这是一篇来自已证抗体库的有关小鼠 Cd44的综述,是根据661篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd44 抗体。
Cd44 同义词: AU023126; AW121933; AW146109; HERMES; Ly-24; Pgp-1

BioLegend
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s5b
  • 流式细胞仪; 小鼠; 1:1000; 图 s4c
BioLegend Cd44抗体(BioLegend, 103012)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s5b) 和 被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s4c). Nat Commun (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b, 6d
BioLegend Cd44抗体(BioLegend, 103012)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 6d). Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 1:200
BioLegend Cd44抗体(Biolegend, 103006)被用于被用于免疫组化在小鼠样本上浓度为1:200. elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:200; 图 3a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3a). Cancers (Basel) (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd44抗体(BioLegend, 103044)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). Sci Adv (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:800; 图 1f
BioLegend Cd44抗体(BioLegend, 103047)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1f). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在人类样本上. Theranostics (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在人类样本上. Int Immunopharmacol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:200; 图 s2c
BioLegend Cd44抗体(Biolegend, 103021)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s2c). Cancers (Basel) (2020) ncbi
大鼠 单克隆(IM7)
BioLegend Cd44抗体(BioLegend, IM7)被用于. Nature (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. BMC Immunol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 2s1
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2s1). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s18
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s18). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Sci Rep (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd44抗体(Biolegend, 103006)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Rep (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Cd44抗体(Biolegend, 103016)被用于被用于流式细胞仪在小鼠样本上 (图 3c). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2f
BioLegend Cd44抗体(Biolegend, 103059)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2f). elife (2020) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 图 2
BioLegend Cd44抗体(Biolegend, 203906)被用于被用于流式细胞仪在大鼠样本上 (图 2). Exp Ther Med (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e, 1j
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e, 1j). Sci Adv (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2s1b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2s1b). elife (2020) ncbi
大鼠 单克隆(IM7)
  • mass cytometry; 小鼠; 1:800; 图 s32a, s32c
BioLegend Cd44抗体(Biolegend, 103002)被用于被用于mass cytometry在小鼠样本上浓度为1:800 (图 s32a, s32c). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s9e
BioLegend Cd44抗体(Biolegend, 103005)被用于被用于流式细胞仪在小鼠样本上 (图 s9e). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Sci Adv (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e4d
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e4d). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Cd44抗体(Biolegend, 103028)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
BioLegend Cd44抗体(Biolegend, 103015)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1h
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Science (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Aging (Albany NY) (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a, 5a, 6a, s4b
BioLegend Cd44抗体(BioLegend, 103059)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 5a, 6a, s4b). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 小鼠; 图 2a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Biol Sex Differ (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Cd44抗体(Biolegend, 103008)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Cd44抗体(BioLegend, 103051)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd44抗体(Biolegend, 103016)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Oncoimmunology (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4f
BioLegend Cd44抗体(Biolegend, 103031)被用于被用于流式细胞仪在小鼠样本上 (图 s4f). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). JCI Insight (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4d
BioLegend Cd44抗体(Biolegend, 103028)被用于被用于流式细胞仪在小鼠样本上 (图 s4d). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 s6a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s6a). Science (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在人类样本上 (图 2a). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 4a
BioLegend Cd44抗体(BioLegend, 103026)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4a). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2e
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1e
BioLegend Cd44抗体(Biolegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1e
BioLegend Cd44抗体(Biolegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 1bc
BioLegend Cd44抗体(BioLegend, 103021)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1bc). Exp Ther Med (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
BioLegend Cd44抗体(Biolegend, 103008)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Nat Commun (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2h
BioLegend Cd44抗体(Biolegend, 103057)被用于被用于流式细胞仪在小鼠样本上 (图 2h). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Cd44抗体(BioLegend, 103028)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Immunity (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). Nat Commun (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1d
BioLegend Cd44抗体(Biolegend, 103030)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1d). elife (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8b
BioLegend Cd44抗体(BioLegend, 103054)被用于被用于流式细胞仪在小鼠样本上 (图 s8b). Nat Commun (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Cd44抗体(Biolegend, 103039)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s8c). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Exp Med (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Immunol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e1e
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e1e). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Cd44抗体(Biolegend, 103043)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Rep (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd44抗体(Biolegend, 103047)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Rep (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5d
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). JCI Insight (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 1c
BioLegend Cd44抗体(Biolegend, 103012)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c). elife (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Front Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7a
BioLegend Cd44抗体(BioLegend, 103029)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Front Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b, 5c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 5c). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 5d
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 5d). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3f). PLoS ONE (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Exp Med (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s19
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s19). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nature (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e2e
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e2e). Nature (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3f
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3f). EMBO J (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2h
BioLegend Cd44抗体(BioLegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 2h). Nat Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd44抗体(BioLegend, 103020)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS Pathog (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 1c
BioLegend Cd44抗体(Biolegend, 103035)被用于被用于流式细胞仪在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上 (图 1c). Cell (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1h
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(IM7)
  • 免疫沉淀; 人类; 图 sf1
  • 免疫细胞化学; 人类; 1:250; 图 sf2
BioLegend Cd44抗体(Biolegend, IM-7)被用于被用于免疫沉淀在人类样本上 (图 sf1) 和 被用于免疫细胞化学在人类样本上浓度为1:250 (图 sf2). Oncotarget (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Nat Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Front Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1a). Nat Commun (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Cd44抗体(BioLegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Rep (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8c
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s8c). Science (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2k
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2k). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Cd44抗体(BioLegend, 103026)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 s3b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3b). Nat Commun (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Clin Invest (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2b
BioLegend Cd44抗体(BioLegend, 103008)被用于被用于流式细胞仪在人类样本上 (图 2b). Oncogenesis (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Science (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd44抗体(biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). Science (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 猫; 图 1e
  • 流式细胞仪; 人类; 图 1f
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在猫样本上 (图 1e) 和 被用于流式细胞仪在人类样本上 (图 1f). Stem Cell Res Ther (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Immunology (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2b
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在人类样本上 (图 2b). Stem Cells Dev (2017) ncbi
大鼠 单克隆(IM7)
BioLegend Cd44抗体(BioLegend, 103029)被用于. elife (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Mucosal Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Oncotarget (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Cd44抗体(biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Infect Immun (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 6c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6c). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Cd44抗体(Biolegend, Im7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Immunology (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:800; 图 5e
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 5e). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 5
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在人类样本上 (图 5). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
BioLegend Cd44抗体(BioLegend, 103022)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Cd44抗体(BioLegend, 103008)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 图 3g
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于免疫细胞化学在人类样本上 (图 3g). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6d
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd44抗体(BioLegend, 103030)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2
BioLegend Cd44抗体(Biolegend, 103015)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 S1
BioLegend Cd44抗体(BioLegend, clone IM7)被用于被用于流式细胞仪在小鼠样本上 (图 S1). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd44抗体(Biolegend, 103006)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 表 s2
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 图 4
BioLegend Cd44抗体(Biolegend, 103015)被用于被用于免疫细胞化学在人类样本上 (图 4). Biol Open (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 4
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在人类样本上 (图 4). J Virol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 4
BioLegend Cd44抗体(BioLegend, 103008)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:300; 图 4f
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4f). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 图 1a
  • 免疫组化; 人类; 图 1a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于免疫组化在小鼠样本上 (图 1a) 和 被用于免疫组化在人类样本上 (图 1a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncotarget (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Biosci (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Gastroenterology (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 1b
BioLegend Cd44抗体(Biolegend, 103029)被用于被用于流式细胞仪在人类样本上 (图 1b). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6s
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6s). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mucosal Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Infect Immun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd44抗体(Biolegend, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 2f
BioLegend Cd44抗体(BioLegend, 103016)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2f). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Int J Oncol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Cd44抗体(Biolegend, 103026)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nature (2015) ncbi
大鼠 单克隆(IM7)
BioLegend Cd44抗体(Biolegend, 103030)被用于. Sci Rep (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 猫; 图 2
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在猫样本上 (图 2). Stem Cells Transl Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd44抗体(BioLegend, IMF7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Mucosal Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Arthritis Rheumatol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s7). elife (2015) ncbi
大鼠 单克隆(IM7)
BioLegend Cd44抗体(BioLegend, 103021)被用于. Mol Med Rep (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Eur J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cancer Res (2015) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 图 s1
BioLegend Cd44抗体(Biolegend, 203906)被用于被用于流式细胞仪在大鼠样本上 (图 s1). Cell Tissue Res (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Leukoc Biol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(IM7)
BioLegend Cd44抗体(Biolegend, IM7)被用于. Nature (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s6
BioLegend Cd44抗体(Biolegend, 103024)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1
BioLegend Cd44抗体(Biolegend, 103006)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Clin Invest (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Brain (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Cd44抗体(Biolegend, clone IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Eur J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(BioLegend, 103012)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 图 2
BioLegend Cd44抗体(BioLegend, OX-49)被用于被用于流式细胞仪在大鼠样本上 (图 2). Eur J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 人类; 图 2
  • 流式细胞仪; 小鼠; 图 1
BioLegend Cd44抗体(Biolegend, IM-7)被用于被用于免疫组化在人类样本上 (图 2) 和 被用于流式细胞仪在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(Biolegend, IM7)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(BioLegend, 103029)被用于被用于流式细胞仪在小鼠样本上. Ann Neurol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Cd44抗体(Biolegend, clone IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Vaccine (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 1:200; 图 st13
BioLegend Cd44抗体(Biolengend, IM7)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 st13). Nat Cell Biol (2014) ncbi
大鼠 单克隆(IM7)
BioLegend Cd44抗体(Biolegend, 103001)被用于. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
BioLegend Cd44抗体(BioLegend, 103009)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cd44抗体(BioLegend, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cell Cycle (2012) ncbi
赛默飞世尔
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 5e
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5e). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Cd44抗体(Thermo Fisher, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Front Immunol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 国内马; 1:100; 图 1c
赛默飞世尔 Cd44抗体(Invitrogen, IM7)被用于被用于流式细胞仪在国内马样本上浓度为1:100 (图 1c). Animals (Basel) (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上 (图 4b). BMC Immunol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:100; 图 6a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). Front Immunol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
赛默飞世尔 Cd44抗体(eBioscience, 48-0441)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1s2a
赛默飞世尔 Cd44抗体(eBioscience, 25-0441-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1s2a). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd44抗体(Thermo Fisher, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Front Immunol (2019) ncbi
大鼠 单克隆(IM7)
赛默飞世尔 Cd44抗体(eBioscience, 12-0441-81)被用于. Cell Rep (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 s1g
赛默飞世尔 Cd44抗体(Thermo Fisher, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1g). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Science (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a, s1c
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a, s1c). Sci Adv (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e10
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e10). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 7d
赛默飞世尔 Cd44抗体(Ebioscience, 48-0441-82)被用于被用于流式细胞仪在人类样本上 (图 7d). Oncoimmunology (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔 Cd44抗体(eBioscience/Thermo, 17-0441-83)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd44抗体(Invitrogen, 45-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int Immunol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 3e, s4b
赛默飞世尔 Cd44抗体(EBioscience, 61-0441-82)被用于被用于流式细胞仪在人类样本上 (图 3e, s4b). Breast Cancer Res (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Stem Cell Res Ther (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 3k
赛默飞世尔 Cd44抗体(eBioscience, 17-0441-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3k). Nat Commun (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔 Cd44抗体(eBioscience, 47-0441)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Science (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Oncoimmunology (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a, 8b
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 8b). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 6d
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 6d). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:300; 图 3s2a
赛默飞世尔 Cd44抗体(eBioscience, 48-0441-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3s2a). elife (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Blood (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 ex7g
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 ex7g). Nature (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd44抗体(Thermo Fisher Scientific, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(1M7.8.1)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
赛默飞世尔 Cd44抗体(Invitrogen, MA4405)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). Matrix Biol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd44抗体(Thermo Fisher Scientific, IM-7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Eur J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:300; 图 1d
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1d). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 s6a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s6a). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:600; 图 s12c
赛默飞世尔 Cd44抗体(Thermo Fisher Scientific, 48-0441-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:600 (图 s12c). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd44抗体(eBioscience, 17-0441-83)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cell Rep (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 Cd44抗体(eBioscience, 11-0441-82)被用于被用于流式细胞仪在人类样本上 (图 5a). Oncotarget (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Death Dis (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 e3c
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 e3c). Nature (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2j
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Science (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cancer Res (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd44抗体(eBioscience, 17-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Biol Chem (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7e
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 7e). J Exp Med (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Front Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
赛默飞世尔 Cd44抗体(Affymetrix/eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Front Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Cd44抗体(eBiosciences, 25-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cell (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2d
赛默飞世尔 Cd44抗体(eBiosciences, 17-0441-82)被用于被用于流式细胞仪在人类样本上 (图 2d). Oncogene (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd44抗体(eBioscience, 12-0441)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1f
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔 Cd44抗体(ThermoFisher Scientific, 17-0441)被用于被用于流式细胞仪在小鼠样本上 (图 1f) 和 被用于免疫细胞化学在小鼠样本上 (图 s1b). Cell Stem Cell (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3g
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s3g). Cancer Res (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd44抗体(Invitrogen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Int J Biochem Cell Biol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd44抗体(eBioscience, 11-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Rep (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd44抗体(eBioscience, 17-0441)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Cd44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd44抗体(eBiosciences, 25-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Eur J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 8a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:200; 图 s5e
赛默飞世尔 Cd44抗体(eBioscience, 25-0441-81)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s5e). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s3d
赛默飞世尔 Cd44抗体(eBioscience, 12-0441-83)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 抑制或激活实验; 人类
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于抑制或激活实验在人类样本上. J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Blood (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 3e
赛默飞世尔 Cd44抗体(Affymetrix eBioscience, IM7)被用于被用于流式细胞仪在人类样本上 (图 3e). Mol Cancer (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Mol Life Sci (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Rep (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1C
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1C). J Leukoc Biol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
  • 免疫细胞化学; 小鼠; 图 2h
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a) 和 被用于免疫细胞化学在小鼠样本上 (图 2h). J Exp Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 s4a
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s4a). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 2c
赛默飞世尔 Cd44抗体(Affymetrix eBioscience, 17-0441-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2c). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd44抗体(eBiosciences, M27)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Am J Respir Crit Care Med (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 2). Iran J Basic Med Sci (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:100; 图 1C
赛默飞世尔 Cd44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1C). Oncol Lett (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Nat Biotechnol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 Cd44抗体(eBioscience, 17-0441)被用于被用于流式细胞仪在人类样本上 (图 2c). Oncotarget (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; pigs ; 图 1b
  • 免疫细胞化学; pigs ; 1:100; 图 1a
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在pigs 样本上 (图 1b) 和 被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 1a). Stem Cell Res Ther (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Cell (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 Cd44抗体(eBioscience, 25-0441)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 Cd44抗体(bd, 47044182)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Death Dis (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6f
赛默飞世尔 Cd44抗体(Affymetrix eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6f). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:500; 图 st1
赛默飞世尔 Cd44抗体(eBioscience, 25-0441)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 1:50; 图 6
赛默飞世尔 Cd44抗体(eBioscience, 48-0441-82)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 6). BMC Biol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 0.5 ul/ml; 图 3
赛默飞世尔 Cd44抗体(eBioscience, 12-0441-82)被用于被用于流式细胞仪在人类样本上浓度为0.5 ul/ml (图 3). Oncol Lett (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3d). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 1:500; 图 s10
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s10). J R Soc Interface (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd44抗体(eBioscience, 12-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Leukemia (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, 25-0441)被用于被用于流式细胞仪在小鼠样本上. Biol Open (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd44抗体(eBiosciences, 17-0441-81)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 cd44
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 cd44). Diabetes (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 7). elife (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 5
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd44抗体(eBioscience, 61-0441)被用于被用于流式细胞仪在小鼠样本上 (图 6). Clin Cancer Res (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 s6b
赛默飞世尔 Cd44抗体(eBioscience, IMF)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6b). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Dis Model Mech (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s12
赛默飞世尔 Cd44抗体(ebioscience, 15-0441-83)被用于被用于流式细胞仪在小鼠样本上 (图 s12). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:800; 图 1
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd44抗体(eBiocience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 国内马; 1:200; 图 1
赛默飞世尔 Cd44抗体(eBioscience, 17-0441-81)被用于被用于免疫组化在国内马样本上浓度为1:200 (图 1). Stem Cell Reports (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 Cd44抗体(eBioscience, IM-7)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, 11-0441-81)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd44抗体(eBioscience, 17-0441)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Neurosci (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd44抗体(eBioscience, 48-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nature (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Nat Genet (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 0.2 ug/ml; 图 2
赛默飞世尔 Cd44抗体(Thermo Scientific, MA1-10225)被用于被用于免疫组化在小鼠样本上浓度为0.2 ug/ml (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2e
  • 流式细胞仪; 人类; 1:100; 图 2g
  • 免疫细胞化学; 人类; 1:100; 图 3e
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2e), 被用于流式细胞仪在人类样本上浓度为1:100 (图 2g) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). Stem Cells Transl Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 大鼠; 图 2
赛默飞世尔 Cd44抗体(eBioscience, 12-0441)被用于被用于流式细胞仪在大鼠样本上 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 猫; 图 2
赛默飞世尔 Cd44抗体(Invitrogen, IM7.8.1)被用于被用于流式细胞仪在猫样本上 (图 2). J Vet Intern Med (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nat Immunol (2015) ncbi
大鼠 单克隆(9A4)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 Cd44抗体(eBioscience, 9A4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd44抗体(Invitrogen, RM5726)被用于被用于流式细胞仪在小鼠样本上 (图 7). Infect Immun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Oncotarget (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
赛默飞世尔 Cd44抗体(eBioscience, (48-0441-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). Stem Cell Reports (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Cd44抗体(eBiosciences, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunity (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 人类; 图 s8
赛默飞世尔 Cd44抗体(ebiosciences, IM7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s8). Nat Biotechnol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd44抗体(eBioscience, 17-0441-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell Death Dis (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 7b). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 Cd44抗体(eBioscience, 47-0441-80)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 表 5
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上 (表 5). Gastroenterology (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:1000; 图 4
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd44抗体(eBioscience, 11-0441)被用于被用于流式细胞仪在小鼠样本上 (图 4). EMBO Mol Med (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 Cd44抗体(eBioscience, 48-0441)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类
赛默飞世尔 Cd44抗体(Ebioscience, 11-0441)被用于被用于流式细胞仪在人类样本上. Cancer Lett (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫印迹; 小鼠; 1:100; 图 5,6
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 表 s3
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(e-Bioscience, IM7)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Oncogene (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:50; 图 1
赛默飞世尔 Cd44抗体(eBioscience, 14-0441-81)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1). Respir Res (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Immunol Lett (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Nat Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 5 ul per test
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上浓度为5 ul per test. Cytometry B Clin Cytom (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Mucosal Immunol (2015) ncbi
大鼠 单克隆(9A4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔 Cd44抗体(Thermo Fisher Scientific, MA1-81995)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). BMC Gastroenterol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, clone IM7)被用于被用于流式细胞仪在小鼠样本上. Development (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Invitrogen, IM7)被用于被用于流式细胞仪在小鼠样本上. J Tissue Eng (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience Inc., IM7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:600
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:600. Nat Commun (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 牛
赛默飞世尔 Cd44抗体(eBioscience, 12-0441)被用于被用于流式细胞仪在牛样本上. Tissue Eng Part A (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:10
赛默飞世尔 Cd44抗体(eBioscience, 45-0441-80)被用于被用于流式细胞仪在人类样本上浓度为1:10. Odontology (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd44抗体(eBioscience, 12-0441-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cell Transplant (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(eBioscience, 130441)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nature (2013) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd44抗体(生活技术, clone IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s9
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Nat Methods (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS ONE (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Invest Dermatol (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Biomed Res Int (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM-7)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(e-Bioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Nature (2012) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag Laboratories, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Invitrogen, RM5726)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2012) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2012) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(e-Bioscience, IM-7)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2011) ncbi
大鼠 单克隆(1M7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Invitrogen, 1M7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2011) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM781)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(IM7)
  • 免疫印迹; 小鼠; 图 4b
赛默飞世尔 Cd44抗体(eBioscience, 14-0441)被用于被用于免疫印迹在小鼠样本上 (图 4b). Leukemia (2011) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5, 6
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5, 6). J Exp Med (2010) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2010) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd44抗体(Caltag, IM-7.8.1)被用于被用于流式细胞仪在小鼠样本上 (表 1). Infect Immun (2010) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(eBioScience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). BMC Immunol (2010) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(CALTAG, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2009) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd44抗体(eBioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2009) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag Laboratories, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Scand J Immunol (2009) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 6). Cell Tissue Res (2008) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2008) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2008) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2008) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Immunology (2008) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2007) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2B
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2B). J Immunol (2007) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(E-Bioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上. J Biomed Mater Res A (2007) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd44抗体(ebiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Int Immunopharmacol (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2007) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(ebiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Cytometry A (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2006) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(eBiosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd44抗体(CALTAG实验室, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Arthritis Res Ther (2005) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4A
赛默飞世尔 Cd44抗体(eBioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4A). J Immunol (2005) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, RM5704)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2003) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Zymed, IM7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2003) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2003) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Immunology (2003) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2002) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2002) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(Caltag Laboratories, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(CalTag, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, clone IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2001) ncbi
大鼠 单克隆(1M7.8.1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd44抗体(Caltag, 1 M.781)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2001) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2000) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (1999) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (1999) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (1998) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. Blood (1998) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (1997) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上 (表 1). Int Immunol (1997) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd44抗体(Caltag, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(noco, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (1992) ncbi
大鼠 单克隆(KM81)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd44抗体(noco, KM81)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Cell Biol (1992) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR18668)
  • 免疫细胞化学; 人类; 1:500; 图 5b
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Biol Proced Online (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). BMC Gastroenterol (2019) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化-石蜡切片; 小鼠; 图 s3d
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3d). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫印迹; 人类; 1:3000; 图 1d
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1d). Mol Med Rep (2019) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫组化; 人类; 图 2h
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫组化在人类样本上 (图 2h). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5f
  • 免疫组化; 大鼠; 1:200; 图 9a
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5f) 和 被用于免疫组化在大鼠样本上浓度为1:200 (图 9a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4g
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4g). Genes Dev (2017) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 1:100; 图 4a
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4a). Clin Sci (Lond) (2017) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化; 人类; 图 4a
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫组化在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Neoplasia (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化; 人类; 1:400; 图 1b
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, F10-44-2)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1b). Oncogene (2017) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4c
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4c). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:10,000; 图 5d
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab24504)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 5d). Int J Mol Sci (2016) ncbi
大鼠 单克隆(KM201)
  • 免疫印迹; 小鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司 Cd44抗体(abcam, ab25340)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; domestic rabbit; 1:200; 图 5b
  • 免疫组化; domestic rabbit; 1:200; 图 5b
艾博抗(上海)贸易有限公司 Cd44抗体(abcam, ab6124)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:200 (图 5b) 和 被用于免疫组化在domestic rabbit样本上浓度为1:200 (图 5b). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 大鼠; 图 1
  • 流式细胞仪; domestic rabbit; 图 1
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于流式细胞仪在大鼠样本上 (图 1) 和 被用于流式细胞仪在domestic rabbit样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(KM201)
  • 抑制或激活实验; 小鼠; 20 ug/ml; 图 s3
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab25340)被用于被用于抑制或激活实验在小鼠样本上浓度为20 ug/ml (图 s3). PLoS Pathog (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, AB6124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫细胞化学; 人类; 1:400; 图 3
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3). Protein Pept Lett (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 Cd44抗体(abcam, ab6124)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Hypertension (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, Ab6124)被用于被用于免疫组化在人类样本上. Circulation (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫印迹; 人类; 1:3000
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫印迹在人类样本上浓度为1:3000. Nitric Oxide (2015) ncbi
小鼠 单克隆(F10-44-2)
  • 免疫组化-冰冻切片; 人类; 1:100
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab6124)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Stem Cells (2013) ncbi
圣克鲁斯生物技术
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5e
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-18849)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5e). J Clin Invest (2019) ncbi
小鼠 单克隆(DF1485)
  • 免疫沉淀; 人类; 图 s2c
  • 免疫细胞化学; 人类; 图 s2a
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-7297)被用于被用于免疫沉淀在人类样本上 (图 s2c), 被用于免疫细胞化学在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(DF1485)
  • 其他; 人类; 1:100; 图 1a, 1c
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-7297)被用于被用于其他在人类样本上浓度为1:100 (图 1a, 1c). Oncotarget (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 人类; 图 s5d
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-7297)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5d). Oncotarget (2015) ncbi
小鼠 单克隆(DF1485)
  • 流式细胞仪; 人类; 图 1
圣克鲁斯生物技术 Cd44抗体(santa Cruz, sc-7297)被用于被用于流式细胞仪在人类样本上 (图 1). Biomed Res Int (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-18849)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Cd44抗体(santa Cruz, sc-18849)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Int J Mol Med (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-7297)被用于被用于免疫印迹在人类样本上浓度为1:500. BMC Cancer (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 3a
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-18849)被用于被用于流式细胞仪在人类样本上 (图 3a). Cancer Res (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-7297)被用于被用于免疫印迹在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-7297)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-7297)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
圣克鲁斯生物技术 Cd44抗体(Santa, sc-7297)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). Proc Natl Acad Sci U S A (2012) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 小鼠; 1:50
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotech, sc-18849)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Reproduction (2010) ncbi
美天旎
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 1:10; 图 1b
美天旎 Cd44抗体(MiltenyiBiotec, 130-102-563)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 1b). Biosci Rep (2019) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 图 s1
美天旎 Cd44抗体(Miltenyi Biotec, 130-102-563)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Cell Mol Med (2018) ncbi
大鼠 单克隆(IM7.8.1)
  • 流式细胞仪; 小鼠; 0.375 ug/ml; 图 st4
美天旎 Cd44抗体(Miltenyi Biotec, IM7.8.1)被用于被用于流式细胞仪在小鼠样本上浓度为0.375 ug/ml (图 st4). Nature (2017) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(9A4)
  • 免疫组化; 小鼠; 1:100; 图 4e
伯乐(Bio-Rad)公司 Cd44抗体(Serotec, 9A4)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4e). Nature (2019) ncbi
LifeSpan Biosciences
大鼠 单克隆(9A4)
  • 免疫组化; 小鼠; 图 4d
LifeSpan Biosciences Cd44抗体(LifeSpan, LS-C44149)被用于被用于免疫组化在小鼠样本上 (图 4d). PLoS ONE (2017) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 图 1d, s2d, s2e, s2f
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640)被用于被用于免疫印迹在人类样本上 (图 1d, s2d, s2e, s2f). Mol Cancer (2019) ncbi
小鼠 单克隆(8E2)
  • 免疫组化-石蜡切片; 人类; 图 6b
  • 免疫细胞化学; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b) 和 被用于免疫细胞化学在人类样本上 (图 1e). Mol Cancer Res (2017) ncbi
小鼠 单克隆(8E2)
  • 流式细胞仪; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Cd44抗体(cell signalling, 5640)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Hepatol (2017) ncbi
小鼠 单克隆(8E2)
  • 免疫组化; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Tech, 5640)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 1:1000; 图 5C
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Sgnaling, 5640)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C). Mol Oncol (2016) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 图 1a,b
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Technology., 5640S)被用于被用于免疫印迹在人类样本上 (图 1a,b). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(8E2)
  • 免疫细胞化学; 大鼠
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640S)被用于被用于免疫细胞化学在大鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(8E2)
  • 抑制或激活实验; 小鼠
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Technology, 5640)被用于被用于抑制或激活实验在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Technology, 5640)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫细胞化学; 人类; 1:800
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Technology, 5640)被用于被用于免疫细胞化学在人类样本上浓度为1:800 和 被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫组化-自由浮动切片; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, #5640)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2000. J Cell Physiol (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cd44抗体(cell signaling, 5640)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640s)被用于被用于免疫组化在人类样本上. Cancer Res (2014) ncbi
Tonbo Biosciences
rat 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6b
Tonbo Biosciences Cd44抗体(Tonbo Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6b). JCI Insight (2019) ncbi
rat 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2e
Tonbo Biosciences Cd44抗体(Tonbo, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Virol (2018) ncbi
rat 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2d
Tonbo Biosciences Cd44抗体(TONBO Bioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Exp Med (2016) ncbi
Stemcell Technologies
rat 单克隆(IM7)
  • 免疫细胞化学; 人类; 图 2a
干细胞技术 Cd44抗体(干细胞技术, 60068)被用于被用于免疫细胞化学在人类样本上 (图 2a). Cell (2018) ncbi
碧迪BD
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6c
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6c). Nat Commun (2021) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 8a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Front Immunol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:2000; 图 3b
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000 (图 3b). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 图 1a
碧迪BD Cd44抗体(BD Pharmingen, 550,538)被用于被用于免疫组化在小鼠样本上 (图 1a). Basic Res Cardiol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4e
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4e). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7a
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 7a). PLoS Biol (2020) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). BMC Biol (2020) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-冰冻切片; 小鼠; 1:40; 图 5b
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:40 (图 5b). elife (2020) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4h, 4i
碧迪BD Cd44抗体(BD, 550538)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4h, 4i). Nat Commun (2020) ncbi
大鼠 单克隆(IM7)
  • mass cytometry; 小鼠; 0.375 ug/ml; 图 5d
碧迪BD Cd44抗体(BD, IM7)被用于被用于mass cytometry在小鼠样本上浓度为0.375 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 4e
碧迪BD Cd44抗体(BD Biosciences, 553133)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4e). Nat Immunol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4b
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). JCI Insight (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD Cd44抗体(BD Pharmingen, 560567)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int Immunol (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Cd44抗体(BD Biosciences, 560569)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Cd44抗体(BD PharMingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2019) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 1:50; 图 4e
碧迪BD Cd44抗体(Pharmingen, IM7)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4e). Nature (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; ; 图 s1b
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为 (图 s1b). Science (2019) ncbi
大鼠 单克隆(IM7)
  • mass cytometry; 人类; 图 3a
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD Cd44抗体(BD Biosciences, 560781)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Sci Rep (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
碧迪BD Cd44抗体(Bd Bioscience, 550538)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Cell Stem Cell (2019) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
碧迪BD Cd44抗体(BD, 553131)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cell Death Differ (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Front Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3d
碧迪BD Cd44抗体(BD, 553134)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cell (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s5). J Clin Invest (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD Cd44抗体(BD, 561859)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Cell (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s7d
碧迪BD Cd44抗体(BD, 553133)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Nat Commun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s7d
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Cancer Immunol Immunother (2019) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 s7d
碧迪BD Cd44抗体(BD Biosciences, 559250)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7d). Nat Neurosci (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD Cd44抗体(BD Biosciences, 553133)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Death Dis (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Cd44抗体(BD Biosciences, 553134)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD Cd44抗体(BD Bioscience, 560451)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Infect Immun (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). EBioMedicine (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Int J Cancer (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BD Cd44抗体(Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Rep (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s7a
碧迪BD Cd44抗体(BD Biosciences, 553134)被用于被用于流式细胞仪在小鼠样本上 (图 s7a). Science (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s6g
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s6g). Cell (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD Cd44抗体(BD Bioscience, 553135)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2018) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD Cd44抗体(BD Biosciences, 560570)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cancer Cell (2017) ncbi
大鼠 单克隆(KM114)
  • 免疫印迹; 人类; 图 3a
碧迪BD Cd44抗体(BD Transduction Labs, 558739)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Res (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD Cd44抗体(BD Bioscience, 560567)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1d
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Cell Death Differ (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD Cd44抗体(BD Biosciences, 559250)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Immunity (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Cd44抗体(BD Bioscience, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2017) ncbi
  • 免疫组化; 小鼠; 1:200; 图 5c
碧迪BD Cd44抗体(Millipore, 217594)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). Acta Neuropathol Commun (2017) ncbi
大鼠 单克隆(IM7)
  • 免疫印迹; 小鼠; 图 1a
碧迪BD Cd44抗体(BD Pharmingen, 553131)被用于被用于免疫印迹在小鼠样本上 (图 1a). J Hepatol (2017) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 小鼠; 1:100; 图 3b
碧迪BD Cd44抗体(BD Biosciences, 553132)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3b). Sci Rep (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a, 3b
碧迪BD Cd44抗体(BD, 553133)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3b). Stem Cells Int (2017) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s4g
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s4g). Genes Dev (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD Cd44抗体(BD PharMingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). PLoS ONE (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s6a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Nature (2017) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 1:50; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 4d
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nat Immunol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; black flying fox; 1 ug/ml; 图 1a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在black flying fox样本上浓度为1 ug/ml (图 1a). Sci Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 3a
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在人类样本上 (图 3a). J Virol (2017) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 图 1c
碧迪BD Cd44抗体(BD Biosciences,, IM7)被用于被用于免疫组化在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1c). Cell Death Dis (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3a
碧迪BD Cd44抗体(Becton Dickinson, IM7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3a). FASEB J (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Brain (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD, 553133)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Mol Cell Biol (2017) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5A
碧迪BD Cd44抗体(BD Pharmigen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5A). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD Cd44抗体(BD Biosciences, 561862)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 10
碧迪BD Cd44抗体(BD PharMingen, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 10). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 1
碧迪BD Cd44抗体(BD Biosciences, 553134)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7m
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7m). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD, 553133)被用于被用于流式细胞仪在小鼠样本上. Cell (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s6a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 1
碧迪BD Cd44抗体(BD Biosciences, 560780)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 8
碧迪BD Cd44抗体(BD, IM7)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 8). Sci Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 2a
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 2a). Oncotarget (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 2
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 7
碧迪BD Cd44抗体(BD Biosciences, 559250)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Eur J Immunol (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 1:100; 图 1b
碧迪BD Cd44抗体(BD Biosciences, 559250)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1b). Oncol Lett (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 3
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在人类样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 s4
碧迪BD Cd44抗体(BD Biosciences, 559250)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4). Nat Commun (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Science (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD, 559250)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD Cd44抗体(BD, IM-7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s9
碧迪BD Cd44抗体(BD Biosciences, 553134)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Nat Med (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd44抗体(BD Biosciences, 561860)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:100; 图 s17a
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s17a). J Clin Invest (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD Cd44抗体(BD Bioscience, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Virol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:50; 图 s1
碧迪BD Cd44抗体(BD Biosciences, 561859)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s1). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200; 图 s4
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4). PLoS ONE (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, 553133)被用于被用于流式细胞仪在小鼠样本上. Stem Cell Res Ther (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 s2
碧迪BD Cd44抗体(BD Bioscience, 561862)被用于被用于流式细胞仪在人类样本上 (图 s2). EMBO Mol Med (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Immun Inflamm Dis (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:50; 图 2a
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2a). Nature (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:400; 图 s13
碧迪BD Cd44抗体(BD, 560567)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s13). Nat Commun (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Bone Miner Res (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫印迹; 小鼠
碧迪BD Cd44抗体(Becton Dickinson, IM7)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Res (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫组化; 小鼠; 1:800
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于免疫组化在小鼠样本上浓度为1:800. Dev Biol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Virol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd44抗体(BD Biosciences, 1M7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Clin Invest (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:50
碧迪BD Cd44抗体(BD Pharmingen, 561859)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. J Physiol (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Vaccines (Basel) (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Cd44抗体(BD, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Gut (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nature (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Pharmingen, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, 559250)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM-7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Bioscience, IM7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Diabetes (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD Biosciences, IM7)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2014) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Pancreas (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD Cd44抗体(BD, 553133)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Cd44抗体(BD Biosciences, 550538)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Cd44抗体(BD Biosciences, 553131)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2013) ncbi
大鼠 单克隆(KM114)
  • 免疫组化; 小鼠; 1:50
碧迪BD Cd44抗体(BD Pharmingen, 558739)被用于被用于免疫组化在小鼠样本上浓度为1:50. Oncogene (2014) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Cd44抗体(BD, 553134)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
大鼠 单克隆(IM7)
  • 抑制或激活实验; 小鼠
碧迪BD Cd44抗体(BD, 553131)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2012) ncbi
大鼠 单克隆(IM7)
  • 染色质免疫沉淀 ; 小鼠
碧迪BD Cd44抗体(BD-Pharmingen, IM7)被用于被用于染色质免疫沉淀 在小鼠样本上. J Immunol (2012) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠
碧迪BD Cd44抗体(BD, 553133)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类
碧迪BD Cd44抗体(BD Biosciences, 553133)被用于被用于流式细胞仪在人类样本上. J Immunol (2010) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd44抗体(PharMingen, IM7)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (1994) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(5D2-27)
  • 免疫印迹基因敲除验证; 小鼠; 图 2b
Developmental Studies Hybridoma Bank Cd44抗体(DSHB, 5D2-27)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2b). Cell (2018) ncbi
文章列表
  1. Tyagi A, Sharma S, Wu K, Wu S, Xing F, Liu Y, et al. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun. 2021;12:474 pubmed 出版商
  2. Pickering K, Gilroy K, Cassidy J, Fey S, Najumudeen A, Zeiger L, et al. A RAC-GEF network critical for early intestinal tumourigenesis. Nat Commun. 2021;12:56 pubmed 出版商
  3. Grand M, Waqasi M, Demarta Gatsi C, Wei Y, Peronet R, Commere P, et al. Hepatic Inflammation Confers Protective Immunity Against Liver Stages of Malaria Parasite. Front Immunol. 2020;11:585502 pubmed 出版商
  4. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  5. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  6. Rundqvist H, Veliça P, Barbieri L, Gameiro P, Bargiela D, Gojkovic M, et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. elife. 2020;9: pubmed 出版商
  7. Lee H, Park J, Yoo H, Lee H, Lee B, Kim J. The Selenoprotein MsrB1 Instructs Dendritic Cells to Induce T-Helper 1 Immune Responses. Antioxidants (Basel). 2020;9: pubmed 出版商
  8. Kim K, Park T, Cho B, Kim T. Nanoparticles from Equine Fetal Bone Marrow-Derived Cells Enhance the Survival of Injured Chondrocytes. Animals (Basel). 2020;10: pubmed 出版商
  9. Lauver M, Goetschius D, Netherby Winslow C, Ayers K, Jin G, Haas D, et al. Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. elife. 2020;9: pubmed 出版商
  10. Benavente F, Piltti K, Hooshmand M, Nava A, Lakatos A, Feld B, et al. Novel C1q receptor-mediated signaling controls neural stem cell behavior and neurorepair. elife. 2020;9: pubmed 出版商
  11. Fernandes R, Li C, Wang G, Yang X, Savvides C, Glassman C, et al. Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. elife. 2020;9: pubmed 出版商
  12. Pseftogas A, Xanthopoulos K, Poutahidis T, Ainali C, Dafou D, Panteris E, et al. The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel). 2020;12: pubmed 出版商
  13. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  14. Svensson M, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody K, et al. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Sci Adv. 2020;6:eaba4353 pubmed 出版商
  15. Lubos N, van der Gaag S, Gerçek M, Kant S, Leube R, Krusche C. Inflammation shapes pathogenesis of murine arrhythmogenic cardiomyopathy. Basic Res Cardiol. 2020;115:42 pubmed 出版商
  16. Kim E, Woodruff M, Grigoryan L, Maier B, Lee S, Mandal P, et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. elife. 2020;9: pubmed 出版商
  17. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  18. Parray H, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C, et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 2020;85:106639 pubmed 出版商
  19. Witschen P, Chaffee T, Brady N, Huggins D, Knutson T, LaRue R, et al. Tumor Cell Associated Hyaluronan-CD44 Signaling Promotes Pro-Tumor Inflammation in Breast Cancer. Cancers (Basel). 2020;12: pubmed 出版商
  20. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  21. Liu G, Yu Y, Feng F, Zhu P, Zhang H, Zhang D, et al. Human CD8+CD28- T suppressor cells expanded by common gamma chain (γc) cytokines retain steady allospecific suppressive capacity in vivo. BMC Immunol. 2020;21:23 pubmed 出版商
  22. Zheng D, Gao F, Cheng Q, Bao P, Dong X, Fan J, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11:1985 pubmed 出版商
  23. Zhu M, Ma Y, Tan K, Zhang L, Wang Z, Li Y, et al. Thalidomide with blockade of co-stimulatory molecules prolongs the survival of alloantigen-primed mice with cardiac allografts. BMC Immunol. 2020;21:19 pubmed 出版商
  24. Luoni M, Giannelli S, Indrigo M, Niro A, Massimino L, Iannielli A, et al. Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome. elife. 2020;9: pubmed 出版商
  25. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  26. Álvarez Salamero C, Castillo González R, Pastor Fernández G, Mariblanca I, Pino J, Cibrian D, et al. IL-23 signaling regulation of pro-inflammatory T-cell migration uncovered by phosphoproteomics. PLoS Biol. 2020;18:e3000646 pubmed 出版商
  27. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  28. Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol. 2020;11:366 pubmed 出版商
  29. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  30. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  31. Donaldson D, Bradford B, Else K, Mabbott N. Accelerated onset of CNS prion disease in mice co-infected with a gastrointestinal helminth pathogen during the preclinical phase. Sci Rep. 2020;10:4554 pubmed 出版商
  32. Ramstead A, Wallace J, Lee S, Bauer K, Tang W, Ekiz H, et al. Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Rep. 2020;30:2889-2899.e6 pubmed 出版商
  33. Kumar A, Chamoto K, Chowdhury P, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. elife. 2020;9: pubmed 出版商
  34. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  35. Wei J, Mattapallil M, Horai R, Jittayasothorn Y, Modi A, Sen H, et al. A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina. elife. 2020;9: pubmed 出版商
  36. Martens R, Permanyer M, Werth K, Yu K, Braun A, Halle O, et al. Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nat Commun. 2020;11:1114 pubmed 出版商
  37. Jiang M, Bi X, Duan X, Pang N, Wang H, Yuan H, et al. Adipose tissue-derived stem cells modulate immune function in vivo and promote long-term hematopoiesis in vitro using the aGVHD model. Exp Ther Med. 2020;19:1725-1732 pubmed 出版商
  38. Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci Adv. 2020;6:eaax4690 pubmed 出版商
  39. Angenendt A, Steiner R, Knörck A, Schwär G, Konrad M, Krause E, et al. Orai, STIM, and PMCA contribute to reduced calcium signal generation in CD8+ T cells of elderly mice. Aging (Albany NY). 2020;12:3266-3286 pubmed 出版商
  40. Lee J, Zhang J, Chung Y, Kim J, Kook C, Gonzalez Navajas J, et al. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. elife. 2020;9: pubmed 出版商
  41. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  42. Bell O, Copland D, Ward A, Nicholson L, Lange C, Chu C, et al. Single Eye mRNA-Seq Reveals Normalisation of the Retinal Microglial Transcriptome Following Acute Inflammation. Front Immunol. 2019;10:3033 pubmed 出版商
  43. Tan G, Pryce B, Stabio A, Brigande J, Wang C, Xia Z, et al. Tgfβ signaling is critical for maintenance of the tendon cell fate. elife. 2020;9: pubmed 出版商
  44. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  45. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  46. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  47. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  48. Liu Q, Zhou C, Zhang B. Upregulation of musashi1 increases malignancy of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway and predicts a poor prognosis. BMC Gastroenterol. 2019;19:230 pubmed 出版商
  49. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  50. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  51. Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed 出版商
  52. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  53. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  54. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  55. Wang Y, Chiang I, Ohara T, Fujii S, Cheng J, Muegge B, et al. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell. 2019;179:1144-1159.e15 pubmed 出版商
  56. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  57. Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, et al. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer. 2019;18:156 pubmed 出版商
  58. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  59. Mani V, Bromley S, Aijö T, Mora Buch R, Carrizosa E, Warner R, et al. Migratory DCs activate TGF-β to precondition naïve CD8+ T cells for tissue-resident memory fate. Science. 2019;366: pubmed 出版商
  60. Shikama Y, Kurosawa M, Furukawa M, Ishimaru N, Matsushita K. Involvement of adiponectin in age-related increases in tear production in mice. Aging (Albany NY). 2019;11:8329-8346 pubmed 出版商
  61. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  62. Nelson C, Thompson E, Quarnstrom C, Fraser K, Seelig D, Bhela S, et al. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019;28:3092-3104.e5 pubmed 出版商
  63. Noguerol J, Roustan P, N Taye M, Delcombel L, Rolland C, Guiraud L, et al. Sexual dimorphism in PAR2-dependent regulation of primitive colonic cells. Biol Sex Differ. 2019;10:47 pubmed 出版商
  64. Rasoulouniriana D, Santana Magal N, Gutwillig A, Farhat Younis L, Wine Y, Saperia C, et al. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest. 2019;129:4151-4164 pubmed 出版商
  65. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  66. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  67. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  68. Benci J, Johnson L, Choa R, Xu Y, Qiu J, Zhou Z, et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell. 2019;178:933-948.e14 pubmed 出版商
  69. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  70. Verma V, Shrimali R, Ahmad S, Dai W, Wang H, Lu S, et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat Immunol. 2019;20:1231-1243 pubmed 出版商
  71. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  72. Wolock S, Krishnan I, Tenen D, Matkins V, Camacho V, Patel S, et al. Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Rep. 2019;28:302-311.e5 pubmed 出版商
  73. Xie X, Wang Y, Xia Y, Mao Y. Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep. 2019;39: pubmed 出版商
  74. Papaioannou E, Yanez D, Ross S, Lau C, Solanki A, Chawda M, et al. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest. 2019;129:3153-3170 pubmed 出版商
  75. Khanom U, Ohigashi I, Fujimori S, Kondo K, Takada K, Takahama Y. TCR Affinity for In Vivo Peptide-Induced Thymic Positive Selection Fine-Tunes TCR Responsiveness of Peripheral CD8+ T Cells. J Immunol. 2019;: pubmed 出版商
  76. Leach S, Shinnakasu R, Adachi Y, Momota M, Makino Okamura C, Yamamoto T, et al. Requirement for memory B cell activation in protection from heterologous influenza virus reinfection. Int Immunol. 2019;: pubmed 出版商
  77. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  78. Khan O, Giles J, McDonald S, Manne S, Ngiow S, Patel K, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;: pubmed 出版商
  79. Oh J, Iijima N, Song E, Lu P, Klein J, Jiang R, et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019;: pubmed 出版商
  80. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  81. von Gamm M, Schaub A, Jones A, Wolf C, Behrens G, Lichti J, et al. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med. 2019;: pubmed 出版商
  82. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  83. Atif S, Mack D, McKee A, Rangel Moreno J, Martin A, Getahun A, et al. Protective role of B cells in sterile particulate-induced lung injury. JCI Insight. 2019;5: pubmed 出版商
  84. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  85. Guiu J, Hannezo E, Yui S, Demharter S, Ulyanchenko S, Maimets M, et al. Tracing the origin of adult intestinal stem cells. Nature. 2019;570:107-111 pubmed 出版商
  86. Qiu J, Villa M, Sanin D, Buck M, O Sullivan D, Ching R, et al. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27:2063-2074.e5 pubmed 出版商
  87. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  88. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  89. Maji B, Gangopadhyay S, Lee M, Shi M, Wu P, Heler R, et al. A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell. 2019;177:1067-1079.e19 pubmed 出版商
  90. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  91. Lu D, Liao Y, Zhu S, Chen Q, Xie D, Liao J, et al. Bone-derived Nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endothelial cells after myocardial infarction. Stem Cell Res Ther. 2019;10:127 pubmed 出版商
  92. Ahmed M, El Sayed A, Chen H, Zhao R, Yusuf M, Zuo Q, et al. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med. 2019;17:4154-4166 pubmed 出版商
  93. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  94. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  95. Pais H, Ruggero K, Zhang J, Al Assar O, Bery N, Bhuller R, et al. Surfaceome interrogation using an RNA-seq approach highlights leukemia initiating cell biomarkers in an LMO2 T cell transgenic model. Sci Rep. 2019;9:5760 pubmed 出版商
  96. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  97. Wu J, Ma S, Sandhoff R, Ming Y, Hotz Wagenblatt A, Timmerman V, et al. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity. 2019;50:1218-1231.e5 pubmed 出版商
  98. Li Y, Tinoco R, Elmén L, Segota I, Xian Y, Fujita Y, et al. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5-/- mice. Nat Commun. 2019;10:1492 pubmed 出版商
  99. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  100. Sinclair L, Howden A, Brenes A, Spinelli L, Hukelmann J, Macintyre A, et al. Antigen receptor control of methionine metabolism in T cells. elife. 2019;8: pubmed 出版商
  101. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  102. Chakarov S, Lim H, Tan L, Lim S, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363: pubmed 出版商
  103. Johansson J, Nászai M, Hodder M, Pickering K, Miller B, Ridgway R, et al. RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes. Cell Stem Cell. 2019;24:592-607.e7 pubmed 出版商
  104. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  105. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  106. Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, et al. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest. 2019;130: pubmed 出版商
  107. Schulien I, Hockenjos B, Schmitt Graeff A, Perdekamp M, Follo M, Thimme R, et al. The transcription factor c-Jun/AP-1 promotes liver fibrosis during non-alcoholic steatohepatitis by regulating Osteopontin expression. Cell Death Differ. 2019;: pubmed 出版商
  108. Michaels Y, Barnkob M, Barbosa H, Baeumler T, Thompson M, Andre V, et al. Precise tuning of gene expression levels in mammalian cells. Nat Commun. 2019;10:818 pubmed 出版商
  109. Salerno F, Guislain A, Freen van Heeren J, Nicolet B, Young H, Wolkers M. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8:e1532762 pubmed 出版商
  110. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  111. Yamamoto T, Lee P, Vodnala S, Gurusamy D, Kishton R, Yu Z, et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J Clin Invest. 2019;129:1551-1565 pubmed 出版商
  112. Faliti C, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-336 pubmed 出版商
  113. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  114. Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Front Immunol. 2018;9:2981 pubmed 出版商
  115. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  116. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  117. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  118. Chorro L, Suzuki M, Chin S, Williams T, Snapp E, Odagiu L, et al. Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nat Commun. 2018;9:5368 pubmed 出版商
  119. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  120. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  121. Poncette L, Chen X, Lorenz F, Blankenstein T. Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression. J Clin Invest. 2019;129:324-335 pubmed 出版商
  122. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  123. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  124. Gejman R, Chang A, Jones H, DiKun K, Hakimi A, Schietinger A, et al. Rejection of immunogenic tumor clones is limited by clonal fraction. elife. 2018;7: pubmed 出版商
  125. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  126. Muscate F, Stetter N, Schramm C, Schulze zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol. 2018;9:2611 pubmed 出版商
  127. Dong S, Harrington B, Hu E, Greene J, Lehman A, Tran M, et al. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest. 2019;129:122-136 pubmed 出版商
  128. Ng K, Yui M, Mehta A, Siu S, Irwin B, Pease S, et al. A stochastic epigenetic switch controls the dynamics of T-cell lineage commitment. elife. 2018;7: pubmed 出版商
  129. Glal D, Sudhakar J, Lu H, Liu M, Chiang H, Liu Y, et al. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol. 2018;9:2522 pubmed 出版商
  130. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  131. Klement J, Paschall A, Redd P, Ibrahim M, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128:5549-5560 pubmed 出版商
  132. Singh A, Khare P, Obaid A, Conlon K, Basrur V, Depinho R, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun. 2018;9:4515 pubmed 出版商
  133. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  134. Song M, Sandoval T, Chae C, Chopra S, Tan C, Rutkowski M, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 2018;562:423-428 pubmed 出版商
  135. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  136. Sang A, Danhorn T, Peterson J, Rankin A, O Connor B, Leach S, et al. Innate and adaptive signals enhance differentiation and expansion of dual-antibody autoreactive B cells in lupus. Nat Commun. 2018;9:3973 pubmed 出版商
  137. Qiao G, Bucsek M, Winder N, Chen M, Giridharan T, Olejniczak S, et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2019;68:11-22 pubmed 出版商
  138. Giles D, Duncker P, Wilkinson N, Washnock Schmid J, Segal B. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J Clin Invest. 2018;128:5322-5334 pubmed 出版商
  139. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  140. Kim A, Lee E, Lee E, Kim J, Suk K, Lee E, et al. SIRT2 is required for efficient reprogramming of mouse embryonic fibroblasts toward pluripotency. Cell Death Dis. 2018;9:893 pubmed 出版商
  141. Leng Y, Abdullah A, Wendt M, Calve S. Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis. Matrix Biol. 2019;78-79:236-254 pubmed 出版商
  142. Cummings M, Arumanayagam A, Zhao P, Kannanganat S, Stuve O, Karandikar N, et al. Presenilin1 regulates Th1 and Th17 effector responses but is not required for experimental autoimmune encephalomyelitis. PLoS ONE. 2018;13:e0200752 pubmed 出版商
  143. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  144. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  145. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  146. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  147. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  148. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  149. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  150. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  151. Nusse Y, Savage A, Marangoni P, Rosendahl Huber A, Landman T, De Sauvage F, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018;559:109-113 pubmed 出版商
  152. Kirkling M, Cytlak U, Lau C, Lewis K, Resteu A, Khodadadi Jamayran A, et al. Notch Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells. Cell Rep. 2018;23:3658-3672.e6 pubmed 出版商
  153. Huang W, Bei L, Eklund E. Inhibition of Fas associated phosphatase 1 (Fap1) facilitates apoptosis of colon cancer stem cells and enhances the effects of oxaliplatin. Oncotarget. 2018;9:25891-25902 pubmed 出版商
  154. Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, et al. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis. 2018;9:691 pubmed 出版商
  155. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  156. Noguchi N, Nakamura R, Hatano S, Yamada H, Sun X, Ohara N, et al. Interleukin-21 Induces Short-Lived Effector CD8+ T Cells but Does Not Inhibit Their Exhaustion after Mycobacterium bovis BCG Infection in Mice. Infect Immun. 2018;86: pubmed 出版商
  157. Chen Y, Qin X, An Q, Yi J, Feng F, Yin D, et al. Mesenchymal Stromal Cells Directly Promote Inflammation by Canonical NLRP3 and Non-canonical Caspase-11 Inflammasomes. EBioMedicine. 2018;32:31-42 pubmed 出版商
  158. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360: pubmed 出版商
  159. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  160. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  161. Stefani F, Eberstål S, Vergani S, Kristiansen T, Bengzon J. Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer. 2018;143:2200-2212 pubmed 出版商
  162. Drobek A, Moudra A, Mueller D, Huranová M, Horková V, Pribikova M, et al. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. 2018;37: pubmed 出版商
  163. Borlido J, Sakuma S, Raices M, Carrette F, Tinoco R, Bradley L, et al. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis. Nat Immunol. 2018;19:594-605 pubmed 出版商
  164. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  165. Gounder A, Yokoyama C, Jarjour N, Bricker T, Edelson B, Boon A. Interferon induced protein 35 exacerbates H5N1 influenza disease through the expression of IL-12p40 homodimer. PLoS Pathog. 2018;14:e1007001 pubmed 出版商
  166. Dipiazza A, Laniewski N, Rattan A, Topham D, Miller J, Sant A. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection. J Virol. 2018;92: pubmed 出版商
  167. Tanaka S, Pfleger C, Lai J, Roan F, Sun S, Ziegler S. KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Rep. 2018;23:796-807 pubmed 出版商
  168. Panda S, Facchinetti V, Voynova E, Hanabuchi S, Karnell J, Hanna R, et al. Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models. J Clin Invest. 2018;128:1873-1887 pubmed 出版商
  169. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  170. Zhang D, Wu J, Shah B, Greutélaers K, Ghosh M, Ollivierre H, et al. Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk. Science. 2018;359:1520-1523 pubmed 出版商
  171. Zhang Y, Tech L, George L, Acs A, Durrett R, Hess H, et al. Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. J Exp Med. 2018;215:1227-1243 pubmed 出版商
  172. Gaddis D, Padgett L, Wu R, McSkimming C, Romines V, Taylor A, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9:1095 pubmed 出版商
  173. Safya H, Mellouk A, Legrand J, Le Gall S, Benbijja M, Kanellopoulos Langevin C, et al. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol. 2018;9:360 pubmed 出版商
  174. Khan A, Carpenter B, Santos e Sousa P, Pospori C, Khorshed R, Griffin J, et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J Clin Invest. 2018;128:2010-2024 pubmed 出版商
  175. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  176. Kotov D, Kotov J, Goldberg M, Jenkins M. Many Th Cell Subsets Have Fas Ligand-Dependent Cytotoxic Potential. J Immunol. 2018;200:2004-2012 pubmed 出版商
  177. Fahl S, Coffey F, Kain L, Zarin P, Dunbrack R, Teyton L, et al. Role of a selecting ligand in shaping the murine γδ-TCR repertoire. Proc Natl Acad Sci U S A. 2018;115:1889-1894 pubmed 出版商
  178. Jung Y, Cackowski F, Yumoto K, Decker A, Wang J, Kim J, et al. CXCL12γ Promotes Metastatic Castration-Resistant Prostate Cancer by Inducing Cancer Stem Cell and Neuroendocrine Phenotypes. Cancer Res. 2018;78:2026-2039 pubmed 出版商
  179. Chen X, Nagai Y, Zhu Z, Ruan H, Peehl D, Greene M, et al. A spliced form of CD44 expresses the unique glycan that is recognized by the prostate cancer specific antibody F77. Oncotarget. 2018;9:3631-3640 pubmed 出版商
  180. Ellestad K, Thangavelu G, Haile Y, Lin J, Boon L, Anderson C. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol. 2018;9:12 pubmed 出版商
  181. Ehlers L, Rohde S, Ibrahim S, Jaster R. Adoptive transfer of CD3+ T cells and CD4+ CD44high memory T cells induces autoimmune pancreatitis in MRL/MpJ mice. J Cell Mol Med. 2018;22:2404-2412 pubmed 出版商
  182. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  183. Solomon H, Dinowitz N, Pateras I, Cooks T, Shetzer Y, Molchadsky A, et al. Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers. Oncogene. 2018;37:1669-1684 pubmed 出版商
  184. Koh A, Miller E, Buenrostro J, Moskowitz D, Wang J, Greenleaf W, et al. Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol. 2018;19:162-172 pubmed 出版商
  185. Ferdinand J, Richard A, Meylan F, Al Shamkhani A, Siegel R. Cleavage of TL1A Differentially Regulates Its Effects on Innate and Adaptive Immune Cells. J Immunol. 2018;200:1360-1369 pubmed 出版商
  186. Freeman S, Vega A, Riedl M, Collins R, Ostrowski P, Woods E, et al. Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell. 2018;172:305-317.e10 pubmed 出版商
  187. Kaufmann E, Sanz J, Dunn J, Khan N, Mendonça L, Pacis A, et al. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell. 2018;172:176-190.e19 pubmed 出版商
  188. Nakashima H, Alayo Q, Penaloza MacMaster P, Freeman G, Kuchroo V, Reardon D, et al. Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Sci Rep. 2018;8:208 pubmed 出版商
  189. Burrack A, Malhotra D, Dileepan T, Osum K, Swanson L, Fife B, et al. Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol. 2018;200:477-482 pubmed 出版商
  190. Ibitokou S, Dillon B, Sinha M, Szczesny B, Delgadillo A, Reda Abdelrahman D, et al. Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. J Immunol. 2018;200:643-656 pubmed 出版商
  191. Ibrahim M, Scozzi D, Toth K, Ponti D, Kreisel D, Menna C, et al. Naive CD4+ T Cells Carrying a TLR2 Agonist Overcome TGF-β-Mediated Tumor Immune Evasion. J Immunol. 2018;200:847-856 pubmed 出版商
  192. Iseka F, Goetz B, Mushtaq I, An W, Cypher L, Bielecki T, et al. Role of the EHD Family of Endocytic Recycling Regulators for TCR Recycling and T Cell Function. J Immunol. 2018;200:483-499 pubmed 出版商
  193. Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest. 2018;128:125-140 pubmed 出版商
  194. Ruetz T, Pfisterer U, Di Stefano B, Ashmore J, Beniazza M, Tian T, et al. Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Cell Stem Cell. 2017;21:791-805.e9 pubmed 出版商
  195. Ernszt D, Banfai K, Kellermayer Z, Pap A, Lord J, Pongracz J, et al. PPARgamma Deficiency Counteracts Thymic Senescence. Front Immunol. 2017;8:1515 pubmed 出版商
  196. Robles Valero J, Lorenzo Martín L, Menacho Márquez M, Fernández Pisonero I, Abad A, Camos M, et al. A Paradoxical Tumor-Suppressor Role for the Rac1 Exchange Factor Vav1 in T Cell Acute Lymphoblastic Leukemia. Cancer Cell. 2017;32:608-623.e9 pubmed 出版商
  197. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  198. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  199. Francis N, Every A, Ayodele B, Pike R, Mackie E, Pagel C. A T cell-specific knockout reveals an important role for protease-activated receptor 2 in lymphocyte development. Int J Biochem Cell Biol. 2017;92:95-103 pubmed 出版商
  200. Blanchfield L, Sabatino J, Lawrence L, Evavold B. NFM Cross-Reactivity to MOG Does Not Expand a Critical Threshold Level of High-Affinity T Cells Necessary for Onset of Demyelinating Disease. J Immunol. 2017;199:2680-2691 pubmed 出版商
  201. Jin L, Vu T, Yuan G, Datta P. STRAP Promotes Stemness of Human Colorectal Cancer via Epigenetic Regulation of the NOTCH Pathway. Cancer Res. 2017;77:5464-5478 pubmed 出版商
  202. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  203. Li L, Labuda J, Imai D, Griffey S, McSorley S. CCR7 Deficiency Allows Accelerated Clearance of Chlamydia from the Female Reproductive Tract. J Immunol. 2017;199:2547-2554 pubmed 出版商
  204. Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, et al. The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation. Cell Rep. 2017;20:600-612 pubmed 出版商
  205. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  206. Papa I, Saliba D, Ponzoni M, Bustamante S, Canete P, Gonzalez Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318-323 pubmed 出版商
  207. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  208. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739-1749 pubmed 出版商
  209. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  210. Seifert H, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark A, et al. Sex differences in regulatory cells in experimental stroke. Cell Immunol. 2017;318:49-54 pubmed 出版商
  211. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  212. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  213. Miyazaki M, Miyazaki K, Chen K, Jin Y, Turner J, Moore A, et al. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development. Immunity. 2017;46:818-834.e4 pubmed 出版商
  214. Lis R, Karrasch C, Poulos M, Kunar B, Redmond D, Duran J, et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature. 2017;545:439-445 pubmed 出版商
  215. Torcellan T, Hampton H, Bailey J, Tomura M, Brink R, Chtanova T. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A. 2017;114:5677-5682 pubmed 出版商
  216. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  217. Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody D, et al. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest. 2017;127:2339-2352 pubmed 出版商
  218. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  219. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  220. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  221. Lu P, Shih C, Qi H. Ephrin B1-mediated repulsion and signaling control germinal center T cell territoriality and function. Science. 2017;356: pubmed 出版商
  222. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  223. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  224. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  225. Lino C, Barros Martins J, Oberdörfer L, Walzer T, Prinz I. Eomes expression reports the progressive differentiation of IFN-?-producing Th1-like ?? T cells. Eur J Immunol. 2017;47:970-981 pubmed 出版商
  226. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  227. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  228. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  229. Sosunov A, McKhann G, Goldman J. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathol Commun. 2017;5:27 pubmed 出版商
  230. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  231. Briseño C, Gargaro M, Durai V, Davidson J, Theisen D, Anderson D, et al. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proc Natl Acad Sci U S A. 2017;114:3957-3962 pubmed 出版商
  232. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  233. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  234. Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet C, et al. CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol. 2017;67:328-338 pubmed 出版商
  235. Clark K, Fierro F, Ko E, Walker N, Arzi B, Tepper C, et al. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome. Stem Cell Res Ther. 2017;8:69 pubmed 出版商
  236. Bhattacharyya M, Penaloza MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology. 2017;151:340-348 pubmed 出版商
  237. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  238. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  239. Rubtsova K, Rubtsov A, Thurman J, Mennona J, Kappler J, Marrack P. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J Clin Invest. 2017;127:1392-1404 pubmed 出版商
  240. Okada T, Ogura T. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy. Sci Rep. 2017;7:43025 pubmed 出版商
  241. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  242. Horvatinovich J, Grogan E, Norris M, Steinkasserer A, Lemos H, Mellor A, et al. Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14+ Monocytes. J Immunol. 2017;198:2286-2301 pubmed 出版商
  243. Fernandez N, Renna H, McHugh L, Mazolkova K, Crugnola W, Evans J. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response. Stem Cells Int. 2017;2017:5846257 pubmed 出版商
  244. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  245. Duhachek Muggy S, Qi Y, Wise R, Alyahya L, Li H, Hodge J, et al. Metalloprotease-disintegrin ADAM12 actively promotes the stem cell-like phenotype in claudin-low breast cancer. Mol Cancer. 2017;16:32 pubmed 出版商
  246. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells M, Morton J, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183 pubmed 出版商
  247. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  248. Chorzalska A, Kim J, Roder K, Tepper A, Ahsan N, Rao R, et al. Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells Dev. 2017;26:656-677 pubmed 出版商
  249. Barnes L, Saurat J, Kaya G. Senescent Atrophic Epidermis Retains Lrig1+ Stem Cells and Loses Wnt Signaling, a Phenotype Shared with CD44KO Mice. PLoS ONE. 2017;12:e0169452 pubmed 出版商
  250. Pal D, Pertot A, Shirole N, Yao Z, Anaparthy N, Garvin T, et al. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. elife. 2017;6: pubmed 出版商
  251. Nowyhed H, Chandra S, Kiosses W, Marcovecchio P, Andary F, Zhao M, et al. ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Sci Rep. 2017;7:40273 pubmed 出版商
  252. Jiang X, Park C, Geddes Sweeney J, Yoo M, Gaide O, Kupper T. Dermal ?? T Cells Do Not Freely Re-Circulate Out of Skin and Produce IL-17 to Promote Neutrophil Infiltration during Primary Contact Hypersensitivity. PLoS ONE. 2017;12:e0169397 pubmed 出版商
  253. Rampoldi F, Brunk F, Bonrouhi M, Federico G, Krunic D, Porubsky S, et al. Deficiency of N-myristoylation reveals calcineurin activity as regulator of IFN-?-producing ?? T cells. J Leukoc Biol. 2017;101:1005-1014 pubmed 出版商
  254. van der Weyden L, Arends M, Campbell A, Bald T, Wardle Jones H, Griggs N, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233-236 pubmed 出版商
  255. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475-489 pubmed 出版商
  256. Marshall N, Vong A, Devarajan P, Brauner M, Kuang Y, Nayar R, et al. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol. 2017;198:1142-1155 pubmed 出版商
  257. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214:209-226 pubmed 出版商
  258. Lamprianou S, Gysemans C, Bou Saab J, Pontes H, Mathieu C, Meda P. Glibenclamide Prevents Diabetes in NOD Mice. PLoS ONE. 2016;11:e0168839 pubmed 出版商
  259. Griffiths K, Ahmed M, Das S, Gopal R, Horne W, Connell T, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016;7:13894 pubmed 出版商
  260. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  261. Beyaz S, Kim J, Pinello L, Xifaras M, Hu Y, Huang J, et al. The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nat Immunol. 2017;18:184-195 pubmed 出版商
  262. Hashimoto Hill S, Friesen L, Kim M, Kim C. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunol. 2017;10:912-923 pubmed 出版商
  263. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  264. Nish S, Zens K, Kratchmarov R, Lin W, Adams W, Chen Y, et al. CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. J Exp Med. 2017;214:39-47 pubmed 出版商
  265. Jacobsen E, Ochkur S, Doyle A, Lesuer W, Li W, Protheroe C, et al. Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation. Am J Respir Crit Care Med. 2017;195:1321-1332 pubmed 出版商
  266. Monfared M, Minaee B, Rastegar T, Khrazinejad E, Barbarestani M. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells. Iran J Basic Med Sci. 2016;19:1186-1192 pubmed
  267. Morita K, Okamura T, Inoue M, Komai T, Teruya S, Iwasaki Y, et al. Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production. Proc Natl Acad Sci U S A. 2016;113:E8131-E8140 pubmed
  268. Angela M, Endo Y, Asou H, Yamamoto T, Tumes D, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPAR? directs early activation of T cells. Nat Commun. 2016;7:13683 pubmed 出版商
  269. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  270. Cecchinato V, Bernasconi E, Speck R, Proietti M, Sauermann U, D Agostino G, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol. 2017;198:184-195 pubmed
  271. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  272. Martínez Gómez J, Periasamy P, Dutertre C, Irving A, Ng J, Crameri G, et al. Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Sci Rep. 2016;6:37796 pubmed 出版商
  273. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  274. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  275. Khan S, Woodruff E, Trapecar M, Fontaine K, Ezaki A, Borbet T, et al. Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. J Exp Med. 2016;213:2913-2929 pubmed
  276. Srivastava R, Khan A, Garg S, Syed S, Furness J, Vahed H, et al. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocula. J Virol. 2017;91: pubmed 出版商
  277. Shatirishvili M, Burk A, Franz C, Pace G, Kastilan T, Breuhahn K, et al. Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death Dis. 2016;7:e2461 pubmed 出版商
  278. Brocks T, Fedorchenko O, Schliermann N, Stein A, Moll U, Seegobin S, et al. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. FASEB J. 2017;31:526-543 pubmed 出版商
  279. Theisen E, Sauer J. Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity. Infect Immun. 2017;85: pubmed 出版商
  280. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  281. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  282. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  283. Swartz K, Wood S, Murthy T, Ramirez O, Qin G, Pillai M, et al. E2F-2 Promotes Nuclear Condensation and Enucleation of Terminally Differentiated Erythroblasts. Mol Cell Biol. 2017;37: pubmed 出版商
  284. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  285. Sen D, Kaminski J, Barnitz R, Kurachi M, Gerdemann U, Yates K, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354:1165-1169 pubmed
  286. Kwong Chung C, Ronchi F, Geuking M. Detrimental effect of systemic antimicrobial CD4+ T-cell reactivity on gut epithelial integrity. Immunology. 2017;150:221-235 pubmed 出版商
  287. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  288. Kotschy A, Szlávik Z, Murray J, Davidson J, Maragno A, Le Toumelin Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477-482 pubmed 出版商
  289. Alves da Costa T, Di Gangi R, Thomé R, Barreto Felisbino M, Pires Bonfanti A, Lumi Watanabe Ishikawa L, et al. Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS ONE. 2016;11:e0164745 pubmed 出版商
  290. Chu V, Graf R, Wirtz T, Weber T, Favret J, Li X, et al. Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proc Natl Acad Sci U S A. 2016;113:12514-12519 pubmed
  291. Case A, Roessner C, Tian J, Zimmerman M. Mitochondrial Superoxide Signaling Contributes to Norepinephrine-Mediated T-Lymphocyte Cytokine Profiles. PLoS ONE. 2016;11:e0164609 pubmed 出版商
  292. Liu Z, Tian R, Li Y, Zhang L, Shao H, Yang C, et al. SDF-1?-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia. Sci Rep. 2016;6:34416 pubmed 出版商
  293. Hiraga T, Nakamura H. Comparable roles of CD44v8-10 and CD44s in the development of bone metastases in a mouse model. Oncol Lett. 2016;12:2962-2969 pubmed
  294. Kang S, Wang Y, Reder N, Liu J. Multiplexed Molecular Imaging of Biomarker-Targeted SERS Nanoparticles on Fresh Tissue Specimens with Channel-Compressed Spectrometry. PLoS ONE. 2016;11:e0163473 pubmed 出版商
  295. Rothchild A, Sissons J, Shafiani S, Plaisier C, Min D, Mai D, et al. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113:E6172-E6181 pubmed
  296. Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R, Fardella S, et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun. 2016;7:13035 pubmed 出版商
  297. Urrutia M, Fernandez S, Gonzalez M, Vilches R, Rojas P, Vásquez M, et al. Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels. PLoS ONE. 2016;11:e0163735 pubmed 出版商
  298. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  299. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  300. Kikuchi I, Takahashi Kanemitsu A, Sakiyama N, Tang C, Tang P, Noda S, et al. Dephosphorylated parafibromin is a transcriptional coactivator of the Wnt/Hedgehog/Notch pathways. Nat Commun. 2016;7:12887 pubmed 出版商
  301. Jung Y, Riven I, Feigelson S, Kartvelishvily E, Tohya K, Miyasaka M, et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci U S A. 2016;113:E5916-E5924 pubmed
  302. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  303. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  304. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  305. Chai Y, Lee E, Gubbe J, Brekke J. 3D Cell Culture in a Self-Assembled Nanofiber Environment. PLoS ONE. 2016;11:e0162853 pubmed 出版商
  306. Liu Z, Chu S, Yao S, Li Y, Fan S, Sun X, et al. CD74 interacts with CD44 and enhances tumorigenesis and metastasis via RHOA-mediated cofilin phosphorylation in human breast cancer cells. Oncotarget. 2016;7:68303-68313 pubmed 出版商
  307. Boddupalli C, Nair S, Gray S, Nowyhed H, Verma R, Gibson J, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest. 2016;126:3905-3916 pubmed 出版商
  308. Olofsson P, Steinberg B, Sobbi R, Cox M, Ahmed M, Oswald M, et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat Biotechnol. 2016;34:1066-1071 pubmed 出版商
  309. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  310. Uhde A, Herder V, Akram Khan M, Ciurkiewicz M, Schaudien D, Teich R, et al. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS ONE. 2016;11:e0161883 pubmed 出版商
  311. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  312. Papadaki G, Kambas K, Choulaki C, Vlachou K, Drakos E, Bertsias G, et al. Neutrophil extracellular traps exacerbate Th1-mediated autoimmune responses in rheumatoid arthritis by promoting DC maturation. Eur J Immunol. 2016;46:2542-2554 pubmed 出版商
  313. Ushiki T, Huntington N, Glaser S, Kiu H, Georgiou A, Zhang J, et al. Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells. PLoS ONE. 2016;11:e0162111 pubmed 出版商
  314. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  315. Proekt I, Miller C, Jeanne M, Fasano K, Moon J, Lowell C, et al. LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. J Clin Invest. 2016;126:3758-3771 pubmed 出版商
  316. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  317. Ulges A, Witsch E, Pramanik G, Klein M, Birkner K, Bühler U, et al. Protein kinase CK2 governs the molecular decision between encephalitogenic TH17 cell and Treg cell development. Proc Natl Acad Sci U S A. 2016;113:10145-50 pubmed 出版商
  318. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  319. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  320. Valle Y, Almalki S, Agrawal D. Vitamin D machinery and metabolism in porcine adipose-derived mesenchymal stem cells. Stem Cell Res Ther. 2016;7:118 pubmed 出版商
  321. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  322. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  323. Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, et al. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol. 2016;118:18-30 pubmed 出版商
  324. Camilleri E, Gustafson M, Dudakovic A, Riester S, Garces C, Paradise C, et al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res Ther. 2016;7:107 pubmed 出版商
  325. Ilmer M, Mazurek N, Byrd J, Ramirez K, Hafley M, Alt E, et al. Cell surface galectin-3 defines a subset of chemoresistant gastrointestinal tumor-initiating cancer cells with heightened stem cell characteristics. Cell Death Dis. 2016;7:e2337 pubmed 出版商
  326. Carow B, Gao Y, Coquet J, Reilly M, Rottenberg M. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. J Immunol. 2016;197:2261-8 pubmed 出版商
  327. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  328. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun. 2016;7:12369 pubmed 出版商
  329. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  330. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  331. Hwang S, Cobb D, Bhadra R, Youngblood B, Khan I. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016;213:1799-818 pubmed 出版商
  332. Liu W, Kang S, Huang Z, Wu C, Jin H, Maine C, et al. A miR-155-Peli1-c-Rel pathway controls the generation and function of T follicular helper cells. J Exp Med. 2016;213:1901-19 pubmed 出版商
  333. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  334. Stanly T, Fritzsche M, Banerji S, Garcia E, Bernardino de la Serna J, Jackson D, et al. Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol Open. 2016;5:1343-50 pubmed 出版商
  335. Di Scala M, Otano I, Gil Farina I, Vanrell L, Hommel M, Olague C, et al. Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice. J Virol. 2016;90:8563-74 pubmed 出版商
  336. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  337. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  338. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  339. Drake L, Iijima K, Bartemes K, Kita H. Group 2 Innate Lymphoid Cells Promote an Early Antibody Response to a Respiratory Antigen in Mice. J Immunol. 2016;197:1335-42 pubmed 出版商
  340. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  341. Orta Mascaró M, Consuegra Fernández M, Carreras E, Roncagalli R, Carreras Sureda A, Alvarez P, et al. CD6 modulates thymocyte selection and peripheral T cell homeostasis. J Exp Med. 2016;213:1387-97 pubmed 出版商
  342. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  343. Ichimaru S, Nakagawa S, Arai Y, Kishida T, Shin Ya M, Honjo K, et al. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage. Int J Mol Sci. 2016;17: pubmed 出版商
  344. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  345. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  346. Zhang Y, Cabarcas S, Zheng J, Sun L, Mathews L, Zhang X, et al. Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression. Oncol Lett. 2016;11:3803-3812 pubmed
  347. Nasri I, Bonnet D, Zwarycz B, d Aldebert E, Khou S, Mezghani Jarraya R, et al. PAR2-dependent activation of GSK3? regulates the survival of colon stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol. 2016;311:G221-36 pubmed 出版商
  348. Arbore G, West E, Spolski R, Robertson A, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science. 2016;352:aad1210 pubmed 出版商
  349. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  350. Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck M, et al. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget. 2016;7:51107-51123 pubmed 出版商
  351. Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, et al. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep. 2016;6:27354 pubmed 出版商
  352. Lubeseder Martellato C, Hidalgo Sastre A, Hartmann C, Alexandrow K, Kamyabi Moghaddam Z, Sipos B, et al. Membranous CD24 drives the epithelial phenotype of pancreatic cancer. Oncotarget. 2016;7:49156-49168 pubmed 出版商
  353. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  354. Contreras F, Prado C, Gonzalez H, Franz D, Osorio Barrios F, Osorio F, et al. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. J Immunol. 2016;196:4143-9 pubmed 出版商
  355. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  356. Nieves W, Hung L, Oniskey T, Boon L, Foretz M, Viollet B, et al. Myeloid-Restricted AMPK?1 Promotes Host Immunity and Protects against IL-12/23p40-Dependent Lung Injury during Hookworm Infection. J Immunol. 2016;196:4632-40 pubmed 出版商
  357. Boareto M, Jolly M, Goldman A, Pietila M, Mani S, Sengupta S, et al. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface. 2016;13: pubmed 出版商
  358. Xu A, Bhanumathy K, Wu J, Ye Z, Freywald A, Leary S, et al. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci. 2016;6:30 pubmed 出版商
  359. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  360. Rialdi A, Campisi L, Zhao N, Lagda A, Pietzsch C, Ho J, et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science. 2016;352:aad7993 pubmed 出版商
  361. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  362. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  363. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  364. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  365. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  366. Verbist K, Guy C, Milasta S, Liedmann S, Kaminski M, Wang R, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389-93 pubmed 出版商
  367. Holmkvist P, Pool L, Hägerbrand K, Agace W, Rivollier A. IL-18R?-deficient CD4(+) T cells induce intestinal inflammation in the CD45RB(hi) transfer model of colitis despite impaired innate responsiveness. Eur J Immunol. 2016;46:1371-82 pubmed 出版商
  368. Mall C, Sckisel G, Proia D, Mirsoian A, Grossenbacher S, Pai C, et al. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology. 2016;5:e1075114 pubmed
  369. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  370. Jung Y, Decker A, Wang J, Lee E, Kana L, Yumoto K, et al. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget. 2016;7:25698-711 pubmed 出版商
  371. Braun J, Meixner A, Brachner A, Foisner R. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE. 2016;11:e0152278 pubmed 出版商
  372. Mathewson N, Jenq R, Mathew A, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17:505-513 pubmed 出版商
  373. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  374. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  375. Leeth C, Racine J, Chapman H, Arpa B, Carrillo J, Carrascal J, et al. B-lymphocytes expressing an Ig specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes. 2016;65:1977-1987 pubmed 出版商
  376. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  377. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  378. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  379. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  380. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  381. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  382. Gradiz R, Silva H, Carvalho L, Botelho M, Mota Pinto A. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep. 2016;6:21648 pubmed 出版商
  383. Pelly V, Kannan Y, Coomes S, Entwistle L, Rückerl D, Seddon B, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol. 2016;9:1407-1417 pubmed 出版商
  384. Li X, Wu J, Li Q, Shigemura K, Chung L, Huang W. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget. 2016;7:12869-84 pubmed 出版商
  385. Gehlot P, Shukla V, Gupta S, Makidon P. Detection of ALDH1 activity in rabbit hepatic VX2 tumors and isolation of ALDH1 positive cancer stem cells. J Transl Med. 2016;14:49 pubmed 出版商
  386. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  387. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  388. Vieyra Garcia P, Wei T, Naym D, Fredholm S, Fink Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res. 2016;22:3328-39 pubmed 出版商
  389. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  390. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  391. Tubo N, Fife B, Pagán A, Kotov D, Goldberg M, Jenkins M. Most microbe-specific naïve CD4? T cells produce memory cells during infection. Science. 2016;351:511-4 pubmed 出版商
  392. Atkinson S, Hoffmann U, Hamann A, Bach E, Danneskiold Samsøe N, Kristiansen K, et al. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade. Dis Model Mech. 2016;9:427-40 pubmed 出版商
  393. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  394. Lee B, Koo J, Yun Jun J, Gavrilova O, Lee Y, Seo A, et al. A mouse model for a partially inactive obesity-associated human MC3R variant. Nat Commun. 2016;7:10522 pubmed 出版商
  395. Aloulou M, Carr E, Gador M, Bignon A, Liblau R, Fazilleau N, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun. 2016;7:10579 pubmed 出版商
  396. Masuda T, Wang X, Maeda M, Canver M, Sher F, Funnell A, et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science. 2016;351:285-9 pubmed 出版商
  397. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  398. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  399. Quattrocelli M, Giacomazzi G, Broeckx S, Ceelen L, Bolca S, Spaas J, et al. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports. 2016;6:55-63 pubmed 出版商
  400. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  401. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  402. Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, et al. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Sci Rep. 2016;6:19073 pubmed 出版商
  403. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  404. McCubbrey A, Nelson J, Stolberg V, Blakely P, McCloskey L, Janssen W, et al. MicroRNA-34a Negatively Regulates Efferocytosis by Tissue Macrophages in Part via SIRT1. J Immunol. 2016;196:1366-75 pubmed 出版商
  405. MikyÅ¡ková R, Å tÄ›pánek I, Indrová M, Bieblová J, Šímová J, Truxová I, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48:953-64 pubmed 出版商
  406. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  407. Cheung S, Chuang P, Huang H, Hwang Verslues W, Cho C, Yang W, et al. Stage-specific embryonic antigen-3 (SSEA-3) and β3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proc Natl Acad Sci U S A. 2016;113:960-5 pubmed 出版商
  408. Ren Y, Wang N, Hu W, Zhang X, Xu J, Wan Y. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination. Sci Rep. 2015;5:18099 pubmed 出版商
  409. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  410. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  411. Lindemans C, Calafiore M, Mertelsmann A, O Connor M, Dudakov J, Jenq R, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560-564 pubmed 出版商
  412. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  413. Vishnoi M, Peddibhotla S, Yin W, T Scamardo A, George G, Hong D, et al. The isolation and characterization of CTC subsets related to breast cancer dormancy. Sci Rep. 2015;5:17533 pubmed 出版商
  414. Gururajan M, Cavassani K, Sievert M, Duan P, Lichterman J, Huang J, et al. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget. 2015;6:44072-83 pubmed 出版商
  415. Assayag Asherie N, Sever D, Bogdani M, Johnson P, Weiss T, Ginzberg A, et al. Can CD44 Be a Mediator of Cell Destruction? The Challenge of Type 1 Diabetes. PLoS ONE. 2015;10:e0143589 pubmed 出版商
  416. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  417. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  418. Arzi B, Mills Ko E, Verstraete F, Kol A, Walker N, Badgley M, et al. Therapeutic Efficacy of Fresh, Autologous Mesenchymal Stem Cells for Severe Refractory Gingivostomatitis in Cats. Stem Cells Transl Med. 2016;5:75-86 pubmed 出版商
  419. Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep. 2016;13:49-58 pubmed 出版商
  420. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  421. Parys M, Nelson N, Koehl K, Miller R, Kaneene J, Kruger J, et al. Safety of Intraperitoneal Injection of Adipose Tissue-Derived Autologous Mesenchymal Stem Cells in Cats. J Vet Intern Med. 2016;30:157-63 pubmed 出版商
  422. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  423. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  424. Ruan S, Samuelson D, Assouline B, Morre M, Shellito J. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect Immun. 2016;84:108-19 pubmed 出版商
  425. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  426. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  427. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  428. Wu V, Smith A, You H, Nguyen T, Ferguson R, Taylor M, et al. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol. 2016;9:777-86 pubmed 出版商
  429. Forni M, Ramos Maia Lobba A, Pereira Ferreira A, Sogayar M. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin. PLoS ONE. 2015;10:e0140143 pubmed 出版商
  430. Yun J, Song S, Kang J, Park J, Kim H, Han S, et al. Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability. Nucleic Acids Res. 2016;44:558-72 pubmed 出版商
  431. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  432. Vlachou K, Mintzas K, Glymenaki M, Ioannou M, Papadaki G, Bertsias G, et al. Elimination of Granulocytic Myeloid-Derived Suppressor Cells in Lupus-Prone Mice Linked to Reactive Oxygen Species-Dependent Extracellular Trap Formation. Arthritis Rheumatol. 2016;68:449-61 pubmed 出版商
  433. McCormack R, de Armas L, Shiratsuchi M, Fiorentino D, Olsson M, Lichtenheld M, et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. elife. 2015;4: pubmed 出版商
  434. Wei T, Zhang N, Guo Z, Chi F, Song Y, Zhu X. Wnt4 signaling is associated with the decrease of proliferation and increase of apoptosis during age-related thymic involution. Mol Med Rep. 2015;12:7568-76 pubmed 出版商
  435. Martin Blondel G, Pignolet B, Tietz S, Yshii L, Gebauer C, Périnat T, et al. Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the α4β1-integrin. Eur J Immunol. 2015;45:3302-12 pubmed 出版商
  436. Lynskey N, Banerji S, Johnson L, Holder K, Reglinski M, Wing P, et al. Rapid Lymphatic Dissemination of Encapsulated Group A Streptococci via Lymphatic Vessel Endothelial Receptor-1 Interaction. PLoS Pathog. 2015;11:e1005137 pubmed 出版商
  437. Andersson K, Brisslert M, Cavallini N, Svensson M, Welin A, Erlandsson M, et al. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget. 2015;6:20043-57 pubmed
  438. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  439. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  440. Sawitza I, Kordes C, Götze S, Herebian D, Häussinger D. Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep. 2015;5:13320 pubmed 出版商
  441. Manieri N, Mack M, Himmelrich M, Worthley D, Hanson E, Eckmann L, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest. 2015;125:3606-18 pubmed 出版商
  442. Chantzoura E, Skylaki S, Menendez S, Kim S, Johnsson A, Linnarsson S, et al. Reprogramming Roadblocks Are System Dependent. Stem Cell Reports. 2015;5:350-64 pubmed 出版商
  443. Liu X, Chen X, Rycaj K, Chao H, Deng Q, Jeter C, et al. Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget. 2015;6:23959-86 pubmed
  444. Choi Y, Gullicksrud J, Xing S, Zeng Z, Shan Q, Li F, et al. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol. 2015;16:980-90 pubmed 出版商
  445. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  446. Kaminsky L, Sei J, Parekh N, Davies M, Reider I, Krouse T, et al. Redundant Function of Plasmacytoid and Conventional Dendritic Cells Is Required To Survive a Natural Virus Infection. J Virol. 2015;89:9974-85 pubmed 出版商
  447. Riordan D, Varma S, West R, Brown P. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling. PLoS ONE. 2015;10:e0128975 pubmed 出版商
  448. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  449. de Carvalho J, Zonari A, de Paula A, Martins T, Gomes D, Goes A. Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization. Biomed Res Int. 2015;2015:652474 pubmed 出版商
  450. Liang Y, Hu J, Li J, Liu Y, Yu J, Zhuang X, et al. Epigenetic Activation of TWIST1 by MTDH Promotes Cancer Stem-like Cell Traits in Breast Cancer. Cancer Res. 2015;75:3672-80 pubmed 出版商
  451. Mikucki M, Fisher D, Matsuzaki J, Skitzki J, Gaulin N, Muhitch J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458 pubmed 出版商
  452. Ackerknecht M, Hauser M, Legler D, Stein J. In vivo TCR Signaling in CD4(+) T Cells Imprints a Cell-Intrinsic, Transient Low-Motility Pattern Independent of Chemokine Receptor Expression Levels, or Microtubular Network, Integrin, and Protein Kinase C Activity. Front Immunol. 2015;6:297 pubmed 出版商
  453. Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang J, Bando H, et al. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun. 2015;6:7474 pubmed 出版商
  454. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  455. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS ONE. 2015;10:e0128094 pubmed 出版商
  456. Song H, Wang H, Wu W, Qi L, Shao L, Wang F, et al. Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells. Cell Tissue Res. 2015;362:97-113 pubmed 出版商
  457. Deberge M, Ely K, Wright P, Thorp E, Enelow R. Shedding of TNF receptor 2 by effector CD8⁺ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection. J Leukoc Biol. 2015;98:423-34 pubmed 出版商
  458. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  459. Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015;36:113-22 pubmed 出版商
  460. McCully M, Collins P, Hughes T, Thomas C, Billen J, O Donnell V, et al. Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells. J Immunol. 2015;195:96-104 pubmed 出版商
  461. Liang X, Ding Y, Zhang Y, Chai Y, He J, Chiu S, et al. Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis. 2015;6:e1765 pubmed 出版商
  462. Seo K, Lee S, Ye B, Kim Y, Bae S, Kim C. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol. 2015;85:13-24 pubmed 出版商
  463. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  464. Kahra D, Mondol T, Niemiec M, Wittung Stafshede P. Human Copper Chaperone Atox1 Translocates to the Nucleus but does not Bind DNA In Vitro. Protein Pept Lett. 2015;22:532-8 pubmed
  465. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  466. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  467. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  468. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  469. Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich P, Derouazi M, Walker P. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol. 2015;45:2263-75 pubmed 出版商
  470. Pei B, Zhao M, Miller B, Véla J, Bruinsma M, Virgin H, et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J Immunol. 2015;194:5872-84 pubmed 出版商
  471. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  472. Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 2015;6:6970 pubmed 出版商
  473. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  474. Evans J, Salvador V, George S, Trevino Gutierrez C, Nunez C. Mouse aorta-derived mesenchymal progenitor cells contribute to and enhance the immune response of macrophage cells under inflammatory conditions. Stem Cell Res Ther. 2015;6:56 pubmed 出版商
  475. ORELLANA R, Kato S, Erices R, Bravo M, Gonzalez P, Oliva B, et al. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290 pubmed 出版商
  476. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  477. Boding L, Hansen A, Nielsen M, Meroni G, Braunstein T, Woetmann A, et al. Midline 1 controls polarization and migration of murine cytotoxic T cells. Immun Inflamm Dis. 2014;2:262-71 pubmed 出版商
  478. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  479. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  480. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  481. Ali H, Al Yatama M, Abu Farha M, Behbehani K, Al Madhoun A. Multi-lineage differentiation of human umbilical cord Wharton's Jelly Mesenchymal Stromal Cells mediates changes in the expression profile of stemness markers. PLoS ONE. 2015;10:e0122465 pubmed 出版商
  482. Lujan E, Zunder E, Ng Y, Goronzy I, Nolan G, Wernig M. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature. 2015;521:352-6 pubmed 出版商
  483. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  484. Yang Y, Gomez J, Herrera M, Perez Marco R, Repenning P, Zhang Z, et al. Salt restriction leads to activation of adult renal mesenchymal stromal cell-like cells via prostaglandin E2 and E-prostanoid receptor 4. Hypertension. 2015;65:1047-54 pubmed 出版商
  485. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  486. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  487. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  488. Yang H, Ma Y, Zhou Y, Xu L, Chen X, Ding W, et al. Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment. Cancer Lett. 2015;361:128-36 pubmed 出版商
  489. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  490. Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, et al. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol. 2015;46:1913-23 pubmed 出版商
  491. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  492. Srivastava M, Duan G, Kershaw N, Athanasopoulos V, Yeo J, Ose T, et al. Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nat Commun. 2015;6:6253 pubmed 出版商
  493. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  494. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  495. Gong J, Weng D, Eguchi T, Murshid A, Sherman M, Song B, et al. Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene. 2015;34:5460-71 pubmed 出版商
  496. Buchwald Z, Yang C, Nellore S, Shashkova E, Davis J, Cline A, et al. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res. 2015;30:1508-22 pubmed 出版商
  497. Hartmann M, Parra L, Ruschel A, Böhme S, Li Y, Morrison H, et al. Tumor Suppressor NF2 Blocks Cellular Migration by Inhibiting Ectodomain Cleavage of CD44. Mol Cancer Res. 2015;13:879-90 pubmed 出版商
  498. Michelet X, Garg S, Wolf B, Tuli A, Ricciardi Castagnoli P, Brenner M. MHC class II presentation is controlled by the lysosomal small GTPase, Arl8b. J Immunol. 2015;194:2079-88 pubmed 出版商
  499. Urness L, Wang X, Shibata S, Ohyama T, Mansour S. Fgf10 is required for specification of non-sensory regions of the cochlear epithelium. Dev Biol. 2015;400:59-71 pubmed 出版商
  500. Huang Y, Clarke F, Karimi M, Roy N, Williamson E, Okumura M, et al. CRK proteins selectively regulate T cell migration into inflamed tissues. J Clin Invest. 2015;125:1019-32 pubmed 出版商
  501. Srivastava R, Khan A, Spencer D, Vahed H, Lopes P, Thai N, et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic. J Immunol. 2015;194:2232-48 pubmed 出版商
  502. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  503. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  504. Schumacher M, Aihara E, Feng R, Engevik A, Shroyer N, Ottemann K, et al. The use of murine-derived fundic organoids in studies of gastric physiology. J Physiol. 2015;593:1809-27 pubmed 出版商
  505. Cabrera Perez J, Condotta S, James B, Kashem S, Brincks E, Rai D, et al. Alterations in antigen-specific naive CD4 T cell precursors after sepsis impairs their responsiveness to pathogen challenge. J Immunol. 2015;194:1609-20 pubmed 出版商
  506. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  507. Long P, Tighe S, Driscoll H, Fortner K, Viapiano M, Jaworski D. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol. 2015;230:1929-43 pubmed 出版商
  508. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  509. Singh S, Nehete P, Yang G, He H, Nehete B, Hanley P, et al. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant. Vaccines (Basel). 2014;2:686-706 pubmed 出版商
  510. Van de Laar E, Clifford M, Hasenoeder S, Kim B, Wang D, Lee S, et al. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res. 2014;15:160 pubmed 出版商
  511. Mouraret N, Houssaïni A, Abid S, Quarck R, Marcos E, Parpaleix A, et al. Role for telomerase in pulmonary hypertension. Circulation. 2015;131:742-755 pubmed 出版商
  512. Nguyen L, Pan J, Dinh T, Hadeiba H, O Hara E, Ebtikar A, et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol. 2015;16:207-213 pubmed 出版商
  513. Skripuletz T, Manzel A, Gropengießer K, Schäfer N, Gudi V, Singh V, et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398-413 pubmed 出版商
  514. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  515. Dong X, Lin Q, Aihara A, Li Y, Huang C, Chung W, et al. Aspartate β-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2015;6:1231-48 pubmed
  516. Naik A, Hawwari A, Krangel M. Specification of Vδ and Vα usage by Tcra/Tcrd locus V gene segment promoters. J Immunol. 2015;194:790-4 pubmed 出版商
  517. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  518. Ohmura M, Hishiki T, Yamamoto T, Nakanishi T, Kubo A, Tsuchihashi K, et al. Impacts of CD44 knockdown in cancer cells on tumor and host metabolic systems revealed by quantitative imaging mass spectrometry. Nitric Oxide. 2015;46:102-13 pubmed 出版商
  519. Guo X, Tanaka Y, Kondo M. Thymic precursors of TCRαβ(+)CD8αα(+) intraepithelial lymphocytes are negative for CD103. Immunol Lett. 2015;163:40-8 pubmed 出版商
  520. Martin P, Dubois C, Jacquier E, Dion S, Mancini Bourgine M, Godon O, et al. TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and exerts an antiviral effect in HBV-persistent mice. Gut. 2015;64:1961-71 pubmed 出版商
  521. Fahl S, Harris B, Coffey F, Wiest D. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. J Immunol. 2015;194:200-9 pubmed
  522. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  523. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  524. Mehta P, Nuotio Antar A, Smith C. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J Leukoc Biol. 2015;97:121-34 pubmed 出版商
  525. Ghotra V, He S, van der Horst G, Nijhoff S, de Bont H, Lekkerkerker A, et al. SYK is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res. 2015;75:230-40 pubmed 出版商
  526. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  527. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  528. Acton S, Farrugia A, Astarita J, Mourão Sá D, Jenkins R, Nye E, et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature. 2014;514:498-502 pubmed 出版商
  529. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  530. Maneva Radicheva L, Amatya C, Parker C, Ellefson J, Radichev I, Raghavan A, et al. Autoimmune diabetes is suppressed by treatment with recombinant human tissue Kallikrein-1. PLoS ONE. 2014;9:e107213 pubmed 出版商
  531. Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, et al. β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 2015;22:298-310 pubmed 出版商
  532. Rasmussen S, Bilgrau A, Schmitz A, Falgreen S, Bergkvist K, Tramm A, et al. Stable Phenotype Of B-Cell Subsets Following Cryopreservation and Thawing of Normal Human Lymphocytes Stored in a Tissue Biobank. Cytometry B Clin Cytom. 2014;: pubmed 出版商
  533. Bertin S, Lozano Ruiz B, Bachiller V, García Martínez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505-15 pubmed 出版商
  534. Cao X, Cao D, Jin M, Jia Z, Kong F, Ma H, et al. CD44 but not CD24 expression is related to poor prognosis in non-cardia adenocarcinoma of the stomach. BMC Gastroenterol. 2014;14:157 pubmed 出版商
  535. Carty S, Koretzky G, Jordan M. Interleukin-4 regulates eomesodermin in CD8+ T cell development and differentiation. PLoS ONE. 2014;9:e106659 pubmed 出版商
  536. Chatterjee S, Thyagarajan K, Kesarwani P, Song J, Soloshchenko M, Fu J, et al. Reducing CD73 expression by IL1?-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res. 2014;74:6048-59 pubmed 出版商
  537. Smith T, Verdeil G, Marquardt K, Sherman L. Contribution of TCR signaling strength to CD8+ T cell peripheral tolerance mechanisms. J Immunol. 2014;193:3409-16 pubmed 出版商
  538. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  539. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  540. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  541. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  542. Bailon E, Ugarte Berzal E, Amigo Jiménez I, Van den Steen P, Opdenakker G, Garcia Marco J, et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol. 2014;96:185-99 pubmed 出版商
  543. Senturk S, Yao Z, Camiolo M, Stiles B, Rathod T, Walsh A, et al. p53? is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci U S A. 2014;111:E3287-96 pubmed 出版商
  544. Reeh K, Cardenas K, Bain V, Liu Z, LAURENT M, Manley N, et al. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development. 2014;141:2950-8 pubmed 出版商
  545. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  546. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  547. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  548. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  549. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  550. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  551. Zhou Q, Ho A, Schlitzer A, Tang Y, Wong K, Wong F, et al. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis. J Immunol. 2014;193:496-509 pubmed 出版商
  552. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed 出版商
  553. Yabas M, Coupland L, Cromer D, Winterberg M, Teoh N, D Rozario J, et al. Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span. J Biol Chem. 2014;289:19531-7 pubmed 出版商
  554. Ghazaryan S, Sy C, Hu T, An X, Mohandas N, Fu H, et al. Inactivation of Rb and E2f8 synergizes to trigger stressed DNA replication during erythroid terminal differentiation. Mol Cell Biol. 2014;34:2833-47 pubmed 出版商
  555. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama K, et al. Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 2014;34:2732-44 pubmed
  556. Mukonoweshuro B, Brown C, Fisher J, Ingham E. Immunogenicity of undifferentiated and differentiated allogeneic mouse mesenchymal stem cells. J Tissue Eng. 2014;5:2041731414534255 pubmed 出版商
  557. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  558. Breuer J, Schwab N, Schneider Hohendorf T, Marziniak M, Mohan H, Bhatia U, et al. Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity. Ann Neurol. 2014;75:739-58 pubmed 出版商
  559. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  560. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  561. Harland K, Day E, Apte S, Russ B, Doherty P, Turner S, et al. Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. Nat Commun. 2014;5:3547 pubmed 出版商
  562. Yan J, Villarreal D, Racine T, Chu J, Walters J, Morrow M, et al. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine. 2014;32:2833-42 pubmed 出版商
  563. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  564. Ahmed N, Iu J, Brown C, Taylor D, Kandel R. Serum- and growth-factor-free three-dimensional culture system supports cartilage tissue formation by promoting collagen synthesis via Sox9-Col2a1 interaction. Tissue Eng Part A. 2014;20:2224-33 pubmed 出版商
  565. Zhao J, Lin J, Zhu D, Wang X, Brooks D, Chen M, et al. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/?-catenin/BCL9 pathway. Cancer Res. 2014;74:1801-13 pubmed 出版商
  566. Hirayama T, Asano Y, Iida H, Watanabe T, Nakamura T, Goitsuka R. Meis1 is required for the maintenance of postnatal thymic epithelial cells. PLoS ONE. 2014;9:e89885 pubmed 出版商
  567. Lee J, Walsh M, Hoehn K, James D, Wherry E, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-9 pubmed 出版商
  568. Hwang W, Jiang J, Yang S, Huang T, Lan H, Teng H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268-80 pubmed 出版商
  569. Hirokawa Y, Yip K, Tan C, Burgess A. Colonic myofibroblast cell line stimulates colonoid formation. Am J Physiol Gastrointest Liver Physiol. 2014;306:G547-56 pubmed 出版商
  570. Gaughan A, Wang J, Pelletier R, Nadasdy T, Brodsky S, Roy S, et al. Key role for CD4 T cells during mixed antibody-mediated rejection of renal allografts. Am J Transplant. 2014;14:284-94 pubmed 出版商
  571. Torii D, Konishi K, Watanabe N, Goto S, Tsutsui T. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament. Odontology. 2015;103:27-35 pubmed 出版商
  572. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  573. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  574. Osada M, Singh V, Wu K, Sant Angelo D, Pezzano M. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus. PLoS ONE. 2013;8:e83024 pubmed 出版商
  575. Driskell R, Lichtenberger B, Hoste E, Kretzschmar K, Simons B, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277-281 pubmed 出版商
  576. Kim H, Lee H, Chang Y, Pichavant M, Shore S, Fitzgerald K, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54-61 pubmed 出版商
  577. Salem H, Trojanowski B, Fiedler K, Maier H, Schirmbeck R, Wagner M, et al. Long-term IKK2/NF-?B signaling in pancreatic ?-cells induces immune-mediated diabetes. Diabetes. 2014;63:960-75 pubmed 出版商
  578. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  579. Ding Z, Bergman A, Rutemark C, Ouchida R, Ohno H, Wang J, et al. Complement-activating IgM enhances the humoral but not the T cell immune response in mice. PLoS ONE. 2013;8:e81299 pubmed 出版商
  580. Meng F, Takaori K, Ito T, Masui T, Kawaguchi M, Kawaguchi Y, et al. Expression of SOX9 in intraductal papillary mucinous neoplasms of the pancreas. Pancreas. 2014;43:7-14 pubmed 出版商
  581. Ghazvini M, Sonneveld P, Kremer A, Franken P, Sacchetti A, Atlasi Y, et al. Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis. PLoS ONE. 2013;8:e73872 pubmed 出版商
  582. Wang S, Lee Y, Kim J, Hyun J, Lee K, Kim Y, et al. Potential role of Hedgehog pathway in liver response to radiation. PLoS ONE. 2013;8:e74141 pubmed 出版商
  583. Redecke V, Wu R, Zhou J, Finkelstein D, Chaturvedi V, High A, et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods. 2013;10:795-803 pubmed 出版商
  584. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  585. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  586. Yockey L, Demehri S, Turkoz M, Turkoz A, Ahern P, Jassim O, et al. The absence of a microbiota enhances TSLP expression in mice with defective skin barrier but does not affect the severity of their allergic inflammation. J Invest Dermatol. 2013;133:2714-2721 pubmed 出版商
  587. Tripathi P, Wang Y, Coussens M, Manda K, Casey A, Lin C, et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene. 2014;33:1840-9 pubmed 出版商
  588. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  589. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  590. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  591. Szabo A, Fong S, Yue L, Zhang K, Strachan L, Scalapino K, et al. The CD44+ ALDH+ population of human keratinocytes is enriched for epidermal stem cells with long-term repopulating ability. Stem Cells. 2013;31:786-99 pubmed 出版商
  592. Mathew R, Seiler M, Scanlon S, Mao A, Constantinides M, Bertozzi Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618-21 pubmed 出版商
  593. Bonuccelli G, Castello Cros R, Capozza F, Martinez Outschoorn U, Lin Z, Tsirigos A, et al. The milk protein ?-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis. Cell Cycle. 2012;11:3972-82 pubmed 出版商
  594. Yassai M, Cooley B, Gorski J. Developmental dynamics of post-selection thymic DN iNKT. PLoS ONE. 2012;7:e43509 pubmed 出版商
  595. Carrier Y, Whitters M, Miyashiro J, LaBranche T, Ramon H, Benoit S, et al. Enhanced GITR/GITRL interactions augment IL-27 expression and induce IL-10-producing Tr-1 like cells. Eur J Immunol. 2012;42:1393-404 pubmed 出版商
  596. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  597. Chevrier S, Genton C, Malissen B, Malissen M, Acha Orbea H. Dominant Role of CD80-CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LAT(Y136F) CD4(+) T Cells. Front Immunol. 2012;3:27 pubmed 出版商
  598. Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, et al. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109:7049-54 pubmed 出版商
  599. Caserta S, Nausch N, Sawtell A, Drummond R, Barr T, MacDonald A, et al. Chronic infection drives expression of the inhibitory receptor CD200R, and its ligand CD200, by mouse and human CD4 T cells. PLoS ONE. 2012;7:e35466 pubmed 出版商
  600. Stone J, McMillan R, Skaar D, Bradshaw J, Jirtle R, Sikes M. DNA double-strand breaks relieve USF-mediated repression of D?2 germline transcription in developing thymocytes. J Immunol. 2012;188:2266-75 pubmed 出版商
  601. Ruckwardt T, Malloy A, Gostick E, Price D, Dash P, McClaren J, et al. Neonatal CD8 T-cell hierarchy is distinct from adults and is influenced by intrinsic T cell properties in respiratory syncytial virus infected mice. PLoS Pathog. 2011;7:e1002377 pubmed 出版商
  602. Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, et al. T cell factor 1 regulates thymocyte survival via a RORγt-dependent pathway. J Immunol. 2011;187:5964-73 pubmed 出版商
  603. Randall K, Chan S, Ma C, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208:2305-20 pubmed 出版商
  604. Shameli A, Clemente Casares X, Wang J, Santamaria P. Development of memory-like autoregulatory CD8+ T cells is CD4+ T cell dependent. J Immunol. 2011;187:2859-66 pubmed 出版商
  605. Zaragoza B, Evaristo C, Kissenpfennig A, Libri V, Malissen B, Rocha B, et al. Cell-to-cell interactions and signals involved in the reconstitution of peripheral CD8 T(CM) and T(EM) cell pools. PLoS ONE. 2011;6:e17423 pubmed 出版商
  606. Quere R, Andradottir S, Brun A, Zubarev R, Karlsson G, Olsson K, et al. High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event. Leukemia. 2011;25:515-26 pubmed 出版商
  607. Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J Exp Med. 2010;207:2561-8 pubmed 出版商
  608. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  609. Echeverry A, Saijo S, Schesser K, Adkins B. Yersinia enterocolitica promotes robust mucosal inflammatory T-cell immunity in murine neonates. Infect Immun. 2010;78:3595-608 pubmed 出版商
  610. Yuan F, Li X, Lin J, Schwabe C, Bullesbach E, Rao C, et al. The role of RXFP2 in mediating androgen-induced inguinoscrotal testis descent in LH receptor knockout mice. Reproduction. 2010;139:759-69 pubmed 出版商
  611. Sadri N, Lu J, Badura M, Schneider R. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol. 2010;11:1 pubmed 出版商
  612. Tsumiyama K, Miyazaki Y, Shiozawa S. Self-organized criticality theory of autoimmunity. PLoS ONE. 2009;4:e8382 pubmed 出版商
  613. Schuhmann M, Stegner D, Berna Erro A, Bittner S, Braun A, Kleinschnitz C, et al. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol. 2010;184:1536-42 pubmed 出版商
  614. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  615. Getahun A, Heyman B. Studies on the mechanism by which antigen-specific IgG suppresses primary antibody responses: evidence for epitope masking and decreased localization of antigen in the spleen. Scand J Immunol. 2009;70:277-87 pubmed 出版商
  616. Rajasagi N, Kassim S, Kollias C, Zhao X, Chervenak R, Jennings S. CD4+ T cells are required for the priming of CD8+ T cells following infection with herpes simplex virus type 1. J Virol. 2009;83:5256-68 pubmed 出版商
  617. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  618. Kanwar N, Fayyazi A, Backofen B, Nitsche M, Dressel R, von Mollard G. Thymic alterations in mice deficient for the SNARE protein VAMP8/endobrevin. Cell Tissue Res. 2008;334:227-42 pubmed 出版商
  619. Wells J, Cowled C, Farzaneh F, Noble A. Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol. 2008;181:3422-31 pubmed
  620. Rana S, Byrne S, MacDonald L, Chan C, Halliday G. Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am J Pathol. 2008;172:993-1004 pubmed 出版商
  621. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  622. King S, Knorn A, Ohnmacht C, Voehringer D. Accumulation of effector CD4 T cells during type 2 immune responses is negatively regulated by Stat6. J Immunol. 2008;180:754-63 pubmed
  623. Park S, Han Y, Aleyas A, George J, Yoon H, Lee J, et al. Low-dose antigen-experienced CD4+ T cells display reduced clonal expansion but facilitate an effective memory pool in response to secondary exposure. Immunology. 2008;123:426-37 pubmed
  624. Bliss S, Bliss S, Beiting D, Alcaraz A, Appleton J. IL-10 regulates movement of intestinally derived CD4+ T cells to the liver. J Immunol. 2007;178:7974-83 pubmed
  625. Stephens G, Andersson J, Shevach E. Distinct subsets of FoxP3+ regulatory T cells participate in the control of immune responses. J Immunol. 2007;178:6901-11 pubmed
  626. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A. 2007;81:652-62 pubmed
  627. Hofmann M, Brinkmann V, Zerwes H. FTY720 preferentially depletes naive T cells from peripheral and lymphoid organs. Int Immunopharmacol. 2006;6:1902-10 pubmed
  628. Chen B, Deoliveira D, Cui X, Le N, Son J, Whitesides J, et al. Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse. Blood. 2007;109:3115-23 pubmed
  629. Hintzen G, Ohl L, del Rio M, Rodriguez Barbosa J, Pabst O, Kocks J, et al. Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J Immunol. 2006;177:7346-54 pubmed
  630. Hale J, Boursalian T, Turk G, Fink P. Thymic output in aged mice. Proc Natl Acad Sci U S A. 2006;103:8447-52 pubmed
  631. Hofmann M, Zerwes H. Identification of organ-specific T cell populations by analysis of multiparameter flow cytometry data using DNA-chip analysis software. Cytometry A. 2006;69:533-40 pubmed
  632. Matsuda J, Zhang Q, Ndonye R, Richardson S, Howell A, Gapin L. T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood. 2006;107:2797-805 pubmed
  633. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed
  634. Getahun A, Hjelm F, Heyman B. IgE enhances antibody and T cell responses in vivo via CD23+ B cells. J Immunol. 2005;175:1473-82 pubmed
  635. Kelchtermans H, De Klerck B, Mitera T, Van Balen M, Bullens D, Billiau A, et al. Defective CD4+CD25+ regulatory T cell functioning in collagen-induced arthritis: an important factor in pathogenesis, counter-regulated by endogenous IFN-gamma. Arthritis Res Ther. 2005;7:R402-15 pubmed
  636. Yasumi T, Katamura K, Okafuji I, Yoshioka T, Meguro T, Nishikomori R, et al. Limited ability of antigen-specific Th1 responses to inhibit Th2 cell development in vivo. J Immunol. 2005;174:1325-31 pubmed
  637. Makar K, Pérez Melgosa M, Shnyreva M, Weaver W, Fitzpatrick D, Wilson C. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat Immunol. 2003;4:1183-90 pubmed
  638. Fisson S, Darrasse Jèze G, Litvinova E, Septier F, Klatzmann D, Liblau R, et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med. 2003;198:737-46 pubmed
  639. Maris C, Miller J, Altman J, Jacob J. A transgenic mouse model genetically tags all activated CD8 T cells. J Immunol. 2003;171:2393-401 pubmed
  640. Noble A, Leggat J, Inderberg E. CD8+ immunoregulatory cells in the graft-versus-host reaction: CD8 T cells activate dendritic cells to secrete interleukin-12/interleukin-18 and induce T helper 1 autoantibody. Immunology. 2003;109:476-86 pubmed
  641. Belnoue E, Kayibanda M, Vigario A, Deschemin J, Van Rooijen N, Viguier M, et al. On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. J Immunol. 2002;169:6369-75 pubmed
  642. Hsu S, Wu C, Han J, Lai M. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood. 2003;101:970-6 pubmed
  643. Yu C, Feng M, Shih H, Lai M. Increased p300 expression inhibits glucocorticoid receptor-T-cell receptor antagonism but does not affect thymocyte positive selection. Mol Cell Biol. 2002;22:4556-66 pubmed
  644. Schmeissner P, Xie H, Smilenov L, Shu F, Marcantonio E. Integrin functions play a key role in the differentiation of thymocytes in vivo. J Immunol. 2001;167:3715-24 pubmed
  645. Radoja S, Saio M, Frey A. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol. 2001;166:6074-83 pubmed
  646. Van Stipdonk M, Lemmens E, Schoenberger S. Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol. 2001;2:423-9 pubmed
  647. Attinger A, MacDonald H, Acha Orbea H. Lymphoid environment limits superantigen and antigen-induced T cell proliferation at high precursor frequency. Eur J Immunol. 2001;31:884-93 pubmed
  648. Ohmura K, Kawamoto H, Lu M, Ikawa T, Ozaki S, Nakao K, et al. Immature multipotent hemopoietic progenitors lacking long-term bone marrow-reconstituting activity in the aorta-gonad-mesonephros region of murine day 10 fetuses. J Immunol. 2001;166:3290-6 pubmed
  649. Broeren C, Gray G, Carreno B, June C. Costimulation light: activation of CD4+ T cells with CD80 or CD86 rather than anti-CD28 leads to a Th2 cytokine profile. J Immunol. 2000;165:6908-14 pubmed
  650. Ikawa T, Kawamoto H, Fujimoto S, Katsura Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med. 1999;190:1617-26 pubmed
  651. Kang J, Coles M, Raulet D. Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes. J Exp Med. 1999;190:973-82 pubmed
  652. Zerrahn J, Volkmann A, Coles M, Held W, Lemonnier F, Raulet D. Class I MHC molecules on hematopoietic cells can support intrathymic positive selection of T cell receptor transgenic T cells. Proc Natl Acad Sci U S A. 1999;96:11470-5 pubmed
  653. Pihlgren M, Arpin C, Walzer T, Tomkowiak M, Thomas A, Marvel J, et al. Memory CD44(int) CD8 T cells show increased proliferative responses and IFN-gamma production following antigenic challenge in vitro. Int Immunol. 1999;11:699-706 pubmed
  654. Liu L, Rich B, Inobe J, Chen W, Weiner H. Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4+ T cells to secrete IL-4. Int Immunol. 1998;10:1017-26 pubmed
  655. Kim C, Pelus L, White J, Broxmeyer H. Differential chemotactic behavior of developing T cells in response to thymic chemokines. Blood. 1998;91:4434-43 pubmed
  656. Sato S, Steeber D, Jansen P, Tedder T. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol. 1997;158:4662-9 pubmed
  657. Lin K, Abraham K. Targets of p56(lck) activity in immature thymoblasts: stimulation of the Ras/Raf/MAPK pathway. Int Immunol. 1997;9:291-306 pubmed
  658. Pihlgren M, Dubois P, Tomkowiak M, Sjogren T, Marvel J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J Exp Med. 1996;184:2141-51 pubmed
  659. Godfrey D, Kennedy J, Mombaerts P, Tonegawa S, Zlotnik A. Onset of TCR-beta gene rearrangement and role of TCR-beta expression during CD3-CD4-CD8- thymocyte differentiation. J Immunol. 1994;152:4783-92 pubmed
  660. Lesley J, He Q, Miyake K, Hamann A, Hyman R, Kincade P. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med. 1992;175:257-66 pubmed
  661. He Q, Lesley J, Hyman R, Ishihara K, Kincade P. Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluronate recognition. J Cell Biol. 1992;119:1711-9 pubmed