这是一篇来自已证抗体库的有关小鼠 Cd5的综述,是根据117篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd5 抗体。
Cd5 同义词: Ly-1; Ly-12; Ly-A; Lyt-1

赛默飞世尔
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 2b, 7c, 7d, 7e
赛默飞世尔 Cd5抗体(eBioscience, 47-0051-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 7c, 7d, 7e). PLoS Pathog (2022) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd5抗体(eBioscience, 12-0051-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Sci Immunol (2022) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s1f
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). J Exp Med (2022) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Nat Commun (2021) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:200; 图 s2-2a
赛默飞世尔 Cd5抗体(Ebioscience, 53-C7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2-2a). elife (2020) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s1). elife (2020) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1d). elife (2019) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Immunol (2019) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔 Cd5抗体(eBiosciences, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell Stem Cell (2018) ncbi
大鼠 单克隆(53-7.3)
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于. Front Immunol (2018) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Nature (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Int J Parasitol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1c,d
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd5抗体(eBiosciences, 11-0051-82)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:200; 表 1
赛默飞世尔 Cd5抗体(eBiosciences, 53-7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-73)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s1c
赛默飞世尔 Cd5抗体(eBiosciences, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 14-0051-85)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Cd5抗体(ebioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Oncotarget (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 11-0051-82)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:1000
赛默飞世尔 Cd5抗体(eBiosciences, 53-7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Nature (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Immunol (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 25-0051)被用于被用于流式细胞仪在小鼠样本上. Leukemia (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1). Leukemia (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Ann N Y Acad Sci (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Transplantation (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 3A
赛默飞世尔 Cd5抗体(eBioscience, 11-0051)被用于被用于流式细胞仪在小鼠样本上 (图 3A). J Immunol (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2014) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2014) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Nature (2013) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2014) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nature (2013) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(eBioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2013) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(e-Bioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Nature (2012) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd5抗体(eBioScience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1). BMC Immunol (2010) ncbi
小鼠 单克隆(CG16)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(Caltag, CG16)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
小鼠 单克隆(CG16)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(Caltag, CG16)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2002) ncbi
小鼠 单克隆(CG16)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd5抗体(Caltag, CG16)被用于被用于流式细胞仪在小鼠样本上 (表 1). Int Immunol (1997) ncbi
小鼠 单克隆(CG16)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(Caltag, CG16)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
小鼠 单克隆(CG16)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd5抗体(caltag, CG16)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (1995) ncbi
BioLegend
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
BioLegend Cd5抗体(Biolegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Leukemia (2022) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
BioLegend Cd5抗体(BioLegend, 100622)被用于被用于流式细胞仪在小鼠样本上. Clin Transl Med (2022) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:200; 图 s2f
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2f). PLoS Pathog (2022) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:200; 图 7e, s24, s26
BioLegend Cd5抗体(Biolegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 7e, s24, s26). Nat Commun (2022) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:300; 图 s8h
BioLegend Cd5抗体(BioLegend, 100642)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s8h). Nature (2021) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd5抗体(Biolegend, 100610)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nat Commun (2021) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:400; 图 3s1a
BioLegend Cd5抗体(Biolegend, 100606)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3s1a). elife (2021) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
BioLegend Cd5抗体(Biolegend, 100605)被用于被用于流式细胞仪在小鼠样本上. J Hematol Oncol (2021) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2020) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:200; 图 1a, 6a, 6s1a, 7s1a
BioLegend Cd5抗体(Biolegend, 100606)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a, 6a, 6s1a, 7s1a). elife (2020) ncbi
大鼠 单克隆(53-7.3)
  • mass cytometry; 小鼠; 图 3, s2
BioLegend Cd5抗体(Biolegend, 100619)被用于被用于mass cytometry在小鼠样本上 (图 3, s2). Science (2019) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegend Cd5抗体(BioLegend, 100606)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Cell (2019) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 ex7c
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 ex7c). Nature (2019) ncbi
大鼠 单克隆(53-7.3)
  • 免疫组化; 小鼠; 图 s2b
BioLegend Cd5抗体(Biolegend, 100621)被用于被用于免疫组化在小鼠样本上 (图 s2b). Oncogene (2019) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd5抗体(Biolegend, 100608)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Commun (2018) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2018) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 4j
BioLegend Cd5抗体(Biolegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 4j). J Exp Med (2018) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Biol Chem (2018) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Int Immunol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd5抗体(Biolegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Immunol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Clin Invest (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:200; 图 3
BioLegend Cd5抗体(BioLegend, 100605)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Front Immunol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:200; 图 s6c
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6c). Science (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:100; 图 3c
BioLegend Cd5抗体(BioLegend, 100605)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3c). J Virol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). Nat Immunol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:50; 图 5
BioLegend Cd5抗体(BioLegend, 100606)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5). Nat Commun (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd5抗体(Biolegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd5抗体(Biolegend, 100607)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Discov (2016) ncbi
大鼠 单克隆(53-7.3)
  • 其他; 小鼠; 图 5
BioLegend Cd5抗体(BioLegend, 100604)被用于被用于其他在小鼠样本上 (图 5). Front Genet (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 人类; 图 2
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在人类样本上 (图 2). Science (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Cd5抗体(Biolegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 4). Mucosal Immunol (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd5抗体(biolegend, 53?C7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Immunity (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
BioLegend Cd5抗体(BioLegend, 53-7.3)被用于被用于流式细胞仪在小鼠样本上. Blood (2014) ncbi
美天旎
人类 单克隆(REA421)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
美天旎 Cd5抗体(Miltenyi Biotec, 130-120-305)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Sci Rep (2022) ncbi
碧迪BD
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s5a
碧迪BD Cd5抗体(BD, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Cd5抗体(BD, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Acta Naturae (2021) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD Cd5抗体(BD Biosciences, 561895)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Cell Rep (2019) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD Cd5抗体(BD Biosciences, 553024)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell Rep (2019) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:200; 图 2e
碧迪BD Cd5抗体(BD, 53-7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2e). Science (2019) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s3a
碧迪BD Cd5抗体(BD Biosciences, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Clin Invest (2019) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD Cd5抗体(BD Biosciences, 562739)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Cell (2018) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD Cd5抗体(BD Biosciences, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell (2018) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
碧迪BD Cd5抗体(BD, 53-7.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Int Immunol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 6g
碧迪BD Cd5抗体(BD Biosciences, 553022)被用于被用于流式细胞仪在小鼠样本上 (图 6g). PLoS ONE (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Cd5抗体(Pharmingen, 553019)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Redox Biol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 其他; 小鼠
碧迪BD Cd5抗体(BD PharMingen, 553019)被用于被用于其他在小鼠样本上. PLoS ONE (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 7G
碧迪BD Cd5抗体(BD Biosciences, 550035)被用于被用于流式细胞仪在小鼠样本上 (图 7G). J Immunol (2017) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1e,f
碧迪BD Cd5抗体(BD, 553023)被用于被用于流式细胞仪在小鼠样本上 (图 1e,f). Stem Cell Reports (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd5抗体(BD, 553019)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd5抗体(BD PharMingen, 553023)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cell (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Cd5抗体(BD Pharmingen, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 ev1
碧迪BD Cd5抗体(BD Biosciences, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 ev1). Mol Syst Biol (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD Cd5抗体(BD, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd5抗体(Becton Dickinson, 553019)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Cd5抗体(BD Bioscience, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Cd5抗体(BD, 553023)被用于被用于流式细胞仪在小鼠样本上 (图 1). Leukemia (2016) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
碧迪BD Cd5抗体(BD Pharmingen, 553023)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 人类
碧迪BD Cd5抗体(BD, 53-7.3)被用于被用于流式细胞仪在人类样本上. J Immunol Res (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠
碧迪BD Cd5抗体(BD Biosciences, 553019)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd5抗体(BD Biosciences, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 1:200; 图 3
碧迪BD Cd5抗体(BD, 550035)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Immun Ageing (2015) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Cd5抗体(BD Biosciences, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2014) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD Cd5抗体(BD, 53-7.3)被用于被用于流式细胞仪在小鼠样本上 (表 1). Nat Immunol (2014) ncbi
大鼠 单克隆(53-7.3)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD Cd5抗体(BD, 550035)被用于被用于流式细胞仪在小鼠样本上 (表 1). PLoS ONE (2013) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(4C7)
  • 免疫组化-石蜡切片; 人类; 图 2
徕卡显微系统(上海)贸易有限公司 Cd5抗体(Leica Biosystems, CD5-4C7-L-CE)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Clin Invest (2019) ncbi
文章列表
  1. Lee A, Pingali S, Pinilla Ibarz J, Atchison M, Koumenis C, Argon Y, et al. Loss of AID exacerbates the malignant progression of CLL. Leukemia. 2022;36:2430-2442 pubmed 出版商
  2. Zhu Y, Gu H, Yang L, Li N, Chen Q, Kang D, et al. Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clin Transl Med. 2022;12:e887 pubmed 出版商
  3. Lu L, Li T, Feng X, Liu Z, Liu Y, Chao T, et al. Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog. 2022;18:e1010596 pubmed 出版商
  4. Yang K, Han J, Gill J, Park J, Sathe M, Gattineni J, et al. The mammalian SKIV2L RNA exosome is essential for early B cell development. Sci Immunol. 2022;7:eabn2888 pubmed 出版商
  5. Bartsch P, Kilian C, Hellmig M, Paust H, Borchers A, Sivayoganathan A, et al. Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathog. 2022;18:e1010430 pubmed 出版商
  6. Satofuka H, Abe S, Moriwaki T, Okada A, Kazuki K, Tanaka H, et al. Efficient human-like antibody repertoire and hybridoma production in trans-chromosomic mice carrying megabase-sized human immunoglobulin loci. Nat Commun. 2022;13:1841 pubmed 出版商
  7. Kinkhabwala A, Herbel C, Pankratz J, Yushchenko D, R xfc berg S, Praveen P, et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep. 2022;12:1911 pubmed 出版商
  8. Gopal A, Ibrahim R, Fuller M, Umlandt P, Parker J, Tran J, et al. TIRAP drives myelosuppression through an Ifnγ-Hmgb1 axis that disrupts the endothelial niche in mice. J Exp Med. 2022;219: pubmed 出版商
  9. Liu Y, Du J, Liu X, Wang L, Han Y, Huang C, et al. MG149 inhibits histone acetyltransferase KAT8-mediated IL-33 acetylation to alleviate allergic airway inflammation and airway hyperresponsiveness. Signal Transduct Target Ther. 2021;6:321 pubmed 出版商
  10. Mathä L, Romera Hernandez M, Steer C, Yin Y, Orangi M, Shim H, et al. Migration of Lung Resident Group 2 Innate Lymphoid Cells Link Allergic Lung Inflammation and Liver Immunity. Front Immunol. 2021;12:679509 pubmed 出版商
  11. Ecker V, Stumpf M, Brandmeier L, Neumayer T, Pfeuffer L, Engleitner T, et al. Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia. Nat Commun. 2021;12:3526 pubmed 出版商
  12. Kalinina A, Khromykh L, Kazansky D, Deykin A, Silaeva Y. Suppression of the Immune Response by Syngeneic Splenocytes Adoptively Transferred to Sublethally Irradiated Mice. Acta Naturae. 2021;13:116-126 pubmed 出版商
  13. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  14. Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne Steele M, et al. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun. 2021;12:525 pubmed 出版商
  15. Devilbiss A, Zhao Z, Martin Sandoval M, Ubellacker J, Tasdogan A, Agathocleous M, et al. Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues. elife. 2021;10: pubmed 出版商
  16. Kaur S, Sehgal A, Wu A, Millard S, Batoon L, Sandrock C, et al. Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. J Hematol Oncol. 2021;14:3 pubmed 出版商
  17. Xu A, Barbosa R, Calado D. Genetic timestamping of plasma cells in vivo reveals tissue-specific homeostatic population turnover. elife. 2020;9: pubmed 出版商
  18. Azar A, Michie A, Tarafdar A, Malik N, Menon G, Till K, et al. A novel transgenic mouse strain expressing PKCβII demonstrates expansion of B1 and marginal zone B cell populations. Sci Rep. 2020;10:13156 pubmed 出版商
  19. Vacca F, Chauch C, Jamwal A, Hinchy E, Heieis G, Webster H, et al. A helminth-derived suppressor of ST2 blocks allergic responses. elife. 2020;9: pubmed 出版商
  20. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  21. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  22. Kreuk L, Koch M, Slayden L, Lind N, Chu S, Savage H, et al. B cell receptor and Toll-like receptor signaling coordinate to control distinct B-1 responses to both self and the microbiota. elife. 2019;8: pubmed 出版商
  23. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  24. Khanom U, Ohigashi I, Fujimori S, Kondo K, Takada K, Takahama Y. TCR Affinity for In Vivo Peptide-Induced Thymic Positive Selection Fine-Tunes TCR Responsiveness of Peripheral CD8+ T Cells. J Immunol. 2019;: pubmed 出版商
  25. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  26. Ganeshan K, Nikkanen J, Man K, Leong Y, Sogawa Y, Maschek J, et al. Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance. Cell. 2019;: pubmed 出版商
  27. Grootjans J, Krupka N, Hosomi S, Matute J, Hanley T, Saveljeva S, et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science. 2019;363:993-998 pubmed 出版商
  28. He S, Kahles F, Rattik S, Nairz M, McAlpine C, Anzai A, et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature. 2019;566:115-119 pubmed 出版商
  29. Das S, Bar Sagi D. BTK signaling drives CD1dhiCD5+ regulatory B-cell differentiation to promote pancreatic carcinogenesis. Oncogene. 2019;38:3316-3324 pubmed 出版商
  30. Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129:1047-1060 pubmed 出版商
  31. Dong S, Harrington B, Hu E, Greene J, Lehman A, Tran M, et al. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest. 2019;129:122-136 pubmed 出版商
  32. Webster P, Dawes J, Dewchand H, Takacs K, Iadarola B, Bolt B, et al. Subclonal mutation selection in mouse lymphomagenesis identifies known cancer loci and suggests novel candidates. Nat Commun. 2018;9:2649 pubmed 出版商
  33. Yao Y, Huang W, Li X, Li X, Qian J, Han H, et al. Tespa1 Deficiency Dampens Thymus-Dependent B-Cell Activation and Attenuates Collagen-Induced Arthritis in Mice. Front Immunol. 2018;9:965 pubmed 出版商
  34. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  35. Bellelli R, Borel V, Logan C, Svendsen J, Cox D, Nye E, et al. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell. 2018;70:707-721.e7 pubmed 出版商
  36. Bröker K, Figge J, Magnusen A, Manz R, Köhl J, Karsten C. A Novel Role for C5a in B-1 Cell Homeostasis. Front Immunol. 2018;9:258 pubmed 出版商
  37. Kaufmann E, Sanz J, Dunn J, Khan N, Mendonça L, Pacis A, et al. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell. 2018;172:176-190.e19 pubmed 出版商
  38. Clarke A, Riffelmacher T, Braas D, Cornall R, Simon A. B1a B cells require autophagy for metabolic homeostasis and self-renewal. J Exp Med. 2018;215:399-413 pubmed 出版商
  39. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  40. Sakamoto A, Matsuda T, Kawaguchi K, Takaoka A, Maruyama M. Involvement of Zizimin2/3 in the age-related defect of peritoneal B-1a cells as a source of anti-bacterial IgM. Int Immunol. 2017;29:431-438 pubmed 出版商
  41. Seifert H, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark A, et al. Sex differences in regulatory cells in experimental stroke. Cell Immunol. 2017;318:49-54 pubmed 出版商
  42. Philip M, Fairchild L, Sun L, Horste E, Camara S, Shakiba M, et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature. 2017;545:452-456 pubmed 出版商
  43. Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo T, Sun M, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med. 2017;214:1663-1678 pubmed 出版商
  44. Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody D, et al. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest. 2017;127:2339-2352 pubmed 出版商
  45. van der Vlugt L, Obieglo K, Ozir Fazalalikhan A, Sparwasser T, Haeberlein S, Smits H. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol. 2017;47:545-554 pubmed 出版商
  46. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  47. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  48. Komegae E, Souza T, Grund L, Lima C, Lopes Ferreira M. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS ONE. 2017;12:e0171796 pubmed 出版商
  49. Zhao Y, Carroll D, You Y, Chaiswing L, Wen R, Batinic Haberle I, et al. A novel redox regulator, MnTnBuOE-2-PyP5+, enhances normal hematopoietic stem/progenitor cell function. Redox Biol. 2017;12:129-138 pubmed 出版商
  50. Sanges S, Jendoubi M, Kavian N, Hauspie C, Speca S, Crave J, et al. B Cell Homeostasis and Functional Properties Are Altered in an Hypochlorous Acid-Induced Murine Model of Systemic Sclerosis. Front Immunol. 2017;8:53 pubmed 出版商
  51. Ying W, Wollam J, Ofrecio J, Bandyopadhyay G, El Ouarrat D, Lee Y, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127:1019-1030 pubmed 出版商
  52. Martínez Martín N, Maldonado P, Gasparrini F, Frederico B, Aggarwal S, Gaya M, et al. A switch from canonical to noncanonical autophagy shapes B cell responses. Science. 2017;355:641-647 pubmed 出版商
  53. Leech J, Lacey K, Mulcahy M, Medina E, McLoughlin R. IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections. J Immunol. 2017;198:2352-2365 pubmed 出版商
  54. Oben K, Gachuki B, Alhakeem S, McKenna M, Liang Y, St Clair D, et al. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1). PLoS ONE. 2017;12:e0169767 pubmed 出版商
  55. Weindel C, Richey L, Mehta A, Shah M, Huber B. Autophagy in Dendritic Cells and B Cells Is Critical for the Inflammatory State of TLR7-Mediated Autoimmunity. J Immunol. 2017;198:1081-1092 pubmed 出版商
  56. Ding Q, von Schaewen M, Hrebikova G, Heller B, Sandmann L, Plaas M, et al. Mice Expressing Minimally Humanized CD81 and Occludin Genes Support Hepatitis C Virus Uptake In Vivo. J Virol. 2017;91: pubmed 出版商
  57. Hidaka T, Ogawa E, Kobayashi E, Suzuki T, Funayama R, Nagashima T, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017;18:64-73 pubmed 出版商
  58. Yoon Y, Storm K, Kamimae Lanning A, Goloviznina N, Kurre P. Endogenous DNA Damage Leads to p53-Independent Deficits in Replicative Fitness in Fetal Murine Fancd2-/- Hematopoietic Stem and Progenitor Cells. Stem Cell Reports. 2016;7:840-853 pubmed 出版商
  59. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  60. Ishikawa E, Kosako H, Yasuda T, Ohmuraya M, Araki K, Kurosaki T, et al. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun. 2016;7:12756 pubmed 出版商
  61. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  62. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  63. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  64. Kong S, Yang Y, Xu Y, Wang Y, Zhang Y, Melo Cardenas J, et al. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas. Proc Natl Acad Sci U S A. 2016;113:10394-9 pubmed 出版商
  65. Henry E, Sy C, Inclan Rico J, Espinosa V, Ghanny S, Dwyer D, et al. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 2016;213:1663-73 pubmed 出版商
  66. Waterstrat A, Rector K, Geiger H, Liang Y. Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers. Sci Rep. 2016;6:31412 pubmed 出版商
  67. Voisinne G, García Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, et al. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol. 2016;12:876 pubmed 出版商
  68. Orta Mascaró M, Consuegra Fernández M, Carreras E, Roncagalli R, Carreras Sureda A, Alvarez P, et al. CD6 modulates thymocyte selection and peripheral T cell homeostasis. J Exp Med. 2016;213:1387-97 pubmed 出版商
  69. De Grove K, Provoost S, Hendriks R, McKenzie A, Seys L, Kumar S, et al. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses. J Allergy Clin Immunol. 2017;139:246-257.e4 pubmed 出版商
  70. Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft L, et al. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood. 2016;128:371-83 pubmed 出版商
  71. Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella Branger D, Rougon G, et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 2016;6:26381 pubmed 出版商
  72. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  73. Yigit B, Halibozek P, Chen S, O Keeffe M, Arnason J, Avigan D, et al. A combination of an anti-SLAMF6 antibody and ibrutinib efficiently abrogates expansion of chronic lymphocytic leukemia cells. Oncotarget. 2016;7:26346-60 pubmed 出版商
  74. Lee Chang C, Bodogai M, Moritoh K, Chen X, Wersto R, Sen R, et al. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. J Immunol. 2016;196:3385-97 pubmed 出版商
  75. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  76. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  77. Pylayeva Gupta Y, Das S, Handler J, Hajdu C, Coffre M, Koralov S, et al. IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia. Cancer Discov. 2016;6:247-55 pubmed 出版商
  78. Jin H, Gonzalez Martin A, Miletic A, Lai M, Knight S, Sabouri Ghomi M, et al. Transfection of microRNA Mimics Should Be Used with Caution. Front Genet. 2015;6:340 pubmed 出版商
  79. von Moltke J, Ji M, Liang H, Locksley R. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221-5 pubmed 出版商
  80. Zhong C, Cui K, Wilhelm C, Hu G, Mao K, Belkaid Y, et al. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol. 2016;17:169-78 pubmed 出版商
  81. Chen S, Chang B, Chang S, Tong T, Ham S, Sherry B, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30:833-43 pubmed 出版商
  82. Van Helden M, Goossens S, Daussy C, Mathieu A, Faure F, Marçais A, et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J Exp Med. 2015;212:2015-25 pubmed 出版商
  83. Sewald X, Ladinsky M, Uchil P, Beloor J, Pi R, Herrmann C, et al. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science. 2015;350:563-567 pubmed 出版商
  84. Smith K, Filbey K, Reynolds L, Hewitson J, Harcus Y, Boon L, et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 2016;9:428-43 pubmed 出版商
  85. Eichin D, Laurila J, Jalkanen S, Salmi M. CD73 Activity is Dispensable for the Polarization of M2 Macrophages. PLoS ONE. 2015;10:e0134721 pubmed 出版商
  86. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  87. Saulep Easton D, Vincent F, Quah P, Wei A, Ting S, Croce C, et al. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia. 2016;30:163-72 pubmed 出版商
  88. Elong Ngono A, Lepetit M, Reindl M, Garcia A, Guillot F, Genty A, et al. Decreased Frequency of Circulating Myelin Oligodendrocyte Glycoprotein B Lymphocytes in Patients with Relapsing-Remitting Multiple Sclerosis. J Immunol Res. 2015;2015:673503 pubmed 出版商
  89. Xu G, Wu H, Zhang J, Li D, Wang Y, Wang Y, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med. 2015;87:15-25 pubmed 出版商
  90. Charmsaz S, Beckett K, Smith F, Bruedigam C, Moore A, Al Ejeh F, et al. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia. PLoS ONE. 2015;10:e0130692 pubmed 出版商
  91. Jacque E, Schweighoffer E, Tybulewicz V, Ley S. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival. J Exp Med. 2015;212:883-92 pubmed 出版商
  92. Yu J, Hoffman S, Beal A, Dykon A, Ringenberg M, Hughes A, et al. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses. PLoS ONE. 2015;10:e0127083 pubmed 出版商
  93. Dickinson G, Akkoyunlu M, Bram R, Alugupalli K. BAFF receptor and TACI in B-1b cell maintenance and antibacterial responses. Ann N Y Acad Sci. 2015;1362:57-67 pubmed 出版商
  94. Lal G, Nakayama Y, Sethi A, Singh A, Burrell B, Kulkarni N, et al. Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation. 2015;99:1817-28 pubmed 出版商
  95. Pone E, Lam T, Lou Z, Wang R, Chen Y, Liu D, et al. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. J Immunol. 2015;194:3065-78 pubmed 出版商
  96. Matsuda T, Yanase S, Takaoka A, Maruyama M. The immunosenescence-related gene Zizimin2 is associated with early bone marrow B cell development and marginal zone B cell formation. Immun Ageing. 2015;12:1 pubmed 出版商
  97. Reynolds A, Kuraoka M, Kelsoe G. Natural IgM is produced by CD5- plasma cells that occupy a distinct survival niche in bone marrow. J Immunol. 2015;194:231-42 pubmed 出版商
  98. Jacque E, Schweighoffer E, Visekruna A, Papoutsopoulou S, Janzen J, Zillwood R, et al. IKK-induced NF-κB1 p105 proteolysis is critical for B cell antibody responses to T cell-dependent antigen. J Exp Med. 2014;211:2085-101 pubmed 出版商
  99. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  100. Honjo K, Kubagawa Y, Suzuki Y, Takagi M, Ohno H, Bucy R, et al. Enhanced auto-antibody production and Mott cell formation in Fc?R-deficient autoimmune mice. Int Immunol. 2014;26:659-72 pubmed 出版商
  101. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed 出版商
  102. Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J Immunol. 2014;193:268-76 pubmed 出版商
  103. Weber G, Chousterman B, Hilgendorf I, Robbins C, Theurl I, Gerhardt L, et al. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J Exp Med. 2014;211:1243-56 pubmed 出版商
  104. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  105. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  106. Fu G, Casas J, Rigaud S, Rybakin V, Lambolez F, Brzostek J, et al. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature. 2013;504:441-5 pubmed 出版商
  107. Dickinson G, Sun G, Bram R, Alugupalli K. Efficient B cell responses to Borrelia hermsii infection depend on BAFF and BAFFR but not TACI. Infect Immun. 2014;82:453-9 pubmed 出版商
  108. Nussbaum J, Van Dyken S, von Moltke J, Cheng L, Mohapatra A, Molofsky A, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245-8 pubmed 出版商
  109. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  110. Bergmann H, Yabas M, Short A, Miosge L, Barthel N, Teh C, et al. B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8- dendritic cells require the intramembrane endopeptidase SPPL2A. J Exp Med. 2013;210:31-40 pubmed 出版商
  111. Mathew R, Seiler M, Scanlon S, Mao A, Constantinides M, Bertozzi Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618-21 pubmed 出版商
  112. Sadri N, Lu J, Badura M, Schneider R. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol. 2010;11:1 pubmed 出版商
  113. Hsu S, Wu C, Han J, Lai M. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood. 2003;101:970-6 pubmed
  114. Yu C, Feng M, Shih H, Lai M. Increased p300 expression inhibits glucocorticoid receptor-T-cell receptor antagonism but does not affect thymocyte positive selection. Mol Cell Biol. 2002;22:4556-66 pubmed
  115. Lin K, Abraham K. Targets of p56(lck) activity in immature thymoblasts: stimulation of the Ras/Raf/MAPK pathway. Int Immunol. 1997;9:291-306 pubmed
  116. Pihlgren M, Dubois P, Tomkowiak M, Sjogren T, Marvel J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J Exp Med. 1996;184:2141-51 pubmed
  117. Hardin J, Yamaguchi K, Sherr D. The role of peritoneal stromal cells in the survival of sIgM+ peritoneal B lymphocyte populations. Cell Immunol. 1995;161:50-60 pubmed