Insight (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Transl Oncol (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a, 2c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 2c). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS ONE (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 小鼠; 图 s6d
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6d). Cell Metab (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Neuroinflammation (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 s4
BioLegend Cd4抗体(Biolegend, 100429)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 s4). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Neuroinflammation (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 1c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c). J Exp Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 图 3e
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于免疫组化在小鼠样本上 (图 3e). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(Biolegend, 116011)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immunity (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e8a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e8a). Nature (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd4抗体(Biolegend, 100434)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类; 图 s1a
BioLegend Cd4抗体(Biolegend, 100546)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s19
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s19). J Clin Invest (2018) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 图 3e
BioLegend Cd4抗体(Biolegend, 100406)被用于被用于免疫组化在小鼠样本上 (图 3e). J Clin Invest (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e4b
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e4b). Nature (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3g
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Nat Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:150; 图 s3a
BioLegend Cd4抗体(BioLegend, 100429)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s3a). Nat Commun (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend Cd4抗体(BioLegend, 100424)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Nat Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Oncoimmunology (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, 100528)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS Pathog (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Eur J Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Cell Rep (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s11
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s11). Oncoimmunology (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2018) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Cd4抗体(Biolegend, 116005)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s12a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s12a). Science (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:300; 图 s1a
BioLegend Cd4抗体(BioLegend, 100547)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s1a). PLoS Biol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 图 s5c
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5c). J Cell Biol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell Metab (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Cell Biol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3c
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3c). Nat Commun (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Front Microbiol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 9a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 9a). J Exp Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Nat Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, 100540)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Cd4抗体(BioLegend, 100434)被用于被用于流式细胞仪在小鼠样本上 (图 s4). J Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Science (2018) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
BioLegend Cd4抗体(Biolegend, 116014)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). Development (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, 100447)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2018) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Cd4抗体(Biolegend, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Virol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 9f
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 9f). J Exp Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:1000; 图 s4b
BioLegend Cd4抗体(BioLegend, 100422)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s4b). J Clin Invest (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, 100451)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Nat Immunol (2018) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Cd4抗体(BioLegend, H129.19)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Science (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Eur J Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1k
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1k). J Exp Med (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s11
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s11). Science (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s10e
BioLegend Cd4抗体(BioLegend, 100510)被用于被用于流式细胞仪在小鼠样本上 (图 s10e). Nature (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Neurol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 2d
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2d). Nat Commun (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Cd4抗体(BioLegend, 100411)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nature (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Cd4抗体(Biolegend, 100412)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Sci Rep (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, 100405)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Eur J Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s5d
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). Nature (2017) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Cd4抗体(BioLegend, 100531)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Clin Invest (2017) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 1:200; 图 s7c
BioLegend Cd4抗体(Biolegend, 116006)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7c). Nat Cell Biol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 s1d
BioLegend Cd4抗体(BioLegend, 100428)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1d). Leukemia (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Nature (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 s1a
BioLegend Cd4抗体(Biolegend, RM4−5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1a). Nat Commun (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, 100433)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Science (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Science (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2k
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s2k). Nature (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cancer Res (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3h
BioLegend Cd4抗体(Biolegend, 100548)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Nature (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Eur J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:400; 图 s3a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3a). Nat Commun (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd4抗体(Biolegend, RMA4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nature (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, 100411)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immunity (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd4抗体(BioLegend, 100528)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Immunity (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1h
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Science (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd4抗体(Biolegend, 100406)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1g
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Allergy Clin Immunol (2018) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 st1a
BioLegend Cd4抗体(BioLegend, 116006)被用于被用于流式细胞仪在小鼠样本上 (图 st1a). Nature (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4e). J Exp Med (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Med (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Leukoc Biol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:250; 图 4a
BioLegend Cd4抗体(BioLegend, 100411)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 4a). Sci Rep (2017) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1i
BioLegend Cd4抗体(biolegend, RM4?\5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1i). Immunology (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). Science (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(BioLegend, CK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100405)被用于被用于流式细胞仪在小鼠样本上. Oncogene (2017) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, H129.19)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Nat Commun (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Cd4抗体(BioLegend, 100516)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Biol Chem (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2h
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s2h). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(biolegend, 100434)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immun Inflamm Dis (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6j
BioLegend Cd4抗体(BioLegend, 100515)被用于被用于流式细胞仪在小鼠样本上 (图 6j). J Exp Med (2017) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). Immunology (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Nat Commun (2017) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 图 2b
BioLegend Cd4抗体(Biolegend, 100403)被用于被用于免疫组化在小鼠样本上 (图 2b). Cell Stem Cell (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Methods Mol Biol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Nature (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). PLoS Pathog (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:400; 图 5i
BioLegend Cd4抗体(Biolegend, 100406)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 5i). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 4b). Mucosal Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Oncotarget (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS Pathog (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cancer Res (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1G
BioLegend Cd4抗体(Biolegend, 100508)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, 100531)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:800; 图 6c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 6c). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Immunology (2017) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 人类; 图 5
BioLegend Cd4抗体(BioLegend, H129)被用于被用于流式细胞仪在人类样本上 (图 5). Nature (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:50; 图 s2e
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2e). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd4抗体(BioLegend, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s9a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s9a). Science (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Cd4抗体(BioLegend, 100516)被用于被用于流式细胞仪在小鼠样本上 (图 4). Front Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 S2
BioLegend Cd4抗体(BioLegend, clone GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 S2). PLoS ONE (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 大鼠; 图 6
BioLegend Cd4抗体(Biolegend, 100421)被用于被用于流式细胞仪在大鼠样本上 (图 6). J Neuroinflammation (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Leukoc Biol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 1:100; 图 3
BioLegend Cd4抗体(BioLegend, 130308)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Exp Ther Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Eur J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 表 1
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Clin Invest (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4g
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4g). J Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:50; 图 3
BioLegend Cd4抗体(Biolegend, 100408)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 图 8c
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8c). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 2i
BioLegend Cd4抗体(BioLegend, 100532)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2i). JCI Insight (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(biolegend, 100510)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Cd4抗体(BioLegend, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 3
BioLegend Cd4抗体(Biolegend, 100531)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 表 s2
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Antimicrob Agents Chemother (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4i
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4i). Am J Pathol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Cd4抗体(Biolegend, 100408)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Nature (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:300; 图 4e
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4e). Nat Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Neuroimmunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd4抗体(Biolegend, 100437)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Virol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Oncogene (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(Biolegend, 100538)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Eur J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 2c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2c). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
BioLegend Cd4抗体(Biolegend, 100424)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd4抗体(Biolegend, 100434)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Clin Invest (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 1:100; 图 1
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nature (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Mucosal Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 2
BioLegend Cd4抗体(BioLegend, 100528)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Oncotarget (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(BioLegend, 100510)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mucosal Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a, s5c, s5b
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a, s5c, s5b). Science (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nat Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 7d
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 7d). Oncotarget (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, H129.19)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Gastroenterology (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Transl Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nucleic Acids Res (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s13
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s13). Science (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Thorac Oncol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 s2
BioLegend Cd4抗体(Biolegend, 100530)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2c
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Arterioscler Thromb Vasc Biol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Arthritis Rheumatol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Aging (Albany NY) (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:400; 图 2e
BioLegend Cd4抗体(BioLegend, 100428)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2e). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(BioLegend, 100536)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
  • 免疫组化; 小鼠; 图 1
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1) 和 被用于免疫组化在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在人类样本上. Science (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Arthritis Rheumatol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nat Commun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s7). elife (2015) ncbi
大鼠 单克隆(RM4-5)
BioLegend Cd4抗体(BioLegend, 100515)被用于. Mol Med Rep (2015) ncbi
大鼠 单克隆(RM4-5)
  • 酶联免疫吸附测定; 小鼠; 图 2
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). Mucosal Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 1
BioLegend Cd4抗体(BioLegend, #100506)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Exp Ther Med (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 10 ug/ml; 图 7a
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml (图 7a). Nat Commun (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 图 4
BioLegend Cd4抗体(BioLegend, 100534)被用于被用于免疫组化在小鼠样本上 (图 4). J Virol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100531)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:300; 图 2
BioLegend Cd4抗体(Biolegend, 100528)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:150
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:150. PLoS ONE (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Tuberculosis (Edinb) (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7d
BioLegend Cd4抗体(Biolegend, 100548)被用于被用于流式细胞仪在小鼠样本上 (图 7d). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Cd4抗体(Biolegend, 100408)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(GK1.5)
  • 免疫细胞化学; 小鼠; 1:800
BioLegend Cd4抗体(Biolegend, 100404)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800. J Neurosci (2015) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于抑制或激活实验在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:8000; 图 4
BioLegend Cd4抗体(BioLegend, 100515)被用于被用于流式细胞仪在小鼠样本上浓度为1:8000 (图 4). Immun Ageing (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:400; 图 1
BioLegend Cd4抗体(Biolegend, 100422)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(GK1.5)
  • 免疫印迹; 小鼠; 1:100; 图 5,6
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 大鼠
BioLegend Cd4抗体(BioLegend, 130308)被用于被用于流式细胞仪在大鼠样本上. Transpl Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100539)被用于被用于流式细胞仪在小鼠样本上. Anticancer Res (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 8f
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 8f). J Virol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd4抗体(Biolegend, 100516)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Shock (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Cd4抗体(biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Nat Commun (2014) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, Gk1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd4抗体(Biolegend, clone RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100410)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Cd4抗体(Biolegend, 100531)被用于被用于流式细胞仪在小鼠样本上 (图 4). EMBO Mol Med (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Cd4抗体(biolegend, 100405)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Appl Microbiol Biotechnol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd4抗体(biolegend, RM4.5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd4抗体(BioLegend, 100412)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Cereb Blood Flow Metab (2015) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GK1.5)
BioLegend Cd4抗体(BioLegend, GK1.5)被用于. J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2014) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1
  • 流式细胞仪; 小鼠; 图 4
BioLegend Cd4抗体(Biolegend, RM4.5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1) 和 被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
BioLegend Cd4抗体(Biolegend, RM4-5)被用于. PLoS Genet (2014) ncbi
大鼠 单克隆(GK1.5)
BioLegend Cd4抗体(Biolegend, 100411)被用于. J Mol Cell Cardiol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(GK1.5)
BioLegend Cd4抗体(BioLegend, GK1.5)被用于. Nat Commun (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e1b
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e1b). J Allergy Clin Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 150 ug/mice
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于抑制或激活实验在小鼠样本上浓度为150 ug/mice. PLoS ONE (2014) ncbi
大鼠 单克隆(GK1.5)
BioLegend Cd4抗体(BioLegend, GK1.5)被用于. J Exp Med (2014) ncbi
大鼠 单克隆(GK1.5)
BioLegend Cd4抗体(BioLegend, GK1.5)被用于. Cancer Immunol Res (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2014) ncbi
大鼠 单克隆(GK1.5)
BioLegend Cd4抗体(Biolegend, 100412)被用于. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Immunol Cell Biol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(RM4-4)
  • 抑制或激活实验; 小鼠; 10 ug/ml
BioLegend Cd4抗体(Biolegend, RM4-4)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml. PLoS ONE (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Leukoc Biol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, 100430)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2014) ncbi
大鼠 单克隆(GK1.5)
BioLegend Cd4抗体(BioLegend, GK1.5)被用于. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
BioLegend Cd4抗体(BioLegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd4抗体(Biolegend, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Scand J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 9
BioLegend Cd4抗体(BioLegend, 100434)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 9). PLoS ONE (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd4抗体(Biolegend, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
赛默飞世尔
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd4抗体(eBioscience, 12-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:1000; 图 3b, 3c
赛默飞世尔 Cd4抗体(Invitrogen, 25-0041-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3b, 3c). Theranostics (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 6f, 6g
赛默飞世尔 Cd4抗体(eBioscience, 11-0042-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6f, 6g). Nat Commun (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类; 1:100; 图 s5a
赛默飞世尔 Cd4抗体(Invitrogen, 12-0041-81)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s5a). Nat Commun (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1i
赛默飞世尔 Cd4抗体(eBioscience, 11-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1i). Front Immunol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b, 2c, 2e, 7d
赛默飞世尔 Cd4抗体(eBioscience, 35-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 2c, 2e, 7d). PLoS Pathog (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 1a, 3e
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a, 3e). J Neuroinflammation (2022) ncbi
大鼠 单克隆(GK1.5)
  • 免疫细胞化学; 小鼠; 1:100; 图 1c
赛默飞世尔 Cd4抗体(Thermo Fisher, GK1.5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1c). J Neuroinflammation (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd4抗体(eBioscience, RM 4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Gut Microbes (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 1c, s3a, s3b
赛默飞世尔 Cd4抗体(eBioscience, 61-0042-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c, s3a, s3b). Development (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 1c, s3a, s3b
赛默飞世尔 Cd4抗体(eBioscience, 47-0041-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c, s3a, s3b). Development (2022) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化; 小鼠; 1:2000; 图 s6a
赛默飞世尔 Cd4抗体(eBioscience, 14-9766)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s6a). Nat Commun (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(ThermoFisher, 47-0041-80)被用于被用于流式细胞仪在小鼠样本上. iScience (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3, 1a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s3, 1a). Int J Mol Sci (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd4抗体(Thermo Fisher, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 6e
赛默飞世尔 Cd4抗体(Thermo Fisher, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6e). Sci Rep (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 8b
赛默飞世尔 Cd4抗体(Invitrogen, 47-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 8b). Sci Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 免疫细胞化学; 小鼠; 1:100; 图 3a
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, MA1-146)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3a). J Immunother Cancer (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd4抗体(eBioscience, 11-0041-85)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Theranostics (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s8d
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s8d). J Immunother Cancer (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 ds1i
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, 11-0041-81)被用于被用于流式细胞仪在小鼠样本上 (图 ds1i). Cell Rep (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd4抗体(eBioscience, 56-0042-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 s5-1c
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, 25-0042-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5-1c). elife (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3b, 5b
赛默飞世尔 Cd4抗体(eBioscience, 11-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b, 5b). Mediators Inflamm (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔 Cd4抗体(Thermo Fisher, 48-0042-82)被用于被用于流式细胞仪在小鼠样本上 (表 2). Int J Mol Sci (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd4抗体(eBioscience, 11-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell Death Dis (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 2s3d
赛默飞世尔 Cd4抗体(eBioscience, 25-0041-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2s3d). elife (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 2s2c
赛默飞世尔 Cd4抗体(eBioscience, 11-0042-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2s2c). elife (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd4抗体(eBioscience, 47-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mucosal Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd4抗体(Thermo Fisher, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell Death Dis (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). BMC Res Notes (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4d, 4e, 4f
赛默飞世尔 Cd4抗体(eBioscience, RM4?C5)被用于被用于流式细胞仪在小鼠样本上 (图 4d, 4e, 4f). Arthritis Res Ther (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Reprod Immunol (2021) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化; 小鼠; 1:10; 图 7h
赛默飞世尔 Cd4抗体(eBioscience, 14-9766-82)被用于被用于免疫组化在小鼠样本上浓度为1:10 (图 7h). PLoS Biol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(ThermoFisher, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a, 2b
赛默飞世尔 Cd4抗体(eBioscience, 11-0042-85)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2b). Nat Commun (2021) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 2a, 2b
赛默飞世尔 Cd4抗体(eBioscience, 12-0043-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2b). Nat Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, 25-0041-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔 Cd4抗体(eBioscience, 11-0042-81)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Commun Biol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 免疫印迹; 小鼠; 图 ev4e
赛默飞世尔 Cd4抗体(Invitrogen, 17-0042-82)被用于被用于免疫印迹在小鼠样本上 (图 ev4e). EMBO Mol Med (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:800; 图 1a, 2
赛默飞世尔 Cd4抗体(eBioscience, 11004282)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1a, 2). J Neuroinflammation (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Aging Cell (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Invitrogen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Invitrogen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Antimicrob Agents Chemother (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Invitrogen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Invitrogen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:50; 图 s3d
赛默飞世尔 Cd4抗体(eBioscience, 25-0041-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s3d). Nature (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a, 2e, s2b
赛默飞世尔 Cd4抗体(Fisher, 25-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2e, s2b). Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 48-0042-82)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Int J Biol Sci (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Invitrogen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Aging Cell (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Aging Cell (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Mucosal Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd4抗体(Thermo Fisher, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Eur J Immunol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a, 1b
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 1b). BMC Immunol (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔 Cd4抗体(e-Bioscence, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4e). elife (2020) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化; 小鼠; 1:100; 图 5e
赛默飞世尔 Cd4抗体(eBioscience, 14-9766-82)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5e). Nat Commun (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类; 1:100; 图 6a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). Front Immunol (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd4抗体(ThermoFisher, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Blood Adv (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:1000; 图 2e, 5f
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, 64-0042-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2e, 5f). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:300; 图 4e
赛默飞世尔 Cd4抗体(Invitrogen, 17-0042-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4e). Cell Res (2020) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 1:100; 图 2f
赛默飞世尔 Cd4抗体(eBioscience, 14-0042)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2f). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 3, 5
赛默飞世尔 Cd4抗体(Invitrogen, MCD0417)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3, 5). Nat Commun (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:1200; 图 1s4a
赛默飞世尔 Cd4抗体(ThermoFisher, 46-0042-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1200 (图 1s4a). elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd4抗体(eBioscience, 11-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类; 1:250
赛默飞世尔 Cd4抗体(ThermoFisher, 56-0042-82)被用于被用于流式细胞仪在人类样本上浓度为1:250. Nature (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd4抗体(ThermoFisher, 47-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell Rep (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 5
赛默飞世尔 Cd4抗体(eBioscience, 12-0042)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5). JCI Insight (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:1000; 图 4b
赛默飞世尔 Cd4抗体(Thermo Fisher, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 4b). Cell Rep (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 5b
赛默飞世尔 Cd4抗体(eBioscience, 11004181)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5b). Nat Commun (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1g, s3a, s3b, 2c
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1g, s3a, s3b, 2c). Sci Adv (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:250; 图 4d
赛默飞世尔 Cd4抗体(eBioscience, 11-0041-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 4d). Nat Metab (2019) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
赛默飞世尔 Cd4抗体(eBioscience, 14-C9766)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). Br J Cancer (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2k
赛默飞世尔 Cd4抗体(eBioscience, 17-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2k). Sci Adv (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2019) ncbi
大鼠 单克隆(GK1.5)
  • 其他; 小鼠; 图 2b
赛默飞世尔 Cd4抗体(Invitrogen, 12-0041-82)被用于被用于其他在小鼠样本上 (图 2b). Int Immunol (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 e3b
赛默飞世尔 Cd4抗体(Invitrogen, 47-0042-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3b). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:2800; 图 e3i
赛默飞世尔 Cd4抗体(eBioscience, 13-0042-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:2800 (图 e3i). Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 3b
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3b). Nat Commun (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 0.5 ug/ml; 图 4h
赛默飞世尔 Cd4抗体(ThermoFisher Scientific, 17-0042-83)被用于被用于流式细胞仪在小鼠样本上浓度为0.5 ug/ml (图 4h). Science (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd4抗体(eBioscience, 11-C004-C2-C85)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Oncoimmunology (2019) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化-石蜡切片; 小鼠; 图 7e
赛默飞世尔 Cd4抗体(eBioscience, 4SM94)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7e). J Clin Invest (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd4抗体(eBioscience, 17-0042-81)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Oncol (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s6b
赛默飞世尔 Cd4抗体(eBioscience, 11-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Cell (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 s8a
赛默飞世尔 Cd4抗体(eBioscience, 12-0041-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s8a). Nat Commun (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 s2o
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2o). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于. J Exp Med (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, 12-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, 45-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:1000; 图 5a
赛默飞世尔 Cd4抗体(eBioscience, 12-0041)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 5a). Cell (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immune Netw (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd4抗体(eBioscience, 48-041-82)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Immunity (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a, 3a, 6c
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 3a, 6c). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 7f
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 7f). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 4c
赛默飞世尔 Cd4抗体(eBioscience, 17-0041-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4c). Cell Rep (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Front Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2019) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
赛默飞世尔 Cd4抗体(eBioscience, 4SM95)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). JCI Insight (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s5b
赛默飞世尔 Cd4抗体(eBioscience, 17-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Cell Rep (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 2g
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2g). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Cd4抗体(eBioscience, 48-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Cell Stem Cell (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s7d
赛默飞世尔 Cd4抗体(eBioscience, 17-0041-81)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Blood (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 ev2c
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 ev2c). EMBO J (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4i
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4i). J Clin Invest (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Science (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Eur J Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). PLoS ONE (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 2h
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2h). Nat Commun (2018) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1c
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, 11-0041-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1c). Nat Commun (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5k
  • 免疫组化; 小鼠; 图 4d
赛默飞世尔 Cd4抗体(eBioscience, 14-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 5k) 和 被用于免疫组化在小鼠样本上 (图 4d). Cancer Res (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Front Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:6; 图 s2a
赛默飞世尔 Cd4抗体(ThermoFisher, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:6 (图 s2a). PLoS Pathog (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e2c
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e2c). Nature (2018) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化; 小鼠; 1:40; 图 5a
赛默飞世尔 Cd4抗体(Thermo Fisher, 4SM95)被用于被用于免疫组化在小鼠样本上浓度为1:40 (图 5a). J Exp Med (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cancer Res (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Virol (2018) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
赛默飞世尔 Cd4抗体(eBioscience, 14-9766)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). J Clin Invest (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 Cd4抗体(eBioscience, 48-0041-80)被用于被用于流式细胞仪在小鼠样本上 (图 4a) 和 被用于免疫组化在小鼠样本上 (图 7a). J Clin Invest (2018) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 s11e
赛默飞世尔 Cd4抗体(Thermo Fisher, 4SM95)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 s11e). Nat Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Clin Invest (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 7d
赛默飞世尔 Cd4抗体(ebioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7d). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd4抗体(ebioscience, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Cd4抗体(Thermo Fisher, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Oncogene (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS ONE (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Exp Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(Thermo Fisher Scientific, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于. J Exp Med (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Exp Med (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Front Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Cancer Cell (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 8e
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 8e). J Clin Invest (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Cd4抗体(eBiosciences, 56-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Cell (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔 Cd4抗体(eBiosciences, 11-0042-85)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Science (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Cell (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd4抗体(eBioscience, 12-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Immunity (2017) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Cd4抗体(eBiosciences, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell Rep (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cancer Res (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Eur J Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5b
  • 免疫组化; 小鼠; 图 1c
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5b) 和 被用于免疫组化在小鼠样本上 (图 1c). Immunol Lett (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd4抗体(eBioscience, 17-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Diabetologia (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Immunology (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Stem Cells (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3d
  • 流式细胞仪; 人类; 图 3d
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3d) 和 被用于流式细胞仪在人类样本上 (图 3d). Stem Cells (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s6g
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s6g). Nature (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔 Cd4抗体(eBioscience, 11-0042-85)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBiosciences, 12-0041-81)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1.4b
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1.4b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 Cd4抗体(Thermo, 48-0042-80)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 5a
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 5a) 和 被用于流式细胞仪在小鼠样本上 (图 s1a). Infect Immun (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Int J Parasitol (2017) ncbi
大鼠 单克隆(RM4-4)
  • 其他; 小鼠; 图 s2a
赛默飞世尔 Cd4抗体(eBiosciences, RM 4.4)被用于被用于其他在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Clin Invest (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化-石蜡切片; 小鼠; 图 3k
赛默飞世尔 Cd4抗体(Ebioscience, 14-9766-80)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3k). PLoS Genet (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Clin Invest (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:800; 图 s1c
赛默飞世尔 Cd4抗体(Invitrogen, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s1c). Nat Commun (2017) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化; 小鼠; 图 s7b
赛默飞世尔 Cd4抗体(eBioscience, 4SM95)被用于被用于免疫组化在小鼠样本上 (图 s7b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Cd4抗体(eBioscience, 48-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b,2c
赛默飞世尔 Cd4抗体(eBioscience, 25-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b,2c). Oncoimmunology (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
赛默飞世尔 Cd4抗体(eBioscience, 48-0041)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Nat Commun (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔 Cd4抗体(eBiosciences, 17-0041-81)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd4抗体(eBioscience, 48-0041)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Sci Rep (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). J Clin Invest (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Blood (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:300; 图 s4a
赛默飞世尔 Cd4抗体(eBioscience, 48-0041)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s4a). J Clin Invest (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Eur J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Mol Life Sci (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
赛默飞世尔 Cd4抗体(eBioscience, 14-0041-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Sci Rep (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd4抗体(eBioscience, 25-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd4抗体(EBioscience, GK 1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Haematologica (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1b, 1c
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1b, 1c). J Exp Med (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3c
赛默飞世尔 Cd4抗体(Affymetrix eBioscience, 14-0042-85)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Nature (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Am J Respir Crit Care Med (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s5f
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s5f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2j
赛默飞世尔 Cd4抗体(eBioscience, 11-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 2j). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s9c
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s9c). Nature (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Cd4抗体(ebioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Infect Immun (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3D
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3D). J Clin Invest (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s6
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Brain (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd4抗体(ebioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Cd4抗体(ebioscience, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Exp Med (2016) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 6a
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 6a). J Virol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 Cd4抗体(ebioscience, 12-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Front Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 1a
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1a). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd4抗体(eBioscience, 12-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
赛默飞世尔 Cd4抗体(eBioscience, 4SM95)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). J Invest Dermatol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd4抗体(eBiosciences, 48-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nature (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Circ Res (2016) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 3b
赛默飞世尔 Cd4抗体(eBiosciences, 14-9766)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 3b). Science (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd4抗体(Invitrogen, MCD0430)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Nat Biotechnol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 5
赛默飞世尔 Cd4抗体(eBioscience, 11-0042-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 5). Exp Ther Med (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 表 1
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(Ebioscience, 17-0041)被用于被用于流式细胞仪在小鼠样本上 (图 5). BMC Complement Altern Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 s4k
赛默飞世尔 Cd4抗体(eBioscience, 48-0042)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4k). Cell Metab (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 9a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 9a). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Oncogene (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Clin Invest (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s5c
赛默飞世尔 Cd4抗体(eBiosciences, 12-0041-81)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). J Clin Invest (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd4抗体(eBioscience, 25-0041)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Clin Invest (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(Affymetrix eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd4抗体(eBiosciences, 15-0042-83)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Immunol Cell Biol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(BD Pharmingen or eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mol Cell Biol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBioscience, 17-0042)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 45-0042-82)被用于被用于流式细胞仪在小鼠样本上. Front Cell Neurosci (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). elife (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:500; 图 st1
赛默飞世尔 Cd4抗体(eBioscience, 47-0041)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, 11-0041-85)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 st2
赛默飞世尔 Cd4抗体(eBioscience, 17-0042-81)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Atherosclerosis (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, 11-0041)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6g
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6g). Science (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s4). J Clin Invest (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 7). Oncotarget (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd4抗体(eBioscience, RM 4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). elife (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Sci Rep (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBiosciences, 6K1.5)被用于被用于流式细胞仪在小鼠样本上. Bio Protoc (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Cancer Res (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3g
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3g). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:66; 图 2f
赛默飞世尔 Cd4抗体(eBioscience, 17-0041-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:66 (图 2f). Nat Cell Biol (2016) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 1:100; 图 s3
赛默飞世尔 Cd4抗体(eBioscience, 11-0043-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, 16-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Cell Biol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 56-0041)被用于被用于流式细胞仪在小鼠样本上. Biol Open (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Eur J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd4抗体(eBioscience, 45-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Oncoimmunology (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Cd4抗体(eBioscience, 17-0041)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Oncoimmunology (2016) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBioscience, 14-9766)被用于被用于免疫组化在小鼠样本上 (图 3). Int J Mol Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 4a
赛默飞世尔 Cd4抗体(eBioscience, 11-0042)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4a). Mol Med Rep (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Diabetes (2016) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 10
赛默飞世尔 Cd4抗体(eBioscience, 14-9766-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 10). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mucosal Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(eBioscience, 45-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 6). Clin Cancer Res (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s21
赛默飞世尔 Cd4抗体(eBioscience, 53-0041-82)被用于被用于流式细胞仪在小鼠样本上 (图 s21). Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Science (2016) ncbi
大鼠 单克隆(RM4-5)
  • 抑制或激活实验; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于抑制或激活实验在小鼠样本上 (图 1). Dis Model Mech (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 11-0041-85)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBiocience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nature (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s9
赛默飞世尔 Cd4抗体(eBioscience, 25-0042)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Nat Neurosci (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在人类样本上 (图 2). Oncogene (2016) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(Invitrogen Life Technologies, GK1.5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6) 和 被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, C14-0041)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS Med (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd4抗体(eBioscience, 45-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Sci Rep (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 s2
赛默飞世尔 Cd4抗体(eBioscience, 45-0042-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2). Nat Commun (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Nat Immunol (2015) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Cd4抗体(eBiosciences, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Nat Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, 17-0042)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(EBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Science (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Retrovirology (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cancer Res (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 48-0041-80)被用于被用于流式细胞仪在小鼠样本上. J Vis Exp (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, # 45-0042-80)被用于被用于流式细胞仪在小鼠样本上 (图 5). Front Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于免疫组化在小鼠样本上 (图 4). PLoS Pathog (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Neuroinflammation (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBiosciences, 53-0041-80)被用于被用于流式细胞仪在小鼠样本上. Autophagy (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(生活技术, MCD0417)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 人类; 图 s8
赛默飞世尔 Cd4抗体(ebiosciences, RM4-5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s8). Nat Biotechnol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s9
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Nature (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Reprod Fertil Dev (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 47-0042-82)被用于被用于流式细胞仪在小鼠样本上. Cardiovasc Res (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:1000; 图 2
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, 15-0042-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS Negl Trop Dis (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6b
  • 免疫组化; 小鼠; 图 3a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6b) 和 被用于免疫组化在小鼠样本上 (图 3a). Transplantation (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Biol Chem (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Sci Transl Med (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3A
赛默飞世尔 Cd4抗体(eBioscience, 12-0041)被用于被用于流式细胞仪在小鼠样本上 (图 3A). J Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Am J Physiol Endocrinol Metab (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
大鼠 单克隆(4SM95)
  • 免疫组化; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, 14-9766)被用于被用于免疫组化在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Blood (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于免疫组化在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunother Cancer (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Clin Invest (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1.0 ug/ml
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1.0 ug/ml. Immunol Cell Biol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd4抗体(eBioscience (Affymetrix), GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunology (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔 Cd4抗体(eBioscience, 25-0041)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Nat Biotechnol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(生活技术, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:1000
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Cytokine (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Lett (2015) ncbi
大鼠 单克隆(GK1.5)
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于. elife (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Methods Mol Biol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(ebiosciences, clone GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). ACS Chem Biol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Ebioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Mucosal Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 17-0042)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Med (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd4抗体(ebioscience, MA1-146)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Clin Cancer Res (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Invitrogen, clone RM4-5)被用于被用于流式细胞仪在小鼠样本上. Development (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK 1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, M4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Invitrogen, MCD0428)被用于被用于流式细胞仪在小鼠样本上. Kidney Int (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience Inc., RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6). Laryngoscope (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Bone (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:1000
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Nat Commun (2014) ncbi
大鼠 单克隆(GK1.5)
  • 免疫细胞化学; 人类; 表 2
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于免疫细胞化学在人类样本上 (表 2). J Clin Invest (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Cancer Immunol Immunother (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(4SM95)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 4SM95)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd4抗体(Ebioscience, 12-0041)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS Pathog (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 42-0042-80)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd4抗体(eBioscience, 11-0041-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cell Transplant (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, MCD0417)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔 Cd4抗体(ebioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫组化在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Br J Cancer (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nature (2013) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Invitrogen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Surg Infect (Larchmt) (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Invitrogen, MCD0430)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nature (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Immunol Cell Biol (2013) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(CALTAG, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Lett (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(Caltag, MCD0417)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 S1
赛默飞世尔 Cd4抗体(Caltag, MCD0417)被用于被用于流式细胞仪在小鼠样本上 (图 S1). J Immunol (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Nat Methods (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2, 3
赛默飞世尔 Cd4抗体(生活技术, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2, 3). J Immunol (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Invitrogen, MCD0417)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Neuroinflammation (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔 Cd4抗体(Invitrogen, MCD0428)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Nat Cell Biol (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (表 1). PLoS ONE (2013) ncbi
大鼠 单克隆(GK1.5)
  • 其他; 小鼠; 图 5
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于其他在小鼠样本上 (图 5) 和 被用于流式细胞仪在小鼠样本上 (图 5). Front Immunol (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBiosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2013) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). Nature (2012) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(e-Bioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Nature (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4.5)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag Laboratories, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(Caltag, MCD0417)被用于被用于流式细胞仪在小鼠样本上 (图 4). Eur J Immunol (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Arthritis Res Ther (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 13-0041-85)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上. Front Immunol (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag Laboratories, MCD0428)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(Caltag, MCD0417)被用于被用于流式细胞仪在小鼠样本上 (图 5). Ann Neurol (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(Caltag, MCD0417,)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2011) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 17-0041-81)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(Invitrogen, MCD0430)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioScience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Mol Biol Cell (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunol Cell Biol (2012) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBiosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 7). PLoS ONE (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(Invitrogen, clone RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6). Immunology (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). J Immunol (2010) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, clone GK1.5)被用于被用于流式细胞仪在小鼠样本上. Brain Behav Immun (2011) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBioscience, RM 4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2010) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd4抗体(Invitrogen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2010) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2009) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2009) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, MCD0406)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2009) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2009) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBiosciences, RM4.5)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2009) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, RMA4.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Virol (2009) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2009) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 12-0042)被用于被用于流式细胞仪在小鼠样本上. Nat Protoc (2009) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, 56-0041)被用于被用于流式细胞仪在小鼠样本上. Nat Protoc (2009) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2009) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2, 4
赛默飞世尔 Cd4抗体(Caltag, RMA-5)被用于被用于流式细胞仪在小鼠样本上 (图 2, 4). J Immunol (2009) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Clin Exp Immunol (2009) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 10
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 10). Cell Tissue Res (2008) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag Laboratories, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2008) ncbi
大鼠 单克隆(GK1.5)
  • 其他; 小鼠; 5 mg/kg
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于其他在小鼠样本上浓度为5 mg/kg. Invest Ophthalmol Vis Sci (2008) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2008) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Immunology (2008) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Invitrogen/Caltag Laboratories, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2007) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Blood (2007) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag Laboratories, MCD0404)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2007) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2007) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Parasite Immunol (2007) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Arthritis Rheum (2007) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Nature (2007) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd4抗体(eBioscience, RM-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Biol Chem (2007) ncbi
大鼠 单克隆(CT-CD4)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于免疫组化-冰冻切片在小鼠样本上. Proc Natl Acad Sci U S A (2007) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(E-Bioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Biomed Mater Res A (2007) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2007) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Infect Immun (2007) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2007) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Circulation (2006) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Clin Immunol (2006) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2006) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2006) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(eBioscience, RM-5)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2006) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(Caltag Laboratories, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2006) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2006) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 5 ug/ml; 图 3
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于免疫组化在小鼠样本上浓度为5 ug/ml (图 3). Blood (2006) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CTCD4)被用于被用于流式细胞仪在小鼠样本上. Crit Care Med (2006) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 9
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 9). J Immunol (2006) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2006) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2005) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2005) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Parasitol Res (2005) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Blood (2005) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(eBioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2005) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, MCD 0406)被用于被用于流式细胞仪在小鼠样本上. Blood (2005) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2004) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(eBioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Cell Biol (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Autoimmun (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Autoimmun (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(Caltag, CTCD4)被用于被用于流式细胞仪在小鼠样本上 (图 6). Int Immunol (2004) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2004) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2003) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (表 1). Exp Hematol (2003) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2003) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Histochem Cytochem (2003) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Caltag, YTS 191.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Microbes Infect (2003) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Zymed, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Gen Virol (2003) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Parasite Immunol (2002) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2003) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (表 1). Eur J Immunol (2003) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Nutr (2003) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(Caltag, YTS191.1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nature (2002) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2002) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, RM4?C5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2002) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
大鼠 单克隆(CT-CD4)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, clone CT-CD4)被用于被用于免疫组化在小鼠样本上 (图 1). J Neuroimmunol (2002) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2002) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2002) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2002) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2002) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2002) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, YTS 191.1)被用于被用于流式细胞仪在小鼠样本上. Immunology (2002) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Blood (2002) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2001) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2001) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Caltag, clone CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 2). Scand J Immunol (2001) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2001) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2001) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(CalTag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2001) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 3, 4
赛默飞世尔 Cd4抗体(Caltag, YTS 191.1)被用于被用于流式细胞仪在小鼠样本上 (图 3, 4). J Immunol (2001) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, GK1.5-PE)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunol (2001) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunol (2001) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int Immunol (2001) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 5). Transplantation (2000) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2000) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Blood (2000) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(Caltag, clone CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2000) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2000) ncbi
大鼠 单克隆(CT-CD4)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Infect Immun (2000) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (1999) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (1999) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, YTS 191-1)被用于被用于流式细胞仪在小鼠样本上. Immunology (1999) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Caltag, YTS 191.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (1999) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, YTS191.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (1999) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Immunology (1999) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 2, 3
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 2, 3). J Immunol (1999) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 1, 2
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2). Biochim Biophys Acta (1999) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd4抗体(Caltag, YTS 191.1)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (1999) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, RM4?C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (1998) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, YTS191.1)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1998) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, YTS 191.1)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (1998) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. Blood (1998) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, YTS191.1)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (1998) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (1998) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1998) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (1998) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Caltag, clone GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Int Immunol (1997) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd4抗体(Caltag Laboratories, YTS 191.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (1997) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd4抗体(Caltag, GK 1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Endocrinology (1997) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag Laboratories, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 1). Diabetes (1997) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, YTS191-1)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (1997) ncbi
大鼠 单克隆(CT-CD4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, CT-CD4)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunol (1997) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, GK1.5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, YTS 191.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (1996) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, YTS191.1)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (1996) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(Caltag, YTS191.1)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, YTS191.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Diabetes (1996) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, GK 1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (1995) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd4抗体(Caltag, YTS 191.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (1995) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd4抗体(noco, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Nature (1991) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔 Cd4抗体(Caltag, YTS191.1)被用于被用于流式细胞仪在小鼠样本上 (表 2). Am Rev Respir Dis (1992) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:50; 图 1d
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1d). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(CAL4)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 9
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab237722)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 9). Front Pain Res (Lausanne) (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:1000; 图 s5b
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s5b). Sci Transl Med (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:1000. EMBO Mol Med (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1g
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, 183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1g). Front Med (Lausanne) (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4g
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, 183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4g). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上 (图 7a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 3b, s7f
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b, s7f). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 图 4g
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上 (图 4g). J Exp Clin Cancer Res (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, EPR19514)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Med Oncol (2022) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-冰冻切片; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a). Front Oncol (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Biomedicines (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:100; 图 2e
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6g
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 图 8c
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上 (图 8c). Neoplasia (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 s5
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, EPR19514)被用于被用于免疫组化在小鼠样本上. Mucosal Immunol (2021) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化在小鼠样本上. World J Gastroenterol (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Oncoimmunology (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3s1a
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3s1a). elife (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫细胞化学; 小鼠; 图 e5b
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫细胞化学在小鼠样本上 (图 e5b). Nature (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, EPR19514)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 e3g
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, EPR19514)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e3g). Nature (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 e8d
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, 183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e8d). Nature (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 流式细胞仪; 小鼠; 1:500; 图 3c
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 3c). J Immunother Cancer (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 e5c
  • 流式细胞仪; 小鼠; 图 e5b
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, 183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e5c) 和 被用于流式细胞仪在小鼠样本上 (图 e5b). Nature (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Cancer Cell (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, EPR19514)被用于被用于免疫组化在人类样本上浓度为1:100. Nature (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR19514)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1k'
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab183685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1k'). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:200; 图 s4a
艾博抗(上海)贸易有限公司 Cd4抗体(Abcam, ab221775)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4a). Breast Cancer Res (2018) ncbi
Bio X Cell
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; ; 图 7b
Bio X Cell Cd4抗体(Bio X Cell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 7b). Front Immunol (2022) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; ; 图 2d
Bio X Cell Cd4抗体(Bio X Cell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 2d). J Immunother Cancer (2022) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; ; 图 3a
Bio X Cell Cd4抗体(BioXCell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 3a). PLoS Pathog (2022) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 2e
Bio X Cell Cd4抗体(Bio X Cell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 2e). Med Oncol (2022) ncbi
大鼠 单克隆(GK1.5)
  • 其他; 小鼠; 图 s6i
  • 免疫组化; 小鼠; 图 1
  • 免疫组化; 人类; 图 1
Bio X Cell Cd4抗体(BioXCell, GK1.5)被用于被用于其他在小鼠样本上 (图 s6i), 被用于免疫组化在小鼠样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 1). Cell (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3e
Bio X Cell Cd4抗体(Bio X cell, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Nature (2020) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 4g
  • 流式细胞仪; 小鼠; 图 1a
Bio X Cell Cd4抗体(Bio X Cell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 4g) 和 被用于流式细胞仪在小鼠样本上 (图 1a). Sci Adv (2020) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; ; 图 1g
Bio X Cell Cd4抗体(BioXcell, BE0003-1)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 1g). J Exp Med (2020) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
Bio X Cell Cd4抗体(Bio-X-Cell, BE0003-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Cell (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2d, e5h, e7i
Bio X Cell Cd4抗体(BioXCell, BE0003-1)被用于被用于流式细胞仪在小鼠样本上 (图 2d, e5h, e7i). Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 其他; 小鼠
Bio X Cell Cd4抗体(BioXCell, GK1.5)被用于被用于其他在小鼠样本上. Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 s8
Bio X Cell Cd4抗体(BioXcel, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 s8). Science (2018) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 2a
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 2a). JCI Insight (2018) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 s3a
Bio X Cell Cd4抗体(Bio X Cell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 s3a). J Clin Invest (2019) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 100 ug/mouse; 图 5a
Bio X Cell Cd4抗体(Bioxcell, BE0003-1)被用于被用于抑制或激活实验在小鼠样本上浓度为100 ug/mouse (图 5a). Nat Commun (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 7a
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Cell (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 3d
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 3d). Nat Commun (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 10
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 10). J Virol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 s6a
Bio X Cell Cd4抗体(Bioxcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 s6a). Science (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 6a
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 6a). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 7h
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 7h). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠; 图 s2c
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 s2c). Nature (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 6a
Bio X Cell Cd4抗体(BioXCell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 6a). Nat Commun (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5b
Bio X Cell Cd4抗体(Bio X cell, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5b). JCI Insight (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 5a
Bio X Cell Cd4抗体(Bio X Cell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 5a). J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠
Bio X Cell Cd4抗体(Bio-X-Cell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 3a
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 3a). PLoS Pathog (2016) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 2f
Bio X Cell Cd4抗体(BioXCell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 2f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠
Bio X Cell Cd4抗体(Bio X cell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上. Science (2016) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 s9b
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 s9b). Science (2016) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 s8
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 s8). Nature (2016) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 3
Bio X Cell Cd4抗体(BioXcel, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 3). J Thorac Oncol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 抑制或激活实验; 小鼠; 图 8E
Bio X Cell Cd4抗体(BioXcell, GK1.5)被用于被用于抑制或激活实验在小鼠样本上 (图 8E). Nat Commun (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1
Bio X Cell Cd4抗体(Bio X-Cell/Bhattacharya, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Exp Hematol (2015) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(YTS191.1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
伯乐(Bio-Rad)公司 Cd4抗体(Bio-Rad AbD Serotec, MCA1767)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Brain Commun (2021) ncbi
小鼠 单克隆(CC8)
  • 流式细胞仪; 牛; 图 6
伯乐(Bio-Rad)公司 Cd4抗体(Bio-Rad, MCA1653A647)被用于被用于流式细胞仪在牛样本上 (图 6). Animals (Basel) (2021) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 3a
伯乐(Bio-Rad)公司 Cd4抗体(Bio-Rad, YTS191.1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Clin Transl Med (2021) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 9b
伯乐(Bio-Rad)公司 Cd4抗体(AbD Serotec, GK1.5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 9b). Heliyon (2018) ncbi
大鼠 单克隆(YTS191.1)
  • 流式细胞仪; 小鼠; 图 1a
伯乐(Bio-Rad)公司 Cd4抗体(AbD Serotec, YTS191.1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunology (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司 Cd4抗体(AbD Serotec, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Immunology (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
伯乐(Bio-Rad)公司 Cd4抗体(AbD Serotec, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immunology (2017) ncbi
大鼠 单克隆(YTS191.1)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
伯乐(Bio-Rad)公司 Cd4抗体(AbD Serotec, YTS191.1)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Brain (2017) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 1:500; 图 s4
伯乐(Bio-Rad)公司 Cd4抗体(AbD Serotec, MCA4635)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4). PLoS ONE (2016) ncbi
大鼠 单克隆(YTS191.1)
  • 免疫组化; 小鼠; 1:200
伯乐(Bio-Rad)公司 Cd4抗体(Serotec, MCA1767)被用于被用于免疫组化在小鼠样本上浓度为1:200. Biochem Pharmacol (2014) ncbi
美天旎
人类 单克隆(REA604)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
美天旎 Cd4抗体(Miltenyi Biotec, 130-116-509)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Sci Rep (2022) ncbi
人类 单克隆(REA604)
  • 流式细胞仪; 小鼠; 图 6c
美天旎 Cd4抗体(Miltenyi Biotec, REA604)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Antioxidants (Basel) (2021) ncbi
圣克鲁斯生物技术
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫组化; 小鼠; 图 45
圣克鲁斯生物技术 Cd4抗体(Santa Cruz, sc-13573)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上 (图 45). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(RIV6)
  • 免疫沉淀; 大鼠; 图 s3
圣克鲁斯生物技术 Cd4抗体(Santa Cruz, sc-52385)被用于被用于免疫沉淀在大鼠样本上 (图 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 大鼠; 1:1000
圣克鲁斯生物技术 Cd4抗体(Santa Cruz Biotechnology, sc-19642)被用于被用于流式细胞仪在大鼠样本上浓度为1:1000. Mol Med Rep (2015) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 1:100
圣克鲁斯生物技术 Cd4抗体(Santa Cruz, sc-13573)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Mol Cell Cardiol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Cd4抗体(Santa Cruz Biotech, sc-13573)被用于被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
北京义翘神州
domestic rabbit 单克隆(1)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s2
北京义翘神州 Cd4抗体(Sino Biological, 50134R001)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s2). Development (2022) ncbi
domestic rabbit 单克隆(1)
  • 流式细胞仪; 小鼠; 图 6b
北京义翘神州 Cd4抗体(Sino Biological, 50134-R001)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Front Microbiol (2018) ncbi
安迪生物R&D
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6f
安迪生物R&D Cd4抗体(R&D Systems, MAB554)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6f). Cell Mol Gastroenterol Hepatol (2022) ncbi
Novus Biologicals
domestic rabbit 多克隆(SP107)
Novus Biologicals Cd4抗体(Novus Biologicals, NBP1-19371)被用于. Sci Rep (2015) ncbi
Tonbo Biosciences
单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
Tonbo Biosciences Cd4抗体(Tonbo, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). J Immunol Res (2021) ncbi
单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 8b
Tonbo Biosciences Cd4抗体(Tonbo Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 8b). PLoS ONE (2018) ncbi
单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2a
Tonbo Biosciences Cd4抗体(Tonbo, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Immunol (2018) ncbi
碧迪BD
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:50; 图 4a
碧迪BD Cd4抗体(BD, 557956)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4a). Nat Commun (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3j
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3j). Front Immunol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3d
碧迪BD Cd4抗体(BD Bioscience, 553051)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cell Rep (2022) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 1:100; 图 3a
碧迪BD Cd4抗体(BD Biosciences, 550280)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a). Heliyon (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 3c
碧迪BD Cd4抗体(BD Pharmingen, 561830)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3c). Nat Commun (2022) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Cd4抗体(BD Pharmingen, 561831)被用于被用于流式细胞仪在小鼠样本上 (图 3). Front Oncol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Cd4抗体(BD Biosciences, 553047)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Cd4抗体(BD, 557307)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Pharmacol (2022) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-石蜡切片; 小鼠; 图 s11
碧迪BD Cd4抗体(BD Biosciences, H129.19)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s11). J Diabetes Investig (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 e5e, 4b
碧迪BD Cd4抗体(BD Horizon, 6K1.5)被用于被用于流式细胞仪在小鼠样本上 (图 e5e, 4b). Nature (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e5e, 4b
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e5e, 4b). Nature (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s6
碧迪BD Cd4抗体(BD Biosciences, 561830)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Mol Ther Oncolytics (2022) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 3a, 5a
碧迪BD Cd4抗体(BD, 562891)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a, 5a). J Immunother Cancer (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a, 4c
碧迪BD Cd4抗体(BD Biosciences, 553046)被用于被用于流式细胞仪在小鼠样本上 (图 4a, 4c). Environ Health Perspect (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6e
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Cell Mol Life Sci (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 2, s1
碧迪BD Cd4抗体(BD Bioscience, 563747)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2, s1). Front Immunol (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Cd4抗体(BD Pharmingen, 550954)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Neuroinflammation (2022) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 1:100; 图 5m
碧迪BD Cd4抗体(BD Biosciences, 553651)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5m). Nat Commun (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1f
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). J Exp Med (2022) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2c
碧迪BD Cd4抗体(BD Biosciences, 553048)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Signal Transduct Target Ther (2022) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 2i, 5g, 5i
碧迪BD Cd4抗体(BD Pharmingen, H129.19)被用于被用于流式细胞仪在小鼠样本上 (图 2i, 5g, 5i). Front Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD Biosciences, 563790)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Oncol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 6e
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6e). Sci Rep (2021) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3e
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3e). Sci Rep (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 8b
碧迪BD Cd4抗体(BD Biosciences, 563790)被用于被用于流式细胞仪在小鼠样本上 (图 8b). Sci Immunol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s3c
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s3c). Theranostics (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunother Cancer (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Cd4抗体(BD Horizon, 563747)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Hypertension (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD Cd4抗体(BD Biosciences, 562891)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cell Death Dis (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD Pharmingen, 552051)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4b, 6a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4b, 6a). Sci Rep (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, GK1/5)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:400; 图 3c, s2b, s4d
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3c, s2b, s4d). Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 3c, s2b, s4d
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3c, s2b, s4d). Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7e
碧迪BD Cd4抗体(BD Pharmingen, 553051)被用于被用于流式细胞仪在小鼠样本上 (图 7e). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 4e
碧迪BD Cd4抗体(BD Pharmingen, 560181)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4e). Cells (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
碧迪BD Cd4抗体(BD Biosciences, 550954)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). Aging Cell (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Cd4抗体(BD Biosciences, 550954)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS Pathog (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 1j
碧迪BD Cd4抗体(BD Bioscience, 561091)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1j). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 ds1k
碧迪BD Cd4抗体(BD, 563790)被用于被用于流式细胞仪在小鼠样本上 (图 ds1k). Cell Rep (2021) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
碧迪BD Cd4抗体(BD, 553647)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f). Int J Mol Sci (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 s3a, s3b
碧迪BD Cd4抗体(BD Biosciences, 562891)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3a, s3b). Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 s3b
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3b). Cancer Res (2021) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3c
碧迪BD Cd4抗体(BD-Pharmingen, 557667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3c). Oncoimmunology (2021) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 1:200
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 1:200
碧迪BD Cd4抗体(BDHorizon, GK1.5)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Adv (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:1000; 图 1b
碧迪BD Cd4抗体(BD PharMingen, RM4.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1b). Sci Rep (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:400; 图 5m
碧迪BD Cd4抗体(BD, RM4.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 5m). Aging Cell (2021) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 图 2g
碧迪BD Cd4抗体(BD, 550280)被用于被用于免疫组化在小鼠样本上 (图 2g). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Cd4抗体(BD Bioscience, 553730)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Front Immunol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Front Immunol (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 7b
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 7b). Front Immunol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a, 3b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 3b). Front Immunol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6c
碧迪BD Cd4抗体(BD Pharmingen, 553051)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 s6d, s4e
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6d, s4e). Nat Commun (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 12f
碧迪BD Cd4抗体(BD Pharmingen, 553051)被用于被用于流式细胞仪在小鼠样本上 (图 12f). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Cd4抗体(BD Biosciences, 563106)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD Cd4抗体(BD, 563790)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nature (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 ev4d
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 ev4d). EMBO Mol Med (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 e10e
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e10e). Nat Neurosci (2021) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, 563106)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2021) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 8b
碧迪BD Cd4抗体(BD Biosciences, H129.19)被用于被用于流式细胞仪在小鼠样本上 (图 8b). Front Immunol (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类; 图 s3c
碧迪BD Cd4抗体(BD, 553729)被用于被用于流式细胞仪在人类样本上 (图 s3c). Cell (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD Bioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Clin Invest (2021) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Hepatol Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 s6-1b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6-1b). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 4j
碧迪BD Cd4抗体(BD Biosciences, 553051)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4j). elife (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Sci Immunol (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BD Cd4抗体(BD Pharmingen, 560181)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Vaccines (Basel) (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 9b
碧迪BD Cd4抗体(BD Biosciences, 552051)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 9b). elife (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3e
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). BMC Immunol (2020) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Acta Neuropathol (2020) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 图 2e
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于免疫组化在小鼠样本上 (图 2e). Nat Commun (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD Biosciences, 550954)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nat Commun (2020) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD Cd4抗体(BD Biosciences, 553727)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Cell Rep (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Aging Cell (2020) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-冰冻切片; 小鼠; 1.25 ug/ml; 图 4a
碧迪BD Cd4抗体(BD Pharmingen, H129.19)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1.25 ug/ml (图 4a). BMC Cancer (2020) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 图 2a, s2a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于免疫组化在小鼠样本上 (图 2a, s2a). JCI Insight (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3g
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Sci Adv (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). Cell Rep (2019) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 图 6s2a
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于免疫组化在小鼠样本上 (图 6s2a). elife (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类; 图 s1
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在人类样本上 (图 s1). Aging Cell (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Allergy (2020) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). BMC Infect Dis (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 s1f
碧迪BD Cd4抗体(BD Pharmingen, 563106)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1f). Nat Commun (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd4抗体(BD Pharmingen, 550954)被用于被用于流式细胞仪在小鼠样本上 (图 4a). elife (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 3s1
碧迪BD Cd4抗体(BD, 557308)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3s1). elife (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3j
碧迪BD Cd4抗体(BD, 553048)被用于被用于流式细胞仪在小鼠样本上 (图 s3j). Nature (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 s1h
碧迪BD Cd4抗体(BD Horizon, 563790)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1h). Nat Metab (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3b, 4b
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3b, 4b). Biomolecules (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Sci Rep (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s5a
碧迪BD Cd4抗体(BD Biogen, 563790)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Cell (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:400; 图 s5
碧迪BD Cd4抗体(BD Bioscience, 743156)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s5). Science (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD Cd4抗体(Biolegend, 563790)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 1:90; 图 s1e
碧迪BD Cd4抗体(BD Pharmingen, 550280)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:90 (图 s1e). Sci Rep (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3b
碧迪BD Cd4抗体(BD Biosciences, 557956)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell (2019) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化; 小鼠; 1:320; 图 ex5b
碧迪BD Cd4抗体(BD Biosciences, 553649)被用于被用于免疫组化在小鼠样本上浓度为1:320 (图 ex5b). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD Cd4抗体(BD Biosciences, 563747)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell Rep (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3b
碧迪BD Cd4抗体(BD Biosciences, 557956)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell Rep (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3a, 3b, 4g, s7f
碧迪BD Cd4抗体(BD, 564667)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3b, 4g, s7f). Immunity (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; ; 图 2c
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为 (图 2c). Science (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Cd4抗体(BD Biosciences, 561099)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Sci Rep (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s3b
碧迪BD Cd4抗体(BD Biosciences, 563790)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nature (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Virol (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD Cd4抗体(BD Biosciences, 563232)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Clin Invest (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Cd4抗体(BD, 560782)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Oncoimmunology (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s14a
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s14a). J Clin Invest (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BD Cd4抗体(BD Biosciences, 553047)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cell Mol Gastroenterol Hepatol (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2f
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s2f). Front Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a, s2b
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a, s2b). J Pathol (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Clin Invest (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD Cd4抗体(BD, 561099)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Cell (2018) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(BD Pharminger, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Diabetes Res (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Clin Invest (2019) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
碧迪BD Cd4抗体(BD, 552051)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd4抗体(BD Biosciences, RM4?C5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Virology (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5e
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Front Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Sci Rep (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Oncogene (2019) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD Cd4抗体(BD Biosciences, 553052)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Nutrients (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 s7d
碧迪BD Cd4抗体(BD Biosciences, 553051)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7d). Nat Neurosci (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 7c
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 7c). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Oncotarget (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 s10a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s10a). J Clin Invest (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Biol Chem (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4g
碧迪BD Cd4抗体(BD Biosciences, GK1.5.)被用于被用于流式细胞仪在小鼠样本上 (图 4g). Circulation (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s18
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s18). J Clin Invest (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cell Death Dis (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd4抗体(BD Pharmingen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Int J Obes (Lond) (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD Cd4抗体(BD Biosciences, 557307)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Cell (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD Pharmingen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Int J Cancer (2018) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
碧迪BD Cd4抗体(BD Pharmingen, H129.19)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Int J Cancer (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4f
碧迪BD Cd4抗体(BD Biosciences, 564667)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Nat Immunol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s13b
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s13b). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Virol (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:250; 图 4c
碧迪BD Cd4抗体(BD Biosciences, 553052)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 4c). Nat Commun (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:1000; 图 s7
碧迪BD Cd4抗体(BioLegend, 553730)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s7). J Clin Invest (2018) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). PLoS ONE (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Transgenic Res (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:800; 图 2a
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 2a). Heliyon (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s7c
碧迪BD Cd4抗体(BD Biosciences, 553049)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell (2018) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 图 1a
碧迪BD Cd4抗体(BD Pharmingen, GK1.5)被用于被用于免疫组化在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 4f
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4f). J Exp Med (2018) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 s6g
碧迪BD Cd4抗体(BD Biosciences, H129.19)被用于被用于流式细胞仪在小鼠样本上 (图 s6g). Cell (2018) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell (2018) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 3b, 4d
碧迪BD Cd4抗体(BD, H129.19)被用于被用于流式细胞仪在小鼠样本上 (图 3b, 4d). Nature (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Infect Immun (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BD Cd4抗体(BD Biosciences, 560181)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cancer Cell (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BD Cd4抗体(BD Biosciences, 560783)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cancer Cell (2017) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD Cd4抗体(BD Biosciences, H129-19)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Int J Biochem Cell Biol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd4抗体(Becton Dickinson, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s6a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd4抗体(BD Bioscience, 560782)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6c
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Cell Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Bioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4b
碧迪BD Cd4抗体(BD Biosciences, 553727)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s4c
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). J Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD Cd4抗体(BD Biosciences, RM 4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Science (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Infect Immun (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD Cd4抗体(BD Biosciences, 563726)被用于被用于流式细胞仪在小鼠样本上 (表 1). Cell (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, 558107)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:300; 图 6k
碧迪BD Cd4抗体(BD Biosciences, 562285)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6k). Nat Commun (2017) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4b). Nat Commun (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunology (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1f
碧迪BD Cd4抗体(BD Biosciences, 553729)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). Nature (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6d
碧迪BD Cd4抗体(BD Biosciences, 553729)被用于被用于流式细胞仪在小鼠样本上 (图 6d). PLoS ONE (2017) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 1:200; 图 3
碧迪BD Cd4抗体(BD Bioscience, 553653)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Front Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3E
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3E). Front Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Mucosal Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:300; 图 6c
碧迪BD Cd4抗体(BD Pharmingen, 553052)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6c). Nat Commun (2017) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD Cd4抗体(BD Biosciences, H129.19)被用于被用于流式细胞仪在小鼠样本上 (图 7). PLoS ONE (2017) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化; 小鼠; 1:50; 图 st3
碧迪BD Cd4抗体(BD Biosciences, 550278)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 st3). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 1:50
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 免疫组化; 小鼠; 图 47
碧迪BD Cd4抗体(BD Biosciences, 550280)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50, 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于免疫组化在小鼠样本上 (图 47). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:300; 图 s4a
碧迪BD Cd4抗体(BD Biosciences, 560783)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s4a). J Clin Invest (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD Cd4抗体(BD, GK 1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Nat Commun (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类
碧迪BD Cd4抗体(BD Biosciences, RM 4-5)被用于被用于流式细胞仪在人类样本上. Front Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). JCI Insight (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 4A
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4A). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-石蜡切片; 小鼠; 2 ug/ml; 图 2f
碧迪BD Cd4抗体(BD Biosciences, H129.19)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为2 ug/ml (图 2f). Nat Commun (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 1a
碧迪BD Cd4抗体(BD Biosciences, RM4?C5)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 1a). Nat Commun (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 s4a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4a). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD Bioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Oncotarget (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Oncotarget (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Exp Med (2017) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Bioscience, 553653)被用于被用于流式细胞仪在小鼠样本上 (图 1). Genes Dev (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7f
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 7f). J Exp Med (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5c
碧迪BD Cd4抗体(Becton Dickinson, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1h
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Cell Death Dis (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s10a
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s10a). JCI Insight (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Cd4抗体(BD, 553051)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Brain (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 0.2-0.8 ug/ml
碧迪BD Cd4抗体(BD Biosciences, BD553649)被用于被用于流式细胞仪在小鼠样本上浓度为0.2-0.8 ug/ml. Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2d
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2d). Glia (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2D
碧迪BD Cd4抗体(BD Pharmigen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2D). PLoS ONE (2016) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 2B
碧迪BD Cd4抗体(BD Pharmigen, H129.19)被用于被用于流式细胞仪在小鼠样本上 (图 2B). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 st2
碧迪BD Cd4抗体(BD, 553048)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 st2
碧迪BD Cd4抗体(BD, 552051)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 1e,f
碧迪BD Cd4抗体(BD, 553653)被用于被用于流式细胞仪在小鼠样本上 (图 1e,f). Stem Cell Reports (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Cd4抗体(BD Pharmingen, 553049)被用于被用于流式细胞仪在小鼠样本上 (图 4b). PLoS ONE (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD Cd4抗体(BD Pharmingen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Mucosal Immunol (2017) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-石蜡切片; 小鼠; 10 ug/ml; 图 2h
碧迪BD Cd4抗体(BD Bioscience, H129.9)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10 ug/ml (图 2h). Mucosal Immunol (2017) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4C
碧迪BD Cd4抗体(BD, 550954)被用于被用于流式细胞仪在小鼠样本上 (图 4C). Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 st1
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s4
碧迪BD Cd4抗体(BD PharMingen, 550280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s4). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 3
碧迪BD Cd4抗体(BD Biosciences, 553051)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类; 图 1
碧迪BD Cd4抗体(BD Biosciences, 553050)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Cd4抗体(BD Biosciences, 553052)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(BD, 553729)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1a, 1b
碧迪BD Cd4抗体(BD, RMA-5)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 1b). J Exp Med (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, 563331)被用于被用于流式细胞仪在小鼠样本上. Cell (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6b
碧迪BD Cd4抗体(BD Biosciences, RM4.5)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Clin Invest (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
碧迪BD Cd4抗体(BD Pharmingen, 561090)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Nat Methods (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:500; 图 5
碧迪BD Cd4抗体(BD Biosciences, 553046)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 5). Exp Ther Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Methods Mol Biol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1d
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(BD Biosciences, RM4.5)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD Pharmingen, 561828)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Int Immunopharmacol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Biosciences, 552775)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 s2
碧迪BD Cd4抗体(BD, H129.19)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s3a
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 ev1
碧迪BD Cd4抗体(BD Biosciences, RM4?\5)被用于被用于流式细胞仪在小鼠样本上 (图 ev1). Mol Syst Biol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, 553730)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Bioscience, 553051)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Cd4抗体(BD, 553052)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 免疫印迹; 人类; 1:1000; 图 5g
  • 流式细胞仪; 小鼠; 1:50; 图 s3
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g) 和 被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s3). Gut (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Neuroimmunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd4抗体(BD Pharmingen, 553730)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 8
碧迪BD Cd4抗体(BD Biosciences, 550954)被用于被用于流式细胞仪在小鼠样本上 (图 8). Nat Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 8
碧迪BD Cd4抗体(BD Biosciences, 561830)被用于被用于流式细胞仪在小鼠样本上 (图 8). Nat Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 免疫细胞化学; 小鼠; 图 4a
碧迪BD Cd4抗体(BD Pharmingen, 553043)被用于被用于免疫细胞化学在小鼠样本上 (图 4a). J Transl Med (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Pharmingen, 553729)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2016) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 1:200; 图 3g
碧迪BD Cd4抗体(BD Pharmingen, H129.19)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3g). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Cd4抗体(BD- Pharmingen, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Science (2016) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(Becton Dickinson, 553649)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 4
碧迪BD Cd4抗体(BD, 560468)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4d
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Oncotarget (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(Becton Dickinson, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Vaccines (Basel) (2016) ncbi
大鼠 单克隆(GK1.5)
  • 其他; 小鼠
碧迪BD Cd4抗体(BD Bioscience, 553726)被用于被用于其他在小鼠样本上. Leukemia (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cell Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD Cd4抗体(Beckon Dickinson, 557956)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Biol Open (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, 553729)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 4
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4). Nat Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s8
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Nat Neurosci (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类; 图 s3a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在人类样本上 (图 s3a). Eur J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Biosciences, 558107)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 6
碧迪BD Cd4抗体(BD Biosciences, 553046)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 图 3
碧迪BD Cd4抗体(BD Biosciences, 550280)被用于被用于免疫组化在小鼠样本上 (图 3). Oncogene (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD Cd4抗体(BD, 553049)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Oncoimmunology (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncoimmunology (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, 557307)被用于被用于流式细胞仪在小鼠样本上. Cell Rep (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BD Cd4抗体(BD Biosciences, 563790)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, 553051)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Bioscience, 557956)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Biosciences, 553729)被用于被用于流式细胞仪在小鼠样本上 (图 2). Clin Cancer Res (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 大鼠; 图 2d
碧迪BD Cd4抗体(BD, 557308)被用于被用于流式细胞仪在大鼠样本上 (图 2d). Stem Cell Reports (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Intern Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Cd4抗体(BD Horizon, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Leukoc Biol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2016) ncbi
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, 551539)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2016) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 1:90; 图 4f
碧迪BD Cd4抗体(BD Pharmingen, RM4- 5)被用于被用于免疫组化在小鼠样本上浓度为1:90 (图 4f). Arterioscler Thromb Vasc Biol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, GK1.5)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS ONE (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 1
碧迪BD Cd4抗体(BD Biosciences, 557308)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Dis Model Mech (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, 552775)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 4, 7
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4, 7). Nat Commun (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1A; 2F
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1A; 2F). J Exp Med (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2016) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠; 图 5
碧迪BD Cd4抗体(BD pharmingen, 553729)被用于被用于免疫组化在小鼠样本上 (图 5). Sci Rep (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Biosciences, 563727)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Immunol Cell Biol (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:200; 图 1
碧迪BD Cd4抗体(BD Bioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). J Endod (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Gastrointest Surg (2016) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类; 1:200
碧迪BD Cd4抗体(BD Pharmingen, GK1.5)被用于被用于流式细胞仪在人类样本上浓度为1:200. Nat Commun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s9
碧迪BD Cd4抗体(BD Biosciences, 553051)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Nat Commun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nat Med (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠; 图 7
碧迪BD Cd4抗体(BD Pharmingen, GK1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫细胞化学; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于免疫细胞化学在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(BD Biosciences, 552775)被用于被用于流式细胞仪在小鼠样本上 (图 4). Oncoimmunology (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Biosciences., RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Biosciences., H129.19)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 图 3
碧迪BD Cd4抗体(BD Pharmingen, 553047)被用于被用于免疫组化在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, 557681)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1e
碧迪BD Cd4抗体(BD Biosciences, 550280)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Nat Genet (2015) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
碧迪BD Cd4抗体(BD Pharmingen, H129.19)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). Cell Mol Immunol (2016) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Glia (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 4
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Autophagy (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100; 图 s3
碧迪BD Cd4抗体(BD Pharmingen, 557308)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化; 小鼠; 1:25
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于免疫组化在小鼠样本上浓度为1:25. Cancer Immunol Immunother (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 表 s1
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
  • 流式细胞仪; 人类
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 和 被用于流式细胞仪在人类样本上. Cancer Immunol Res (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd4抗体(BD Pharmingen, 553052)被用于被用于流式细胞仪在小鼠样本上 (图 5). Int J Obes (Lond) (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 3
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, 562891)被用于被用于流式细胞仪在小鼠样本上. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化; 小鼠; 1:500; 图 4d
碧迪BD Cd4抗体(BD Pharmingen, 550278)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d). J Immunother Cancer (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 10-20 ug/ml
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为10-20 ug/ml. Immunology (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 3A
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 3A). Ann Hematol (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 人类; 图 3
碧迪BD Cd4抗体(BD Biosciences, 553730)被用于被用于流式细胞仪在人类样本上 (图 3). Stem Cell Rev (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 2
  • 免疫细胞化学; 小鼠; 图 4
碧迪BD Cd4抗体(BD Bioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 2) 和 被用于免疫细胞化学在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Vaccine (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Vaccine (2015) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(BD Biosciences, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 ED3d
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 ED3d). Nature (2015) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-冰冻切片; 小鼠; 10 ug/ml; 图 2
碧迪BD Cd4抗体(BD Pharmingen, H129.9)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为10 ug/ml (图 2). Arthritis Res Ther (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Cd4抗体(BD Pharmingen, 553051)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 3a
碧迪BD Cd4抗体(BD Pharmingen, RM4.5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 3a). J Autoimmun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD Cd4抗体(BD Biosciences, 561115)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Neurosci (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(BD, 553047)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cancer Res (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:800; 图 s7
碧迪BD Cd4抗体(BD, 557956)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s7). Nat Commun (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 s7
碧迪BD Cd4抗体(BD, 552051)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Nat Commun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 3
碧迪BD Cd4抗体(BD, 553046)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Nagoya J Med Sci (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Bone Miner Res (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD Cd4抗体(BD Pharmingen, 553049)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Clin Sci (Lond) (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100; 图 3
碧迪BD Cd4抗体(BD Biosciences, 553050)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Biol Reprod (2015) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-冰冻切片; 小鼠; 2.5 ug/ml
碧迪BD Cd4抗体(BD, 553647)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2.5 ug/ml. J Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd4抗体(BD PharMingen, H129.9)被用于被用于流式细胞仪在小鼠样本上 (图 5). Cell Cycle (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 7a
碧迪BD Cd4抗体(BD Bioscience, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Int Immunopharmacol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 e4
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 e4). Nature (2015) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Transpl Int (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Neurotherapeutics (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 5). Infect Immun (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2014) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd4抗体(BD Biosciences, H129.19)被用于被用于流式细胞仪在小鼠样本上 (图 5). Mucosal Immunol (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd4抗体(BD, H129-19)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Exp Med (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, L3T4/GK1.5)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Nanomedicine (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, 558107)被用于被用于流式细胞仪在小鼠样本上. J Neurosci (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 小鼠; 1:50
碧迪BD Cd4抗体(BD, BD 550280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. FASEB J (2014) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Cancer Immunol Res (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Bioscience, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2014) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-4)被用于被用于流式细胞仪在小鼠样本上. Exp Parasitol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(PharMingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). Nat Commun (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 8
碧迪BD Cd4抗体(BD, 558107)被用于被用于流式细胞仪在小鼠样本上 (图 8). Hum Vaccin Immunother (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd4抗体(BD Biosciences, clone RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Vaccine (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). Nat Commun (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Immunology (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD PharMingen, GK1.5)被用于被用于流式细胞仪在小鼠样本上. Respirology (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Diabetes (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2014) ncbi
大鼠 单克隆(H129.19)
  • 免疫细胞化学; 小鼠
碧迪BD Cd4抗体(BD Biosciences, H129.19)被用于被用于免疫细胞化学在小鼠样本上. J Biol Chem (2014) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, 558107)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Cd4抗体(BD, 550280)被用于被用于免疫组化-冰冻切片在小鼠样本上. Transplant Res (2013) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化; 小鼠
碧迪BD Cd4抗体(BD Biosciences Pharmingen, GK 1.5)被用于被用于免疫组化在小鼠样本上. Mol Ther (2014) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Cd4抗体(BD Biosciences, 553730)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Med (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Cd4抗体(BD Biosciences, 553052)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Med (2013) ncbi
大鼠 单克隆(H129.19)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, H129.19)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD Cd4抗体(BD, 552051)被用于被用于流式细胞仪在小鼠样本上 (表 1). PLoS ONE (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, 553043)被用于被用于免疫组化-冰冻切片在小鼠样本上. Circulation (2013) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Bioscience, RM-4-5)被用于被用于流式细胞仪在小鼠样本上. J Immunol Methods (2013) ncbi
大鼠 单克隆(H129.19)
  • 免疫组化-冰冻切片; 小鼠; 图 1
碧迪BD Cd4抗体(BD, H129.19)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). PLoS ONE (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd4抗体(BD Biosciences, RM4-5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Cardiothorac Surg (2012) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 犬
碧迪BD Cd4抗体(BD Biosciences, 553049)被用于被用于流式细胞仪在犬样本上. J Biol Chem (2012) ncbi
大鼠 单克隆(GK1.5)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Immunol (2010) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 人类
碧迪BD Cd4抗体(BD Biosciences, 553052)被用于被用于流式细胞仪在人类样本上. J Immunol (2010) ncbi
大鼠 单克隆(GK1.5)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd4抗体(BD Biosciences, GK1.5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2007) ncbi
大鼠 单克隆(RM4-5)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Cd4抗体(BD, RM4-5)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD PharMingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2006) ncbi
大鼠 单克隆(RM4-5)
  • 流式细胞仪; 小鼠
碧迪BD Cd4抗体(BD Pharmingen, RM4-5)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2004) ncbi
大鼠 单克隆(RM4-4)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd4抗体(PharMingen, RM4-4)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (1994) ncbi
ATCC
大鼠 单克隆
  • 抑制或激活实验; 小鼠; 图 1
ATCC Cd4抗体(ATCC, TIB-207)被用于被用于抑制或激活实验在小鼠样本上 (图 1). Infect Immun (2016) ncbi
文章列表
  1. Ravindranathan S, Passang T, Li J, Wang S, Dhamsania R, Ware M, et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun. 2022;13:6418 pubmed 出版商
  2. Hamdi L, Nabat H, Goldberg Y, Fainstein N, Segal S, Mediouni E, et al. Exercise training alters autoimmune cell invasion into the brain in autoimmune encephalomyelitis. Ann Clin Transl Neurol. 2022;9:1792-1806 pubmed 出版商
  3. Chen Y, Lian N, Chen S, Xiao T, Ke Y, Zhang Y, et al. GSDME deficiency leads to the aggravation of UVB-induced skin inflammation through enhancing recruitment and activation of neutrophils. Cell Death Dis. 2022;13:841 pubmed 出版商
  4. Gawish R, Maier B, Obermayer G, Watzenboeck M, Gorki A, Quattrone F, et al. A neutrophil-B-cell axis impacts tissue damage control in a mouse model of intraabdominal bacterial infection via Cxcr4. elife. 2022;11: pubmed 出版商
  5. Kwilasz A, Clements M, Larson T, Harris K, Litwiler S, Woodall B, et al. Involvement of TLR2-TLR4, NLRP3, and IL-17 in pain induced by a novel Sprague-Dawley rat model of experimental autoimmune encephalomyelitis. Front Pain Res (Lausanne). 2022;3:932530 pubmed 出版商
  6. Feng K, Meng P, Zhang M, Zou X, Li S, Huang C, et al. IL-24 Contributes to Neutrophilic Asthma in an IL-17A-Dependent Manner and Is Suppressed by IL-37. Allergy Asthma Immunol Res. 2022;14:505-527 pubmed 出版商
  7. Dagkonaki A, Papalambrou A, Avloniti M, Gkika A, Evangelidou M, Androutsou M, et al. Maturation of circulating Ly6ChiCCR2+ monocytes by mannan-MOG induces antigen-specific tolerance and reverses autoimmune encephalomyelitis. Front Immunol. 2022;13:972003 pubmed 出版商
  8. Zhao F, Zhang C, Li G, Zheng H, Gu L, Zhou H, et al. A role for whey acidic protein four-disulfide-core 12 (WFDC12) in the pathogenesis and development of psoriasis disease. Front Immunol. 2022;13:873720 pubmed 出版商
  9. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  10. Erlandsson M, Erdogan S, Was xe9 n C, Andersson K, Silfversw xe4 rd S, Pullerits R, et al. IGF1R signalling is a guardian of self-tolerance restricting autoantibody production. Front Immunol. 2022;13:958206 pubmed 出版商
  11. Lin J, Lv J, Yu S, Chen Y, Wang H, Chen J. Transcript Engineered Extracellular Vesicles Alleviate Alloreactive Dynamics in Renal Transplantation. Adv Sci (Weinh). 2022;9:e2202633 pubmed 出版商
  12. Hemmi T, Ainai A, Hashiguchi T, Tobiume M, Kanno T, Iwata Yoshikawa N, et al. Intranasal vaccination induced cross-protective secretory IgA antibodies against SARS-CoV-2 variants with reducing the potential risk of lung eosinophilic immunopathology. Vaccine. 2022;40:5892-5903 pubmed 出版商
  13. Hou X, Shi Y, Kang X, Rousu Z, Li D, Wang M, et al. Echinococcus granulosus: The establishment of the metacestode in the liver is associated with control of the CD4+ T-cell-mediated immune response in patients with cystic echinococcosis and a mouse model. Front Cell Infect Microbiol. 2022;12:983119 pubmed 出版商
  14. Lee A, Pingali S, Pinilla Ibarz J, Atchison M, Koumenis C, Argon Y, et al. Loss of AID exacerbates the malignant progression of CLL. Leukemia. 2022;36:2430-2442 pubmed 出版商
  15. Smith K, Minns D, McHugh B, Holloway R, O CONNOR R, Williams A, et al. The antimicrobial peptide cathelicidin drives development of experimental autoimmune encephalomyelitis in mice by affecting Th17 differentiation. PLoS Biol. 2022;20:e3001554 pubmed 出版商
  16. Piliponsky A, Sharma K, Quach P, Brokaw A, Nguyen S, Orvis A, et al. Mast cell-derived factor XIIIA contributes to sexual dimorphic defense against group B streptococcal infections. J Clin Invest. 2022;132: pubmed 出版商
  17. Fan P, Qiang H, Liu Z, Zhao Q, Wang Y, Liu T, et al. Effective low-dose Anlotinib induces long-term tumor vascular normalization and improves anti-PD-1 therapy. Front Immunol. 2022;13:937924 pubmed 出版商
  18. Cao S, Hung Y, Wang Y, Chung Y, Qi Y, Ouyang C, et al. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics. 2022;12:6038-6056 pubmed 出版商
  19. Costain A, Phythian Adams A, Colombo S, Marley A, Owusu C, Cook P, et al. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front Immunol. 2022;13:906338 pubmed 出版商
  20. El Naccache D, Chen F, Palma M, Lemenze A, Fischer M, Wu W, et al. Adenosine metabolized from extracellular ATP promotes type 2 immunity through triggering A2BAR signaling in intestinal epithelial cells. Cell Rep. 2022;40:111150 pubmed 出版商
  21. Que W, Ma K, Hu X, Guo W, Li X. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. Sci Adv. 2022;8:eabo4413 pubmed 出版商
  22. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  23. Xu D, Ma R, Ju Y, Song X, Niu B, Hong W, et al. Cholesterol sulfate alleviates ulcerative colitis by promoting cholesterol biosynthesis in colonic epithelial cells. Nat Commun. 2022;13:4428 pubmed 出版商
  24. Kasahara K, Sasaki N, Amin H, Tanaka T, Horibe S, Yamashita T, et al. Depletion of Foxp3+ regulatory T cells augments CD4+ T cell immune responses in atherosclerosis-prone hypercholesterolemic mice. Heliyon. 2022;8:e09981 pubmed 出版商
  25. Yong L, Yu Y, Li B, Ge H, Zhen Q, Mao Y, et al. Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun. 2022;13:4255 pubmed 出版商
  26. Dinnon K, Leist S, Okuda K, Dang H, Fritch E, Gully K, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eabo5070 pubmed 出版商
  27. Zhao X, Hu S, Zeng L, Liu X, Song Y, Zhang Y, et al. Irradiation combined with PD-L1-/- and autophagy inhibition enhances the antitumor effect of lung cancer via cGAS-STING-mediated T cell activation. iScience. 2022;25:104690 pubmed 出版商
  28. Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, et al. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Theranostics. 2022;12:5086-5102 pubmed 出版商
  29. Paldor M, Levkovitch Siany O, Eidelshtein D, Adar R, Enk C, Marmary Y, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med. 2022;14:e15653 pubmed 出版商
  30. Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, et al. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol. 2022;12:887257 pubmed 出版商
  31. Pi xf1 eros A, Kulkarni A, Gao H, Orr K, Glenn L, Huang F, et al. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep. 2022;39:111011 pubmed 出版商
  32. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  33. Shi Z, Takeuchi T, Nakanishi Y, Kato T, Beck K, Nagata R, et al. A Japanese Herbal Formula, Daikenchuto, Alleviates Experimental Colitis by Reshaping Microbial Profiles and Enhancing Group 3 Innate Lymphoid Cells. Front Immunol. 2022;13:903459 pubmed 出版商
  34. Chen J, Meng J, Li X, Li X, Liu Y, Jin C, et al. HA/CD44 Regulates the T Helper 1 Cells Differentiation by Activating Annexin A1/Akt/mTOR Signaling to Drive the Pathogenesis of EAP. Front Immunol. 2022;13:875412 pubmed 出版商
  35. Son M, Park I, Kim S, Ma H, Kim J, Kim T, et al. Novel Potassium-Competitive Acid Blocker, Tegoprazan, Protects Against Colitis by Improving Gut Barrier Function. Front Immunol. 2022;13:870817 pubmed 出版商
  36. Lu L, Li T, Feng X, Liu Z, Liu Y, Chao T, et al. Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog. 2022;18:e1010596 pubmed 出版商
  37. Wang Y, Feng R, Cheng G, Huang B, Tian J, Gan Y, et al. Low Dose Interleukin-2 Ameliorates Sjögren's Syndrome in a Murine Model. Front Med (Lausanne). 2022;9:887354 pubmed 出版商
  38. Baik J, Park H, Kataru R, Savetsky I, Ly C, Shin J, et al. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med. 2022;12:e758 pubmed 出版商
  39. Wang Q, Bergholz J, Ding L, Lin Z, Kabraji S, Hughes M, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun. 2022;13:3022 pubmed 出版商
  40. Koutn xed k J, Klepsch V, Pommermayr M, Thuille N, Baier G, Siegmund K. A MLR-Based Approach to Analyze Regulators of T Lymphocyte Activation In Vivo. Int J Mol Sci. 2022;23: pubmed 出版商
  41. Aiken T, Erbe A, Zebertavage L, Komjathy D, Feils A, Rodriguez M, et al. Mechanism of effective combination radio-immunotherapy against 9464D-GD2, an immunologically cold murine neuroblastoma. J Immunother Cancer. 2022;10: pubmed 出版商
  42. Maruyama J, Reyna R, Kishimoto Urata M, Urata S, Manning J, Harsell N, et al. CD4 T-cell depletion prevents Lassa fever associated hearing loss in the mouse model. PLoS Pathog. 2022;18:e1010557 pubmed 出版商
  43. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  44. Zhang R, Wang Y, Liu D, Luo Q, Du P, Zhang H, et al. Sodium Tanshinone IIA Sulfonate as a Potent IDO1/TDO2 Dual Inhibitor Enhances Anti-PD1 Therapy for Colorectal Cancer in Mice. Front Pharmacol. 2022;13:870848 pubmed 出版商
  45. Liu Y, Deguchi Y, Wei D, Liu F, Moussalli M, Deguchi E, et al. Rapid acceleration of KRAS-mutant pancreatic carcinogenesis via remodeling of tumor immune microenvironment by PPARδ. Nat Commun. 2022;13:2665 pubmed 出版商
  46. Pan C, Wu Q, Wang S, Mei Z, Zhang L, Gao X, et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology. 2022;11:2073010 pubmed 出版商
  47. Shimada A, Toda K, Inoue I, Yamada T, Oikawa Y. Combination of anti-CD25 antibody and poly I:C treatment in pregnant NOD mice may be used as 'pregnancy-related' type 1 diabetes model. J Diabetes Investig. 2022;13:1489-1495 pubmed 出版商
  48. Li H, Liu Z, Liu L, Zhang H, Han C, Girard L, et al. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells. Cell Rep Med. 2022;3:100554 pubmed 出版商
  49. Benkhoucha M, Tran N, Breville G, Senoner I, Bradfield P, Papayannopoulou T, et al. CD4+c-Met+Itgα4+ T cell subset promotes murine neuroinflammation. J Neuroinflammation. 2022;19:103 pubmed 出版商
  50. Melese E, Franks E, Cederberg R, Harbourne B, Shi R, Wadsworth B, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology. 2022;11:2010905 pubmed 出版商
  51. Kumagai Y, Futoh Y, Miyato H, Ohzawa H, Yamaguchi H, Saito S, et al. Effect of Systemic or Intraperitoneal Administration of Anti-PD-1 Antibody for Peritoneal Metastases from Gastric Cancer. In Vivo. 2022;36:1126-1135 pubmed 出版商
  52. Brown G, Ca xf1 ete P, Wang H, Medhavy A, Bones J, Roco J, et al. TLR7 gain-of-function genetic variation causes human lupus. Nature. 2022;605:349-356 pubmed 出版商
  53. Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176 pubmed 出版商
  54. Bartsch P, Kilian C, Hellmig M, Paust H, Borchers A, Sivayoganathan A, et al. Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathog. 2022;18:e1010430 pubmed 出版商
  55. Cortes J, Filip I, Albero R, Patiño Galindo J, Quinn S, Lin W, et al. Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T cell lymphoma. Cell Rep. 2022;39:110695 pubmed 出版商
  56. Malik A, Brudvig J, Gadsden B, Ethridge A, Mansfield L. Campylobacter jejuni induces autoimmune peripheral neuropathy via Sialoadhesin and Interleukin-4 axes. Gut Microbes. 2022;14:2064706 pubmed 出版商
  57. Meléndez E, Chondronasiou D, Mosteiro L, Mart xed nez de Villarreal J, Fern xe1 ndez Alfara M, Lynch C, et al. Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development. 2022;149: pubmed 出版商
  58. El Sayes N, Walsh S, Vito A, Reihani A, Ask K, Wan Y, et al. IFNAR blockade synergizes with oncolytic VSV to prevent virus-mediated PD-L1 expression and promote antitumor T cell activity. Mol Ther Oncolytics. 2022;25:16-30 pubmed 出版商
  59. Wedge M, Jennings V, Crupi M, Poutou J, Jamieson T, Pelin A, et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat Commun. 2022;13:1898 pubmed 出版商
  60. Liang Z, He P, Han Y, Yun C. Survival of Stem Cells and Progenitors in the Intestine Is Regulated by LPA5-Dependent Signaling. Cell Mol Gastroenterol Hepatol. 2022;14:129-150 pubmed 出版商
  61. Xiong W, Gao X, Zhang T, Jiang B, Hu M, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700 pubmed 出版商
  62. Zhang Y, Huo F, Cao Q, Jia R, Huang Q, Wang Z, et al. FimH confers mannose-targeting ability to Bacillus Calmette-Guerin for improved immunotherapy in bladder cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  63. Seung H, Wröbel J, Wadle C, B xfc hler T, Chiang D, Rettkowski J, et al. P2Y12-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction. Basic Res Cardiol. 2022;117:16 pubmed 出版商
  64. Reed J, Spinelli P, Falcone S, He M, Goeke C, Susiarjo M. Evaluating the Effects of BPA and TBBPA Exposure on Pregnancy Loss and Maternal-Fetal Immune Cells in Mice. Environ Health Perspect. 2022;130:37010 pubmed 出版商
  65. Yau A, Globisch M, Onyeogaziri F, Conze L, Smith R, Jauhiainen S, et al. Inflammation and neutrophil extracellular traps in cerebral cavernous malformation. Cell Mol Life Sci. 2022;79:206 pubmed 出版商
  66. Wemlinger S, Parker Harp C, Yu B, Hardy I, Seefeldt M, Matsuda J, et al. Preclinical Analysis of Candidate Anti-Human CD79 Therapeutic Antibodies Using a Humanized CD79 Mouse Model. J Immunol. 2022;208:1566-1584 pubmed 出版商
  67. Tu J, Han D, Fang Y, Jiang H, Tan X, Xu Z, et al. MicroRNA-10b promotes arthritis development by disrupting CD4+ T cell subtypes. Mol Ther Nucleic Acids. 2022;27:733-750 pubmed 出版商
  68. Abbas Z, GEORGE C, Ancliffe M, Howlett M, Jones A, Kuchibhotla M, et al. Conventional Therapies Deplete Brain-Infiltrating Adaptive Immune Cells in a Mouse Model of Group 3 Medulloblastoma Implicating Myeloid Cells as Favorable Immunotherapy Targets. Front Immunol. 2022;13:837013 pubmed 出版商
  69. Wennerberg E, Mukherjee S, Spada S, Hung C, Agrusa C, Chen C, et al. Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non-small cell lung cancer. Sci Transl Med. 2022;14:eabe8195 pubmed 出版商
  70. Cha J, Chan L, Wang Y, Chu Y, Wang C, Lee H, et al. Ephrin receptor A10 monoclonal antibodies and the derived chimeric antigen receptor T cells exert an antitumor response in mouse models of triple-negative breast cancer. J Biol Chem. 2022;298:101817 pubmed 出版商
  71. Sibilio A, Suñer C, Fernández Alfara M, Martín J, Berenguer A, Calon A, et al. Immune translational control by CPEB4 regulates intestinal inflammation resolution and colorectal cancer development. iScience. 2022;25:103790 pubmed 出版商
  72. Aarts J, van Caam A, Chen X, Marijnissen R, Helsen M, Walgreen B, et al. Local inhibition of TGF-β1 signaling improves Th17/Treg balance but not joint pathology during experimental arthritis. Sci Rep. 2022;12:3182 pubmed 出版商
  73. Salaroglio I, Belisario D, Bironzo P, Ananthanarayanan P, Ricci L, Digiovanni S, et al. SKP2 drives the sensitivity to neddylation inhibitors and cisplatin in malignant pleural mesothelioma. J Exp Clin Cancer Res. 2022;41:75 pubmed 出版商
  74. Zheng W, Feng Y, Zeng Z, Ye M, Wang M, Liu X, et al. Choroid plexus-selective inactivation of adenosine A2A receptors protects against T cell infiltration and experimental autoimmune encephalomyelitis. J Neuroinflammation. 2022;19:52 pubmed 出版商
  75. Yokomizo K, Waki K, Ozawa M, Yamamoto K, Ogasawara S, Yano H, et al. Knockout of high-mobility group box 1 in B16F10 melanoma cells induced host immunity-mediated suppression of in vivo tumor growth. Med Oncol. 2022;39:58 pubmed 出版商
  76. Yang B, Zhang Z, Chen X, Wang X, Qin S, Du L, et al. An Asia-specific variant of human IgG1 represses colorectal tumorigenesis by shaping the tumor microenvironment. J Clin Invest. 2022;132: pubmed 出版商
  77. Thakkar D, Paliwal S, Dharmadhikari B, Guan S, Liu L, Kar S, et al. Rationally targeted anti-VISTA antibody that blockades the C-C' loop region can reverse VISTA immune suppression and remodel the immune microenvironment to potently inhibit tumor growth in an Fc independent manner. J Immunother Cancer. 2022;10: pubmed 出版商
  78. Kinkhabwala A, Herbel C, Pankratz J, Yushchenko D, R xfc berg S, Praveen P, et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep. 2022;12:1911 pubmed 出版商
  79. D Addio F, Maestroni A, Assi E, Ben Nasr M, Amabile G, Usuelli V, et al. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat Commun. 2022;13:684 pubmed 出版商
  80. Quách T, Huang W, Sahu R, Diadhiou C, Raparia C, Johnson R, et al. Context-dependent induction of autoimmunity by TNF signaling deficiency. JCI Insight. 2022;7: pubmed 出版商
  81. Vaillant L, Oster P, McMillan B, Orozco Fernandez E, Velin D. GM-CSF is key in the efficacy of vaccine-induced reduction of Helicobacter pylori infection. Helicobacter. 2022;27:e12875 pubmed 出版商
  82. Gopal A, Ibrahim R, Fuller M, Umlandt P, Parker J, Tran J, et al. TIRAP drives myelosuppression through an Ifnγ-Hmgb1 axis that disrupts the endothelial niche in mice. J Exp Med. 2022;219: pubmed 出版商
  83. Feng L, Li C, Zeng L, Gao D, Sun Y, Zhong L, et al. MARCH3 negatively regulates IL-3-triggered inflammatory response by mediating K48-linked polyubiquitination and degradation of IL-3Rα. Signal Transduct Target Ther. 2022;7:21 pubmed 出版商
  84. Keller E, Dvorina N, Jørgensen T. Spontaneous CD4+ T Cell Activation and Differentiation in Lupus-Prone B6.Nba2 Mice Is IFNAR-Independent. Int J Mol Sci. 2022;23: pubmed 出版商
  85. Clayer E, Frank D, Anderton H, Zhang S, Kueh A, Heim V, et al. ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skin-draining lymph nodes. Immunol Cell Biol. 2022;100:160-173 pubmed 出版商
  86. Yang K, Han J, Asada M, Gill J, Park J, Sathe M, et al. Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease. J Clin Invest. 2022;132: pubmed 出版商
  87. Du Y, Peng Q, Cheng D, Pan T, Sun W, Wang H, et al. Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells. Nat Commun. 2022;13:231 pubmed 出版商
  88. Kono M, Komatsuda H, Yamaki H, Kumai T, Hayashi R, Wakisaka R, et al. Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma. Oncoimmunology. 2022;11:2021619 pubmed 出版商
  89. Hao W, Luo Q, Menger M, Fassbender K, Liu Y. Treatment With CD52 Antibody Protects Neurons in Experimental Autoimmune Encephalomyelitis Mice During the Recovering Phase. Front Immunol. 2021;12:792465 pubmed 出版商
  90. Lin J, Chen Y, Zhu H, Cheng K, Wang H, Yu X, et al. Lymphatic Reconstruction in Kidney Allograft Aggravates Chronic Rejection by Promoting Alloantigen Presentation. Front Immunol. 2021;12:796260 pubmed 出版商
  91. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  92. Bristow C, Reeves M, Winston R. Alphataxin, a Small-Molecule Drug That Elevates Tumor-Infiltrating CD4+ T Cells, in Combination With Anti-PD-1 Therapy, Suppresses Murine Renal Cancer and Metastasis. Front Oncol. 2021;11:739080 pubmed 出版商
  93. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14:e14502 pubmed 出版商
  94. Stoff M, Ebbecke T, Ciurkiewicz M, Pavasutthipaisit S, Mayer Lambertz S, St xf6 rk T, et al. C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep. 2021;11:23819 pubmed 出版商
  95. Tatsumi N, Codrington A, El Fenej J, Phondge V, Kumamoto Y. Effective CD4 T cell priming requires repertoire scanning by CD301b+ migratory cDC2 cells upon lymph node entry. Sci Immunol. 2021;6:eabg0336 pubmed 出版商
  96. Arinrad S, Wilke J, Seelbach A, Doeren J, Hindermann M, Butt U, et al. NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Mol Psychiatry. 2021;: pubmed 出版商
  97. Chuang H, Chen M, Chen Y, Yang H, Ciou Y, Hsueh C, et al. BPI overexpression suppresses Treg differentiation and induces exosome-mediated inflammation in systemic lupus erythematosus. Theranostics. 2021;11:9953-9966 pubmed 出版商
  98. Zhu Y, Elsheikha H, Wang J, Fang S, He J, Zhu X, et al. Synergy between Toxoplasma gondii type I ΔGRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer. 2021;9: pubmed 出版商
  99. Fearon A, Slabber C, Kuklin A, Bachofner M, Tortola L, Pohlmeier L, et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience. 2021;24:103143 pubmed 出版商
  100. Van Maldegem F, Valand K, Cole M, Patel H, Angelova M, Rana S, et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat Commun. 2021;12:5906 pubmed 出版商
  101. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  102. Tanaka Y, Onozato M, Mikami T, Kohwi Shigematsu T, Fukushima T, Kondo M. Increased Indoleamine 2,3-Dioxygenase Levels at the Onset of Sjögren's Syndrome in SATB1-Conditional Knockout Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  103. Carnevale D, Carnevale L, Perrotta S, Pallante F, Migliaccio A, Iodice D, et al. Chronic 3D Vascular-Immune Interface Established by Coculturing Pressurized Resistance Arteries and Immune Cells. Hypertension. 2021;78:1648-1661 pubmed 出版商
  104. Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021;12:853 pubmed 出版商
  105. Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 2021;11:9162-9176 pubmed 出版商
  106. Yang M, Long D, Hu L, Zhao Z, Li Q, Guo Y, et al. AIM2 deficiency in B cells ameliorates systemic lupus erythematosus by regulating Blimp-1-Bcl-6 axis-mediated B-cell differentiation. Signal Transduct Target Ther. 2021;6:341 pubmed 出版商
  107. Rizvi Z, Dalal R, Sadhu S, Kumar Y, Kumar S, Gupta S, et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci Adv. 2021;7:eabg5016 pubmed 出版商
  108. Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, et al. A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site. Immunity. 2021;54:2385-2398.e10 pubmed 出版商
  109. Droho S, Cuda C, Perlman H, Lavine J. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep. 2021;11:18084 pubmed 出版商
  110. Lin J, Liu H, Fukumoto T, Zundell J, Yan Q, Tang C, et al. Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat Commun. 2021;12:5321 pubmed 出版商
  111. Wang Z, He L, Li W, Xu C, Zhang J, Wang D, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021;9: pubmed 出版商
  112. Malenica I, Adam J, Corgnac S, Mezquita L, Auclin E, Damei I, et al. Integrin-αV-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat Commun. 2021;12:5209 pubmed 出版商
  113. Neumann S, Campbell K, Woodall M, Evans M, Clarkson A, Young S. Obesity Has a Systemic Effect on Immune Cells in Naïve and Cancer-Bearing Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  114. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  115. Zhu Q, Ma Y, Liang J, Wei Z, Li M, Zhang Y, et al. AHR mediates the aflatoxin B1 toxicity associated with hepatocellular carcinoma. Signal Transduct Target Ther. 2021;6:299 pubmed 出版商
  116. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  117. Tillie R, Theelen T, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, et al. A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  118. Zhao Q, Koyama S, Yoshihara N, Takagi A, Komiyama E, Wada A, et al. The Alopecia Areata Phenotype Is Induced by the Water Avoidance Stress Test In cchcr1-Deficient Mice. Biomedicines. 2021;9: pubmed 出版商
  119. Winn N, Wolf E, Cottam M, Bhanot M, Hasty A. Myeloid-specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice. Am J Physiol Endocrinol Metab. 2021;321:E376-E391 pubmed 出版商
  120. Guo D, Yamamoto M, Hernandez C, Khodadadi H, Baban B, Stranahan A. Beige adipocytes mediate the neuroprotective and anti-inflammatory effects of subcutaneous fat in obese mice. Nat Commun. 2021;12:4623 pubmed 出版商
  121. Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, et al. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog. 2021;17:e1009768 pubmed 出版商
  122. Funk K, Arutyunov A, Desai P, White J, Soung A, Rosen S, et al. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell. 2021;20:e13412 pubmed 出版商
  123. Patial S, Lewis B, Vo T, Choudhary I, Paudel K, Mao Y, et al. Myeloid-IL4Rα is an indispensable link in IL-33-ILCs-IL-13-IL4Rα axis of eosinophil recruitment in murine lungs. Sci Rep. 2021;11:15465 pubmed 出版商
  124. Lu C, Liu Z, Klement J, Yang D, Merting A, Poschel D, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9: pubmed 出版商
  125. Cerny O, Godlee C, Tocci R, Cross N, Shi H, Williamson J, et al. CD97 stabilises the immunological synapse between dendritic cells and T cells and is targeted for degradation by the Salmonella effector SteD. PLoS Pathog. 2021;17:e1009771 pubmed 出版商
  126. Kim G, Kim W, Lim S, Lee H, Koo J, Nam K, et al. In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. Adv Sci (Weinh). 2021;8:2004973 pubmed 出版商
  127. Mathä L, Romera Hernandez M, Steer C, Yin Y, Orangi M, Shim H, et al. Migration of Lung Resident Group 2 Innate Lymphoid Cells Link Allergic Lung Inflammation and Liver Immunity. Front Immunol. 2021;12:679509 pubmed 出版商
  128. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  129. Toyama S, Moniaga C, Nakae S, Kurosawa M, Ogawa H, Tominaga M, et al. Regulatory T Cells Exhibit Interleukin-33-Dependent Migratory Behavior during Skin Barrier Disruption. Int J Mol Sci. 2021;22: pubmed 出版商
  130. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  131. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  132. Goyette M, Elkholi I, Apcher C, Kuasne H, Rothlin C, Muller W, et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  133. Ortega Molina A, Lebrero Fernández C, Sanz A, Deleyto Seldas N, Plata Gómez A, Menéndez C, et al. Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36:109372 pubmed 出版商
  134. James O, Vandereyken M, Marchingo J, Singh F, Bray S, Wilson J, et al. IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nat Commun. 2021;12:4290 pubmed 出版商
  135. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  136. Wilke J, Hindermann M, Moussavi A, Butt U, Dadarwal R, Berghoff S, et al. Inducing sterile pyramidal neuronal death in mice to model distinct aspects of gray matter encephalitis. Acta Neuropathol Commun. 2021;9:121 pubmed 出版商
  137. Gvozdeva O, Achasova K, Litvinova N, Kozhevnikova E, Litvinova E. Female Scent Activated Expression of Arginase1 and Inducible NO-Synthetase in Lung of BALB/c Male Mice. Animals (Basel). 2021;11: pubmed 出版商
  138. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  139. Gehlsen U, Stary D, Maass M, Riesner K, Musial G, Stern M, et al. Ocular Graft-versus-Host Disease in a Chemotherapy-Based Minor-Mismatch Mouse Model Features Corneal (Lymph-) Angiogenesis. Int J Mol Sci. 2021;22: pubmed 出版商
  140. Innamarato P, Morse J, Mackay A, Asby S, Beatty M, Blauvelt J, et al. Intralesional injection of rose bengal augments the efficacy of gemcitabine chemotherapy against pancreatic tumors. BMC Cancer. 2021;21:756 pubmed 出版商
  141. Ryu S, Shchukina I, Youm Y, Qing H, Hilliard B, Dlugos T, et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. elife. 2021;10: pubmed 出版商
  142. Souza C, Ketelut Carneiro N, Milanezi C, Faccioli L, Gardinassi L, Silva J. NLRC4 inhibits NLRP3 inflammasome and abrogates effective antifungal CD8+ T cell responses. iScience. 2021;24:102548 pubmed 出版商
  143. Ho D, Tsui Y, Chan L, Sze K, Zhang X, Cheu J, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 2021;12:3684 pubmed 出版商
  144. Uyanik B, Goloudina A, Akbarali A, Grigorash B, Petukhov A, Singhal S, et al. Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun. 2021;12:3622 pubmed 出版商
  145. Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, et al. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res. 2021;11:2005-2024 pubmed
  146. Okunuki Y, Tabor S, Lee M, Connor K. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol. 2021;12:680568 pubmed 出版商
  147. Chen J, Yang F, Shi S, Liu X, Qin F, Wei X, et al. The Severity of CVB3-Induced Myocarditis Can Be Improved by Blocking the Orchestration of NLRP3 and Th17 in Balb/c Mice. Mediators Inflamm. 2021;2021:5551578 pubmed 出版商
  148. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  149. Pereira J, Cavaco P, da Silva R, Pacheco Leyva I, Mereiter S, Pinto R, et al. P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and dissemination. Transl Oncol. 2021;14:101125 pubmed 出版商
  150. Wu S, Fukumoto T, Lin J, Nacarelli T, Wang Y, Ong D, et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat Cancer. 2021;2:189-200 pubmed 出版商
  151. Parodi B, Sanna A, Cedola A, Uccelli A, Kerlero de Rosbo N. Hydroxycarboxylic Acid Receptor 2, a Pleiotropically Linked Receptor for the Multiple Sclerosis Drug, Monomethyl Fumarate. Possible Implications for the Inflammatory Response. Front Immunol. 2021;12:655212 pubmed 出版商
  152. West J, Austin E, Rizzi E, Yan L, Tanjore H, Crabtree A, et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci. 2021;22: pubmed 出版商
  153. Barker K, Etesami N, Shenoy A, Arafa E, Lyon de Ana C, Smith N, et al. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest. 2021;131: pubmed 出版商
  154. Chen S, Liu H, Li Z, Tang J, Huang B, Zhi F, et al. Epithelial PBLD attenuates intestinal inflammatory response and improves intestinal barrier function by inhibiting NF-κB signaling. Cell Death Dis. 2021;12:563 pubmed 出版商
  155. Kemp S, Carpenter E, Steele N, Donahue K, Nwosu Z, Pacheco A, et al. Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB-Mediated Production of CXCL1. Cancer Res. 2021;81:4305-4318 pubmed 出版商
  156. Lebratti T, Lim Y, Cofie A, Andhey P, Jiang X, Scott J, et al. A sustained type I IFN-neutrophil-IL-18 axis drives pathology during mucosal viral infection. elife. 2021;10: pubmed 出版商
  157. Wang K, Ding Y, Xu C, Hao M, Li H, Ding L. Cldn-7 deficiency promotes experimental colitis and associated carcinogenesis by regulating intestinal epithelial integrity. Oncoimmunology. 2021;10:1923910 pubmed 出版商
  158. Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, et al. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif. 2021;54:e13056 pubmed 出版商
  159. Glassman C, Su L, Majri Morrison S, Winkelmann H, Mo F, Li P, et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. elife. 2021;10: pubmed 出版商
  160. Li K, Yuan Z, Lyu J, Ahn E, Davis S, Ahmed R, et al. PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Nat Commun. 2021;12:2746 pubmed 出版商
  161. Groh J, Berve K, Martini R. Immune modulation attenuates infantile neuronal ceroid lipofuscinosis in mice before and after disease onset. Brain Commun. 2021;3:fcab047 pubmed 出版商
  162. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  163. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  164. Kerselidou D, Dohai B, Nelson D, Daakour S, De Cock N, Hassoun Z, et al. Alternative glycosylation controls endoplasmic reticulum dynamics and tubular extension in mammalian cells. Sci Adv. 2021;7: pubmed 出版商
  165. Phong B, D Souza S, Baudier R, Wu E, Immethun V, Bauer D, et al. IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4+ T cell responses. Sci Rep. 2021;11:9686 pubmed 出版商
  166. Lin Q, Rong L, Jia X, Li R, Yu B, Hu J, et al. IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella. Nat Commun. 2021;12:2537 pubmed 出版商
  167. Piñeiro Hermida S, Martinez P, Blasco M. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell. 2021;20:e13352 pubmed 出版商
  168. Reis M, Willis G, Fernandez Gonzalez A, Yeung V, Taglauer E, Magaletta M, et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol. 2021;12:640595 pubmed 出版商
  169. Zhang S, Li L, Xie D, Reddy S, Sleasman J, Ma L, et al. Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Front Immunol. 2021;12:620437 pubmed 出版商
  170. Flamini S, Sergeev P, Viana de Barros Z, Mello T, Biagioli M, Paglialunga M, et al. Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis. 2021;12:421 pubmed 出版商
  171. Morel K, Sheahan A, Burkhart D, Baca S, Boufaied N, Liu Y, et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat Cancer. 2021;2:444-456 pubmed 出版商
  172. Liu Y, Li Y, Loh Y, Singer J, Zhu W, Macia L, et al. Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury Through G-Protein Coupled Receptors and HDAC Inhibition. Front Cell Dev Biol. 2021;9:648639 pubmed 出版商
  173. Go D, Lee S, Lee S, Woo S, Kim K, Kim K, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol. 2021;12:715-739 pubmed 出版商
  174. Zhou J, Pei X, Yang Y, Wang Z, Gao W, Ye R, et al. Orphan nuclear receptor TLX promotes immunosuppression via its transcriptional activation of PD-L1 in glioma. J Immunother Cancer. 2021;9: pubmed 出版商
  175. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  176. Yang C, Kwon D, Kim M, Im S, Lee Y. Commensal Microbiome Expands Tγδ17 Cells in the Lung and Promotes Particulate Matter-Induced Acute Neutrophilia. Front Immunol. 2021;12:645741 pubmed 出版商
  177. Kastenschmidt J, Coulis G, Farahat P, Pham P, Rios R, Cristal T, et al. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep. 2021;35:108997 pubmed 出版商
  178. Datta M, Staszewski O. Hdac1 and Hdac2 are essential for physiological maturation of a Cx3cr1 expressing subset of T-lymphocytes. BMC Res Notes. 2021;14:135 pubmed 出版商
  179. Jhala G, Selck C, Chee J, Kwong C, Pappas E, Thomas H, et al. Tolerance to Proinsulin-1 Reduces Autoimmune Diabetes in NOD Mice. Front Immunol. 2021;12:645817 pubmed 出版商
  180. Zheng W, Song H, Luo Z, Wu H, Chen L, Wang Y, et al. Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  181. Borges P, Waclawiak I, Georgii J, Fraga Junior V, Barros J, Lemos F, et al. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Front Immunol. 2021;12:651740 pubmed 出版商
  182. Akgul A, Maddaloni M, Jun S, Nelson A, Odreman V, Hoffman C, et al. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren's syndrome. Arthritis Res Ther. 2021;23:99 pubmed 出版商
  183. Joo S, Lee S, Park D, Kim D, Gu B, Park Y, et al. Changes in Blood Metabolites and Immune Cells in Holstein and Jersey Dairy Cows by Heat Stress. Animals (Basel). 2021;11: pubmed 出版商
  184. Roux C, Mucciolo G, Kopecka J, Novelli F, Riganti C, Cappello P. IL17A Depletion Affects the Metabolism of Macrophages Treated with Gemcitabine. Antioxidants (Basel). 2021;10: pubmed 出版商
  185. Joseph R, Soundararajan R, Vasaikar S, Yang F, Allton K, Tian L, et al. CD8+ T cells inhibit metastasis and CXCL4 regulates its function. Br J Cancer. 2021;125:176-189 pubmed 出版商
  186. Xia X, Li R, Zhou P, Xing Z, Lu C, Long Z, et al. Decreased NSG3 enhances PD-L1 expression by Erk1/2 pathway to promote pancreatic cancer progress. Am J Cancer Res. 2021;11:916-929 pubmed
  187. Horiuchi H, Parajuli B, Komiya H, Ogawa Y, Jin S, Takahashi K, et al. Interleukin-19 Abrogates Experimental Autoimmune Encephalomyelitis by Attenuating Antigen-Presenting Cell Activation. Front Immunol. 2021;12:615898 pubmed 出版商
  188. Chu A, Kok S, TSUI J, Lin M, Aguirre B, Wadehra M. Epithelial membrane protein 2 (Emp2) modulates innate immune cell population recruitment at the maternal-fetal interface. J Reprod Immunol. 2021;145:103309 pubmed 出版商
  189. Voisin M, Shrestha E, Rollet C, Nikain C, Josefs T, Mahe M, et al. Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice. Commun Biol. 2021;4:420 pubmed 出版商
  190. Sugita J, Fujiu K, Nakayama Y, Matsubara T, Matsuda J, Oshima T, et al. Cardiac macrophages prevent sudden death during heart stress. Nat Commun. 2021;12:1910 pubmed 出版商
  191. Lagnado A, Leslie J, Ruchaud Sparagano M, Victorelli S, Hirsova P, Ogrodnik M, et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 2021;40:e106048 pubmed 出版商
  192. Bonilla W, Kirchhammer N, Marx A, Kallert S, Krzyzaniak M, Lu M, et al. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. Cell Rep Med. 2021;2:100209 pubmed 出版商
  193. Petty A, Dai R, Lapalombella R, Baiocchi R, Benson D, Li Z, et al. Hedgehog-induced PD-L1 on tumor-associated macrophages is critical for suppression of tumor-infiltrating CD8+ T cell function. JCI Insight. 2021;6: pubmed 出版商
  194. Nakajima S, Tanaka R, Yamashiro K, Chiba A, Noto D, Inaba T, et al. Mucosal-Associated Invariant T Cells Are Involved in Acute Ischemic Stroke by Regulating Neuroinflammation. J Am Heart Assoc. 2021;10:e018803 pubmed 出版商
  195. Shen T, Liu J, Wang C, Rixiati Y, Li S, Cai L, et al. Targeting Erbin in B cells for therapy of lung metastasis of colorectal cancer. Signal Transduct Target Ther. 2021;6:115 pubmed 出版商
  196. Xiao Y, Shu L, Wu X, Liu Y, Cheong L, Liao B, et al. Fatty acid binding protein 4 promotes autoimmune diabetes by recruitment and activation of pancreatic islet macrophages. JCI Insight. 2021;6: pubmed 出版商
  197. Sripada A, Sirohi K, Michalec L, Guo L, McKay J, Yadav S, et al. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol. 2021;19:e3001063 pubmed 出版商
  198. Uhl B, Braun C, Dominik J, Luft J, Canis M, Reichel C. A Novel Experimental Approach for In Vivo Analyses of the Salivary Gland Microvasculature. Front Immunol. 2020;11:604470 pubmed 出版商
  199. Mao F, Lv Y, Hao C, Teng Y, Liu Y, Cheng P, et al. Helicobacter pylori-Induced Rev-erbα Fosters Gastric Bacteria Colonization by Impairing Host Innate and Adaptive Defense. Cell Mol Gastroenterol Hepatol. 2021;12:395-425 pubmed 出版商
  200. Santos Zas I, Lemari xe9 J, Zlatanova I, Cachanado M, Seghezzi J, Benamer H, et al. Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat Commun. 2021;12:1483 pubmed 出版商
  201. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394 pubmed 出版商
  202. Liu J, Wang C, Cheng T, Rixiati Y, Ji C, Deng M, et al. Circadian Clock Disruption Suppresses PDL1+ Intraepithelial B Cells in Experimental Colitis and Colitis-Associated Colorectal Cancer. Cell Mol Gastroenterol Hepatol. 2021;12:251-276 pubmed 出版商
  203. Zheng H, Zhang Y, Li L, Zhang R, Luo Z, Yang Z, et al. Depletion of Toll-Like Receptor-9 Attenuates Renal Tubulointerstitial Fibrosis After Ischemia-Reperfusion Injury. Front Cell Dev Biol. 2021;9:641527 pubmed 出版商
  204. Sorrentino C, Ciummo S, D Antonio L, Lanuti P, Abrams S, Yin Z, et al. Hindering triple negative breast cancer progression by targeting endogenous interleukin-30 requires IFNγ signaling. Clin Transl Med. 2021;11:e278 pubmed 出版商
  205. Zhang Y, Xiong D, Li Y, Xu G, Zhang B, Liu Y, et al. Schistosoma japonicum Infection in Treg-Specific USP21 Knockout Mice. J Immunol Res. 2021;2021:6613162 pubmed 出版商
  206. Guo S, Smeltz R, Nanajian A, Heller R. IL-15/IL-15Rα Heterodimeric Complex as Cancer Immunotherapy in Murine Breast Cancer Models. Front Immunol. 2020;11:614667 pubmed 出版商
  207. Minns D, Smith K, Alessandrini V, Hardisty G, Melrose L, Jackson Jones L, et al. The neutrophil antimicrobial peptide cathelicidin promotes Th17 differentiation. Nat Commun. 2021;12:1285 pubmed 出版商
  208. Hamminger P, Marchetti L, Preglej T, Platzer R, Zhu C, Kamnev A, et al. Histone deacetylase 1 controls CD4+ T cell trafficking in autoinflammatory diseases. J Autoimmun. 2021;119:102610 pubmed 出版商
  209. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  210. Song L, Chang R, Sun X, Lu L, Gao H, Lu H, et al. Macrophage-derived EDA-A2 inhibits intestinal stem cells by targeting miR-494/EDA2R/β-catenin signaling in mice. Commun Biol. 2021;4:213 pubmed 出版商
  211. Ballet R, Brennan M, Brandl C, Feng N, Berri J, Cheng J, et al. A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Nat Immunol. 2021;22:381-390 pubmed 出版商
  212. Mondal T, Shivange G, Tihagam R, Lyerly E, Battista M, Talwar D, et al. Unexpected PD-L1 immune evasion mechanism in TNBC, ovarian, and other solid tumors by DR5 agonist antibodies. EMBO Mol Med. 2021;13:e12716 pubmed 出版商
  213. Li Y, Sun Y, Kulke M, Hechler T, Van der Jeught K, Dong T, et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci Transl Med. 2021;13: pubmed 出版商
  214. Mpekris F, Panagi M, Voutouri C, Martin J, Samuel R, Takahashi S, et al. Normalizing the Microenvironment Overcomes Vessel Compression and Resistance to Nano-immunotherapy in Breast Cancer Lung Metastasis. Adv Sci (Weinh). 2021;8:2001917 pubmed 出版商
  215. Ali S, Borin T, Piranlioglu R, Ara R, Lebedyeva I, Angara K, et al. Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS ONE. 2021;16:e0246646 pubmed 出版商
  216. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  217. Merkenschlager J, Finkin S, Ramos V, Kraft J, Cipolla M, Nowosad C, et al. Dynamic regulation of TFH selection during the germinal centre reaction. Nature. 2021;591:458-463 pubmed 出版商
  218. Chen J, Sivan U, Tan S, Lippo L, De Angelis J, Labella R, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci Adv. 2021;7: pubmed 出版商
  219. Wang F, Ye W, Wang S, He Y, Zhong H, Wang Y, et al. Discovery of a new inhibitor targeting PD-L1 for cancer immunotherapy. Neoplasia. 2021;23:281-293 pubmed 出版商
  220. Malone K, Diaz Diaz A, Shearer J, Moore A, Waeber C. The effect of fingolimod on regulatory T cells in a mouse model of brain ischaemia. J Neuroinflammation. 2021;18:37 pubmed 出版商
  221. Phan T, Schink L, Mann J, Merk V, Zwicky P, Mundt S, et al. Keratinocytes control skin immune homeostasis through de novo-synthesized glucocorticoids. Sci Adv. 2021;7: pubmed 出版商
  222. Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, et al. Targeting age-specific changes in CD4+ T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell. 2021;20:e13299 pubmed 出版商
  223. Kharkwal S, Johndrow C, Veerapen N, Kharkwal H, Saavedra Avila N, Carreño L, et al. Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Res. 2021;81:1788-1801 pubmed 出版商
  224. Khan T, Hartley A, Haskard D, Caga Anan M, Pennell D, Collins P, et al. Oxidised LDL and Anti-Oxidised LDL Antibodies Are Reduced by Lipoprotein Apheresis in a Randomised Controlled Trial on Patients with Refractory Angina and Elevated Lipoprotein(a). Antioxidants (Basel). 2021;10: pubmed 出版商
  225. Vavassori V, Mercuri E, Marcovecchio G, Castiello M, Schiroli G, Albano L, et al. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol Med. 2021;13:e13545 pubmed 出版商
  226. Brownlie D, Doughty Shenton D, Yh Soong D, Nixon C, O Carragher N, M Carlin L, et al. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β. J Immunother Cancer. 2021;9: pubmed 出版商
  227. Herring S, Oda J, Wagoner J, Kirchmeier D, O Connor A, Nelson E, et al. Inhibition of Arenaviruses by Combinations of Orally Available Approved Drugs. Antimicrob Agents Chemother. 2021;65: pubmed 出版商
  228. Mastorakos P, Mihelson N, Luby M, Burks S, Johnson K, Hsia A, et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat Neurosci. 2021;24:245-258 pubmed 出版商
  229. Chen W, Wu Y, Tsai T, Li R, Lai A, Li L, et al. Group 2 innate lymphoid cells contribute to IL-33-mediated alleviation of cardiac fibrosis. Theranostics. 2021;11:2594-2611 pubmed 出版商
  230. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  231. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  232. Mazur Bialy A, Pochec E. The Time-Course of Antioxidant Irisin Activity: Role of the Nrf2/HO-1/HMGB1 Axis. Antioxidants (Basel). 2021;10: pubmed 出版商
  233. Costa B, Fletcher M, Boskovic P, Ivanova E, Eisemann T, Lohr S, et al. A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  234. Tyagi A, Darby T, Hsu E, Yu M, Pal S, Dar H, et al. The gut microbiota is a transmissible determinant of skeletal maturation. elife. 2021;10: pubmed 出版商
  235. Hou P, Jia P, Yang K, Li Z, Tian T, Lin Y, et al. An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  236. Jin C, Du L, Nuerlan A, Wang X, Yang Y, Guo R. High expression of RRM2 as an independent predictive factor of poor prognosis in patients with lung adenocarcinoma. Aging (Albany NY). 2020;13:3518-3535 pubmed 出版商
  237. Sanmarco L, Wheeler M, Gutiérrez Vázquez C, Polonio C, Linnerbauer M, Pinho Ribeiro F, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature. 2021;: pubmed 出版商
  238. Kaur S, Sehgal A, Wu A, Millard S, Batoon L, Sandrock C, et al. Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. J Hematol Oncol. 2021;14:3 pubmed 出版商
  239. Khaw Y, Majid D, Oh S, Kang E, Inoue M. Early-life-trauma triggers interferon-β resistance and neurodegeneration in a multiple sclerosis model via downregulated β1-adrenergic signaling. Nat Commun. 2021;12:105 pubmed 出版商
  240. Suah A, Tran D, Khiew S, Andrade M, Pollard J, Jain D, et al. Pregnancy-induced humoral sensitization overrides T cell tolerance to fetus-matched allografts in mice. J Clin Invest. 2021;131: pubmed 出版商
  241. Luo R, Cheng Y, Chang D, Liu T, Liu L, Pei G, et al. Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A. Theranostics. 2021;11:117-131 pubmed 出版商
  242. Chen S, Zhang J, Yu W, Zhuang J, Xiao W, Wu Z, et al. Eomesodermin in CD4+T cells is essential for Ginkgolide K ameliorating disease progression in experimental autoimmune encephalomyelitis. Int J Biol Sci. 2021;17:50-61 pubmed 出版商
  243. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  244. Grand M, Waqasi M, Demarta Gatsi C, Wei Y, Peronet R, Commere P, et al. Hepatic Inflammation Confers Protective Immunity Against Liver Stages of Malaria Parasite. Front Immunol. 2020;11:585502 pubmed 出版商
  245. Antony A, Lian Z, Perrard X, Perrard J, Liu H, Cox A, et al. Deficiency of Stat1 in CD11c+ Cells Alters Adipose Tissue Inflammation and Improves Metabolic Dysfunctions in Mice Fed a High-Fat Diet. Diabetes. 2021;70:720-732 pubmed 出版商
  246. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  247. Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, et al. D-mannose suppresses macrophage IL-1β production. Nat Commun. 2020;11:6343 pubmed 出版商
  248. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  249. Harro C, Perez Sanz J, Costich T, Payne K, Anadon C, Chaurio R, et al. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest. 2021;131: pubmed 出版商
  250. Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, et al. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. elife. 2020;9: pubmed 出版商
  251. Sanchez Felipe L, Vercruysse T, Sharma S, Ma J, Lemmens V, Van Looveren D, et al. A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature. 2021;590:320-325 pubmed 出版商
  252. Meryk A, Grasse M, Balasco L, Kapferer W, Grubeck Loebenstein B, Pangrazzi L. Antioxidants N-Acetylcysteine and Vitamin C Improve T Cell Commitment to Memory and Long-Term Maintenance of Immunological Memory in Old Mice. Antioxidants (Basel). 2020;9: pubmed 出版商
  253. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  254. Gao L, Li B, Wang J, Shen D, Yang M, Sun R, et al. Activation of Liver X Receptor α Sensitizes Mice to T-Cell Mediated Hepatitis. Hepatol Commun. 2020;4:1664-1679 pubmed 出版商
  255. Wang Y, Luo M, Chen Y, Wang Y, Zhang B, Ren Z, et al. ZMYND8 Expression in Breast Cancer Cells Blocks T-Lymphocyte Surveillance to Promote Tumor Growth. Cancer Res. 2021;81:174-186 pubmed 出版商
  256. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  257. Pariser D, Hilt Z, Ture S, Blick Nitko S, Looney M, Cleary S, et al. Lung megakaryocytes are immune modulatory cells. J Clin Invest. 2021;131: pubmed 出版商
  258. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci. 2021;112:1822-1838 pubmed 出版商
  259. Lissner M, Cumnock K, Davis N, Vilches Moure J, Basak P, Navarrete D, et al. Metabolic profiling during malaria reveals the role of the aryl hydrocarbon receptor in regulating kidney injury. elife. 2020;9: pubmed 出版商
  260. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  261. Fernandes R, Li C, Wang G, Yang X, Savvides C, Glassman C, et al. Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. elife. 2020;9: pubmed 出版商
  262. Ricci B, Tycksen E, Celik H, Belle J, Fontana F, Civitelli R, et al. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. elife. 2020;9: pubmed 出版商
  263. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A. 2020;117:20159-20170 pubmed 出版商
  264. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  265. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  266. Malacco N, Souza J, Martins F, Rachid M, Simplicio J, Tirapelli C, et al. Chronic ethanol consumption compromises neutrophil function in acute pulmonary Aspergillus fumigatus infection. elife. 2020;9: pubmed 出版商
  267. Bhaskar A, Kumar S, Khan M, Singh A, Dwivedi V, Nandicoori V. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. elife. 2020;9: pubmed 出版商
  268. Chitirala P, Chang H, Martzloff P, Harenberg C, Ravichandran K, Abdulreda M, et al. Studying the biology of cytotoxic T lymphocytes in vivo with a fluorescent granzyme B-mTFP knock-in mouse. elife. 2020;9: pubmed 出版商
  269. Peligero Cruz C, Givony T, Sebé Pedrós A, Dobes J, Kadouri N, Nevo S, et al. IL18 signaling promotes homing of mature Tregs into the thymus. elife. 2020;9: pubmed 出版商
  270. Harbour S, DiToro D, Witte S, Zindl C, Gao M, Schoeb T, et al. TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol. 2020;5: pubmed 出版商
  271. Neuper T, Neureiter D, Sarajlic M, Strandt H, Bauer R, Schwarz H, et al. IL-31 transgenic mice show reduced allergen-induced lung inflammation. Eur J Immunol. 2021;51:191-196 pubmed 出版商
  272. Mahr B, Pilat N, Granofszky N, Muckenhuber M, Unger L, Weijler A, et al. Distinct roles for major and minor antigen barriers in chimerism-based tolerance under irradiation-free conditions. Am J Transplant. 2021;21:968-977 pubmed 出版商
  273. Manils J, Webb L, Howes A, Janzen J, Boeing S, Bowcock A, et al. CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. elife. 2020;9: pubmed 出版商
  274. Zhou T, Damsky W, Weizman O, McGeary M, Hartmann K, Rosen C, et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature. 2020;583:609-614 pubmed 出版商
  275. Seitz V, Kleo K, Dröge A, Schaper S, Elezkurtaj S, Bedjaoui N, et al. Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL. Sci Rep. 2020;10:10024 pubmed 出版商
  276. Jansons J, Bayurova E, Skrastina D, Kurlanda A, Fridrihsone I, Kostyushev D, et al. Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells. Vaccines (Basel). 2020;8: pubmed 出版商
  277. Ning Y, Ding J, Sun X, Xie Y, Su M, Ma C, et al. HDAC9 deficiency promotes tumor progression by decreasing the CD8+ dendritic cell infiltration of the tumor microenvironment. J Immunother Cancer. 2020;8: pubmed 出版商
  278. Zhou S, Wu W, Wang Z, Wang Z, Su Q, Li X, et al. RelB regulates the homeostatic proliferation but not the function of Tregs. BMC Immunol. 2020;21:37 pubmed 出版商
  279. Maisel K, Hrusch C, Medellin J, Potin L, Chapel D, Nurmi H, et al. Pro-lymphangiogenic VEGFR-3 signaling modulates memory T cell responses in allergic airway inflammation. Mucosal Immunol. 2021;14:144-151 pubmed 出版商
  280. Domingo Gonzalez R, Zanini F, Che X, Liu M, Jones R, Swift M, et al. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. elife. 2020;9: pubmed 出版商
  281. Vacca F, Chauch C, Jamwal A, Hinchy E, Heieis G, Webster H, et al. A helminth-derived suppressor of ST2 blocks allergic responses. elife. 2020;9: pubmed 出版商
  282. Burfeind K, Zhu X, Norgard M, Levasseur P, Huisman C, Buenafe A, et al. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. elife. 2020;9: pubmed 出版商
  283. Castiello M, Bosticardo M, Sacchetti N, Calzoni E, Fontana E, Yamazaki Y, et al. Efficacy and safety of anti-CD45-saporin as conditioning agent for RAG deficiency. J Allergy Clin Immunol. 2021;147:309-320.e6 pubmed 出版商
  284. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  285. Zheng D, Gao F, Cheng Q, Bao P, Dong X, Fan J, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11:1985 pubmed 出版商
  286. Zhu M, Ma Y, Tan K, Zhang L, Wang Z, Li Y, et al. Thalidomide with blockade of co-stimulatory molecules prolongs the survival of alloantigen-primed mice with cardiac allografts. BMC Immunol. 2020;21:19 pubmed 出版商
  287. Luoni M, Giannelli S, Indrigo M, Niro A, Massimino L, Iannielli A, et al. Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome. elife. 2020;9: pubmed 出版商
  288. Tashita C, Hoshi M, Hirata A, Nakamoto K, Ando T, Hattori T, et al. Kynurenine plays an immunosuppressive role in 2,4,6-trinitrobenzene sulfate-induced colitis in mice. World J Gastroenterol. 2020;26:918-932 pubmed 出版商
  289. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  290. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  291. Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol. 2020;11:366 pubmed 出版商
  292. Wuggenig P, Kaya B, Melhem H, Ayata C, Hruz P, Sayan A, et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol. 2020;3:130 pubmed 出版商
  293. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  294. Chaurasiya S, Yang A, Kang S, Lu J, Kim S, Park A, et al. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology. 2020;9:1729300 pubmed 出版商
  295. Doll J, Hoebe K, Thompson R, Sawtell N. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog. 2020;16:e1008296 pubmed 出版商
  296. Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6:eaay9269 pubmed 出版商
  297. Ramstead A, Wallace J, Lee S, Bauer K, Tang W, Ekiz H, et al. Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Rep. 2020;30:2889-2899.e6 pubmed 出版商
  298. Witalis M, Chang J, Zhong M, Bouklouch Y, Panneton V, Li J, et al. Progression of AITL-like tumors in mice is driven by Tfh signature proteins and T-B cross talk. Blood Adv. 2020;4:868-879 pubmed 出版商
  299. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  300. Wei J, Mattapallil M, Horai R, Jittayasothorn Y, Modi A, Sen H, et al. A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina. elife. 2020;9: pubmed 出版商
  301. Martens R, Permanyer M, Werth K, Yu K, Braun A, Halle O, et al. Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nat Commun. 2020;11:1114 pubmed 出版商
  302. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  303. Lu Z, Zou J, Li S, Topper M, Tao Y, Zhang H, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579:284-290 pubmed 出版商
  304. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  305. Lu H, Kim S, Steelman A, Tracy K, Zhou B, Michaud D, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020;117:5430-5441 pubmed 出版商
  306. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  307. Chen C, Chencheng Z, Cuiying L, Xiaokun G. Plasmacytoid Dendritic Cells Protect Against Middle Cerebral Artery Occlusion Induced Brain Injury by Priming Regulatory T Cells. Front Cell Neurosci. 2020;14:8 pubmed 出版商
  308. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  309. Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci Adv. 2020;6:eaax4690 pubmed 出版商
  310. Ferrer Font L, Mehta P, Harmos P, Schmidt A, Chappell S, Price K, et al. High-dimensional analysis of intestinal immune cells during helminth infection. elife. 2020;9: pubmed 出版商
  311. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  312. Cohen G, Chandran P, Lorsung R, Tomlinson L, Sundby M, Burks S, et al. The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel). 2020;12: pubmed 出版商
  313. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  314. Williams G, Marmion D, Schonhoff A, Jurkuvenaite A, Won W, Standaert D, et al. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 2020;139:855-874 pubmed 出版商
  315. Schanoski A, Le T, Kaiserman D, Rowe C, Prow N, Barboza D, et al. Granzyme A in Chikungunya and Other Arboviral Infections. Front Immunol. 2019;10:3083 pubmed 出版商
  316. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  317. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  318. Choi S, Bae H, Jeong S, Park I, Cho H, Hong S, et al. YAP/TAZ direct commitment and maturation of lymph node fibroblastic reticular cells. Nat Commun. 2020;11:519 pubmed 出版商
  319. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  320. Singh K, Leu J, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, et al. African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun. 2020;11:473 pubmed 出版商
  321. He B, Johansson Percival A, Backhouse J, Li J, Lee G, Hamzah J, et al. Remodeling of Metastatic Vasculature Reduces Lung Colonization and Sensitizes Overt Metastases to Immunotherapy. Cell Rep. 2020;30:714-724.e5 pubmed 出版商
  322. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  323. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  324. Bliss C, Parsons A, Nachbagauer R, Hamilton J, Cappuccini F, Ulaszewska M, et al. Targeting Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and Non-human Adenoviral Vaccines in Mice. Mol Ther Methods Clin Dev. 2020;16:108-125 pubmed 出版商
  325. Hayes M, Ward S, Crawford G, Seoane R, Jackson W, Kipling D, et al. Inflammation-induced IgE promotes epithelial hyperplasia and tumour growth. elife. 2020;9: pubmed 出版商
  326. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  327. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  328. Thiele Née Schrewe L, Guse K, Tietz S, Remlinger J, Demir S, Pedreiturria X, et al. Functional relevance of the multi-drug transporter abcg2 on teriflunomide therapy in an animal model of multiple sclerosis. J Neuroinflammation. 2020;17:9 pubmed 出版商
  329. Cheng M, Chen Y, Huang D, Chen W, Xu W, Chen Y, et al. Intrinsically altered lung-resident γδT cells control lung melanoma by producing interleukin-17A in the elderly. Aging Cell. 2020;19:e13099 pubmed 出版商
  330. Enríquez Pérez J, Kopecky J, Visse E, Darabi A, Siesjo P. Convection-enhanced delivery of temozolomide and whole cell tumor immunizations in GL261 and KR158 experimental mouse gliomas. BMC Cancer. 2020;20:7 pubmed 出版商
  331. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  332. Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed 出版商
  333. Fusciello M, Fontana F, Tähtinen S, Capasso C, Feola S, Martins B, et al. Artificially cloaked viral nanovaccine for cancer immunotherapy. Nat Commun. 2019;10:5747 pubmed 出版商
  334. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  335. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  336. Eastman A, Xu J, Bermik J, Potchen N, den Dekker A, Neal L, et al. Epigenetic stabilization of DC and DC precursor classical activation by TNFα contributes to protective T cell polarization. Sci Adv. 2019;5:eaaw9051 pubmed 出版商
  337. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  338. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  339. Mantani P, Dunér P, Ljungcrantz I, Nilsson J, Bjorkbacka H, Fredrikson G. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol. 2019;20:47 pubmed 出版商
  340. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  341. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  342. Fukuda Y, Asaoka T, Eguchi H, Yokota Y, Kubo M, Kinoshita M, et al. Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci. 2020;111:323-333 pubmed 出版商
  343. Park C, Kehrl J. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. elife. 2019;8: pubmed 出版商
  344. Callender L, Carroll E, Bober E, Akbar A, Solito E, Henson S. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2020;19:e13067 pubmed 出版商
  345. Khumalo J, Kirstein F, Scibiorek M, Hadebe S, Brombacher F. Therapeutic and prophylactic deletion of IL-4Ra-signaling ameliorates established ovalbumin induced allergic asthma. Allergy. 2020;75:1347-1360 pubmed 出版商
  346. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  347. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  348. Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H, et al. Changes of CD103-expressing pulmonary CD4+ and CD8+ T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis. 2019;19:999 pubmed 出版商
  349. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  350. Strickley J, Messerschmidt J, Awad M, Li T, Hasegawa T, Ha D, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature. 2019;: pubmed 出版商
  351. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  352. Constantinides M, Link V, Tamoutounour S, Wong A, Pérez Chaparro P, Han S, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366: pubmed 出版商
  353. Alspach E, Lussier D, Miceli A, Kizhvatov I, DuPage M, Luoma A, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574:696-701 pubmed 出版商
  354. Chu C, Murdock M, Jing D, Won T, Chung H, Kressel A, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574:543-548 pubmed 出版商
  355. Liberatore R, Mastrocola E, Cassella E, Schmidt F, Willen J, Voronin D, et al. Rhabdo-immunodeficiency virus, a murine model of acute HIV-1 infection. elife. 2019;8: pubmed 出版商
  356. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  357. Helsley R, Varadharajan V, Brown A, Gromovsky A, Schugar R, Ramachandiran I, et al. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. elife. 2019;8: pubmed 出版商
  358. Yadava K, Medina C, Ishak H, Gurevich I, Kuipers H, Shamskhou E, et al. Natural Tr1-like cells do not confer long-term tolerogenic memory. elife. 2019;8: pubmed 出版商
  359. Benechet A, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature. 2019;574:200-205 pubmed 出版商
  360. Ortega Molina A, Deleyto Seldas N, Carreras J, Sanz A, Lebrero Fernández C, Menéndez C, et al. Oncogenic Rag GTPase signaling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nat Metab. 2019;1:775-789 pubmed 出版商
  361. Lecocq Q, Zeven K, De Vlaeminck Y, Martens S, Massa S, Goyvaerts C, et al. Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use. Biomolecules. 2019;9: pubmed 出版商
  362. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  363. Nelson C, Thompson E, Quarnstrom C, Fraser K, Seelig D, Bhela S, et al. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019;28:3092-3104.e5 pubmed 出版商
  364. Schreiber L, Urbiola C, Das K, Spiesschaert B, Kimpel J, Heinemann F, et al. The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer. 2019;121:647-658 pubmed 出版商
  365. Jia S, Li W, Liu P, Xu L. A role of eosinophils in mediating the anti-tumour effect of cryo-thermal treatment. Sci Rep. 2019;9:13214 pubmed 出版商
  366. Aghajanian H, Kimura T, Rurik J, Hancock A, Leibowitz M, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430-433 pubmed 出版商
  367. Liu Z, Gu Y, Chakarov S, Blériot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178:1509-1525.e19 pubmed 出版商
  368. Zhang F, Parayath N, Ene C, Stephan S, Koehne A, Coon M, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 2019;10:3974 pubmed 出版商
  369. Rasoulouniriana D, Santana Magal N, Gutwillig A, Farhat Younis L, Wine Y, Saperia C, et al. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest. 2019;129:4151-4164 pubmed 出版商
  370. Amezcua Vesely M, Pallis P, Bielecki P, Low J, Zhao J, Harman C, et al. Effector TH17 Cells Give Rise to Long-Lived TRM Cells that Are Essential for an Immediate Response against Bacterial Infection. Cell. 2019;178:1176-1188.e15 pubmed 出版商
  371. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  372. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  373. Benci J, Johnson L, Choa R, Xu Y, Qiu J, Zhou Z, et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell. 2019;178:933-948.e14 pubmed 出版商
  374. Lou Q, Liu R, Yang X, Li W, Huang L, Wei L, et al. miR-448 targets IDO1 and regulates CD8+ T cell response in human colon cancer. J Immunother Cancer. 2019;7:210 pubmed 出版商
  375. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  376. Cohen J, Edwards T, Liu A, Hirai T, Jones M, Wu J, et al. Cutaneous TRPV1+ Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell. 2019;178:919-932.e14 pubmed 出版商
  377. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  378. Engelbertsen D, Autio A, Verwilligen R, Depuydt M, Newton G, Rattik S, et al. Increased lymphocyte activation and atherosclerosis in CD47-deficient mice. Sci Rep. 2019;9:10608 pubmed 出版商
  379. Niemann J, Woller N, Brooks J, Fleischmann Mundt B, Martin N, Kloos A, et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun. 2019;10:3236 pubmed 出版商
  380. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  381. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  382. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  383. Papaioannou E, Yanez D, Ross S, Lau C, Solanki A, Chawda M, et al. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest. 2019;129:3153-3170 pubmed 出版商
  384. Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini C, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors. Cell. 2019;178:346-360.e24 pubmed 出版商
  385. Khanom U, Ohigashi I, Fujimori S, Kondo K, Takada K, Takahama Y. TCR Affinity for In Vivo Peptide-Induced Thymic Positive Selection Fine-Tunes TCR Responsiveness of Peripheral CD8+ T Cells. J Immunol. 2019;: pubmed 出版商
  386. Leach S, Shinnakasu R, Adachi Y, Momota M, Makino Okamura C, Yamamoto T, et al. Requirement for memory B cell activation in protection from heterologous influenza virus reinfection. Int Immunol. 2019;: pubmed 出版商
  387. Liu D, Yin X, Olyha S, Nascimento M, Chen P, White T, et al. IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α+ Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity. 2019;: pubmed 出版商
  388. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  389. Oh J, Iijima N, Song E, Lu P, Klein J, Jiang R, et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019;: pubmed 出版商
  390. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  391. Dangaj D, Bruand M, Grimm A, Ronet C, Barras D, Duttagupta P, et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell. 2019;35:885-900.e10 pubmed 出版商
  392. Palacio L, Goyer M, Maggiorani D, Espinosa A, Villeneuve N, Bourbonnais S, et al. Restored immune cell functions upon clearance of senescence in the irradiated splenic environment. Aging Cell. 2019;18:e12971 pubmed 出版商
  393. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  394. Wilkinson A, Ishida R, Kikuchi M, Sudo K, Morita M, Crisostomo R, et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature. 2019;: pubmed 出版商
  395. Rosenbaum M, Gewies A, Pechloff K, Heuser C, Engleitner T, Gehring T, et al. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat Commun. 2019;10:2352 pubmed 出版商
  396. Persson E, Verstraete K, Heyndrickx I, Gevaert E, Aegerter H, Percier J, et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science. 2019;364: pubmed 出版商
  397. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  398. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  399. Harding J, Herbáth M, Chen Y, Rayasam A, Ritter A, Csóka B, et al. VEGF-A from Granuloma Macrophages Regulates Granulomatous Inflammation by a Non-angiogenic Pathway during Mycobacterial Infection. Cell Rep. 2019;27:2119-2131.e6 pubmed 出版商
  400. Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S, Rosenstiel P, et al. Fate-Mapping of GM-CSF Expression Identifies a Discrete Subset of Inflammation-Driving T Helper Cells Regulated by Cytokines IL-23 and IL-1β. Immunity. 2019;: pubmed 出版商
  401. Sharma N, Vacher J, Allison J. TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proc Natl Acad Sci U S A. 2019;116:10453-10462 pubmed 出版商
  402. Takagaki S, Yamashita R, Hashimoto N, Sugihara K, Kanari K, Tabata K, et al. Galactosyl carbohydrate residues on hematopoietic stem/progenitor cells are essential for homing and engraftment to the bone marrow. Sci Rep. 2019;9:7133 pubmed 出版商
  403. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  404. Ajina R, Zamalin D, Zuo A, Moussa M, Catalfamo M, Jablonski S, et al. SpCas9-expression by tumor cells can cause T cell-dependent tumor rejection in immunocompetent mice. Oncoimmunology. 2019;8:e1577127 pubmed 出版商
  405. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  406. Rühl J, Citterio C, Engelmann C, Haigh T, Dzionek A, Dreyer J, et al. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas. J Clin Invest. 2019;129:2071-2087 pubmed 出版商
  407. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  408. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki I, et al. PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Front Immunol. 2019;10:630 pubmed 出版商
  409. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136 pubmed 出版商
  410. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  411. Eisemann T, Costa B, Peterziel H, Angel P. Podoplanin Positive Myeloid Cells Promote Glioma Development by Immune Suppression. Front Oncol. 2019;9:187 pubmed 出版商
  412. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  413. Pais H, Ruggero K, Zhang J, Al Assar O, Bery N, Bhuller R, et al. Surfaceome interrogation using an RNA-seq approach highlights leukemia initiating cell biomarkers in an LMO2 T cell transgenic model. Sci Rep. 2019;9:5760 pubmed 出版商
  414. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  415. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  416. Poggio M, Hu T, Pai C, Chu B, BELAIR C, Chang A, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177:414-427.e13 pubmed 出版商
  417. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  418. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  419. Liao W, Overman M, Boutin A, Shang X, Zhao D, Dey P, et al. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell. 2019;35:559-572.e7 pubmed 出版商
  420. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  421. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  422. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  423. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  424. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  425. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  426. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  427. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  428. Davies A, Kim H, González Cano R, Choi J, Back S, Roh S, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176:716-728.e18 pubmed 出版商
  429. Hendrikx S, Coso S, Prat Luri B, Wetterwald L, Sabine A, Franco C, et al. Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2. Cell Rep. 2019;26:1227-1241.e6 pubmed 出版商
  430. Lavoie S, Conway K, Lassen K, Jijon H, Pan H, Chun E, et al. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. elife. 2019;8: pubmed 出版商
  431. Contijoch E, Britton G, Yang C, Mogno I, Li Z, Ng R, et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. elife. 2019;8: pubmed 出版商
  432. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  433. Martins J, Andoniou C, Fleming P, Kuns R, Schuster I, Voigt V, et al. Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science. 2019;363:288-293 pubmed 出版商
  434. Faliti C, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-336 pubmed 出版商
  435. Britton G, Contijoch E, Mogno I, Vennaro O, Llewellyn S, Ng R, et al. Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt+ Regulatory T Cells and Exacerbate Colitis in Mice. Immunity. 2019;50:212-224.e4 pubmed 出版商
  436. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  437. Silva D, Yu S, Ulge U, Spangler J, Jude K, Labao Almeida C, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565:186-191 pubmed 出版商
  438. Eldi P, Chaudhri G, Nutt S, Newsome T, Karupiah G. Viral Replicative Capacity, Antigen Availability via Hematogenous Spread, and High TFH:TFR Ratios Drive Induction of Potent Neutralizing Antibody Responses. J Virol. 2019;93: pubmed 出版商
  439. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  440. Maseda D, Banerjee A, Johnson E, Washington M, Kim H, Lau K, et al. mPGES-1-Mediated Production of PGE2 and EP4 Receptor Sensing Regulate T Cell Colonic Inflammation. Front Immunol. 2018;9:2954 pubmed 出版商
  441. Chopin M, Lun A, Zhan Y, Schreuder J, Coughlan H, D Amico A, et al. Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity. 2019;50:77-90.e5 pubmed 出版商
  442. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  443. Cornelissen L, Blanas A, van der Horst J, Kruijssen L, Zaal A, O Toole T, et al. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer. 2019;144:2290-2302 pubmed 出版商
  444. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  445. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  446. Mantri C, St John A. Immune synapses between mast cells and γδ T cells limit viral infection. J Clin Invest. 2019;129:1094-1108 pubmed 出版商
  447. Chorro L, Suzuki M, Chin S, Williams T, Snapp E, Odagiu L, et al. Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nat Commun. 2018;9:5368 pubmed 出版商
  448. Ishizuka J, Manguso R, Cheruiyot C, Bi K, Panda A, Iracheta Vellve A, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature. 2019;565:43-48 pubmed 出版商
  449. Bern M, Parikh B, Yang L, Beckman D, Poursine Laurent J, Yokoyama W. Inducible down-regulation of MHC class I results in natural killer cell tolerance. J Exp Med. 2019;216:99-116 pubmed 出版商
  450. Obino D, Fetler L, Soza A, Malbec O, Saez J, Labarca M, et al. Galectin-8 Favors the Presentation of Surface-Tethered Antigens by Stabilizing the B Cell Immune Synapse. Cell Rep. 2018;25:3110-3122.e6 pubmed 出版商
  451. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  452. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  453. Gubernatorova E, Gorshkova E, Namakanova O, Zvartsev R, Hidalgo J, Drutskaya M, et al. Non-redundant Functions of IL-6 Produced by Macrophages and Dendritic Cells in Allergic Airway Inflammation. Front Immunol. 2018;9:2718 pubmed 出版商
  454. Magallanes Puebla A, Espinosa Cueto P, López Marín L, Mancilla R. Mycobacterial glycolipid Di-O-acyl trehalose promotes a tolerogenic profile in dendritic cells. PLoS ONE. 2018;13:e0207202 pubmed 出版商
  455. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  456. Garić D, Tao S, Ahmed E, Youssef M, Kanagaratham C, Shah J, et al. Depletion of BAFF cytokine exacerbates infection in Pseudomonas aeruginosa infected mice. J Cyst Fibros. 2019;18:349-356 pubmed 出版商
  457. Quandt J, Schlude C, Bartoschek M, Will R, Cid Arregui A, Schölch S, et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 2018;7:e1500671 pubmed 出版商
  458. Harrison O, Linehan J, Shih H, Bouladoux N, Han S, SMELKINSON M, et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science. 2019;363: pubmed 出版商
  459. Tan H, Jegaskanda S, Juno J, Esterbauer R, Wong J, Kelly H, et al. Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem. J Clin Invest. 2019;129:850-862 pubmed 出版商
  460. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  461. Uccellini M, Garcia Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep. 2018;25:2784-2796.e3 pubmed 出版商
  462. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai M, Nomura E, et al. Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol. 2019;7:135-156 pubmed 出版商
  463. Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu T, Harden Bowles K, et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A. 2018;115:E11731-E11740 pubmed 出版商
  464. Wiedemann G, Aithal C, Kraechan A, Heise C, Cadilha B, Zhang J, et al. Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Transl Oncol. 2019;12:350-360 pubmed 出版商
  465. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  466. Muscate F, Stetter N, Schramm C, Schulze zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol. 2018;9:2611 pubmed 出版商
  467. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  468. Inoue T, Ito Y, Nishizawa N, Eshima K, Kojo K, Otaka F, et al. RAMP1 in Kupffer cells is a critical regulator in immune-mediated hepatitis. PLoS ONE. 2018;13:e0200432 pubmed 出版商
  469. Dong S, Harrington B, Hu E, Greene J, Lehman A, Tran M, et al. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest. 2019;129:122-136 pubmed 出版商
  470. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  471. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  472. Casagrande F, de Souza Ferreira S, Nunes F, Romera L, Dos Santos S, Tessaro F, et al. Insulin Modulates Paracoccidioides brasiliensis-Induced Inflammation by Restoring the Populations of NK Cells, Dendritic Cells, and B Lymphocytes in Lungs. J Diabetes Res. 2018;2018:6209694 pubmed 出版商
  473. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  474. Walsh S, Bastin D, Chen L, Nguyen A, Storbeck C, Lefebvre C, et al. Type I IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity. J Clin Invest. 2019;129:518-530 pubmed 出版商
  475. Huang L, Zinselmeyer B, Chang C, Saunders B, Elvington A, Baba O, et al. Interleukin-17 Drives Interstitial Entrapment of Tissue Lipoproteins in Experimental Psoriasis. Cell Metab. 2019;29:475-487.e7 pubmed 出版商
  476. Wilgenburg B, Loh L, Chen Z, Pediongco T, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9:4706 pubmed 出版商
  477. Meyers J, Winans B, Kelsaw E, Murthy A, Gerber S, Lawrence B. Environmental cues received during development shape dendritic cell responses later in life. PLoS ONE. 2018;13:e0207007 pubmed 出版商
  478. Klement J, Paschall A, Redd P, Ibrahim M, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128:5549-5560 pubmed 出版商
  479. Nicol M, Campbell G, Shaw D, Dransfield I, Ligertwood Y, Beard P, et al. Lack of IFNγ signaling attenuates spread of influenza A virus in vivo and leads to reduced pathogenesis. Virology. 2019;526:155-164 pubmed 出版商
  480. Hsu J, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F, et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018;23:700-713.e6 pubmed 出版商
  481. Singh A, Khare P, Obaid A, Conlon K, Basrur V, Depinho R, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun. 2018;9:4515 pubmed 出版商
  482. Meyer I, Goetzke C, Kespohl M, Sauter M, Heuser A, Eckstein V, et al. Silencing the CSF-1 Axis Using Nanoparticle Encapsulated siRNA Mitigates Viral and Autoimmune Myocarditis. Front Immunol. 2018;9:2303 pubmed 出版商
  483. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  484. Noh J, Kim Y, Kim D, Hwang J, Kim K, Choi D, et al. Small heterodimer partner negatively regulates C-X-C motif chemokine ligand 2 in hepatocytes during liver inflammation. Sci Rep. 2018;8:15222 pubmed 出版商
  485. Aydin E, Hallner A, Grauers Wiktorin H, Staffas A, Hellstrand K, Martner A. NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease. Oncogene. 2019;38:1534-1543 pubmed 出版商
  486. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  487. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  488. Masuda J, Umemura C, Yokozawa M, Yamauchi K, Seko T, Yamashita M, et al. Dietary Supplementation of Selenoneine-Containing Tuna Dark Muscle Extract Effectively Reduces Pathology of Experimental Colorectal Cancers in Mice. Nutrients. 2018;10: pubmed 出版商
  489. Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons. Front Microbiol. 2018;9:2148 pubmed 出版商
  490. Luo H, Winkelmann E, Zhu S, Ru W, Mays E, Silvas J, et al. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest. 2018;128:4980-4991 pubmed 出版商
  491. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  492. Williams G, Schonhoff A, Jurkuvenaite A, Thome A, Standaert D, Harms A. Targeting of the class II transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinson's disease. J Neuroinflammation. 2018;15:244 pubmed 出版商
  493. Wang H, D Souza C, Lim X, Kostenko L, Pediongco T, Eckle S, et al. MAIT cells protect against pulmonary Legionella longbeachae infection. Nat Commun. 2018;9:3350 pubmed 出版商
  494. Schrand B, Clark E, Levay A, Capote A, Martínez O, Brenneman R, et al. Hapten-mediated recruitment of polyclonal antibodies to tumors engenders antitumor immunity. Nat Commun. 2018;9:3348 pubmed 出版商
  495. Breuer J, Korpos E, Hannocks M, Schneider Hohendorf T, Song J, Zondler L, et al. Blockade of MCAM/CD146 impedes CNS infiltration of T cells over the choroid plexus. J Neuroinflammation. 2018;15:236 pubmed 出版商
  496. Amôr N, de Oliveira C, Gasparoto T, Vilas Boas V, Perri G, Kaneno R, et al. ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate. Oncotarget. 2018;9:30894-30904 pubmed 出版商
  497. Lin Y, Wang L, Lee C, Chen S. Flt3 ligand treatment reduces enterovirus A71 lethality in mice with enhanced B cell responses. Sci Rep. 2018;8:12184 pubmed 出版商
  498. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  499. White E, Gyulay G, Lhotak S, Szewczyk M, Chong T, Fuller M, et al. Sialidase down-regulation reduces non-HDL cholesterol, inhibits leukocyte transmigration, and attenuates atherosclerosis in ApoE knockout mice. J Biol Chem. 2018;293:14689-14706 pubmed 出版商
  500. Cheng Y, Zhu X, Wang X, Zhuang Q, Huyan X, Sun X, et al. Trichinella spiralis Infection Mitigates Collagen-Induced Arthritis via Programmed Death 1-Mediated Immunomodulation. Front Immunol. 2018;9:1566 pubmed 出版商
  501. Deason K, Troutman T, Jain A, Challa D, Mandraju R, Brewer T, et al. BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation. J Exp Med. 2018;215:2413-2428 pubmed 出版商
  502. Rezende R, Lanser A, Rubino S, Kuhn C, Skillin N, Moreira T, et al. γδ T cells control humoral immune response by inducing T follicular helper cell differentiation. Nat Commun. 2018;9:3151 pubmed 出版商
  503. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  504. Poffenberger M, Metcalfe Roach A, Aguilar E, Chen J, Hsu B, Wong A, et al. LKB1 deficiency in T cells promotes the development of gastrointestinal polyposis. Science. 2018;361:406-411 pubmed 出版商
  505. Xing S, Shao P, Li F, Zhao X, Seo W, Wheat J, et al. Tle corepressors are differentially partitioned to instruct CD8+ T cell lineage choice and identity. J Exp Med. 2018;215:2211-2226 pubmed 出版商
  506. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  507. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed 出版商
  508. Wan X, Zinselmeyer B, Zakharov P, Vomund A, Taniguchi R, Santambrogio L, et al. Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature. 2018;560:107-111 pubmed 出版商
  509. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  510. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  511. Gisterå A, Klement M, Polyzos K, Mailer R, Duhlin A, Karlsson M, et al. LDL-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation. 2018;: pubmed 出版商
  512. Webster P, Dawes J, Dewchand H, Takacs K, Iadarola B, Bolt B, et al. Subclonal mutation selection in mouse lymphomagenesis identifies known cancer loci and suggests novel candidates. Nat Commun. 2018;9:2649 pubmed 出版商
  513. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  514. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  515. Tan B, Shi X, Zhang J, Qin J, Zhang N, Ren H, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018;78:4929-4942 pubmed 出版商
  516. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  517. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  518. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  519. Manresa Arraut A, Johansen F, Brakebusch C, Issazadeh Navikas S, Hasseldam H. RhoA Drives T-Cell Activation and Encephalitogenic Potential in an Animal Model of Multiple Sclerosis. Front Immunol. 2018;9:1235 pubmed 出版商
  520. Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, et al. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis. 2018;9:691 pubmed 出版商
  521. Gu C, Borjabad A, Hadas E, Kelschenbach J, Kim B, Chao W, et al. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog. 2018;14:e1007061 pubmed 出版商
  522. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  523. Kanneganti A, Malireddi R, Saavedra P, Vande Walle L, Van Gorp H, Kambara H, et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med. 2018;215:1519-1529 pubmed 出版商
  524. Shaw T, Houston S, Wemyss K, Bridgeman H, Barbera T, Zangerle Murray T, et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J Exp Med. 2018;215:1507-1518 pubmed 出版商
  525. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  526. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  527. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  528. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  529. Kyung D, Sung H, Kim Y, Kim K, Cho S, Choi J, et al. Global transcriptome analysis identifies weight regain-induced activation of adaptive immune responses in white adipose tissue of mice. Int J Obes (Lond). 2018;42:755-764 pubmed 出版商
  530. Bellelli R, Borel V, Logan C, Svendsen J, Cox D, Nye E, et al. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell. 2018;70:707-721.e7 pubmed 出版商
  531. Stefani F, Eberstål S, Vergani S, Kristiansen T, Bengzon J. Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer. 2018;143:2200-2212 pubmed 出版商
  532. Yang K, Liang Y, Sun Z, Xue D, Xu H, Zhu M, et al. T Cell-Derived Lymphotoxin Is Essential for the Anti-Herpes Simplex Virus 1 Humoral Immune Response. J Virol. 2018;92: pubmed 出版商
  533. Borlido J, Sakuma S, Raices M, Carrette F, Tinoco R, Bradley L, et al. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis. Nat Immunol. 2018;19:594-605 pubmed 出版商
  534. Crosby E, Wei J, Yang X, Lei G, Wang T, Liu C, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology. 2018;7:e1421891 pubmed 出版商
  535. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  536. Gounder A, Yokoyama C, Jarjour N, Bricker T, Edelson B, Boon A. Interferon induced protein 35 exacerbates H5N1 influenza disease through the expression of IL-12p40 homodimer. PLoS Pathog. 2018;14:e1007001 pubmed 出版商
  537. Grist J, Marro B, Skinner D, Syage A, Worne C, Doty D, et al. Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment. Eur J Immunol. 2018;48:1199-1210 pubmed 出版商
  538. Emmerson A, Trevelin S, Mongue Din H, Becker P, Ortiz C, Smyth L, et al. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J Clin Invest. 2018;128:3088-3101 pubmed 出版商
  539. Anker J, Naseem A, Mok H, Schaeffer A, Abdulkadir S, Thumbikat P. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat Commun. 2018;9:1591 pubmed 出版商
  540. Dipiazza A, Laniewski N, Rattan A, Topham D, Miller J, Sant A. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection. J Virol. 2018;92: pubmed 出版商
  541. Tanaka S, Pfleger C, Lai J, Roan F, Sun S, Ziegler S. KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Rep. 2018;23:796-807 pubmed 出版商
  542. Silva M, Davoli Ferreira M, Medina T, Sesti Costa R, Silva G, Lopes C, et al. Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis. Nat Commun. 2018;9:1513 pubmed 出版商
  543. Zheng X, Fang Z, Liu X, Deng S, Zhou P, Wang X, et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J Clin Invest. 2018;128:2104-2115 pubmed 出版商
  544. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  545. Foerster F, Boegel S, Heck R, Pickert G, R ssel N, Rosigkeit S, et al. Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncoimmunology. 2018;7:e1409929 pubmed 出版商
  546. Carrasco S, Hu S, Imai D, Kumar R, Sandusky G, Yang X, et al. Toll-like receptor 3 (TLR3) promotes the resolution of Chlamydia muridarum genital tract infection in congenic C57BL/6N mice. PLoS ONE. 2018;13:e0195165 pubmed 出版商
  547. Prado C, Gaiazzi M, Gonzalez H, Ugalde V, Figueroa A, Osorio Barrios F, et al. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:571 pubmed 出版商
  548. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  549. Sui P, Wiesner D, Xu J, Zhang Y, Lee J, Van Dyken S, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360: pubmed 出版商
  550. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  551. Lee J, Park J, Nam T, Seo S, Kim J, Lee H, et al. Differences between immunodeficient mice generated by classical gene targeting and CRISPR/Cas9-mediated gene knockout. Transgenic Res. 2018;27:241-251 pubmed 出版商
  552. Olesen M, Christiansen J, Petersen S, Jensen P, Paslawski W, Romero Ramos M, et al. CD4 T cells react to local increase of α-synuclein in a pathology-associated variant-dependent manner and modify brain microglia in absence of brain pathology. Heliyon. 2018;4:e00513 pubmed 出版商
  553. Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K, Mouhieddine T, et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest. 2018;128:2487-2499 pubmed 出版商
  554. Xiao G, Chan L, Klemm L, Braas D, Chen Z, Geng H, et al. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173:470-484.e18 pubmed 出版商
  555. Mencarelli A, Khameneh H, Fric J, Vacca M, El Daker S, Janela B, et al. Calcineurin-mediated IL-2 production by CD11chighMHCII+ myeloid cells is crucial for intestinal immune homeostasis. Nat Commun. 2018;9:1102 pubmed 出版商
  556. Gaddis D, Padgett L, Wu R, McSkimming C, Romines V, Taylor A, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9:1095 pubmed 出版商
  557. Xi J, Huang Q, Wang L, Ma X, Deng Q, Kumar M, et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene. 2018;37:3151-3165 pubmed 出版商
  558. Safya H, Mellouk A, Legrand J, Le Gall S, Benbijja M, Kanellopoulos Langevin C, et al. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol. 2018;9:360 pubmed 出版商
  559. Sun H, Lagarrigue F, Gingras A, Fan Z, Ley K, Ginsberg M. Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development. J Cell Biol. 2018;217:1453-1465 pubmed 出版商
  560. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  561. Tang C, Chang S, Paton A, Paton J, Gabrilovich D, Ploegh H, et al. Phosphorylation of IRE1 at S729 regulates RIDD in B cells and antibody production after immunization. J Cell Biol. 2018;217:1739-1755 pubmed 出版商
  562. Yeh C, Nojima T, Kuraoka M, Kelsoe G. Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat Commun. 2018;9:928 pubmed 出版商
  563. Metghalchi S, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS ONE. 2018;13:e0193737 pubmed 出版商
  564. Tinoco R, Carrette F, Henriquez M, Fujita Y, Bradley L. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells. J Immunol. 2018;200:2690-2702 pubmed 出版商
  565. Yang J, Cornelissen F, Papazian N, Reijmers R, Llorian M, Cupedo T, et al. IL-7-dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. J Exp Med. 2018;215:1069-1077 pubmed 出版商
  566. Westhorpe C, Norman M, Hall P, Snelgrove S, Finsterbusch M, Li A, et al. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes. Nat Commun. 2018;9:747 pubmed 出版商
  567. Lee Y, Lee J, Jang Y, Seo S, Chang J, Seong B. Non-specific Effect of Vaccines: Immediate Protection against Respiratory Syncytial Virus Infection by a Live Attenuated Influenza Vaccine. Front Microbiol. 2018;9:83 pubmed 出版商
  568. Kim I, Kim K, Lee E, Oh D, Park C, Park S, et al. Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality. J Exp Med. 2018;215:963-983 pubmed 出版商
  569. A Verghese D, Demir M, Chun N, Fribourg M, Cravedi P, Llaudó I, et al. T Cell Expression of C5a Receptor 2 Augments Murine Regulatory T Cell (TREG) Generation and TREG-Dependent Cardiac Allograft Survival. J Immunol. 2018;200:2186-2198 pubmed 出版商
  570. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  571. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  572. Liang W, Mao S, Sun S, Li M, Li Z, Yu R, et al. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation. Front Immunol. 2018;9:78 pubmed 出版商
  573. Zemmour D, Zilionis R, Kiner E, Klein A, Mathis D, Benoist C. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol. 2018;19:291-301 pubmed 出版商
  574. Fahl S, Coffey F, Kain L, Zarin P, Dunbrack R, Teyton L, et al. Role of a selecting ligand in shaping the murine γδ-TCR repertoire. Proc Natl Acad Sci U S A. 2018;115:1889-1894 pubmed 出版商
  575. King E, Mazor R, Cuburu N, Pastan I. Low-Dose Methotrexate Prevents Primary and Secondary Humoral Immune Responses and Induces Immune Tolerance to a Recombinant Immunotoxin. J Immunol. 2018;200:2038-2045 pubmed 出版商
  576. Böttcher J, Bonavita E, Chakravarty P, Blees H, Cabeza Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022-1037.e14 pubmed 出版商
  577. Anderson A, Baranowska Hustad M, Braathen R, Grodeland G, Bogen B. Simultaneous Targeting of Multiple Hemagglutinins to APCs for Induction of Broad Immunity against Influenza. J Immunol. 2018;200:2057-2066 pubmed 出版商
  578. Dejea C, Fathi P, Craig J, Boleij A, Taddese R, Geis A, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592-597 pubmed 出版商
  579. Ellestad K, Thangavelu G, Haile Y, Lin J, Boon L, Anderson C. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol. 2018;9:12 pubmed 出版商
  580. Cortes J, Ambesi Impiombato A, Couronné L, Quinn S, Kim C, da Silva Almeida A, et al. RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis. Cancer Cell. 2018;33:259-273.e7 pubmed 出版商
  581. Kara E, Bastow C, McKenzie D, Gregor C, Fenix K, Babb R, et al. Atypical chemokine receptor 4 shapes activated B cell fate. J Exp Med. 2018;215:801-813 pubmed 出版商
  582. Wheeler D, Sariol A, Meyerholz D, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128:931-943 pubmed 出版商
  583. Solanki A, Yanez D, Ross S, Lau C, Papaioannou E, Li J, et al. Gli3 in fetal thymic epithelial cells promotes thymocyte positive selection and differentiation by repression of Shh. Development. 2018;145: pubmed 出版商
  584. Delong J, Hall A, Konradt C, Coppock G, Park J, Harms Pritchard G, et al. Cytokine- and TCR-Mediated Regulation of T Cell Expression of Ly6C and Sca-1. J Immunol. 2018;200:1761-1770 pubmed 出版商
  585. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  586. Scott J, Lebratti T, Richner J, Jiang X, Fernandez E, Zhao H, et al. Cellular and Humoral Immunity Protect against Vaginal Zika Virus Infection in Mice. J Virol. 2018;92: pubmed 出版商
  587. Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, et al. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med. 2018;215:481-500 pubmed 出版商
  588. Xiao X, Fan Y, Li J, Zhang X, Lou X, Dou Y, et al. Guidance of super-enhancers in regulation of IL-9 induction and airway inflammation. J Exp Med. 2018;215:559-574 pubmed 出版商
  589. Tang H, Liang Y, Anders R, Taube J, Qiu X, Mulgaonkar A, et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest. 2018;128:580-588 pubmed 出版商
  590. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  591. Koh A, Miller E, Buenrostro J, Moskowitz D, Wang J, Greenleaf W, et al. Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol. 2018;19:162-172 pubmed 出版商
  592. Ferdinand J, Richard A, Meylan F, Al Shamkhani A, Siegel R. Cleavage of TL1A Differentially Regulates Its Effects on Innate and Adaptive Immune Cells. J Immunol. 2018;200:1360-1369 pubmed 出版商
  593. Kaufmann E, Sanz J, Dunn J, Khan N, Mendonça L, Pacis A, et al. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell. 2018;172:176-190.e19 pubmed 出版商
  594. Christ A, Günther P, Lauterbach M, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell. 2018;172:162-175.e14 pubmed 出版商
  595. Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science. 2018;359:232-236 pubmed 出版商
  596. Garaycoechea J, Crossan G, Langevin F, Mulderrig L, Louzada S, Yang F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature. 2018;553:171-177 pubmed 出版商
  597. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  598. Mazor R, King E, Onda M, Cuburu N, Addissie S, Crown D, et al. Tolerogenic nanoparticles restore the antitumor activity of recombinant immunotoxins by mitigating immunogenicity. Proc Natl Acad Sci U S A. 2018;115:E733-E742 pubmed 出版商
  599. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  600. Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay R, Luoma A, et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science. 2018;359:770-775 pubmed 出版商
  601. Cowan J, Baik S, McCarthy N, Parnell S, White A, Jenkinson W, et al. Aire controls the recirculation of murine Foxp3+ regulatory T-cells back to the thymus. Eur J Immunol. 2018;48:844-854 pubmed 出版商
  602. Lynch J, Werder R, Loh Z, Sikder M, Curren B, Zhang V, et al. Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a-mediated T reg expansion. J Exp Med. 2018;215:537-557 pubmed 出版商
  603. Guimarães G, Gomes M, Campos P, Marinho F, de Assis N, Silveira T, et al. Immunoproteasome Subunits Are Required for CD8+ T Cell Function and Host Resistance to Brucella abortus Infection in Mice. Infect Immun. 2018;86: pubmed 出版商
  604. Burrack A, Malhotra D, Dileepan T, Osum K, Swanson L, Fife B, et al. Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol. 2018;200:477-482 pubmed 出版商
  605. Ibitokou S, Dillon B, Sinha M, Szczesny B, Delgadillo A, Reda Abdelrahman D, et al. Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. J Immunol. 2018;200:643-656 pubmed 出版商
  606. Matsuo K, Nagakubo D, Yamamoto S, Shigeta A, Tomida S, Fujita M, et al. CCL28-Deficient Mice Have Reduced IgA Antibody-Secreting Cells and an Altered Microbiota in the Colon. J Immunol. 2018;200:800-809 pubmed 出版商
  607. Medaglia C, Giladi A, Stoler Barak L, De Giovanni M, Salame T, Biram A, et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science. 2017;358:1622-1626 pubmed 出版商
  608. Ibrahim M, Scozzi D, Toth K, Ponti D, Kreisel D, Menna C, et al. Naive CD4+ T Cells Carrying a TLR2 Agonist Overcome TGF-β-Mediated Tumor Immune Evasion. J Immunol. 2018;200:847-856 pubmed 出版商
  609. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  610. Engblom C, Pfirschke C, Zilionis R, da Silva Martins J, Bos S, Courties G, et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science. 2017;358: pubmed 出版商
  611. Kishore M, Cheung K, Fu H, Bonacina F, Wang G, Coe D, et al. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47:875-889.e10 pubmed 出版商
  612. Ernszt D, Banfai K, Kellermayer Z, Pap A, Lord J, Pongracz J, et al. PPARgamma Deficiency Counteracts Thymic Senescence. Front Immunol. 2017;8:1515 pubmed 出版商
  613. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  614. Harms A, Thome A, Yan Z, Schonhoff A, Williams G, Li X, et al. Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease. Exp Neurol. 2018;300:179-187 pubmed 出版商
  615. Mailer R, Gisterå A, Polyzos K, Ketelhuth D, Hansson G. Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Sci Rep. 2017;7:15655 pubmed 出版商
  616. Wei X, Zhang J, Gu Q, Huang M, Zhang W, Guo J, et al. Reciprocal Expression of IL-35 and IL-10 Defines Two Distinct Effector Treg Subsets that Are Required for Maintenance of Immune Tolerance. Cell Rep. 2017;21:1853-1869 pubmed 出版商
  617. Robles Valero J, Lorenzo Martín L, Menacho Márquez M, Fernández Pisonero I, Abad A, Camos M, et al. A Paradoxical Tumor-Suppressor Role for the Rac1 Exchange Factor Vav1 in T Cell Acute Lymphoblastic Leukemia. Cancer Cell. 2017;32:608-623.e9 pubmed 出版商
  618. Singh M, Vianden C, Cantwell M, Dai Z, Xiao Z, Sharma M, et al. Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain. Nat Commun. 2017;8:1447 pubmed 出版商
  619. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  620. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  621. Widjaja Adhi M, Palczewski G, Dale K, Knauss E, Kelly M, Golczak M, et al. Transcription factor ISX mediates the cross talk between diet and immunity. Proc Natl Acad Sci U S A. 2017;114:11530-11535 pubmed 出版商
  622. Zhang S, Takaku M, Zou L, Gu A, Chou W, Zhang G, et al. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature. 2017;551:105-109 pubmed 出版商
  623. Glasner A, Isaacson B, Viukov S, Neuman T, Friedman N, Mandelboim M, et al. Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Sci Rep. 2017;7:13090 pubmed 出版商
  624. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  625. Francis N, Every A, Ayodele B, Pike R, Mackie E, Pagel C. A T cell-specific knockout reveals an important role for protease-activated receptor 2 in lymphocyte development. Int J Biochem Cell Biol. 2017;92:95-103 pubmed 出版商
  626. Purvis H, Clarke F, Jordan C, Blanco C, Cornish G, Dai X, et al. Protein tyrosine phosphatase PTPN22 regulates IL-1β dependent Th17 responses by modulating dectin-1 signaling in mice. Eur J Immunol. 2018;48:306-315 pubmed 出版商
  627. Sasaki F, Koga T, Saeki K, Okuno T, Kazuno S, Fujimura T, et al. Biochemical and immunological characterization of a novel monoclonal antibody against mouse leukotriene B4 receptor 1. PLoS ONE. 2017;12:e0185133 pubmed 出版商
  628. Wallrapp A, Riesenfeld S, Burkett P, Abdulnour R, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549:351-356 pubmed 出版商
  629. Jung K, Heishi T, Incio J, Huang Y, Beech E, Pinter M, et al. Targeting CXCR4-dependent immunosuppressive Ly6Clow monocytes improves antiangiogenic therapy in colorectal cancer. Proc Natl Acad Sci U S A. 2017;114:10455-10460 pubmed 出版商
  630. Yu H, Gagliani N, Ishigame H, Huber S, Zhu S, Esplugues E, et al. Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development. Proc Natl Acad Sci U S A. 2017;114:10443-10448 pubmed 出版商
  631. Zimmermann J, Durek P, Kuhl A, Schattenberg F, Maschmeyer P, Siracusa F, et al. The intestinal microbiota determines the colitis-inducing potential of T-bet-deficient Th cells in mice. Eur J Immunol. 2018;48:161-167 pubmed 出版商
  632. Li B, Wang X, Choi I, Wang Y, Liu S, Pham A, et al. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest. 2017;127:3702-3716 pubmed 出版商
  633. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  634. Kumar B, Garcia M, Weng L, Jung X, Murakami J, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575-587 pubmed 出版商
  635. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  636. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  637. Earl P, Americo J, Moss B. Insufficient Innate Immunity Contributes to the Susceptibility of the Castaneous Mouse to Orthopoxvirus Infection. J Virol. 2017;91: pubmed 出版商
  638. Strandt H, Pinheiro D, Kaplan D, Wirth D, GRATZ I, Hammerl P, et al. Neoantigen Expression in Steady-State Langerhans Cells Induces CTL Tolerance. J Immunol. 2017;199:1626-1634 pubmed 出版商
  639. Kim S, Kwon J, Park J, Seo H, Jung K, Moon Y, et al. Achaete-scute complex homologue 2 accelerates the development of Sjögren's syndrome-like disease in the NOD/ShiLtJ mouse. Immunol Lett. 2017;190:26-33 pubmed 出版商
  640. Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, et al. The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation. Cell Rep. 2017;20:600-612 pubmed 出版商
  641. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  642. Papa I, Saliba D, Ponzoni M, Bustamante S, Canete P, Gonzalez Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318-323 pubmed 出版商
  643. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  644. Lee S, Park H, Suh Y, Yoon E, Kim J, Jang W, et al. Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc Natl Acad Sci U S A. 2017;114:E5881-E5890 pubmed 出版商
  645. Hannibal T, Schmidt Christensen A, Nilsson J, Fransén Pettersson N, Hansen L, Holmberg D. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia. 2017;60:2033-2041 pubmed 出版商
  646. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  647. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  648. Seifert H, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark A, et al. Sex differences in regulatory cells in experimental stroke. Cell Immunol. 2017;318:49-54 pubmed 出版商
  649. Xie M, Koh B, Hollister K, Wu H, Sun J, Kaplan M, et al. Bcl6 promotes follicular helper T-cell differentiation and PD-1 expression in a Blimp1-independent manner in mice. Eur J Immunol. 2017;47:1136-1141 pubmed 出版商
  650. Chae W, Park J, Henegariu O, Yilmaz S, Hao L, Bothwell A. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis. Immunology. 2017;152:265-275 pubmed 出版商
  651. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  652. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  653. Li C, Leng Y, Zhao B, Gao C, Du F, Jin N, et al. Human iPSC-MSC-Derived Xenografts Modulate Immune Responses by Inhibiting the Cleavage of Caspases. Stem Cells. 2017;35:1719-1732 pubmed 出版商
  654. Mildner A, Schönheit J, Giladi A, David E, Lara Astiaso D, Lorenzo Vivas E, et al. Genomic Characterization of Murine Monocytes Reveals C/EBP? Transcription Factor Dependence of Ly6C- Cells. Immunity. 2017;46:849-862.e7 pubmed 出版商
  655. Miyazaki M, Miyazaki K, Chen K, Jin Y, Turner J, Moore A, et al. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development. Immunity. 2017;46:818-834.e4 pubmed 出版商
  656. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017;545:500-504 pubmed 出版商
  657. Torcellan T, Hampton H, Bailey J, Tomura M, Brink R, Chtanova T. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A. 2017;114:5677-5682 pubmed 出版商
  658. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  659. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  660. Minutti C, Jackson Jones L, Garcia Fojeda B, Knipper J, Sutherland T, Logan N, et al. Local amplifiers of IL-4R?-mediated macrophage activation promote repair in lung and liver. Science. 2017;356:1076-1080 pubmed 出版商
  661. Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo T, Sun M, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med. 2017;214:1663-1678 pubmed 出版商
  662. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  663. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  664. Laffont S, Blanquart E, Savignac M, Cenac C, Laverny G, Metzger D, et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J Exp Med. 2017;214:1581-1592 pubmed 出版商
  665. Burton O, Tamayo J, Stranks A, Koleoglou K, Oettgen H. Allergen-specific IgG antibody signaling through FcγRIIb promotes food tolerance. J Allergy Clin Immunol. 2018;141:189-201.e3 pubmed 出版商
  666. Kwan B, Zhu E, Tzeng A, Sugito H, Eltahir A, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med. 2017;214:1679-1690 pubmed 出版商
  667. Chowdhary V, Krogman A, Tilahun A, Alexander M, David C, Rajagopalan G. Concomitant Disruption of CD4 and CD8 Genes Facilitates the Development of Double Negative ?? TCR+ Peripheral T Cells That Respond Robustly to Staphylococcal Superantigen. J Immunol. 2017;198:4413-4424 pubmed 出版商
  668. Audzevich T, Bashford Rogers R, Mabbott N, Frampton D, Freeman T, Potocnik A, et al. Pre/pro-B cells generate macrophage populations during homeostasis and inflammation. Proc Natl Acad Sci U S A. 2017;114:E3954-E3963 pubmed 出版商
  669. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-? resembles physiological blood vessel regression. Nature. 2017;545:98-102 pubmed 出版商
  670. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  671. Acharya N, Penukonda S, Shcheglova T, Hagymasi A, Basu S, Srivastava P. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc Natl Acad Sci U S A. 2017;114:5005-5010 pubmed 出版商
  672. Zhang H, Luo J, Alcorn J, Chen K, Fan S, Pilewski J, et al. AIM2 Inflammasome Is Critical for Influenza-Induced Lung Injury and Mortality. J Immunol. 2017;198:4383-4393 pubmed 出版商
  673. Lu P, Shih C, Qi H. Ephrin B1-mediated repulsion and signaling control germinal center T cell territoriality and function. Science. 2017;356: pubmed 出版商
  674. Chien C, Yu H, Chen S, Chiang B. Characterization of c-Maf+Foxp3- Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells. Sci Rep. 2017;7:46348 pubmed 出版商
  675. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  676. Claser C, de Souza J, Thorburn S, Grau G, Riley E, Renia L, et al. Host Resistance to Plasmodium-Induced Acute Immune Pathology Is Regulated by Interleukin-10 Receptor Signaling. Infect Immun. 2017;85: pubmed 出版商
  677. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  678. Shrestha B, You D, Saravia J, Siefker D, Jaligama S, Lee G, et al. IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection. J Leukoc Biol. 2017;102:153-161 pubmed 出版商
  679. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  680. Chen Y, Wu K, Wu K, Wu K, Tsai H, Chen M, et al. Recombinant Adeno-Associated Virus-Mediated Expression of Methamphetamine Antibody Attenuates Methamphetamine-Induced Hyperactivity in Mice. Sci Rep. 2017;7:46301 pubmed 出版商
  681. van der Vlugt L, Obieglo K, Ozir Fazalalikhan A, Sparwasser T, Haeberlein S, Smits H. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol. 2017;47:545-554 pubmed 出版商
  682. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  683. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  684. Turner V, Mabbott N. Ageing adversely affects the migration and function of marginal zone B cells. Immunology. 2017;151:349-362 pubmed 出版商
  685. Daniels B, Snyder A, Olsen T, Orozco S, Oguin T, Tait S, et al. RIPK3 Restricts Viral Pathogenesis via Cell Death-Independent Neuroinflammation. Cell. 2017;169:301-313.e11 pubmed 出版商
  686. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  687. Kitada S, Kayama H, Okuzaki D, Koga R, Kobayashi M, Arima Y, et al. BATF2 inhibits immunopathological Th17 responses by suppressing Il23a expression during Trypanosoma cruzi infection. J Exp Med. 2017;214:1313-1331 pubmed 出版商
  688. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  689. Thomas D, Clare S, Sowerby J, Pardo M, Juss J, Goulding D, et al. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med. 2017;214:1111-1128 pubmed 出版商
  690. Inoue T, Shinnakasu R, Ise W, Kawai C, Egawa T, Kurosaki T. The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J Exp Med. 2017;214:1181-1198 pubmed 出版商
  691. Briseño C, Gargaro M, Durai V, Davidson J, Theisen D, Anderson D, et al. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proc Natl Acad Sci U S A. 2017;114:3957-3962 pubmed 出版商
  692. He W, Wang C, Mu R, Liang P, Huang Z, Zhang J, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene. 2017;36:4212-4223 pubmed 出版商
  693. Sindhava V, Oropallo M, Moody K, Naradikian M, Higdon L, Zhou L, et al. A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. J Clin Invest. 2017;127:1651-1663 pubmed 出版商
  694. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  695. Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214:905-917 pubmed 出版商
  696. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  697. Jin Z, Liang F, Yang J, Mei W. hnRNP I regulates neonatal immune adaptation and prevents colitis and colorectal cancer. PLoS Genet. 2017;13:e1006672 pubmed 出版商
  698. Bhattacharyya M, Penaloza MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology. 2017;151:340-348 pubmed 出版商
  699. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  700. Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715 pubmed 出版商
  701. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  702. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  703. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  704. Fisher S, Aston W, Chee J, Khong A, Cleaver A, Solin J, et al. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun Inflamm Dis. 2017;5:16-28 pubmed 出版商
  705. Ho T, Warr M, Adelman E, Lansinger O, Flach J, Verovskaya E, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543:205-210 pubmed 出版商
  706. Komegae E, Souza T, Grund L, Lima C, Lopes Ferreira M. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS ONE. 2017;12:e0171796 pubmed 出版商
  707. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  708. Stanley R, Piszczatowski R, Bartholdy B, Mitchell K, McKimpson W, Narayanagari S, et al. A myeloid tumor suppressor role for NOL3. J Exp Med. 2017;214:753-771 pubmed 出版商
  709. Sanges S, Jendoubi M, Kavian N, Hauspie C, Speca S, Crave J, et al. B Cell Homeostasis and Functional Properties Are Altered in an Hypochlorous Acid-Induced Murine Model of Systemic Sclerosis. Front Immunol. 2017;8:53 pubmed 出版商
  710. Mirotti L, Alberca Custódio R, Gomes E, Rammauro F, de Araujo E, Garcia Calich V, et al. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10. Front Immunol. 2017;8:47 pubmed 出版商
  711. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  712. Turner V, Mabbott N. Structural and functional changes to lymph nodes in ageing mice. Immunology. 2017;151:239-247 pubmed 出版商
  713. Szilagyi B, Triebus J, Kressler C, De Almeida M, Tierling S, Durek P, et al. Gut memories do not fade: epigenetic regulation of lasting gut homing receptor expression in CD4+ memory T cells. Mucosal Immunol. 2017;10:1443-1454 pubmed 出版商
  714. Huang R, Francois A, McGray A, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561 pubmed 出版商
  715. Rossey I, Gilman M, Kabeche S, Sedeyn K, Wrapp D, Kanekiyo M, et al. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun. 2017;8:14158 pubmed 出版商
  716. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  717. Vaitaitis G, Yussman M, Waid D, Wagner D. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells. PLoS ONE. 2017;12:e0172037 pubmed 出版商
  718. Ying W, Wollam J, Ofrecio J, Bandyopadhyay G, El Ouarrat D, Lee Y, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127:1019-1030 pubmed 出版商
  719. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  720. Zan H, Tat C, Qiu Z, Taylor J, Guerrero J, Shen T, et al. Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends to modulate antibody class-switch DNA recombination. Nat Commun. 2017;8:14244 pubmed 出版商
  721. Leech J, Lacey K, Mulcahy M, Medina E, McLoughlin R. IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections. J Immunol. 2017;198:2352-2365 pubmed 出版商
  722. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  723. Ramjee V, Li D, Manderfield L, Liu F, Engleka K, Aghajanian H, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017;127:899-911 pubmed 出版商
  724. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  725. Oh J, Oh D, Jung H, Lee H. A mechanism for the induction of type 2 immune responses by a protease allergen in the genital tract. Proc Natl Acad Sci U S A. 2017;114:E1188-E1195 pubmed 出版商
  726. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  727. Ishiguro T, Fukawa T, Akaki K, Nagaoka K, Takeda T, Iwakura Y, et al. Absence of DCIR1 reduces the mortality rate of endotoxemic hepatitis in mice. Eur J Immunol. 2017;47:704-712 pubmed 出版商
  728. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  729. Berghoff S, Gerndt N, Winchenbach J, Stumpf S, Hosang L, Odoardi F, et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun. 2017;8:14241 pubmed 出版商
  730. Edwards R, Kopp S, Ifergan I, Shui J, Kronenberg M, Miller S, et al. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci. 2017;58:282-291 pubmed 出版商
  731. Welsby I, Detienne S, N kuli F, Thomas S, Wouters S, Bechtold V, et al. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. Front Immunol. 2016;7:663 pubmed 出版商
  732. Goverse G, Molenaar R, Macia L, Tan J, Erkelens M, Konijn T, et al. Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. J Immunol. 2017;198:2172-2181 pubmed 出版商
  733. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140 pubmed 出版商
  734. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  735. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A. 2017;114:E540-E549 pubmed 出版商
  736. Yamamura K, Uruno T, Shiraishi A, Tanaka Y, Ushijima M, Nakahara T, et al. The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction. Nat Commun. 2017;8:13946 pubmed 出版商
  737. Ai J, Li J, Gessler D, Su Q, Wei Q, Li H, et al. Adeno-associated virus serotype rh.10 displays strong muscle tropism following intraperitoneal delivery. Sci Rep. 2017;7:40336 pubmed 出版商
  738. Yun T, Lee J, Shim D, Choi J, Cheong C. Isolation and Characterization of Aortic Dendritic Cells and Lymphocytes in Atherosclerosis. Methods Mol Biol. 2017;1559:419-437 pubmed 出版商
  739. Rowe A, Yun H, Treat B, Kinchington P, Hendricks R. Subclinical Herpes Simplex Virus Type 1 Infections Provide Site-Specific Resistance to an Unrelated Pathogen. J Immunol. 2017;198:1706-1717 pubmed 出版商
  740. Atkin Smith G, Paone S, Zanker D, Duan M, Phan T, Chen W, et al. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci Rep. 2017;7:39846 pubmed 出版商
  741. Cañete A, Carmona R, Ariza L, Sanchez M, Rojas A, Muñoz Chápuli R. A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica. 2017;102:647-655 pubmed 出版商
  742. van der Weyden L, Arends M, Campbell A, Bald T, Wardle Jones H, Griggs N, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233-236 pubmed 出版商
  743. Engler J, Kursawe N, Solano M, Patas K, Wehrmann S, Heckmann N, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A. 2017;114:E181-E190 pubmed 出版商
  744. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475-489 pubmed 出版商
  745. Kinosada H, Yasunaga J, Shimura K, Miyazato P, Onishi C, Iyoda T, et al. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors. PLoS Pathog. 2017;13:e1006120 pubmed 出版商
  746. Marshall N, Vong A, Devarajan P, Brauner M, Kuang Y, Nayar R, et al. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol. 2017;198:1142-1155 pubmed 出版商
  747. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214:209-226 pubmed 出版商
  748. von Moltke J, O Leary C, Barrett N, Kanaoka Y, Austen K, Locksley R. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. J Exp Med. 2017;214:27-37 pubmed 出版商
  749. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  750. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  751. Lamprianou S, Gysemans C, Bou Saab J, Pontes H, Mathieu C, Meda P. Glibenclamide Prevents Diabetes in NOD Mice. PLoS ONE. 2016;11:e0168839 pubmed 出版商
  752. Griffiths K, Ahmed M, Das S, Gopal R, Horne W, Connell T, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016;7:13894 pubmed 出版商
  753. Tripathi D, Venkatasubramanian S, Cheekatla S, Paidipally P, Welch E, Tvinnereim A, et al. A TLR9 agonist promotes IL-22-dependent pancreatic islet allograft survival in type 1 diabetic mice. Nat Commun. 2016;7:13896 pubmed 出版商
  754. Hashimoto Hill S, Friesen L, Kim M, Kim C. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunol. 2017;10:912-923 pubmed 出版商
  755. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  756. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  757. von Kutzleben S, Pryce G, Giovannoni G, Baker D. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. Immunology. 2017;150:444-455 pubmed 出版商
  758. Nish S, Zens K, Kratchmarov R, Lin W, Adams W, Chen Y, et al. CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. J Exp Med. 2017;214:39-47 pubmed 出版商
  759. Jacobsen E, Ochkur S, Doyle A, Lesuer W, Li W, Protheroe C, et al. Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation. Am J Respir Crit Care Med. 2017;195:1321-1332 pubmed 出版商
  760. Bieber K, Witte M, Sun S, Hundt J, Kalies K, Dräger S, et al. T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita. Sci Rep. 2016;6:38357 pubmed 出版商
  761. Ikawa T, Masuda K, Endo T, Endo M, Isono K, Koseki Y, et al. Conversion of T cells to B cells by inactivation of polycomb-mediated epigenetic suppression of the B-lineage program. Genes Dev. 2016;30:2475-2485 pubmed
  762. Connor L, Tang S, Cognard E, Ochiai S, Hilligan K, Old S, et al. Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. J Exp Med. 2017;214:125-142 pubmed 出版商
  763. Yanagisawa H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:L122-L130 pubmed 出版商
  764. Semenkovich N, Planer J, Ahern P, Griffin N, Lin C, Gordon J. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc Natl Acad Sci U S A. 2016;113:14805-14810 pubmed 出版商
  765. Swanson P, Hart G, Russo M, Nayak D, Yazew T, Pena M, et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog. 2016;12:e1006022 pubmed 出版商
  766. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  767. Khameneh H, Ho A, Spreafico R, Derks H, Quek H, Mortellaro A. The Syk-NFAT-IL-2 Pathway in Dendritic Cells Is Required for Optimal Sterile Immunity Elicited by Alum Adjuvants. J Immunol. 2017;198:196-204 pubmed
  768. Cecchinato V, Bernasconi E, Speck R, Proietti M, Sauermann U, D Agostino G, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol. 2017;198:184-195 pubmed
  769. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  770. Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1:e87748 pubmed 出版商
  771. Kuchmiy A, D Hont J, Hochepied T, Lamkanfi M. NLRP2 controls age-associated maternal fertility. J Exp Med. 2016;213:2851-2860 pubmed
  772. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  773. Kimura Y, Inoue A, Hangai S, Saijo S, Negishi H, Nishio J, et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A. 2016;113:14097-14102 pubmed
  774. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  775. Yu V, Yusuf R, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:1310-1322.e17 pubmed 出版商
  776. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  777. Escalante N, Lemire P, Cruz Tleugabulova M, Prescott D, Mortha A, Streutker C, et al. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. J Exp Med. 2016;213:2841-2850 pubmed
  778. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  779. Theisen E, Sauer J. Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity. Infect Immun. 2017;85: pubmed 出版商
  780. Baron L, Paatero A, Morel J, Impens F, Guenin Macé L, Saint Auret S, et al. Mycolactone subverts immunity by selectively blocking the Sec61 translocon. J Exp Med. 2016;213:2885-2896 pubmed
  781. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  782. Park K, Mikulski Z, Seo G, Andreyev A, Marcovecchio P, Blatchley A, et al. The transcription factor NR4A3 controls CD103+ dendritic cell migration. J Clin Invest. 2016;126:4603-4615 pubmed 出版商
  783. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  784. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  785. Zamora Pineda J, Kumar A, Suh J, Zhang M, Saba J. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med. 2016;213:2773-2791 pubmed
  786. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  787. Kirschbaum K, Sonner J, Zeller M, Deumelandt K, Bode J, Sharma R, et al. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A. 2016;113:13227-13232 pubmed
  788. Wang S, Campos J, Gallotta M, Gong M, Crain C, Naik E, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A. 2016;113:E7240-E7249 pubmed
  789. Jirmo A, Daluege K, Happle C, Albrecht M, Dittrich A, Busse M, et al. IL-27 Is Essential for Suppression of Experimental Allergic Asthma by the TLR7/8 Agonist R848 (Resiquimod). J Immunol. 2016;197:4219-4227 pubmed
  790. Coleman C, Sisk J, Halasz G, Zhong J, Beck S, Matthews K, et al. CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome. J Virol. 2017;91: pubmed 出版商
  791. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  792. Pauken K, Sammons M, Odorizzi P, Manne S, Godec J, Khan O, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016;354:1160-1165 pubmed
  793. Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, et al. In vivo correction of anaemia in ?-thalassemic mice by ?PNA-mediated gene editing with nanoparticle delivery. Nat Commun. 2016;7:13304 pubmed 出版商
  794. Kwong Chung C, Ronchi F, Geuking M. Detrimental effect of systemic antimicrobial CD4+ T-cell reactivity on gut epithelial integrity. Immunology. 2017;150:221-235 pubmed 出版商
  795. Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia. 2017;65:278-292 pubmed 出版商
  796. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  797. Kotschy A, Szlávik Z, Murray J, Davidson J, Maragno A, Le Toumelin Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477-482 pubmed 出版商
  798. Massaad M, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest. 2016;126:4219-4236 pubmed 出版商
  799. Elgueta R, Tse D, Deharvengt S, Luciano M, CARRIERE C, Noelle R, et al. Endothelial Plasmalemma Vesicle-Associated Protein Regulates the Homeostasis of Splenic Immature B Cells and B-1 B Cells. J Immunol. 2016;197:3970-3981 pubmed
  800. Alves da Costa T, Di Gangi R, Thomé R, Barreto Felisbino M, Pires Bonfanti A, Lumi Watanabe Ishikawa L, et al. Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS ONE. 2016;11:e0164745 pubmed 出版商
  801. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  802. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 2016;7:13130 pubmed 出版商
  803. Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G, et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 2017;10:695-704 pubmed 出版商
  804. Georgiev H, Ravens I, Benarafa C, Forster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun. 2016;7:13116 pubmed 出版商
  805. Lopez Guadamillas E, Fernandez Marcos P, Pantoja C, Muñoz Martin M, Martinez D, Gomez Lopez G, et al. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPAR?. Sci Rep. 2016;6:34542 pubmed 出版商
  806. Yoon Y, Storm K, Kamimae Lanning A, Goloviznina N, Kurre P. Endogenous DNA Damage Leads to p53-Independent Deficits in Replicative Fitness in Fetal Murine Fancd2-/- Hematopoietic Stem and Progenitor Cells. Stem Cell Reports. 2016;7:840-853 pubmed 出版商
  807. Liu Y, Wang Z, De La Torre R, Barling A, Tsujikawa T, Hornick N, et al. Trim32 Deficiency Enhances Th2 Immunity and Predisposes to Features of Atopic Dermatitis. J Invest Dermatol. 2017;137:359-366 pubmed 出版商
  808. Xu X, Greenland J, Gotts J, Matthay M, Caughey G. Cathepsin L Helps to Defend Mice from Infection with Influenza A. PLoS ONE. 2016;11:e0164501 pubmed 出版商
  809. Coursey T, Bian F, Zaheer M, Pflugfelder S, Volpe E, de Paiva C. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells. Mucosal Immunol. 2017;10:743-756 pubmed 出版商
  810. Swaminathan G, Thoryk E, Cox K, Smith J, Wolf J, Gindy M, et al. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci Rep. 2016;6:34215 pubmed 出版商
  811. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  812. Johnston L, Hsu C, Krier Burris R, Chhiba K, Chien K, McKenzie A, et al. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J Immunol. 2016;197:3445-3453 pubmed
  813. Rothchild A, Sissons J, Shafiani S, Plaisier C, Min D, Mai D, et al. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113:E6172-E6181 pubmed
  814. Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R, Fardella S, et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun. 2016;7:13035 pubmed 出版商
  815. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  816. Kishi Y, Kondo T, Xiao S, Yosef N, Gaublomme J, Wu C, et al. Protein C receptor (PROCR) is a negative regulator of Th17 pathogenicity. J Exp Med. 2016;213:2489-2501 pubmed
  817. Ishikawa E, Kosako H, Yasuda T, Ohmuraya M, Araki K, Kurosaki T, et al. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun. 2016;7:12756 pubmed 出版商
  818. Urrutia M, Fernandez S, Gonzalez M, Vilches R, Rojas P, Vásquez M, et al. Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels. PLoS ONE. 2016;11:e0163735 pubmed 出版商
  819. Arunachalam P, Mishra R, Badarinath K, Selvam D, Payeli S, Stout R, et al. Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Sci Rep. 2016;6:33564 pubmed 出版商
  820. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  821. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  822. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  823. Kaneda M, Messer K, Ralainirina N, Li H, Leem C, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437-442 pubmed 出版商
  824. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  825. Butcher M, Filipowicz A, Waseem T, McGary C, Crow K, Magilnick N, et al. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFN?+ Th1/Tregs. Circ Res. 2016;119:1190-1203 pubmed 出版商
  826. Huang M, Zhang W, Guo J, Wei X, Phiwpan K, Zhang J, et al. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation. Sci Rep. 2016;6:33612 pubmed 出版商
  827. Hirai Yuki A, Hensley L, McGivern D, Gonzalez Lopez O, Das A, Feng H, et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science. 2016;353:1541-1545 pubmed
  828. Bernard Valnet R, Yshii L, Quériault C, Nguyen X, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113:10956-61 pubmed 出版商
  829. Boddupalli C, Nair S, Gray S, Nowyhed H, Verma R, Gibson J, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest. 2016;126:3905-3916 pubmed 出版商
  830. Olofsson P, Steinberg B, Sobbi R, Cox M, Ahmed M, Oswald M, et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat Biotechnol. 2016;34:1066-1071 pubmed 出版商
  831. Akk A, Springer L, Pham C. Neutrophil Extracellular Traps Enhance Early Inflammatory Response in Sendai Virus-Induced Asthma Phenotype. Front Immunol. 2016;7:325 pubmed 出版商
  832. Uhde A, Herder V, Akram Khan M, Ciurkiewicz M, Schaudien D, Teich R, et al. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS ONE. 2016;11:e0161883 pubmed 出版商
  833. Xiong X, Gu L, Wang Y, Luo Y, Zhang H, Lee J, et al. Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms. J Neuroinflammation. 2016;13:241 pubmed 出版商
  834. Hoegl S, Ehrentraut H, Brodsky K, Victorino F, Golden Mason L, Eltzschig H, et al. NK cells regulate CXCR2+ neutrophil recruitment during acute lung injury. J Leukoc Biol. 2017;101:471-480 pubmed 出版商
  835. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  836. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  837. Chew W, Tabebordbar M, Cheng J, Mali P, Wu E, Ng A, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 2016;13:868-74 pubmed 出版商
  838. Ruan G, Tao B, Wang D, Li Y, Wu J, Yin G. Chinese herbal medicine formula Gu-Ben-Fang-Xiao-Tang attenuates airway inflammation by modulating Th17/Treg balance in an ovalbumin-induced murine asthma model. Exp Ther Med. 2016;12:1428-1434 pubmed
  839. Xia G, Wu S, Zhang Y. Anti-4-1BB monoclonal antibodies attenuate concanavalin A-induced immune-mediated liver injury in mice. Exp Ther Med. 2016;12:1263-1268 pubmed
  840. Papadaki G, Kambas K, Choulaki C, Vlachou K, Drakos E, Bertsias G, et al. Neutrophil extracellular traps exacerbate Th1-mediated autoimmune responses in rheumatoid arthritis by promoting DC maturation. Eur J Immunol. 2016;46:2542-2554 pubmed 出版商
  841. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  842. Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med. 2016;16:334 pubmed 出版商
  843. Herrmann O, Schemionek M. Tumor Suppressor Analysis in CML. Methods Mol Biol. 2016;1465:87-94 pubmed 出版商
  844. Olsson A, Venkatasubramanian M, Chaudhri V, Aronow B, Salomonis N, Singh H, et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature. 2016;537:698-702 pubmed 出版商
  845. Uckelmann H, Blaszkiewicz S, Nicolae C, Haas S, Schnell A, Wurzer S, et al. Extracellular matrix protein Matrilin-4 regulates stress-induced HSC proliferation via CXCR4. J Exp Med. 2016;213:1961-71 pubmed 出版商
  846. Proekt I, Miller C, Jeanne M, Fasano K, Moon J, Lowell C, et al. LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. J Clin Invest. 2016;126:3758-3771 pubmed 出版商
  847. Fabbiano S, Suárez Zamorano N, Rigo D, Veyrat Durebex C, Stevanovic Dokic A, Colin D, et al. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metab. 2016;24:434-446 pubmed 出版商
  848. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  849. Ulges A, Witsch E, Pramanik G, Klein M, Birkner K, Bühler U, et al. Protein kinase CK2 governs the molecular decision between encephalitogenic TH17 cell and Treg cell development. Proc Natl Acad Sci U S A. 2016;113:10145-50 pubmed 出版商
  850. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  851. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  852. Murakami S, Shahbazian D, Surana R, Zhang W, Chen H, Graham G, et al. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene. 2017;36:1232-1244 pubmed 出版商
  853. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  854. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum R, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499 pubmed 出版商
  855. Henry E, Sy C, Inclan Rico J, Espinosa V, Ghanny S, Dwyer D, et al. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 2016;213:1663-73 pubmed 出版商
  856. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  857. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  858. Belinson H, Savage A, Fadrosh D, Kuo Y, Lin D, Valladares R, et al. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCI Insight. 2016;1: pubmed 出版商
  859. Moodley D, Yoshida H, Mostafavi S, Asinovski N, Ortiz Lopez A, Symanowicz P, et al. Network pharmacology of JAK inhibitors. Proc Natl Acad Sci U S A. 2016;113:9852-7 pubmed 出版商
  860. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  861. Carow B, Gao Y, Coquet J, Reilly M, Rottenberg M. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. J Immunol. 2016;197:2261-8 pubmed 出版商
  862. Liu H, Jain R, Guan J, Vuong V, Ishido S, La Gruta N, et al. Ubiquitin ligase MARCH 8 cooperates with CD83 to control surface MHC II expression in thymic epithelium and CD4 T cell selection. J Exp Med. 2016;213:1695-703 pubmed 出版商
  863. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  864. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  865. Abdullah C, Li Z, Wang X, Jin Z. Depletion of T lymphocytes ameliorates cardiac fibrosis in streptozotocin-induced diabetic cardiomyopathy. Int Immunopharmacol. 2016;39:251-264 pubmed 出版商
  866. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun. 2016;7:12369 pubmed 出版商
  867. Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat Commun. 2016;7:12368 pubmed 出版商
  868. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  869. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  870. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  871. Ferreirinha P, Pérez Cabezas B, Correia A, Miyazawa B, França A, Carvalhais V, et al. Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun. 2016;84:2933-43 pubmed 出版商
  872. Hwang S, Cobb D, Bhadra R, Youngblood B, Khan I. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016;213:1799-818 pubmed 出版商
  873. Yoshioka D, Kajiwara C, Ishii Y, Umeki K, Hiramatsu K, Kadota J, et al. Efficacy of ?-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob Agents Chemother. 2016;60:6146-54 pubmed 出版商
  874. Alberdi M, Iglesias M, Tejedor S, Merino R, Lopez Rodriguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFN? expression by the transcription factor NFAT5. Immunol Cell Biol. 2017;95:56-67 pubmed 出版商
  875. Liu J, Liu J, Holmström K, Menazza S, Parks R, Fergusson M, et al. MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload. Cell Rep. 2016;16:1561-1573 pubmed 出版商
  876. Voisinne G, García Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, et al. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol. 2016;12:876 pubmed 出版商
  877. Chow K, Delconte R, Huntington N, Tarlinton D, Sutherland R, Zhan Y, et al. Innate Allorecognition Results in Rapid Accumulation of Monocyte-Derived Dendritic Cells. J Immunol. 2016;197:2000-8 pubmed 出版商
  878. Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Hervé R, et al. In Vivo Expansion of Activated Foxp3+ Regulatory T Cells and Establishment of a Type 2 Immune Response upon IL-33 Treatment Protect against Experimental Arthritis. J Immunol. 2016;197:1708-19 pubmed 出版商
  879. Finkel P, Frey B, Mayer F, Bösl K, Werthmöller N, Mackensen A, et al. The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia. Oncoimmunology. 2016;5:e1101206 pubmed 出版商
  880. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  881. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  882. Chen S, Miyazaki M, Chandra V, Fisch K, Chang A, Murre C. Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol. 2016;36:2543-52 pubmed 出版商
  883. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  884. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  885. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  886. Luo W, Li S, Li C, Lian H, Yang Q, Zhong B, et al. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat Immunol. 2016;17:1057-66 pubmed 出版商
  887. Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, et al. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun. 2016;7:12073 pubmed 出版商
  888. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  889. Stifter K, Schuster C, Schlosser M, Boehm B, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep. 2016;6:29419 pubmed 出版商
  890. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  891. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  892. Keil M, Sonner J, Lanz T, Oezen I, Bunse T, Bittner S, et al. General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. J Neuroimmunol. 2016;297:117-26 pubmed 出版商
  893. Iwasaki Y, Sugita S, Mandai M, Yonemura S, Onishi A, Ito S, et al. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool. PLoS ONE. 2016;11:e0158282 pubmed 出版商
  894. Gorman M, Poddar S, Farzan M, Diamond M. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J Virol. 2016;90:8212-25 pubmed 出版商
  895. Bombeiro A, Santini J, Thomé R, Ferreira E, Nunes S, Moreira B, et al. Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. Front Cell Neurosci. 2016;10:151 pubmed 出版商
  896. Orta Mascaró M, Consuegra Fernández M, Carreras E, Roncagalli R, Carreras Sureda A, Alvarez P, et al. CD6 modulates thymocyte selection and peripheral T cell homeostasis. J Exp Med. 2016;213:1387-97 pubmed 出版商
  897. Allison K, Sajti E, Collier J, Gosselin D, Troutman T, Stone E, et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. elife. 2016;5: pubmed 出版商
  898. Larocca R, Abbink P, Peron J, Zanotto P, Iampietro M, Badamchi Zadeh A, et al. Vaccine protection against Zika virus from Brazil. Nature. 2016;536:474-8 pubmed
  899. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  900. Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 2017;36:639-651 pubmed 出版商
  901. Shen J, Li Z, Li L, Lu L, Xiao Z, Wu W, et al. Vascular-targeted TNF? and IFN? inhibits orthotopic colorectal tumor growth. J Transl Med. 2016;14:187 pubmed 出版商
  902. Rudolph H, Klopstein A, Gruber I, Blatti C, Lyck R, Engelhardt B. Postarrest stalling rather than crawling favors CD8(+) over CD4(+) T-cell migration across the blood-brain barrier under flow in vitro. Eur J Immunol. 2016;46:2187-203 pubmed 出版商
  903. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  904. Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-?t ubiquitination. Nat Immunol. 2016;17:997-1004 pubmed 出版商
  905. Albarrán Juárez J, Kaur H, Grimm M, Offermanns S, Wettschureck N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis. 2016;251:445-453 pubmed 出版商
  906. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  907. De Grove K, Provoost S, Hendriks R, McKenzie A, Seys L, Kumar S, et al. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses. J Allergy Clin Immunol. 2017;139:246-257.e4 pubmed 出版商
  908. Gu L, Deng W, Sun X, Zhou H, Xu Q. Rapamycin ameliorates CCl4-induced liver fibrosis in mice through reciprocal regulation of the Th17/Treg cell balance. Mol Med Rep. 2016;14:1153-61 pubmed 出版商
  909. Arbore G, West E, Spolski R, Robertson A, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science. 2016;352:aad1210 pubmed 出版商
  910. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  911. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  912. Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck M, et al. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget. 2016;7:51107-51123 pubmed 出版商
  913. Ruhland M, Loza A, Capietto A, Luo X, Knolhoff B, Flanagan K, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762 pubmed 出版商
  914. Mkhikian H, Mortales C, Zhou R, Khachikyan K, Wu G, Haslam S, et al. Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis. elife. 2016;5: pubmed 出版商
  915. Sujino T, London M, Hoytema van Konijnenburg D, Rendon T, Buch T, Silva H, et al. Tissue adaptation of regulatory and intraepithelial CD4? T cells controls gut inflammation. Science. 2016;352:1581-6 pubmed 出版商
  916. Lim J, Im K, Lee E, Kim N, Nam Y, Jeon Y, et al. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Sci Rep. 2016;6:26851 pubmed 出版商
  917. Seehus C, Kaye J. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells. Bio Protoc. 2016;6: pubmed
  918. Chu H, Khosravi A, Kusumawardhani I, Kwon A, Vasconcelos A, Cunha L, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352:1116-20 pubmed 出版商
  919. Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft L, et al. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood. 2016;128:371-83 pubmed 出版商
  920. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling. Cancer Res. 2016;76:4124-35 pubmed 出版商
  921. Martin S, Brown S, Wick D, Nielsen J, Kroeger D, Twumasi Boateng K, et al. Low Mutation Burden in Ovarian Cancer May Limit the Utility of Neoantigen-Targeted Vaccines. PLoS ONE. 2016;11:e0155189 pubmed 出版商
  922. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  923. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  924. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  925. Contreras F, Prado C, Gonzalez H, Franz D, Osorio Barrios F, Osorio F, et al. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. J Immunol. 2016;196:4143-9 pubmed 出版商
  926. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  927. Nieves W, Hung L, Oniskey T, Boon L, Foretz M, Viollet B, et al. Myeloid-Restricted AMPK?1 Promotes Host Immunity and Protects against IL-12/23p40-Dependent Lung Injury during Hookworm Infection. J Immunol. 2016;196:4632-40 pubmed 出版商
  928. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  929. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  930. Cooley L, El Shikh M, Li W, Keim R, Zhang Z, Strauss J, et al. Impaired immunological synapse in sperm associated antigen 6 (SPAG6) deficient mice. Sci Rep. 2016;6:25840 pubmed 出版商
  931. Chikh G, Luu R, Patel S, Davis H, Weeratna R. Effects of KLK Peptide on Adjuvanticity of Different ODN Sequences. Vaccines (Basel). 2016;4: pubmed 出版商
  932. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  933. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  934. Harper I, Ali J, Harper S, Wlodek E, Alsughayyir J, Negus M, et al. Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant. Cell Rep. 2016;15:1214-27 pubmed 出版商
  935. Li Y, Nishikawa T, Kaneda Y. Platelet-cytokine Complex Suppresses Tumour Growth by Exploiting Intratumoural Thrombin-dependent Platelet Aggregation. Sci Rep. 2016;6:25077 pubmed 出版商
  936. Salao K, Jiang L, Li H, Tsai V, Husaini Y, Curmi P, et al. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis. Biol Open. 2016;5:620-30 pubmed 出版商
  937. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  938. Li J, Chassaing B, Tyagi A, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126:2049-63 pubmed 出版商
  939. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  940. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  941. Ueno M, Ueno Nakamura Y, Niehaus J, Popovich P, Yoshida Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci. 2016;19:784-7 pubmed 出版商
  942. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  943. Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, et al. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol. 2016;46:1361-70 pubmed 出版商
  944. Goldstein J, Burlion A, Zaragoza B, Sendeyo K, Polansky J, Huehn J, et al. Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE. 2016;11:e0153682 pubmed 出版商
  945. Nagashima H, Okuyama Y, Hayashi T, Ishii N, So T. TNFR-Associated Factors 2 and 5 Differentially Regulate the Instructive IL-6 Receptor Signaling Required for Th17 Development. J Immunol. 2016;196:4082-9 pubmed 出版商
  946. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  947. Zhu M, Bakhru P, Conley B, Nelson J, Free M, Martin A, et al. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat Commun. 2016;7:11350 pubmed 出版商
  948. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  949. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  950. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  951. Hobbs R, Batazzi A, Han M, Coulombe P. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. 2016;35:5653-5662 pubmed 出版商
  952. Holmkvist P, Pool L, Hägerbrand K, Agace W, Rivollier A. IL-18R?-deficient CD4(+) T cells induce intestinal inflammation in the CD45RB(hi) transfer model of colitis despite impaired innate responsiveness. Eur J Immunol. 2016;46:1371-82 pubmed 出版商
  953. Vandenberk L, Garg A, Verschuere T, Koks C, Belmans J, Beullens M, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5:e1083669 pubmed
  954. Lee S, Hong S, Verma V, Lee Y, Duong T, Jeong K, et al. Flagellin is a strong vaginal adjuvant of a therapeutic vaccine for genital cancer. Oncoimmunology. 2016;5:e1081328 pubmed
  955. Fend L, Remy Ziller C, Foloppe J, Kempf J, Cochin S, Barraud L, et al. Oncolytic virotherapy with an armed vaccinia virus in an orthotopic model of renal carcinoma is associated with modification of the tumor microenvironment. Oncoimmunology. 2016;5:e1080414 pubmed
  956. Mall C, Sckisel G, Proia D, Mirsoian A, Grossenbacher S, Pai C, et al. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology. 2016;5:e1075114 pubmed
  957. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  958. Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss D, Frappart L, et al. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget. 2016;7:23006-18 pubmed 出版商
  959. Barsoumian H, Yolcu E, Shirwan H. 4-1BB Signaling in Conventional T Cells Drives IL-2 Production That Overcomes CD4+CD25+FoxP3+ T Regulatory Cell Suppression. PLoS ONE. 2016;11:e0153088 pubmed 出版商
  960. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  961. Damle S, Martin R, Cross J, Conrad D. Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol. 2017;10:205-214 pubmed 出版商
  962. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  963. Seo J, Bang M, Kim G, Cho S, Park D. Erythronium japonicum attenuates histopathological lung abnormalities in a mouse model of ovalbumin-induced asthma. Int J Mol Med. 2016;37:1221-8 pubmed 出版商
  964. Yue Y, Li P, Song N, Li B, Li Z, Guo Y, et al. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model. Mol Med Rep. 2016;13:4183-90 pubmed 出版商
  965. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  966. Braun J, Meixner A, Brachner A, Foisner R. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE. 2016;11:e0152278 pubmed 出版商
  967. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  968. Qi X, Gurung P, Malireddi R, Karmaus P, Sharma D, Vogel P, et al. Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis. Mucosal Immunol. 2017;10:128-138 pubmed 出版商
  969. Arsenijević A, Milovanovic M, Milovanovic J, Stojanovic B, Zdravkovic N, Leung P, et al. Deletion of Galectin-3 Enhances Xenobiotic Induced Murine Primary Biliary Cholangitis by Facilitating Apoptosis of BECs and Release of Autoantigens. Sci Rep. 2016;6:23348 pubmed 出版商
  970. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  971. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  972. McFarland B, Marks M, Rowse A, Fehling S, Gerigk M, Qin H, et al. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma. Oncotarget. 2016;7:20621-35 pubmed 出版商
  973. Tosiek M, Fiette L, El Daker S, Eberl G, Freitas A. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun. 2016;7:10888 pubmed 出版商
  974. Zheng H, Zhao W, Yan C, Watson C, Massengill M, Xie M, et al. HDAC Inhibitors Enhance T-Cell Chemokine Expression and Augment Response to PD-1 Immunotherapy in Lung Adenocarcinoma. Clin Cancer Res. 2016;22:4119-32 pubmed 出版商
  975. Leeth C, Racine J, Chapman H, Arpa B, Carrillo J, Carrascal J, et al. B-lymphocytes expressing an Ig specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes. 2016;65:1977-1987 pubmed 出版商
  976. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  977. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  978. Marek I, Lichtneger T, Cordasic N, Hilgers K, Volkert G, Fahlbusch F, et al. Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS ONE. 2016;11:e0150471 pubmed 出版商
  979. Gomez Rodriguez J, Meylan F, Handon R, Hayes E, Anderson S, Kirby M, et al. Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat Commun. 2016;7:10857 pubmed 出版商
  980. Crisan M, Solaimani Kartalaei P, Neagu A, Karkanpouna S, Yamada Inagawa T, Purini C, et al. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo. Stem Cell Reports. 2016;6:383-95 pubmed 出版商
  981. Frodermann V, Van Duijn J, van Puijvelde G, van Santbrink P, Lagraauw H, de Vries M, et al. Heat-killed Staphylococcus aureus reduces atherosclerosis by inducing anti-inflammatory macrophages. J Intern Med. 2016;279:592-605 pubmed 出版商
  982. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, et al. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58 pubmed 出版商
  983. Foy S, Sennino B, dela Cruz T, Cote J, Gordon E, Kemp F, et al. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. PLoS ONE. 2016;11:e0150084 pubmed 出版商
  984. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  985. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  986. Xu J, Zhou L, Ji L, Chen F, Fortmann K, Zhang K, et al. The REGγ-proteasome forms a regulatory circuit with IκBÉ› and NFκB in experimental colitis. Nat Commun. 2016;7:10761 pubmed 出版商
  987. Pelly V, Kannan Y, Coomes S, Entwistle L, Rückerl D, Seddon B, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol. 2016;9:1407-1417 pubmed 出版商
  988. Yang Y, Poe J, Yang L, Fedoriw A, Desai S, Magnuson T, et al. Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway in vivo. Nucleic Acids Res. 2016;44:4174-88 pubmed 出版商
  989. Yang L, Cai C, Feng Q, Shi Y, Zuo Q, Yang H, et al. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models. Sci Rep. 2016;6:20929 pubmed 出版商
  990. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  991. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  992. Smith R, Reyes N, Khandelwal P, Schlereth S, Lee H, Masli S, et al. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease. J Leukoc Biol. 2016;100:371-80 pubmed 出版商
  993. Vieyra Garcia P, Wei T, Naym D, Fredholm S, Fink Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res. 2016;22:3328-39 pubmed 出版商
  994. Howitt M, Lavoie S, Michaud M, Blum A, Tran S, Weinstock J, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329-33 pubmed 出版商
  995. Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, et al. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 2016;6:20588 pubmed 出版商
  996. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  997. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  998. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  999. Tubo N, Fife B, Pagán A, Kotov D, Goldberg M, Jenkins M. Most microbe-specific naïve CD4? T cells produce memory cells during infection. Science. 2016;351:511-4 pubmed 出版商
  1000. Polansky J, Bahri R, Divivier M, Duitman E, Vock C, Goyeneche Patino D, et al. High dose CD11c-driven IL15 is sufficient to drive NK cell maturation and anti-tumor activity in a trans-presentation independent manner. Sci Rep. 2016;6:19699 pubmed 出版商
  1001. Atkinson S, Hoffmann U, Hamann A, Bach E, Danneskiold Samsøe N, Kristiansen K, et al. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade. Dis Model Mech. 2016;9:427-40 pubmed 出版商
  1002. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  1003. Foks A, Engelbertsen D, Kuperwaser F, Alberts Grill N, Gonen A, Witztum J, et al. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol. 2016;36:456-65 pubmed 出版商
  1004. Aloulou M, Carr E, Gador M, Bignon A, Liblau R, Fazilleau N, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun. 2016;7:10579 pubmed 出版商
  1005. Chandrasekaran U, Yi W, Gupta S, Weng C, Giannopoulou E, Chinenov Y, et al. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol. 2016;68:1454-66 pubmed 出版商
  1006. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  1007. Duhan V, Khairnar V, Friedrich S, Zhou F, Gassa A, Honke N, et al. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8(+) T-cell priming and viral control. Sci Rep. 2016;6:19191 pubmed 出版商
  1008. Yabas M, Jing W, Shafik S, Bröer S, Enders A. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes. PLoS ONE. 2016;11:e0146774 pubmed 出版商
  1009. Chu C, Gardner P, Copland D, Liyanage S, Gonzalez Cordero A, Kleine Holthaus S, et al. Multimodal analysis of ocular inflammation using the endotoxin-induced uveitis mouse model. Dis Model Mech. 2016;9:473-81 pubmed 出版商
  1010. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  1011. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  1012. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  1013. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  1014. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  1015. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  1016. McDonald P, Read K, Baker C, Anderson A, Powell M, Ballesteros Tato A, et al. IL-7 signalling represses Bcl-6 and the TFH gene program. Nat Commun. 2016;7:10285 pubmed 出版商
  1017. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  1018. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  1019. Gallego Ortega D, Ledger A, Roden D, Law A, Magenau A, Kikhtyak Z, et al. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biol. 2015;13:e1002330 pubmed 出版商
  1020. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  1021. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  1022. von Moltke J, Ji M, Liang H, Locksley R. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221-5 pubmed 出版商
  1023. Gopal K, Gowtham M, Sachin S, Ravishankar Ram M, Shankar E, Kamarul T. Attrition of Hepatic Damage Inflicted by Angiotensin II with α-Tocopherol and β-Carotene in Experimental Apolipoprotein E Knock-out Mice. Sci Rep. 2015;5:18300 pubmed 出版商
  1024. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  1025. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  1026. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17:250-8 pubmed 出版商
  1027. Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G. Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol. 2016;94:388-99 pubmed 出版商
  1028. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  1029. Malinova D, Fritzsche M, Nowosad C, Armer H, Munro P, Blundell M, et al. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts. J Leukoc Biol. 2016;99:699-710 pubmed 出版商
  1030. Francisconi C, Vieira A, Biguetti C, Glowacki A, Trombone A, Letra A, et al. Characterization of the Protective Role of Regulatory T Cells in Experimental Periapical Lesion Development and Their Chemoattraction Manipulation as a Therapeutic Tool. J Endod. 2016;42:120-6 pubmed 出版商
  1031. Majumder K, Arora N, Modi S, Chugh R, Nomura A, Giri B, et al. A Novel Immunocompetent Mouse Model of Pancreatic Cancer with Robust Stroma: a Valuable Tool for Preclinical Evaluation of New Therapies. J Gastrointest Surg. 2016;20:53-65; discussion 65 pubmed 出版商
  1032. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  1033. Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755 pubmed 出版商
  1034. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  1035. Ren H, Li F, Tian C, Nie H, Wang L, Li H, et al. Inhibition of Proteasome Activity by Low-dose Bortezomib Attenuates Angiotensin II-induced Abdominal Aortic Aneurysm in Apo E(-/-) Mice. Sci Rep. 2015;5:15730 pubmed 出版商
  1036. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  1037. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  1038. Stachtea X, Tykesson E, van Kuppevelt T, Feinstein R, Malmström A, Reijmers R, et al. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis. PLoS ONE. 2015;10:e0140279 pubmed 出版商
  1039. Ruan S, Samuelson D, Assouline B, Morre M, Shellito J. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect Immun. 2016;84:108-19 pubmed 出版商
  1040. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  1041. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  1042. Venkatasubramanian S, Tripathi D, Tucker T, Paidipally P, Cheekatla S, Welch E, et al. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection. Eur J Immunol. 2016;46:464-79 pubmed 出版商
  1043. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  1044. Sinadinos A, Young C, Al Khalidi R, Teti A, Kalinski P, Mohamad S, et al. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy. PLoS Med. 2015;12:e1001888 pubmed 出版商
  1045. Riquelme S, Pogu J, Anegon I, Bueno S, Kalergis A. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol. 2015;45:3269-88 pubmed 出版商
  1046. Abboud D, Daubeuf F, Do Q, Utard V, Villa P, Haiech J, et al. A strategy to discover decoy chemokine ligands with an anti-inflammatory activity. Sci Rep. 2015;5:14746 pubmed 出版商
  1047. Jones D, Wilmore J, Allman D. Cellular Dynamics of Memory B Cell Populations: IgM+ and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells. J Immunol. 2015;195:4753-9 pubmed 出版商
  1048. Sewald X, Ladinsky M, Uchil P, Beloor J, Pi R, Herrmann C, et al. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science. 2015;350:563-567 pubmed 出版商
  1049. Zanvit P, Konkel J, Jiao X, Kasagi S, Zhang D, Wu R, et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun. 2015;6:8424 pubmed 出版商
  1050. Vlachou K, Mintzas K, Glymenaki M, Ioannou M, Papadaki G, Bertsias G, et al. Elimination of Granulocytic Myeloid-Derived Suppressor Cells in Lupus-Prone Mice Linked to Reactive Oxygen Species-Dependent Extracellular Trap Formation. Arthritis Rheumatol. 2016;68:449-61 pubmed 出版商
  1051. Li S, Dislich B, Brakebusch C, Lichtenthaler S, Brocker T. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA. J Immunol. 2015;195:4244-56 pubmed 出版商
  1052. Gonzalez N, Wennhold K, Balkow S, Kondo E, Bölck B, Weber T, et al. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology. 2015;4:e1038684 pubmed
  1053. Murayama M, Kakuta S, Inoue A, Umeda N, Yonezawa T, Maruhashi T, et al. CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis. Nat Commun. 2015;6:8483 pubmed 出版商
  1054. McCormack R, de Armas L, Shiratsuchi M, Fiorentino D, Olsson M, Lichtenheld M, et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. elife. 2015;4: pubmed 出版商
  1055. Buerger S, Herrmann V, Mundt S, Trautwein N, Groettrup M, Basler M. The Ubiquitin-like Modifier FAT10 Is Selectively Expressed in Medullary Thymic Epithelial Cells and Modifies T Cell Selection. J Immunol. 2015;195:4106-16 pubmed 出版商
  1056. Wei T, Zhang N, Guo Z, Chi F, Song Y, Zhu X. Wnt4 signaling is associated with the decrease of proliferation and increase of apoptosis during age-related thymic involution. Mol Med Rep. 2015;12:7568-76 pubmed 出版商
  1057. Rodríguez Muñoz R, Cárdenas Aguayo M, Alemán V, Osorio B, Chávez González O, Rendon A, et al. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons. PLoS ONE. 2015;10:e0137328 pubmed 出版商
  1058. Manlove L, Berquam Vrieze K, Pauken K, Williams R, Jenkins M, Farrar M. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells. J Immunol. 2015;195:4028-37 pubmed 出版商
  1059. Wang X, Zeng X, Yang B, Zhao S, Chen W, Guo X. Efficacy of thymosin α1 and interferon α for the treatment of severe acute pancreatitis in a rat model. Mol Med Rep. 2015;12:6775-81 pubmed 出版商
  1060. Poncini C, Ilarregui J, Batalla E, Engels S, Cerliani J, Cucher M, et al. Trypanosoma cruzi Infection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1-Dependent Mechanisms. J Immunol. 2015;195:3311-24 pubmed 出版商
  1061. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  1062. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol. 2015;16:1077-84 pubmed 出版商
  1063. Wang X, Huang Z, Chen Y, Lu X, Zhu P, Wen K, et al. A Multiple Antigenic Peptide Mimicking Peptidoglycan Induced T Cell Responses to Protect Mice from Systemic Infection with Staphylococcus aureus. PLoS ONE. 2015;10:e0136888 pubmed 出版商
  1064. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  1065. Matsuda Y, Wang X, Oishi H, Guan Z, Saito M, Liu M, et al. Spleen Tyrosine Kinase Modulates Fibrous Airway Obliteration and Associated Lymphoid Neogenesis After Transplantation. Am J Transplant. 2016;16:342-52 pubmed 出版商
  1066. Smith K, Filbey K, Reynolds L, Hewitson J, Harcus Y, Boon L, et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 2016;9:428-43 pubmed 出版商
  1067. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  1068. Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed 出版商
  1069. Jovicic N, Jeftic I, Jovanovic I, Radosavljevic G, Arsenijevic N, Lukic M, et al. Differential Immunometabolic Phenotype in Th1 and Th2 Dominant Mouse Strains in Response to High-Fat Feeding. PLoS ONE. 2015;10:e0134089 pubmed 出版商
  1070. Choi Y, Gullicksrud J, Xing S, Zeng Z, Shan Q, Li F, et al. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol. 2015;16:980-90 pubmed 出版商
  1071. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  1072. Redpath S, Van Der Werf N, MacDonald A, Maizels R, Taylor M. Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase. Infect Immun. 2015;83:3881-9 pubmed 出版商
  1073. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  1074. Deng B, Deng W, Xiao P, Zeng K, Zhang S, Zhang H, et al. Nonadherent culture method downregulates stem cell antigen-1 expression in mouse bone marrow mesenchymal stem cells. Exp Ther Med. 2015;10:31-36 pubmed
  1075. Pérez Girón J, Gómez Medina S, Lüdtke A, Munoz Fontela C. Intranasal Administration of Recombinant Influenza Vaccines in Chimeric Mouse Models to Study Mucosal Immunity. J Vis Exp. 2015;:e52803 pubmed 出版商
  1076. Hobbs R, DePianto D, Jacob J, Han M, Chung B, Batazzi A, et al. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet. 2015;47:933-8 pubmed 出版商
  1077. Jiang Y, Gao Q, Wang L, Guo C, Zhu F, Wang B, et al. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice. Cell Mol Immunol. 2016;13:524-34 pubmed 出版商
  1078. Vogel A, Brown D. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol. 2015;6:327 pubmed 出版商
  1079. Elsner R, Hastey C, Olsen K, Baumgarth N. Suppression of Long-Lived Humoral Immunity Following Borrelia burgdorferi Infection. PLoS Pathog. 2015;11:e1004976 pubmed 出版商
  1080. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  1081. McWilliams I, Rajbhandari R, Nozell S, BENVENISTE E, Harrington L. STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE. J Neuroinflammation. 2015;12:128 pubmed 出版商
  1082. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  1083. Weindel C, Richey L, Bolland S, Mehta A, Kearney J, Huber B. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy. 2015;11:1010-24 pubmed 出版商
  1084. Ackerknecht M, Hauser M, Legler D, Stein J. In vivo TCR Signaling in CD4(+) T Cells Imprints a Cell-Intrinsic, Transient Low-Motility Pattern Independent of Chemokine Receptor Expression Levels, or Microtubular Network, Integrin, and Protein Kinase C Activity. Front Immunol. 2015;6:297 pubmed 出版商
  1085. Chang C, Lin C, Lu C, Martel J, Ko Y, Ojcius D, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489 pubmed 出版商
  1086. Sasaki K, Takada K, Ohte Y, Kondo H, Sorimachi H, Tanaka K, et al. Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells. Nat Commun. 2015;6:7484 pubmed 出版商
  1087. Bruchard M, Rebé C, Derangère V, Togbé D, Ryffel B, Boidot R, et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16:859-70 pubmed 出版商
  1088. Xu G, Wu H, Zhang J, Li D, Wang Y, Wang Y, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med. 2015;87:15-25 pubmed 出版商
  1089. Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang J, Bando H, et al. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun. 2015;6:7474 pubmed 出版商
  1090. Stermann A, Huebener N, Seidel D, Fest S, Eschenburg G, Stauder M, et al. Targeting of MYCN by means of DNA vaccination is effective against neuroblastoma in mice. Cancer Immunol Immunother. 2015;64:1215-27 pubmed 出版商
  1091. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  1092. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  1093. Deppisch N, Ruf P, Eissler N, Neff F, Buhmann R, Lindhofer H, et al. Efficacy and Tolerability of a GD2-Directed Trifunctional Bispecific Antibody in a Preclinical Model: Subcutaneous Administration Is Superior to Intravenous Delivery. Mol Cancer Ther. 2015;14:1877-83 pubmed 出版商
  1094. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  1095. Durrans A, Gao D, Gupta R, Fischer K, Choi H, El Rayes T, et al. Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC. PLoS ONE. 2015;10:e0129123 pubmed 出版商
  1096. Holtzhausen A, Zhao F, Evans K, Tsutsui M, Orabona C, Tyler D, et al. Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunol Res. 2015;3:1082-95 pubmed 出版商
  1097. Khan I, Perrard X, Brunner G, Lui H, Sparks L, Smith S, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond). 2015;39:1607-18 pubmed 出版商
  1098. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS ONE. 2015;10:e0128094 pubmed 出版商
  1099. Vinue A, Andrés Blasco I, Herrero Cervera A, Piqueras L, Andres V, Burks D, et al. Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta. 2015;1852:1729-42 pubmed 出版商
  1100. Suzuki H, Watari A, Hashimoto E, Yonemitsu M, Kiyono H, Yagi K, et al. C-Terminal Clostridium perfringens Enterotoxin-Mediated Antigen Delivery for Nasal Pneumococcal Vaccine. PLoS ONE. 2015;10:e0126352 pubmed 出版商
  1101. Navarathna D, Stein E, Lessey Morillon E, Nayak D, Martin Manso G, Roberts D. CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis. PLoS ONE. 2015;10:e0128220 pubmed 出版商
  1102. Chuprin A, Avin A, Goldfarb Y, Herzig Y, Levi B, Jacob A, et al. The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance. Nat Immunol. 2015;16:737-45 pubmed 出版商
  1103. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  1104. Teo T, Her Z, Tan J, Lum F, Lee W, Chan Y, et al. Caribbean and La Réunion Chikungunya Virus Isolates Differ in Their Capacity To Induce Proinflammatory Th1 and NK Cell Responses and Acute Joint Pathology. J Virol. 2015;89:7955-69 pubmed 出版商
  1105. Lu K, Keppler S, Leithäuser F, Mattfeldt T, Castello A, Kostezka U, et al. Nck adaptor proteins modulate differentiation and effector function of T cells. J Leukoc Biol. 2015;98:301-11 pubmed 出版商
  1106. Liao J, Ovenell K, Curtis E, Cecil D, Koehnlein M, Rastetter L, et al. Preservation of tumor-host immune interactions with luciferase-tagged imaging in a murine model of ovarian cancer. J Immunother Cancer. 2015;3:16 pubmed 出版商
  1107. Jacque E, Schweighoffer E, Tybulewicz V, Ley S. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival. J Exp Med. 2015;212:883-92 pubmed 出版商
  1108. Xue J, Sharma V, Hsieh M, Chawla A, Murali R, Pandol S, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158 pubmed 出版商
  1109. Kato Nagaoka N, Shimada S, Yamakawa Y, Tsujibe S, Naito T, Setoyama H, et al. Enhanced differentiation of intraepithelial lymphocytes in the intestine of polymeric immunoglobulin receptor-deficient mice. Immunology. 2015;146:59-69 pubmed 出版商
  1110. Yu J, Hoffman S, Beal A, Dykon A, Ringenberg M, Hughes A, et al. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses. PLoS ONE. 2015;10:e0127083 pubmed 出版商
  1111. Shao L, Lie A, Zhang Y, Wong C, Kwong Y. Aberrant germinal center formation, follicular T-helper cells, and germinal center B-cells were involved in chronic graft-versus-host disease. Ann Hematol. 2015;94:1493-504 pubmed 出版商
  1112. Zhou H, Martínez H, Sun B, Li A, Zimmer M, Katsanis N, et al. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev. 2015;11:652-65 pubmed 出版商
  1113. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  1114. Becker P, Hervouet C, Mason G, KWON S, Klavinskis L. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine. 2015;33:4691-8 pubmed 出版商
  1115. Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 2015;6:6970 pubmed 出版商
  1116. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  1117. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-6 pubmed 出版商
  1118. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  1119. Najm F, Madhavan M, Zaremba A, Shick E, Karl R, Factor D, et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522:216-20 pubmed 出版商
  1120. Bian F, Barbosa F, Corrales R, Pelegrino F, Volpe E, Pflugfelder S, et al. Altered balance of interleukin-13/interferon-gamma contributes to lacrimal gland destruction and secretory dysfunction in CD25 knockout model of Sjögren's syndrome. Arthritis Res Ther. 2015;17:53 pubmed 出版商
  1121. Siegemund S, Shepherd J, Xiao C, Sauer K. hCD2-iCre and Vav-iCre mediated gene recombination patterns in murine hematopoietic cells. PLoS ONE. 2015;10:e0124661 pubmed 出版商
  1122. Crawford G, Boldison J, Copland D, Adamson P, Gale D, Brandt M, et al. The role of lipoprotein-associated phospholipase A2 in a murine model of experimental autoimmune uveoretinitis. PLoS ONE. 2015;10:e0122093 pubmed 出版商
  1123. Wang J, Yin T, Wen Y, Tian F, He X, Zhou D, et al. Potential effects of interferon regulatory factor 4 in a murine model of polyinosinic-polycytidylic acid-induced embryo resorption. Reprod Fertil Dev. 2015;: pubmed 出版商
  1124. Wan W, Liu Q, Lionakis M, Marino A, Anderson S, Swamydas M, et al. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res. 2015;106:478-87 pubmed 出版商
  1125. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  1126. Tsou Y, Lin Y, Shao H, Yu S, Wu S, Lin H, et al. Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease. PLoS Negl Trop Dis. 2015;9:e0003692 pubmed 出版商
  1127. Badillo Godinez O, Gutierrez Xicotencatl L, Plett Torres T, Pedroza Saavedra A, González Jaimes A, Chihu Amparan L, et al. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice. Vaccine. 2015;33:4228-37 pubmed 出版商
  1128. Iwai H, Funatogawa K, Matsumura K, Kato Miyazawa M, Kirikae F, Kiga K, et al. MicroRNA-155 knockout mice are susceptible to Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2015;95:246-50 pubmed 出版商
  1129. Lal G, Nakayama Y, Sethi A, Singh A, Burrell B, Kulkarni N, et al. Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation. 2015;99:1817-28 pubmed 出版商
  1130. Di C, Lin X, Zhang Y, Zhong W, Yuan Y, Zhou T, et al. Basophil-associated OX40 ligand participates in the initiation of Th2 responses during airway inflammation. J Biol Chem. 2015;290:12523-36 pubmed 出版商
  1131. Koh F, Lizama C, Wong P, Hawkins J, Zovein A, Ramalho Santos M. Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc Natl Acad Sci U S A. 2015;112:E1734-43 pubmed 出版商
  1132. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  1133. Povinelli B, Kokolus K, Eng J, Dougher C, Curtin L, Capitano M, et al. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells. PLoS ONE. 2015;10:e0120078 pubmed 出版商
  1134. Hu Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015;7:279ra41 pubmed 出版商
  1135. Sarikonda G, Sachithanantham S, Miller J, Pagni P, Coppieters K, von Herrath M. The Hsp60 peptide p277 enhances anti-CD3 mediated diabetes remission in non-obese diabetic mice. J Autoimmun. 2015;59:61-6 pubmed 出版商
  1136. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  1137. Boulay A, Mazeraud A, Cisternino S, Saubaméa B, Mailly P, Jourdren L, et al. Immune quiescence of the brain is set by astroglial connexin 43. J Neurosci. 2015;35:4427-39 pubmed 出版商
  1138. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  1139. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  1140. Sakala I, Chaudhri G, Eldi P, Buller R, Karupiah G. Deficiency in Th2 cytokine responses exacerbate orthopoxvirus infection. PLoS ONE. 2015;10:e0118685 pubmed 出版商
  1141. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  1142. Kishimoto M, Matsuda T, Yanase S, Katsumi A, Suzuki N, Ikejiri M, et al. Rhof promotes murine marginal zone B cell development. Nagoya J Med Sci. 2014;76:293-305 pubmed
  1143. Pone E, Lam T, Lou Z, Wang R, Chen Y, Liu D, et al. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. J Immunol. 2015;194:3065-78 pubmed 出版商
  1144. Talaber G, Tuckermann J, Okret S. ACTH controls thymocyte homeostasis independent of glucocorticoids. FASEB J. 2015;29:2526-34 pubmed 出版商
  1145. Matsuda T, Yanase S, Takaoka A, Maruyama M. The immunosenescence-related gene Zizimin2 is associated with early bone marrow B cell development and marginal zone B cell formation. Immun Ageing. 2015;12:1 pubmed 出版商
  1146. Choi E, Park H, Sul O, Rajasekaran M, Yu R, Choi H. Carbon monoxide reverses adipose tissue inflammation and insulin resistance upon loss of ovarian function. Am J Physiol Endocrinol Metab. 2015;308:E621-30 pubmed 出版商
  1147. Srivastava M, Duan G, Kershaw N, Athanasopoulos V, Yeo J, Ose T, et al. Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nat Commun. 2015;6:6253 pubmed 出版商
  1148. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  1149. Gong W, Shou D, Cheng F, Shi J, Ge F, Liu D. Tolerance induced by IL-6 deficient donor heart is significantly involved in myeloid-derived suppressor cells (MDSCs). Transpl Immunol. 2015;32:72-5 pubmed 出版商
  1150. Drees J, Mertensotto M, Liu G, Panyam J, Leonard A, Augustin L, et al. Attenuated Salmonella enterica Typhimurium reduces tumor burden in an autochthonous breast cancer model. Anticancer Res. 2015;35:843-9 pubmed
  1151. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler T. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 2015;11:e1004481 pubmed 出版商
  1152. Bang M, Seo J, Seo J, Jo G, Jung S, Yu R, et al. Bacillus subtilis KCTC 11782BP-produced alginate oligosaccharide effectively suppresses asthma via T-helper cell type 2-related cytokines. PLoS ONE. 2015;10:e0117524 pubmed 出版商
  1153. Buchwald Z, Yang C, Nellore S, Shashkova E, Davis J, Cline A, et al. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res. 2015;30:1508-22 pubmed 出版商
  1154. Valle A, Barbagiovanni G, Jofra T, Stabilini A, Pérol L, Baeyens A, et al. Heterogeneous CD3 expression levels in differing T cell subsets correlate with the in vivo anti-CD3-mediated T cell modulation. J Immunol. 2015;194:2117-27 pubmed 出版商
  1155. Michelet X, Garg S, Wolf B, Tuli A, Ricciardi Castagnoli P, Brenner M. MHC class II presentation is controlled by the lysosomal small GTPase, Arl8b. J Immunol. 2015;194:2079-88 pubmed 出版商
  1156. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  1157. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  1158. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  1159. Kanayama M, Inoue M, Danzaki K, Hammer G, He Y, Shinohara M. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 2015;6:5779 pubmed 出版商
  1160. Wirsdörfer F, Bangen J, Pastille E, Hansen W, Flohé S. Breaking the co-operation between bystander T-cells and natural killer cells prevents the development of immunosuppression after traumatic skeletal muscle injury in mice. Clin Sci (Lond). 2015;128:825-38 pubmed 出版商
  1161. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  1162. Bergot A, Monnet N, Le Tran S, Mittal D, Al Kouba J, Steptoe R, et al. HPV16 E7 expression in skin induces TSLP secretion, type 2 ILC infiltration and atopic dermatitis-like lesions. Immunol Cell Biol. 2015;93:540-7 pubmed 出版商
  1163. Sun C, Schattgen S, Pisitkun P, Jorgensen J, Hilterbrand A, Wang L, et al. Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. J Immunol. 2015;194:1819-31 pubmed 出版商
  1164. Glatigny S, Duhen R, Arbelaez C, Kumari S, Bettelli E. Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4. Sci Rep. 2015;5:7834 pubmed 出版商
  1165. Minkah N, Macaluso M, Oldenburg D, Paden C, White D, McBride K, et al. Absence of the uracil DNA glycosylase of murine gammaherpesvirus 68 impairs replication and delays the establishment of latency in vivo. J Virol. 2015;89:3366-79 pubmed 出版商
  1166. Karsten C, Laumonnier Y, Eurich B, Ender F, Bröker K, Roy S, et al. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. J Immunol. 2015;194:1841-55 pubmed 出版商
  1167. Liu Z, Zhao S, Chen Q, Yan K, Liu P, Li N, et al. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice. Biol Reprod. 2015;92:63 pubmed 出版商
  1168. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  1169. Spada R, Rojas J, Pérez Yagüe S, Mulens V, Cannata Ortiz P, Bragado R, et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol. 2015;97:583-98 pubmed 出版商
  1170. Teixeira L, Moreira J, Melo J, Bezerra F, Marques R, Ferreirinha P, et al. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology. 2015;145:242-57 pubmed 出版商
  1171. Shindo Y, Unsinger J, Burnham C, Green J, Hotchkiss R. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015;43:334-43 pubmed 出版商
  1172. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  1173. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  1174. Bassi M, Kongsgaard M, Steffensen M, Fenger C, Rasmussen M, Skjødt K, et al. CD8+ T cells complement antibodies in protecting against yellow fever virus. J Immunol. 2015;194:1141-53 pubmed 出版商
  1175. Nguyen L, Pan J, Dinh T, Hadeiba H, O Hara E, Ebtikar A, et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol. 2015;16:207-213 pubmed 出版商
  1176. Li Q, Zou J, Wang M, Ding X, Chepelev I, Zhou X, et al. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat Commun. 2014;5:5780 pubmed 出版商
  1177. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  1178. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  1179. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  1180. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  1181. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  1182. Yin Y, Qin T, Wang X, Lin J, Yu Q, Yang Q. CpG DNA assists the whole inactivated H9N2 influenza virus in crossing the intestinal epithelial barriers via transepithelial uptake of dendritic cell dendrites. Mucosal Immunol. 2015;8:799-814 pubmed 出版商
  1183. Kim J, Li W, Choi Y, Lewin S, Verbeke C, Dranoff G, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33:64-72 pubmed 出版商
  1184. Pekkonen P, Järviluoma A, Zinovkina N, Cvrljevic A, Prakash S, Westermarck J, et al. KSHV viral cyclin interferes with T-cell development and induces lymphoma through Cdk6 and Notch activation in vivo. Cell Cycle. 2014;13:3670-84 pubmed 出版商
  1185. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  1186. Naik A, Hawwari A, Krangel M. Specification of Vδ and Vα usage by Tcra/Tcrd locus V gene segment promoters. J Immunol. 2015;194:790-4 pubmed 出版商
  1187. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  1188. Mang Y, Zhao Z, Zeng Z, Wu X, Li Z, Zhang L. Efficient elimination of CD103-expressing cells by anti-CD103 antibody drug conjugates in immunocompetent mice. Int Immunopharmacol. 2015;24:119-27 pubmed 出版商
  1189. Lees J, Duffy S, Perera C, Moalem Taylor G. Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury. Cytokine. 2015;71:207-14 pubmed 出版商
  1190. Her Z, Teng T, Tan J, Teo T, Kam Y, Lum F, et al. Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus-specific neutralizing antibody response. EMBO Mol Med. 2015;7:24-41 pubmed 出版商
  1191. Guo X, Tanaka Y, Kondo M. Thymic precursors of TCRαβ(+)CD8αα(+) intraepithelial lymphocytes are negative for CD103. Immunol Lett. 2015;163:40-8 pubmed 出版商
  1192. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  1193. Venkatanarayan A, Raulji P, Norton W, Chakravarti D, Coarfa C, Su X, et al. IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo. Nature. 2015;517:626-30 pubmed 出版商
  1194. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  1195. Uchiyama M, Jin X, Yin E, Shimokawa T, Niimi M. Treadmill exercise induces murine cardiac allograft survival and generates regulatory T cell. Transpl Int. 2015;28:352-62 pubmed 出版商
  1196. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  1197. Patel P, Julien J, Kriz J. Early-stage treatment with Withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12:217-33 pubmed 出版商
  1198. Barnes M, McMullen M, Roychowdhury S, Madhun N, Niese K, Olman M, et al. Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. J Leukoc Biol. 2015;97:161-9 pubmed 出版商
  1199. Peschke K, Dudeck A, Rabenhorst A, Hartmann K, Roers A. Cre/loxP-based mouse models of mast cell deficiency and mast cell-specific gene inactivation. Methods Mol Biol. 2015;1220:403-21 pubmed 出版商
  1200. Cui Z, Han D, Sun X, Zhang M, Feng X, Sun C, et al. Mannose-modified chitosan microspheres enhance OprF-OprI-mediated protection of mice against Pseudomonas aeruginosa infection via induction of mucosal immunity. Appl Microbiol Biotechnol. 2015;99:667-80 pubmed 出版商
  1201. Kern J, Drutel R, Leanhart S, Bogacz M, Pacholczyk R. Reduction of T cell receptor diversity in NOD mice prevents development of type 1 diabetes but not Sjögren's syndrome. PLoS ONE. 2014;9:e112467 pubmed 出版商
  1202. Jurkin J, Henkel T, Nielsen A, Minnich M, Popow J, Kaufmann T, et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 2014;33:2922-36 pubmed 出版商
  1203. McKinstry K, Strutt T, Bautista B, Zhang W, Kuang Y, Cooper A, et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun. 2014;5:5377 pubmed 出版商
  1204. Swee L, Lourido S, Bell G, Ingram J, Ploegh H. One-step enzymatic modification of the cell surface redirects cellular cytotoxicity and parasite tropism. ACS Chem Biol. 2015;10:460-5 pubmed 出版商
  1205. Thauland T, Koguchi Y, Dustin M, Parker D. CD28-CD80 interactions control regulatory T cell motility and immunological synapse formation. J Immunol. 2014;193:5894-903 pubmed 出版商
  1206. Wang X, Sumida H, Cyster J. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J Exp Med. 2014;211:2351-9 pubmed 出版商
  1207. Behler F, Maus R, Bohling J, Knippenberg S, Kirchhof G, Nagata M, et al. Macrophage-inducible C-type lectin Mincle-expressing dendritic cells contribute to control of splenic Mycobacterium bovis BCG infection in mice. Infect Immun. 2015;83:184-96 pubmed 出版商
  1208. Schuhmann M, Kraft P, Stoll G, Lorenz K, Meuth S, Wiendl H, et al. CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. J Cereb Blood Flow Metab. 2015;35:6-10 pubmed 出版商
  1209. Becker A, Walcheck B, Bhattacharya D. ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors. Exp Hematol. 2015;43:44-52.e1-3 pubmed 出版商
  1210. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  1211. Nagano T, Edamatsu H, Kobayashi K, Takenaka N, Yamamoto M, Sasaki N, et al. Phospholipase cε, an effector of ras and rap small GTPases, is required for airway inflammatory response in a mouse model of bronchial asthma. PLoS ONE. 2014;9:e108373 pubmed 出版商
  1212. Maneva Radicheva L, Amatya C, Parker C, Ellefson J, Radichev I, Raghavan A, et al. Autoimmune diabetes is suppressed by treatment with recombinant human tissue Kallikrein-1. PLoS ONE. 2014;9:e107213 pubmed 出版商
  1213. Donaldson D, Bradford B, Artis D, Mabbott N. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol. 2015;8:582-95 pubmed 出版商
  1214. Tassi I, Claudio E, Wang H, Tang W, Ha H, Saret S, et al. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. J Immunol. 2014;193:4303-11 pubmed 出版商
  1215. Bertin S, Lozano Ruiz B, Bachiller V, García Martínez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505-15 pubmed 出版商
  1216. Castro Rojas C, Deason K, Hussain R, Hayardeny L, Cravens P, Yarovinsky F, et al. Testing effects of glatiramer acetate and fingolimod in an infectious model of CNS immune surveillance. J Neuroimmunol. 2014;276:232-5 pubmed 出版商
  1217. ZasÅ‚ona Z, Przybranowski S, Wilke C, Van Rooijen N, Teitz Tennenbaum S, Osterholzer J, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014;193:4245-53 pubmed 出版商
  1218. Cao Y, Slaney C, Bidwell B, Parker B, Johnstone C, Rautela J, et al. BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res. 2014;74:5091-102 pubmed 出版商
  1219. Carty S, Koretzky G, Jordan M. Interleukin-4 regulates eomesodermin in CD8+ T cell development and differentiation. PLoS ONE. 2014;9:e106659 pubmed 出版商
  1220. Wei F, Yang D, Tewary P, Li Y, Li S, Chen X, et al. The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant. Cancer Res. 2014;74:5989-98 pubmed 出版商
  1221. Chatterjee S, Thyagarajan K, Kesarwani P, Song J, Soloshchenko M, Fu J, et al. Reducing CD73 expression by IL1?-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res. 2014;74:6048-59 pubmed 出版商
  1222. Naik E, Webster J, DeVoss J, Liu J, Suriben R, Dixit V. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med. 2014;211:1947-55 pubmed 出版商
  1223. Herranz D, Ambesi Impiombato A, Palomero T, Schnell S, Belver L, Wendorff A, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130-7 pubmed 出版商
  1224. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  1225. Eberle M, Ebel P, Wegner M, Männich J, Tafferner N, Ferreirós N, et al. Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol. 2014;92:326-35 pubmed 出版商
  1226. Schwartz M, Kolhatkar N, Thouvenel C, Khim S, Rawlings D. CD4+ T cells and CD40 participate in selection and homeostasis of peripheral B cells. J Immunol. 2014;193:3492-502 pubmed 出版商
  1227. Schwartz C, Oeser K, Prazeres da Costa C, Layland L, Voehringer D. T cell-derived IL-4/IL-13 protects mice against fatal Schistosoma mansoni infection independently of basophils. J Immunol. 2014;193:3590-9 pubmed 出版商
  1228. Parker K, Sinha P, Horn L, Clements V, Yang H, Li J, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74:5723-33 pubmed 出版商
  1229. Chen J, Zhao Y, Zhang C, Chen H, Feng J, Chi X, et al. Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res. 2014;24:1050-66 pubmed 出版商
  1230. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  1231. Cremasco V, Woodruff M, Onder L, Cupovic J, Nieves Bonilla J, Schildberg F, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973-81 pubmed 出版商
  1232. Budde H, Kolb S, Salinas Tejedor L, Wulf G, Reichardt H, Riggert J, et al. Modified extracorporeal photopheresis with cells from a healthy donor for acute graft-versus-host disease in a mouse model. PLoS ONE. 2014;9:e105896 pubmed 出版商
  1233. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  1234. Menon M, Sawada A, Chaturvedi A, Mishra P, Schuster Gossler K, Galla M, et al. Genetic deletion of SEPT7 reveals a cell type-specific role of septins in microtubule destabilization for the completion of cytokinesis. PLoS Genet. 2014;10:e1004558 pubmed 出版商
  1235. Wu C, He S, Peng Y, Kushwaha K, Lin J, Dong J, et al. TSLPR deficiency attenuates atherosclerotic lesion development associated with the inhibition of TH17 cells and the promotion of regulator T cells in ApoE-deficient mice. J Mol Cell Cardiol. 2014;76:33-45 pubmed 出版商
  1236. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  1237. Ishihara M, Seo N, Mitsui J, Muraoka D, Tanaka M, Mineno J, et al. Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS ONE. 2014;9:e104669 pubmed 出版商
  1238. Chuang H, Sheu W, Lin Y, Tsai C, Yang C, Cheng Y, et al. HGK/MAP4K4 deficiency induces TRAF2 stabilization and Th17 differentiation leading to insulin resistance. Nat Commun. 2014;5:4602 pubmed 出版商
  1239. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  1240. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  1241. Cavaretta J, Sherer K, Lee K, Kim E, Issema R, Chung H. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit. PLoS ONE. 2014;9:e103655 pubmed 出版商
  1242. Lo Sasso G, Menzies K, Mottis A, Piersigilli A, Perino A, Yamamoto H, et al. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS ONE. 2014;9:e103573 pubmed 出版商
  1243. Kim K, Skora A, Li Z, Liu Q, Tam A, Blosser R, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111:11774-9 pubmed 出版商
  1244. Céspedes P, Bueno S, Ramírez B, Gómez R, Riquelme S, Palavecino C, et al. Surface expression of the hRSV nucleoprotein impairs immunological synapse formation with T cells. Proc Natl Acad Sci U S A. 2014;111:E3214-23 pubmed 出版商
  1245. Johannesson B, Sattler S, Semenova E, Pastore S, Kennedy Lydon T, Sampson R, et al. Insulin-like growth factor-1 induces regulatory T cell-mediated suppression of allergic contact dermatitis in mice. Dis Model Mech. 2014;7:977-85 pubmed 出版商
  1246. Reeh K, Cardenas K, Bain V, Liu Z, LAURENT M, Manley N, et al. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development. 2014;141:2950-8 pubmed 出版商
  1247. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  1248. Burton O, Logsdon S, Zhou J, Medina Tamayo J, Abdel Gadir A, Noval Rivas M, et al. Oral immunotherapy induces IgG antibodies that act through Fc?RIIb to suppress IgE-mediated hypersensitivity. J Allergy Clin Immunol. 2014;134:1310-1317.e6 pubmed 出版商
  1249. Knuschke T, Bayer W, Rotan O, Sokolova V, Wadwa M, Kirschning C, et al. Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. Nanomedicine. 2014;10:1787-98 pubmed 出版商
  1250. Furugaki K, Cui L, Kunisawa Y, Osada K, Shinkai K, Tanaka M, et al. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS ONE. 2014;9:e101854 pubmed 出版商
  1251. Honjo K, Kubagawa Y, Suzuki Y, Takagi M, Ohno H, Bucy R, et al. Enhanced auto-antibody production and Mott cell formation in Fc?R-deficient autoimmune mice. Int Immunol. 2014;26:659-72 pubmed 出版商
  1252. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  1253. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  1254. Vegran F, Berger H, Boidot R, Mignot G, Bruchard M, Dosset M, et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol. 2014;15:758-66 pubmed 出版商
  1255. Madireddi S, Eun S, Lee S, Nemčovičová I, Mehta A, Zajonc D, et al. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med. 2014;211:1433-48 pubmed 出版商
  1256. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  1257. Zhou Q, Ho A, Schlitzer A, Tang Y, Wong K, Wong F, et al. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis. J Immunol. 2014;193:496-509 pubmed 出版商
  1258. Moreno M, Bannerman P, Ma J, Guo F, Miers L, Soulika A, et al. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J Neurosci. 2014;34:8175-85 pubmed 出版商
  1259. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed 出版商
  1260. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258-69 pubmed 出版商
  1261. Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J Immunol. 2014;193:268-76 pubmed 出版商
  1262. Geem D, Medina Contreras O, McBride M, Newberry R, Koni P, Denning T. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431-8 pubmed 出版商
  1263. Chen Z, Ozbun L, Chong N, Wallecha A, Berzofsky J, Khleif S. Episomal expression of truncated listeriolysin O in LmddA-LLO-E7 vaccine enhances antitumor efficacy by preferentially inducing expansions of CD4+FoxP3- and CD8+ T cells. Cancer Immunol Res. 2014;2:911-22 pubmed 出版商
  1264. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  1265. Gao X, Usas A, Proto J, Lu A, Cummins J, Proctor A, et al. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. FASEB J. 2014;28:3792-809 pubmed 出版商
  1266. Weber G, Chousterman B, Hilgendorf I, Robbins C, Theurl I, Gerhardt L, et al. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J Exp Med. 2014;211:1243-56 pubmed 出版商
  1267. Staumont Sallé D, Fleury S, Lazzari A, Molendi Coste O, Hornez N, Lavogiez C, et al. CX?CL1 (fractalkine) and its receptor CX?CR1 regulate atopic dermatitis by controlling effector T cell retention in inflamed skin. J Exp Med. 2014;211:1185-96 pubmed 出版商
  1268. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama K, et al. Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 2014;34:2732-44 pubmed
  1269. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  1270. Sreedharan R, Chen S, Miller M, Haribhai D, Williams C, Van Why S. Mice with an absent stress response are protected against ischemic renal injury. Kidney Int. 2014;86:515-24 pubmed 出版商
  1271. Jakobsson T, Vedin L, Hassan T, Venteclef N, Greco D, D AMATO M, et al. The oxysterol receptor LXR? protects against DSS- and TNBS-induced colitis in mice. Mucosal Immunol. 2014;7:1416-28 pubmed 出版商
  1272. Zhang Y, Yan W, Mathew E, Bednar F, Wan S, Collins M, et al. CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunol Res. 2014;2:423-35 pubmed 出版商
  1273. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  1274. Ebert S, Becker M, Lemmermann N, Büttner J, Michel A, Taube C, et al. Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs. PLoS Pathog. 2014;10:e1004100 pubmed 出版商
  1275. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  1276. Xu Y, Hyun Y, Lim K, Lee H, Cummings R, Gerber S, et al. Optogenetic control of chemokine receptor signal and T-cell migration. Proc Natl Acad Sci U S A. 2014;111:6371-6 pubmed 出版商
  1277. Kim B, Park H, Shin J, Kim S, Kim S. Human placental extract reduces allergic inflammation in a murine allergic rhinitis model. Laryngoscope. 2014;124:E399-404 pubmed 出版商
  1278. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  1279. Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014;64:155-65 pubmed 出版商
  1280. Inoue M, Arikawa T, Chen Y, Moriwaki Y, Price M, Brown M, et al. T cells down-regulate macrophage TNF production by IRAK1-mediated IL-10 expression and control innate hyperinflammation. Proc Natl Acad Sci U S A. 2014;111:5295-300 pubmed 出版商
  1281. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  1282. Ntranos A, Hall O, Robinson D, Grishkan I, Schott J, Tosi D, et al. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. J Neuroimmunol. 2014;270:13-21 pubmed 出版商
  1283. Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82-92 pubmed 出版商
  1284. Harland K, Day E, Apte S, Russ B, Doherty P, Turner S, et al. Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. Nat Commun. 2014;5:3547 pubmed 出版商
  1285. Koga T, Hedrich C, Mizui M, Yoshida N, Otomo K, Lieberman L, et al. CaMK4-dependent activation of AKT/mTOR and CREM-? underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124:2234-45 pubmed 出版商
  1286. Frese Schaper M, Keil A, Yagita H, Steiner S, Falk W, Schmid R, et al. Influence of natural killer cells and perforin?mediated cytolysis on the development of chemically induced lung cancer in A/J mice. Cancer Immunol Immunother. 2014;63:571-80 pubmed
  1287. Takei S, Omoto C, Kitagawa K, Morishita N, Katayama T, Shigemura K, et al. Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV-NS3-specific systemic immune response in mice. Vaccine. 2014;32:3066-74 pubmed 出版商
  1288. Kawai Y, Ouchida R, Yamasaki S, Dragone L, Tsubata T, Wang J. LAPTM5 promotes lysosomal degradation of intracellular CD3? but not of cell surface CD3?. Immunol Cell Biol. 2014;92:527-34 pubmed 出版商
  1289. León B, Bradley J, Lund F, Randall T, Ballesteros Tato A. FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat Commun. 2014;5:3495 pubmed 出版商
  1290. Li J, Arévalo M, Chen Y, Posadas O, Smith J, Zeng M. Intranasal immunization with influenza antigens conjugated with cholera toxin subunit B stimulates broad spectrum immunity against influenza viruses. Hum Vaccin Immunother. 2014;10:1211-20 pubmed 出版商
  1291. Yan J, Villarreal D, Racine T, Chu J, Walters J, Morrow M, et al. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine. 2014;32:2833-42 pubmed 出版商
  1292. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  1293. Hirayama T, Asano Y, Iida H, Watanabe T, Nakamura T, Goitsuka R. Meis1 is required for the maintenance of postnatal thymic epithelial cells. PLoS ONE. 2014;9:e89885 pubmed 出版商
  1294. Martins K, Steffens J, Van Tongeren S, Wells J, Bergeron A, Dickson S, et al. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS ONE. 2014;9:e89735 pubmed 出版商
  1295. Vanoaica L, Richman L, Jaworski M, Darshan D, Luther S, Kühn L. Conditional deletion of ferritin h in mice reduces B and T lymphocyte populations. PLoS ONE. 2014;9:e89270 pubmed 出版商
  1296. Okada T, Nitta T, Kaji K, Takashima A, Oda H, Tamehiro N, et al. Differential function of Themis CABIT domains during T cell development. PLoS ONE. 2014;9:e89115 pubmed 出版商
  1297. Chognard G, Bellemare L, Pelletier A, Domínguez Punaro M, Beauchamp C, Guyon M, et al. The dichotomous pattern of IL-12r and IL-23R expression elucidates the role of IL-12 and IL-23 in inflammation. PLoS ONE. 2014;9:e89092 pubmed 出版商
  1298. Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, et al. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun. 2014;5:3393 pubmed 出版商
  1299. Lee J, Walsh M, Hoehn K, James D, Wherry E, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-9 pubmed 出版商
  1300. Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10:e1003885 pubmed 出版商
  1301. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  1302. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  1303. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  1304. Xia S, Wei J, Wang J, Sun H, Zheng W, Li Y, et al. A requirement of dendritic cell-derived interleukin-27 for the tumor infiltration of regulatory T cells. J Leukoc Biol. 2014;95:733-742 pubmed
  1305. Brenndörfer E, Brass A, Karthe J, Ahlen G, Bode J, Sallberg M. Cleavage of the T cell protein tyrosine phosphatase by the hepatitis C virus nonstructural 3/4A protease induces a Th1 to Th2 shift reversible by ribavirin therapy. J Immunol. 2014;192:1671-80 pubmed 出版商
  1306. Gaughan A, Wang J, Pelletier R, Nadasdy T, Brodsky S, Roy S, et al. Key role for CD4 T cells during mixed antibody-mediated rejection of renal allografts. Am J Transplant. 2014;14:284-94 pubmed 出版商
  1307. Xiong H, Maraver A, Latkowski J, Henderson T, Schlessinger K, Ding Y, et al. Characterization of two distinct lymphoproliferative diseases caused by ectopic expression of the Notch ligand DLL4 on T cells. PLoS ONE. 2013;8:e84841 pubmed 出版商
  1308. Hu Y, Xiao H, Shi T, Oppenheim J, Chen X. Progranulin promotes tumour necrosis factor-induced proliferation of suppressive mouse CD4? Foxp3? regulatory T cells. Immunology. 2014;142:193-201 pubmed 出版商
  1309. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  1310. Qu S, Ou Yang H, He Y, Li Z, Shi J, Song L, et al. Der p2 recombinant bacille Calmette-Guerin priming of bone marrow-derived dendritic cells suppresses Der p2-induced T helper17 function in a mouse model of asthma. Respirology. 2014;19:122-31 pubmed 出版商
  1311. Saligrama N, Case L, Krementsov D, Teuscher C. Histamine H₂ receptor signaling × environment interactions determine susceptibility to experimental allergic encephalomyelitis. FASEB J. 2014;28:1898-909 pubmed 出版商
  1312. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  1313. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  1314. Kim H, Lee H, Chang Y, Pichavant M, Shore S, Fitzgerald K, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54-61 pubmed 出版商
  1315. Salem H, Trojanowski B, Fiedler K, Maier H, Schirmbeck R, Wagner M, et al. Long-term IKK2/NF-?B signaling in pancreatic ?-cells induces immune-mediated diabetes. Diabetes. 2014;63:960-75 pubmed 出版商
  1316. Murphy K, Erickson J, Johnson C, Seiler C, Bedi J, Hu P, et al. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol. 2014;192:224-33 pubmed 出版商
  1317. Gujar S, Clements D, Dielschneider R, Helson E, Marcato P, Lee P. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer. 2014;110:83-93 pubmed 出版商
  1318. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  1319. Lee P, Puppi M, Schluns K, Yu Lee L, Dong C, Lacorazza H. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. J Immunol. 2014;192:178-88 pubmed 出版商
  1320. Rudell J, Borges L, Rudell J, Beck K, Ferns M. Determinants in the ? and ? subunit cytoplasmic loop regulate Golgi trafficking and surface expression of the muscle acetylcholine receptor. J Biol Chem. 2014;289:203-14 pubmed 出版商
  1321. Fu G, Casas J, Rigaud S, Rybakin V, Lambolez F, Brzostek J, et al. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature. 2013;504:441-5 pubmed 出版商
  1322. Diaz de Durana Y, Lau J, Knee D, Filippi C, Londei M, McNamara P, et al. IL-2 immunotherapy reveals potential for innate beta cell regeneration in the non-obese diabetic mouse model of autoimmune diabetes. PLoS ONE. 2013;8:e78483 pubmed 出版商
  1323. Griffiths K, Stylianou E, Poyntz H, Betts G, Fletcher H, McShane H. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS ONE. 2013;8:e78312 pubmed 出版商
  1324. Moriya T, Fukatsu K, Noguchi M, Okamoto K, Murakoshi S, Saitoh D, et al. Intravenous administration of high-dose Paclitaxel reduces gut-associated lymphoid tissue cell number and respiratory immunoglobulin A concentrations in mice. Surg Infect (Larchmt). 2014;15:50-7 pubmed 出版商
  1325. Schmitt E, Haribhai D, Jeschke J, Co D, Ziegelbauer J, Yan K, et al. Chronic follicular bronchiolitis requires antigen-specific regulatory T cell control to prevent fatal disease progression. J Immunol. 2013;191:5460-76 pubmed 出版商
  1326. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  1327. Brunner S, Schiechl G, Kesselring R, Martin M, Balam S, Schlitt H, et al. IL-13 signaling via IL-13R?2 triggers TGF-?1-dependent allograft fibrosis. Transplant Res. 2013;2:16 pubmed 出版商
  1328. Weng T, Huang S, Yen M, Lin C, Chen Y, Lin C, et al. A novel cancer therapeutic using thrombospondin 1 in dendritic cells. Mol Ther. 2014;22:292-302 pubmed 出版商
  1329. Salinas N, Olguín J, Castellanos C, Saavedra R. T cell suppression in vitro during Toxoplasma gondii infection is the result of IL-2 competition between Tregs and T cells leading to death of proliferating T cells. Scand J Immunol. 2014;79:1-11 pubmed 出版商
  1330. Chopra M, Lang I, Salzmann S, Pachel C, Kraus S, Bäuerlein C, et al. Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1. PLoS ONE. 2013;8:e75737 pubmed 出版商
  1331. McPhee C, Bubier J, Sproule T, Park G, Steinbuck M, Schott W, et al. IL-21 is a double-edged sword in the systemic lupus erythematosus-like disease of BXSB.Yaa mice. J Immunol. 2013;191:4581-8 pubmed 出版商
  1332. Nussbaum J, Van Dyken S, von Moltke J, Cheng L, Mohapatra A, Molofsky A, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245-8 pubmed 出版商
  1333. Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Sakamoto C, et al. Inactivation of tumor-specific CD8? CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol. 2013;91:545-55 pubmed 出版商
  1334. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  1335. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  1336. Fuertbauer E, Zaujec J, Uhrin P, Raab I, Weber M, Schachner H, et al. Thymic medullar conduits-associated podoplanin promotes natural regulatory T cells. Immunol Lett. 2013;154:31-41 pubmed 出版商
  1337. Sumitomo S, Fujio K, Okamura T, Morita K, Ishigaki K, Suzukawa K, et al. Transcription factor early growth response 3 is associated with the TGF-?1 expression and the regulatory activity of CD4-positive T cells in vivo. J Immunol. 2013;191:2351-9 pubmed 出版商
  1338. Krementsov D, Wall E, Martin R, Subramanian M, Noubade R, del Rio R, et al. Histamine H(3) receptor integrates peripheral inflammatory signals in the neurogenic control of immune responses and autoimmune disease susceptibility. PLoS ONE. 2013;8:e62743 pubmed 出版商
  1339. Pioli P, Dahlem T, Weis J, Weis J. Deletion of Snai2 and Snai3 results in impaired physical development compounded by lymphocyte deficiency. PLoS ONE. 2013;8:e69216 pubmed 出版商
  1340. Saligrama N, Case L, del Rio R, Noubade R, Teuscher C. Systemic lack of canonical histamine receptor signaling results in increased resistance to autoimmune encephalomyelitis. J Immunol. 2013;191:614-22 pubmed 出版商
  1341. Qiao G, Zhao Y, Li Z, Tang P, Langdon W, Yang T, et al. T cell activation threshold regulated by E3 ubiquitin ligase Cbl-b determines fate of inducible regulatory T cells. J Immunol. 2013;191:632-9 pubmed 出版商
  1342. Redecke V, Wu R, Zhou J, Finkelstein D, Chaturvedi V, High A, et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods. 2013;10:795-803 pubmed 出版商
  1343. Lahiji A, Kucerova Levisohn M, Lovett J, Holmes R, Zuniga Pflucker J, Ortiz B. Complete TCR-? gene locus control region activity in T cells derived in vitro from embryonic stem cells. J Immunol. 2013;191:472-9 pubmed 出版商
  1344. Cravens P, Kieseier B, Hussain R, Herndon E, Arellano B, Ben L, et al. The neonatal CNS is not conducive for encephalitogenic Th1 T cells and B cells during experimental autoimmune encephalomyelitis. J Neuroinflammation. 2013;10:67 pubmed 出版商
  1345. Barron L, Smith A, El Kasmi K, Qualls J, Huang X, Cheever A, et al. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS ONE. 2013;8:e61961 pubmed 出版商
  1346. Clarke R, Yzaguirre A, Yashiro Ohtani Y, Bondue A, Blanpain C, Pear W, et al. The expression of Sox17 identifies and regulates haemogenic endothelium. Nat Cell Biol. 2013;15:502-10 pubmed 出版商
  1347. Chaimowitz N, Falanga Y, Ryan J, Conrad D. Fyn kinase is required for optimal humoral responses. PLoS ONE. 2013;8:e60640 pubmed 出版商
  1348. Billich A, Baumruker T, Beerli C, Bigaud M, Bruns C, Calzascia T, et al. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis. PLoS ONE. 2013;8:e59630 pubmed 出版商
  1349. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  1350. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  1351. Toker A, Engelbert D, Garg G, Polansky J, Floess S, Miyao T, et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol. 2013;190:3180-8 pubmed 出版商
  1352. Khan O, Akula M, Skålén K, Karlsson C, Ståhlman M, Young S, et al. Targeting GGTase-I activates RHOA, increases macrophage reverse cholesterol transport, and reduces atherosclerosis in mice. Circulation. 2013;127:782-90 pubmed 出版商
  1353. Kipari T, Hadoke P, Iqbal J, Man T, Miller E, Coutinho A, et al. 11?-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis. FASEB J. 2013;27:1519-31 pubmed 出版商
  1354. Kłossowicz M, Scirka B, Suchanek J, Marek Bukowiec K, Kisielow P, Aguado E, et al. Assessment of caspase mediated degradation of linker for activation of T cells (LAT) at a single cell level. J Immunol Methods. 2013;389:9-17 pubmed 出版商
  1355. Mathew R, Seiler M, Scanlon S, Mao A, Constantinides M, Bertozzi Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618-21 pubmed 出版商
  1356. Powell N, Walker A, Stolarczyk E, Canavan J, Gökmen M, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674-84 pubmed 出版商
  1357. Yassai M, Cooley B, Gorski J. Developmental dynamics of post-selection thymic DN iNKT. PLoS ONE. 2012;7:e43509 pubmed 出版商
  1358. Uto Konomi A, Miyauchi K, Ozaki N, Motomura Y, Suzuki Y, Yoshimura A, et al. Dysregulation of suppressor of cytokine signaling 3 in keratinocytes causes skin inflammation mediated by interleukin-20 receptor-related cytokines. PLoS ONE. 2012;7:e40343 pubmed 出版商
  1359. Saligrama N, Noubade R, Case L, del Rio R, Teuscher C. Combinatorial roles for histamine H1-H2 and H3-H4 receptors in autoimmune inflammatory disease of the central nervous system. Eur J Immunol. 2012;42:1536-46 pubmed 出版商
  1360. Atkinson S, Usher P, Kvist P, Markholst H, Haase C, Nansen A. Establishment and characterization of a sustained delayed-type hypersensitivity model with arthritic manifestations in C57BL/6J mice. Arthritis Res Ther. 2012;14:R134 pubmed 出版商
  1361. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  1362. Golias J, Schwarzer M, Wallner M, Kverka M, Kozakova H, Srůtková D, et al. Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS ONE. 2012;7:e37156 pubmed 出版商
  1363. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  1364. Chevrier S, Genton C, Malissen B, Malissen M, Acha Orbea H. Dominant Role of CD80-CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LAT(Y136F) CD4(+) T Cells. Front Immunol. 2012;3:27 pubmed 出版商
  1365. Uchiyama M, Jin X, Zhang Q, Hirai T, Amano A, Bashuda H, et al. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells. J Cardiothorac Surg. 2012;7:26 pubmed 出版商
  1366. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney N, Schuijs M, et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7:e32371 pubmed 出版商
  1367. Kyaw T, Tay C, Hosseini H, Kanellakis P, Gadowski T, Mackay F, et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLoS ONE. 2012;7:e29371 pubmed 出版商
  1368. Blankenhorn E, Butterfield R, Case L, Wall E, del Rio R, DIEHL S, et al. Genetics of experimental allergic encephalomyelitis supports the role of T helper cells in multiple sclerosis pathogenesis. Ann Neurol. 2011;70:887-96 pubmed 出版商
  1369. del Rio R, Noubade R, Saligrama N, Wall E, Krementsov D, Poynter M, et al. Histamine H4 receptor optimizes T regulatory cell frequency and facilitates anti-inflammatory responses within the central nervous system. J Immunol. 2012;188:541-7 pubmed 出版商
  1370. Liang H, Reinhardt R, Bando J, Sullivan B, Ho I, Locksley R. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol. 2011;13:58-66 pubmed 出版商
  1371. Salti S, Hammelev E, Grewal J, Reddy S, Zemple S, Grossman W, et al. Granzyme B regulates antiviral CD8+ T cell responses. J Immunol. 2011;187:6301-9 pubmed 出版商
  1372. Badeaux A, Yang Y, Cardenas K, Vemulapalli V, Chen K, Kusewitt D, et al. Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J Biol Chem. 2012;287:429-37 pubmed 出版商
  1373. Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, et al. T cell factor 1 regulates thymocyte survival via a RORγt-dependent pathway. J Immunol. 2011;187:5964-73 pubmed 出版商
  1374. McPhee C, Sproule T, Shin D, Bubier J, Schott W, Steinbuck M, et al. MHC class I family proteins retard systemic lupus erythematosus autoimmunity and B cell lymphomagenesis. J Immunol. 2011;187:4695-704 pubmed 出版商
  1375. Galand C, Donnou S, Crozet L, Brunet S, Touitou V, Ouakrim H, et al. Th17 cells are involved in the local control of tumor progression in primary intraocular lymphoma. PLoS ONE. 2011;6:e24622 pubmed 出版商
  1376. Suliman S, Tan J, Xu K, Kousis P, Kowalski P, Chang G, et al. Notch3 is dispensable for thymocyte ?-selection and Notch1-induced T cell leukemogenesis. PLoS ONE. 2011;6:e24937 pubmed 出版商
  1377. Bunnell T, Burbach B, Shimizu Y, Ervasti J. ?-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell. 2011;22:4047-58 pubmed 出版商
  1378. Yan S, Wang L, Liu N, Wang Y, Chu Y. Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol Cell Biol. 2012;90:421-8 pubmed 出版商
  1379. Tousif S, Singh Y, Prasad D, Sharma P, Van Kaer L, Das G. T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS ONE. 2011;6:e19864 pubmed 出版商
  1380. Mota B, Gallardo Romero N, Trindade G, Keckler M, Karem K, Carroll D, et al. Adverse events post smallpox-vaccination: insights from tail scarification infection in mice with Vaccinia virus. PLoS ONE. 2011;6:e18924 pubmed 出版商
  1381. Valentino M, Maben Z, Hensley L, Woolard M, Kawula T, Frelinger J, et al. Identification of T-cell epitopes in Francisella tularensis using an ordered protein array of serological targets. Immunology. 2011;132:348-60 pubmed 出版商
  1382. Gibbert K, Dietze K, Zelinskyy G, Lang K, Barchet W, Kirschning C, et al. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. J Immunol. 2010;185:6179-89 pubmed 出版商
  1383. Mandal M, Marzouk A, Donnelly R, Ponzio N. Maternal immune stimulation during pregnancy affects adaptive immunity in offspring to promote development of TH17 cells. Brain Behav Immun. 2011;25:863-71 pubmed 出版商
  1384. Mohr C, Arapovic J, Mühlbach H, Panzer M, Weyn A, Dölken L, et al. A spread-deficient cytomegalovirus for assessment of first-target cells in vaccination. J Virol. 2010;84:7730-42 pubmed 出版商
  1385. Coffey F, Manser T. Expression of cellular FLIP by B cells is required for their participation in an immune response. J Immunol. 2010;184:4871-9 pubmed 出版商
  1386. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  1387. Kim S, Prout M, Ramshaw H, Lopez A, LeGros G, Min B. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J Immunol. 2010;184:1143-7 pubmed 出版商
  1388. Schuhmann M, Stegner D, Berna Erro A, Bittner S, Braun A, Kleinschnitz C, et al. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol. 2010;184:1536-42 pubmed 出版商
  1389. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  1390. Brucklacher Waldert V, Steinbach K, Lioznov M, Kolster M, Holscher C, Tolosa E. Phenotypical characterization of human Th17 cells unambiguously identified by surface IL-17A expression. J Immunol. 2009;183:5494-501 pubmed 出版商
  1391. Guibal F, Alberich Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A, et al. Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood. 2009;114:5415-25 pubmed 出版商
  1392. Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ruegg C, Christofori G. Myeloid cells contribute to tumor lymphangiogenesis. PLoS ONE. 2009;4:e7067 pubmed 出版商
  1393. Wu S, Rhee K, Albesiano E, RABIZADEH S, Wu X, Yen H, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016-22 pubmed 出版商
  1394. Garidou L, Heydari S, Truong P, Brooks D, McGavern D. Therapeutic memory T cells require costimulation for effective clearance of a persistent viral infection. J Virol. 2009;83:8905-15 pubmed 出版商
  1395. Ellestad K, Tsutsui S, Noorbakhsh F, Warren K, Yong V, Pittman Q, et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol. 2009;183:298-309 pubmed 出版商
  1396. Schaeffer M, Han S, Chtanova T, van Dooren G, Herzmark P, Chen Y, et al. Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. J Immunol. 2009;182:6379-93 pubmed 出版商
  1397. Moon J, Chu H, Hataye J, Pagán A, Pepper M, McLachlan J, et al. Tracking epitope-specific T cells. Nat Protoc. 2009;4:565-81 pubmed 出版商
  1398. Tseng K, Chung C, H ng W, Wang S. Early infection termination affects number of CD8+ memory T cells and protective capacities in listeria monocytogenes-infected mice upon rechallenge. J Immunol. 2009;182:4590-600 pubmed 出版商
  1399. Rogers N, Lees M, Gabriel L, Maniati E, Rose S, Potter P, et al. A defect in Marco expression contributes to systemic lupus erythematosus development via failure to clear apoptotic cells. J Immunol. 2009;182:1982-90 pubmed 出版商
  1400. Schartner J, Singh A, Dahlberg P, Nettenstrom L, Seroogy C. Recurrent superantigen exposure in vivo leads to highly suppressive CD4+CD25+ and CD4+CD25- T cells with anergic and suppressive genetic signatures. Clin Exp Immunol. 2009;155:348-56 pubmed 出版商
  1401. Kanwar N, Fayyazi A, Backofen B, Nitsche M, Dressel R, von Mollard G. Thymic alterations in mice deficient for the SNARE protein VAMP8/endobrevin. Cell Tissue Res. 2008;334:227-42 pubmed 出版商
  1402. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol. 2008;181:3933-46 pubmed
  1403. Barron L, Knoechel B, Lohr J, Abbas A. Cutting edge: contributions of apoptosis and anergy to systemic T cell tolerance. J Immunol. 2008;180:2762-6 pubmed
  1404. Mochimaru H, Usui T, Yaguchi T, Nagahama Y, Hasegawa G, Usui Y, et al. Suppression of alkali burn-induced corneal neovascularization by dendritic cell vaccination targeting VEGF receptor 2. Invest Ophthalmol Vis Sci. 2008;49:2172-7 pubmed 出版商
  1405. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  1406. King S, Knorn A, Ohnmacht C, Voehringer D. Accumulation of effector CD4 T cells during type 2 immune responses is negatively regulated by Stat6. J Immunol. 2008;180:754-63 pubmed
  1407. Park S, Han Y, Aleyas A, George J, Yoon H, Lee J, et al. Low-dose antigen-experienced CD4+ T cells display reduced clonal expansion but facilitate an effective memory pool in response to secondary exposure. Immunology. 2008;123:426-37 pubmed
  1408. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  1409. Peng J, Kitchen S, West R, Sigler R, Eisenmann K, Alberts A. Myeloproliferative defects following targeting of the Drf1 gene encoding the mammalian diaphanous related formin mDia1. Cancer Res. 2007;67:7565-71 pubmed
  1410. Chen X, Vodanovic Jankovic S, Johnson B, Keller M, Komorowski R, Drobyski W. Absence of regulatory T-cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood. 2007;110:3804-13 pubmed
  1411. Moulton R, Mashruwala M, Smith A, Lindsey D, Wetsel R, Haviland D, et al. Complement C5a anaphylatoxin is an innate determinant of dendritic cell-induced Th1 immunity to Mycobacterium bovis BCG infection in mice. J Leukoc Biol. 2007;82:956-67 pubmed
  1412. Bliss S, Bliss S, Beiting D, Alcaraz A, Appleton J. IL-10 regulates movement of intestinally derived CD4+ T cells to the liver. J Immunol. 2007;178:7974-83 pubmed
  1413. Walsh C, Smith P, Fallon P. Role for CTLA-4 but not CD25+ T cells during Schistosoma mansoni infection of mice. Parasite Immunol. 2007;29:293-308 pubmed
  1414. Zoja C, Casiraghi F, Conti S, Corna D, Rottoli D, Cavinato R, et al. Cyclin-dependent kinase inhibition limits glomerulonephritis and extends lifespan of mice with systemic lupus. Arthritis Rheum. 2007;56:1629-37 pubmed
  1415. Reese T, Liang H, Tager A, Luster A, Van Rooijen N, Voehringer D, et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92-6 pubmed
  1416. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225-32 pubmed
  1417. Taylor R, Patel S, Lin E, Butler B, Lake J, Newberry R, et al. Lymphotoxin-independent expression of TNF-related activation-induced cytokine by stromal cells in cryptopatches, isolated lymphoid follicles, and Peyer's patches. J Immunol. 2007;178:5659-67 pubmed
  1418. MacKenzie D, Schartner J, Lin J, Timmel A, Jennens Clough M, Fathman C, et al. GRAIL is up-regulated in CD4+ CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J Biol Chem. 2007;282:9696-702 pubmed
  1419. de Jersey J, Snelgrove S, Palmer S, Teteris S, Mullbacher A, Miller J, et al. Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2007;104:1295-300 pubmed
  1420. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A. 2007;81:652-62 pubmed
  1421. Taylor P, Tsoni S, Willment J, Dennehy K, Rosas M, Findon H, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31-8 pubmed
  1422. Chang S, Wang K, Lu Y, Yang L, Chen W, Lin Y, et al. Characterization of early gamma interferon (IFN-gamma) expression during murine listeriosis: identification of NK1.1+ CD11c+ cells as the primary IFN-gamma-expressing cells. Infect Immun. 2007;75:1167-76 pubmed
  1423. Chen B, Deoliveira D, Cui X, Le N, Son J, Whitesides J, et al. Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse. Blood. 2007;109:3115-23 pubmed
  1424. Yang Z, Day Y, Toufektsian M, Xu Y, Ramos S, Marshall M, et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation. 2006;114:2056-64 pubmed
  1425. Gebe J, Unrath K, Falk B, Ito K, Wen L, Daniels T, et al. Age-dependent loss of tolerance to an immunodominant epitope of glutamic acid decarboxylase in diabetic-prone RIP-B7/DR4 mice. Clin Immunol. 2006;121:294-304 pubmed
  1426. Cassan C, Piaggio E, Zappulla J, Mars L, Couturier N, Bucciarelli F, et al. Pertussis toxin reduces the number of splenic Foxp3+ regulatory T cells. J Immunol. 2006;177:1552-60 pubmed
  1427. Hu H, Wang B, Borde M, Nardone J, Maika S, Allred L, et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol. 2006;7:819-26 pubmed
  1428. Irie J, Wu Y, Wicker L, Rainbow D, Nalesnik M, Hirsch R, et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med. 2006;203:1209-19 pubmed
  1429. Fallon P, Ballantyne S, Mangan N, Barlow J, Dasvarma A, Hewett D, et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med. 2006;203:1105-16 pubmed
  1430. Day Y, Huang L, Ye H, Li L, Linden J, Okusa M. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol. 2006;176:3108-14 pubmed
  1431. Luci C, Hervouet C, Rousseau D, Holmgren J, Czerkinsky C, Anjuere F. Dendritic cell-mediated induction of mucosal cytotoxic responses following intravaginal immunization with the nontoxic B subunit of cholera toxin. J Immunol. 2006;176:2749-57 pubmed
  1432. Zhang J, Raper A, Sugita N, Hingorani R, Salio M, Palmowski M, et al. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood. 2006;107:3600-8 pubmed
  1433. Fukatsu K, Sakamoto S, Hara E, Ueno C, Maeshima Y, Matsumoto I, et al. Gut ischemia-reperfusion affects gut mucosal immunity: a possible mechanism for infectious complications after severe surgical insults. Crit Care Med. 2006;34:182-7 pubmed
  1434. Mangan N, Van Rooijen N, McKenzie A, Fallon P. Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J Immunol. 2006;176:138-47 pubmed
  1435. Grisaru D, Pick M, Perry C, Sklan E, Almog R, Goldberg I, et al. Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses. J Immunol. 2006;176:27-35 pubmed
  1436. Gupta R, Karpatkin S, Basch R. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood. 2006;107:1837-46 pubmed
  1437. Krieg C, Han P, Stone R, Goularte O, Kaye J. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol. 2005;175:6420-7 pubmed
  1438. Lu M, Tayu R, Ikawa T, Masuda K, Matsumoto I, Mugishima H, et al. The earliest thymic progenitors in adults are restricted to T, NK, and dendritic cell lineage and have a potential to form more diverse TCRbeta chains than fetal progenitors. J Immunol. 2005;175:5848-56 pubmed
  1439. Garcia Ojeda M, Dejbakhsh Jones S, Chatterjea Matthes D, Mukhopadhyay A, BitMansour A, Weissman I, et al. Stepwise development of committed progenitors in the bone marrow that generate functional T cells in the absence of the thymus. J Immunol. 2005;175:4363-73 pubmed
  1440. Koyama K. Dendritic cell expansion occurs in mesenteric lymph nodes of B10.BR mice infected with the murine nematode parasite Trichuris muris. Parasitol Res. 2005;97:186-90 pubmed
  1441. Tivol E, Komorowski R, Drobyski W. Emergent autoimmunity in graft-versus-host disease. Blood. 2005;105:4885-91 pubmed
  1442. Hoffmann P, Kench J, Vondracek A, Kruk E, Daleke D, Jordan M, et al. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol. 2005;174:1393-404 pubmed
  1443. Mischenko V, Kapina M, Eruslanov E, Kondratieva E, Lyadova I, Young D, et al. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J Infect Dis. 2004;190:2137-45 pubmed
  1444. Mangan N, Fallon R, Smith P, Van Rooijen N, McKenzie A, Fallon P. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol. 2004;173:6346-56 pubmed
  1445. Zheng S, Jiang J, Shen H, Chen Y. Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J Immunol. 2004;173:5652-8 pubmed
  1446. Koschmieder S, Gottgens B, Zhang P, Iwasaki Arai J, Akashi K, Kutok J, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood. 2005;105:324-34 pubmed
  1447. Smith P, Walsh C, Mangan N, Fallon R, Sayers J, McKenzie A, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages. J Immunol. 2004;173:1240-8 pubmed
  1448. Apostolaki M, Williams N. Nasal delivery of antigen with the B subunit of Escherichia coli heat-labile enterotoxin augments antigen-specific T-cell clonal expansion and differentiation. Infect Immun. 2004;72:4072-80 pubmed
  1449. Seroogy C, Soares L, Ranheim E, Su L, Holness C, Bloom D, et al. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J Immunol. 2004;173:79-85 pubmed
  1450. Selleri L, DiMartino J, van Deursen J, Brendolan A, Sanyal M, Boon E, et al. The TALE homeodomain protein Pbx2 is not essential for development and long-term survival. Mol Cell Biol. 2004;24:5324-31 pubmed
  1451. Hequet O, Vocanson M, Saint Mezard P, Kaiserlian D, Nicolas J, Berard F. CD4+ T cells prevent skin autoimmunity during chronic autologous graft-versus-host-disease. Am J Transplant. 2004;4:872-8 pubmed
  1452. Yuan Y, Shen H, Franklin D, Scadden D, Cheng T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol. 2004;6:436-42 pubmed
  1453. Cabarrocas J, Piaggio E, Zappulla J, Desbois S, Mars L, Lassmann H, et al. A transgenic mouse model for T-cell ignorance of a glial autoantigen. J Autoimmun. 2004;22:179-89 pubmed
  1454. Steptoe R, Stankovic S, Lopaticki S, Jones L, Harrison L, Morahan G. Persistence of recipient lymphocytes in NOD mice after irradiation and bone marrow transplantation. J Autoimmun. 2004;22:131-8 pubmed
  1455. Ishihara K, Sawa S, Ikushima H, Hirota S, Atsumi T, Kamimura D, et al. The point mutation of tyrosine 759 of the IL-6 family cytokine receptor gp130 synergizes with HTLV-1 pX in promoting rheumatoid arthritis-like arthritis. Int Immunol. 2004;16:455-65 pubmed
  1456. Chen B, Cui X, Sempowski G, Domen J, Chao N. Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood. 2004;103:4344-52 pubmed
  1457. Eruslanov E, Majorov K, Orlova M, Mischenko V, Kondratieva T, Apt A, et al. Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge. Clin Exp Immunol. 2004;135:19-28 pubmed
  1458. Sun J, Alison Stalls M, Thompson K, Fisher Van Houten N. Cell cycle block in anergic T cells during tolerance induction. Cell Immunol. 2003;225:33-41 pubmed
  1459. Chen B, Cui X, Sempowski G, Chao N. Growth hormone accelerates immune recovery following allogeneic T-cell-depleted bone marrow transplantation in mice. Exp Hematol. 2003;31:953-8 pubmed
  1460. Maris C, Miller J, Altman J, Jacob J. A transgenic mouse model genetically tags all activated CD8 T cells. J Immunol. 2003;171:2393-401 pubmed
  1461. Lugering A, Kucharzik T, Soler D, Picarella D, Hudson J, Williams I. Lymphoid precursors in intestinal cryptopatches express CCR6 and undergo dysregulated development in the absence of CCR6. J Immunol. 2003;171:2208-15 pubmed
  1462. Germeraad W, Kawamoto H, Itoi M, Jiang Y, Amagai T, Katsura Y, et al. Development of thymic microenvironments in vitro is oxygen-dependent and requires permanent presence of T-cell progenitors. J Histochem Cytochem. 2003;51:1225-35 pubmed
  1463. Mendes da Cruz D, De Meis J, Cotta de Almeida V, Savino W. Experimental Trypanosoma cruzi infection alters the shaping of the central and peripheral T-cell repertoire. Microbes Infect. 2003;5:825-32 pubmed
  1464. Richards M, Liu F, Iwasaki H, Akashi K, Link D. Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood. 2003;102:3562-8 pubmed
  1465. Reading P, Smith G. A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol. 2003;84:1973-83 pubmed
  1466. Koyama K. NK1.1+ cell depletion in vivo fails to prevent protection against infection with the murine nematode parasite Trichuris muris. Parasite Immunol. 2002;24:527-33 pubmed
  1467. Egan P, Lawlor K, Alexander W, Wicks I. Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J Clin Invest. 2003;111:915-24 pubmed
  1468. Kawamoto H, Ohmura K, Fujimoto S, Lu M, Ikawa T, Katsura Y. Extensive proliferation of T cell lineage-restricted progenitors in the thymus: an essential process for clonal expression of diverse T cell receptor beta chains. Eur J Immunol. 2003;33:606-15 pubmed
  1469. Yamasaki M, Chujo H, Hirao A, Koyanagi N, Okamoto T, Tojo N, et al. Immunoglobulin and cytokine production from spleen lymphocytes is modulated in C57BL/6J mice by dietary cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid. J Nutr. 2003;133:784-8 pubmed
  1470. Shinkai K, Mohrs M, Locksley R. Helper T cells regulate type-2 innate immunity in vivo. Nature. 2002;420:825-9 pubmed
  1471. Angulo I, Jiménez Díaz M, García Bustos J, Gargallo D, de las Heras F, Muñoz Fernández M, et al. Candida albicans infection enhances immunosuppression induced by cyclophosphamide by selective priming of suppressive myeloid progenitors for NO production. Cell Immunol. 2002;218:46-58 pubmed
  1472. Culley F, Pollott J, Openshaw P. Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood. J Exp Med. 2002;196:1381-6 pubmed
  1473. Hsu S, Wu C, Han J, Lai M. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood. 2003;101:970-6 pubmed
  1474. Carrithers M, Visintin I, Viret C, Janeway C. Role of genetic background in P selectin-dependent immune surveillance of the central nervous system. J Neuroimmunol. 2002;129:51-7 pubmed
  1475. Yu C, Feng M, Shih H, Lai M. Increased p300 expression inhibits glucocorticoid receptor-T-cell receptor antagonism but does not affect thymocyte positive selection. Mol Cell Biol. 2002;22:4556-66 pubmed
  1476. Carter R, Campbell I, O Donnel K, Wicks I. Vascular cell adhesion molecule-1 (VCAM-1) blockade in collagen-induced arthritis reduces joint involvement and alters B cell trafficking. Clin Exp Immunol. 2002;128:44-51 pubmed
  1477. Roach D, Bean A, Demangel C, France M, Briscoe H, Britton W. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol. 2002;168:4620-7 pubmed
  1478. Pan L, Hanrahan J, Li J, Hale L, Zhuang Y. An analysis of T cell intrinsic roles of E2A by conditional gene disruption in the thymus. J Immunol. 2002;168:3923-32 pubmed
  1479. Xu H, Wipasa J, Yan H, Zeng M, Makobongo M, Finkelman F, et al. The mechanism and significance of deletion of parasite-specific CD4(+) T cells in malaria infection. J Exp Med. 2002;195:881-92 pubmed
  1480. Chen Y, Ma Y, Chen Y. Roles of cytotoxic T-lymphocyte-associated antigen-4 in the inductive phase of oral tolerance. Immunology. 2002;105:171-80 pubmed
  1481. Chen B, Cui X, Sempowski G, Gooding M, Liu C, Haynes B, et al. A comparison of murine T-cell-depleted adult bone marrow and full-term fetal blood cells in hematopoietic engraftment and immune reconstitution. Blood. 2002;99:364-71 pubmed
  1482. Kovalev G, Franklin D, Coffield V, Xiong Y, Su L. An important role of CDK inhibitor p18(INK4c) in modulating antigen receptor-mediated T cell proliferation. J Immunol. 2001;167:3285-92 pubmed
  1483. Tourneur L, Malassagne B, Batteux F, Fabre M, Mistou S, Lallemand E, et al. Transgenic expression of CD95 ligand on thyroid follicular cells confers immune privilege upon thyroid allografts. J Immunol. 2001;167:1338-46 pubmed
  1484. Roach D, Martin E, Bean A, Rennick D, Briscoe H, Britton W. Endogenous inhibition of antimycobacterial immunity by IL-10 varies between mycobacterial species. Scand J Immunol. 2001;54:163-70 pubmed
  1485. Campbell I, O DONNELL K, Lawlor K, Wicks I. Severe inflammatory arthritis and lymphadenopathy in the absence of TNF. J Clin Invest. 2001;107:1519-27 pubmed
  1486. Zhang J, Kabra N, Cado D, Kang C, Winoto A. FADD-deficient T cells exhibit a disaccord in regulation of the cell cycle machinery. J Biol Chem. 2001;276:29815-8 pubmed
  1487. Radoja S, Saio M, Frey A. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol. 2001;166:6074-83 pubmed
  1488. Farrar J, Ouyang W, Lohning M, Assenmacher M, Radbruch A, Kanagawa O, et al. An instructive component in T helper cell type 2 (Th2) development mediated by GATA-3. J Exp Med. 2001;193:643-50 pubmed
  1489. Leite De Moraes M, Hameg A, Pacilio M, Koezuka Y, Taniguchi M, van Kaer L, et al. IL-18 enhances IL-4 production by ligand-activated NKT lymphocytes: a pro-Th2 effect of IL-18 exerted through NKT cells. J Immunol. 2001;166:945-51 pubmed
  1490. Shimizu C, Kawamoto H, Yamashita M, Kimura M, Kondou E, Kaneko Y, et al. Progression of T cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. Int Immunol. 2001;13:105-17 pubmed
  1491. Izeradjene K, Revillard J, Genestier L. Inhibition of thymidine synthesis by folate analogues induces a Fas-Fas ligand-independent deletion of superantigen-reactive peripheral T cells. Int Immunol. 2001;13:85-93 pubmed
  1492. Chen B, Liu C, Cui X, Fidler J, Chao N. Prevention of graft-versus-host disease by a novel immunosuppressant, PG490-88, through inhibition of alloreactive T cell expansion. Transplantation. 2000;70:1442-7 pubmed
  1493. Panus J, McHeyzer Williams L, McHeyzer Williams M. Antigen-specific T helper cell function: differential cytokine expression in primary and memory responses. J Exp Med. 2000;192:1301-16 pubmed
  1494. Jelley Gibbs D, Lepak N, Yen M, Swain S. Two distinct stages in the transition from naive CD4 T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J Immunol. 2000;165:5017-26 pubmed
  1495. Martin P, del Hoyo G, Anjuere F, Ruiz S, Arias C, Marín A, et al. Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8alpha(-) and CD8alpha(+) dendritic cells are generated from CD4(low) lymphoid-committed precursors. Blood. 2000;96:2511-9 pubmed
  1496. Anjuere F, del Hoyo G, Martin P, Ardavin C. Langerhans cells develop from a lymphoid-committed precursor. Blood. 2000;96:1633-7 pubmed
  1497. Bauman S, Nichols K, Murphy J. Dendritic cells in the induction of protective and nonprotective anticryptococcal cell-mediated immune responses. J Immunol. 2000;165:158-67 pubmed
  1498. Feng C, Britton W, Palendira U, Groat N, Briscoe H, Bean A. Up-regulation of VCAM-1 and differential expansion of beta integrin-expressing T lymphocytes are associated with immunity to pulmonary Mycobacterium tuberculosis infection. J Immunol. 2000;164:4853-60 pubmed
  1499. de Oca R, Buendia A, Del Rio L, Sanchez J, Salinas J, Navarro J. Polymorphonuclear neutrophils are necessary for the recruitment of CD8(+) T cells in the liver in a pregnant mouse model of Chlamydophila abortus (Chlamydia psittaci serotype 1) infection. Infect Immun. 2000;68:1746-51 pubmed
  1500. Lepault F, Gagnerault M. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J Immunol. 2000;164:240-7 pubmed
  1501. Dejbakhsh Jones S, Strober S. Identification of an early T cell progenitor for a pathway of T cell maturation in the bone marrow. Proc Natl Acad Sci U S A. 1999;96:14493-8 pubmed
  1502. Ikawa T, Kawamoto H, Fujimoto S, Katsura Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med. 1999;190:1617-26 pubmed
  1503. Paz Miguel J, Flores R, Sanchez Velasco P, Ocejo Vinyals G, Escribano de Diego J, López de Rego J, et al. Reactive oxygen intermediates during programmed cell death induced in the thymus of the Ts(1716)65Dn mouse, a murine model for human Down's syndrome. J Immunol. 1999;163:5399-410 pubmed
  1504. Ohmura K, Kawamoto H, Fujimoto S, Ozaki S, Nakao K, Katsura Y. Emergence of T, B, and myeloid lineage-committed as well as multipotent hemopoietic progenitors in the aorta-gonad-mesonephros region of day 10 fetuses of the mouse. J Immunol. 1999;163:4788-95 pubmed
  1505. Pan L, Sato S, Frederick J, Sun X, Zhuang Y. Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol Cell Biol. 1999;19:5969-80 pubmed
  1506. Penttilä J, Anttila M, Varkila K, Puolakkainen M, Sarvas M, Makela P, et al. Depletion of CD8+ cells abolishes memory in acquired immunity against Chlamydia pneumoniae in BALB/c mice. Immunology. 1999;97:490-6 pubmed
  1507. Rouleau M, Cottrez F, Bigler M, Antonenko S, Carballido J, Zlotnik A, et al. IL-10 transgenic mice present a defect in T cell development reminiscent of SCID patients. J Immunol. 1999;163:1420-7 pubmed
  1508. Inaba M, Kurasawa K, Mamura M, Kumano K, Saito Y, Iwamoto I. Primed T cells are more resistant to Fas-mediated activation-induced cell death than naive T cells. J Immunol. 1999;163:1315-20 pubmed
  1509. Masurier C, Pioche Durieu C, Colombo B, Lacave R, Lemoine F, Klatzmann D, et al. Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: implications for anti-tumoral cell therapy. Immunology. 1999;96:569-77 pubmed
  1510. Kawamoto H, Ohmura K, Fujimoto S, Katsura Y. Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J Immunol. 1999;162:2725-31 pubmed
  1511. Clark L, Appleby M, Brunkow M, Wilkinson J, Ziegler S, Ramsdell F. Cellular and molecular characterization of the scurfy mouse mutant. J Immunol. 1999;162:2546-54 pubmed
  1512. Sasaki T, Kanke Y, Kudoh K, Misawa Y, Shimizu J, Takita T. Effects of dietary docosahexaenoic acid on surface molecules involved in T cell proliferation. Biochim Biophys Acta. 1999;1436:519-30 pubmed
  1513. Timm J, Thoman M. Maturation of CD4+ lymphocytes in the aged microenvironment results in a memory-enriched population. J Immunol. 1999;162:711-7 pubmed
  1514. Batteux F, Tourneur L, Trebeden H, Charreire J, Chiocchia G. Gene therapy of experimental autoimmune thyroiditis by in vivo administration of plasmid DNA coding for Fas ligand. J Immunol. 1999;162:603-8 pubmed
  1515. Samoilova E, Horton J, Hilliard B, Liu T, Chen Y. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol. 1998;161:6480-6 pubmed
  1516. Bix M, Wang Z, Thiel B, Schork N, Locksley R. Genetic regulation of commitment to interleukin 4 production by a CD4(+) T cell-intrinsic mechanism. J Exp Med. 1998;188:2289-99 pubmed
  1517. Liu L, Rich B, Inobe J, Chen W, Weiner H. Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4+ T cells to secrete IL-4. Int Immunol. 1998;10:1017-26 pubmed
  1518. Ferrero I, Anjuere F, Azcoitia I, Renno T, MacDonald H, Ardavin C. Viral superantigen-induced negative selection of TCR transgenic CD4+ CD8+ thymocytes depends on activation, but not proliferation. Blood. 1998;91:4248-54 pubmed
  1519. Guttormsen H, Wetzler L, Finberg R, Kasper D. Immunologic memory induced by a glycoconjugate vaccine in a murine adoptive lymphocyte transfer model. Infect Immun. 1998;66:2026-32 pubmed
  1520. Contractor N, Bassiri H, Reya T, Park A, Baumgart D, Wasik M, et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol. 1998;160:385-94 pubmed
  1521. Salomon B, Cohen J, Masurier C, Klatzmann D. Three populations of mouse lymph node dendritic cells with different origins and dynamics. J Immunol. 1998;160:708-17 pubmed
  1522. Roark J, Park S, Jayawardena J, Kavita U, Shannon M, Bendelac A. CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J Immunol. 1998;160:3121-7 pubmed
  1523. Samoilova E, Horton J, Bassiri H, Zhang H, Linsley P, Carding S, et al. B7 blockade prevents activation-induced cell death of thymocytes. Int Immunol. 1997;9:1663-8 pubmed
  1524. Aiba Y, Hirayama F, Ogawa M. Clonal proliferation and cytokine requirement of murine progenitors for natural killer cells. Blood. 1997;89:4005-12 pubmed
  1525. Postel Vinay M, de Mello Coelho V, Gagnerault M, Dardenne M. Growth hormone stimulates the proliferation of activated mouse T lymphocytes. Endocrinology. 1997;138:1816-20 pubmed
  1526. Baxter A, Kinder S, Hammond K, Scollay R, Godfrey D. Association between alphabetaTCR+CD4-CD8- T-cell deficiency and IDDM in NOD/Lt mice. Diabetes. 1997;46:572-82 pubmed
  1527. Barrat F, Lesourd B, Louise A, Boulouis H, Vincent Naulleau S, Thibault D, et al. Surface antigen expression in spleen cells of C57B1/6 mice during ageing: influence of sex and parity. Clin Exp Immunol. 1997;107:593-600 pubmed
  1528. Lin K, Abraham K. Targets of p56(lck) activity in immature thymoblasts: stimulation of the Ras/Raf/MAPK pathway. Int Immunol. 1997;9:291-306 pubmed
  1529. Hattori N, Kawamoto H, Katsura Y. Isolation of the most immature population of murine fetal thymocytes that includes progenitors capable of generating T, B, and myeloid cells. J Exp Med. 1996;184:1901-8 pubmed
  1530. Moore T, von Freeden Jeffry U, Murray R, Zlotnik A. Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 -/- mice. J Immunol. 1996;157:2366-73 pubmed
  1531. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8:765-72 pubmed
  1532. Pear W, Aster J, Scott M, Hasserjian R, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183:2283-91 pubmed
  1533. Shimada A, Rohane P, Fathman C, Charlton B. Pathogenic and protective roles of CD45RB(low) CD4+ cells correlate with cytokine profiles in the spontaneously autoimmune diabetic mouse. Diabetes. 1996;45:71-8 pubmed
  1534. Dejbakhsh Jones S, Jerabek L, Weissman I, Strober S. Extrathymic maturation of alpha beta T cells from hemopoietic stem cells. J Immunol. 1995;155:3338-44 pubmed
  1535. Wadsworth S, Chang A, Hong M, Halvorson M, Otto S, Coligan J. Expression of a novel integrin beta 1 chain epitope and anti-beta 1 antibody-mediated enhancement of fibronectin binding are dependent on the stage of T cell differentiation. J Immunol. 1995;154:2125-33 pubmed
  1536. Godfrey D, Kennedy J, Mombaerts P, Tonegawa S, Zlotnik A. Onset of TCR-beta gene rearrangement and role of TCR-beta expression during CD3-CD4-CD8- thymocyte differentiation. J Immunol. 1994;152:4783-92 pubmed
  1537. Wu L, Scollay R, Egerton M, Pearse M, Spangrude G, Shortman K. CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature. 1991;349:71-4 pubmed
  1538. Schuyler M, Gott K, Shopp G, Crooks L. CD3+ and CD4+ cells adoptively transfer experimental hypersensitivity pneumonitis. Am Rev Respir Dis. 1992;146:1582-8 pubmed