这是一篇来自已证抗体库的有关小鼠 Cd68的综述,是根据239篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd68 抗体。
Cd68 同义词: Lamp4; Scard1; gp110

伯乐(Bio-Rad)公司
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 4f
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, mca1957)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4f). Nat Commun (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:400; 图 1e, 2c
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1e, 2c). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 小鼠; 1:200; 图 s3f
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s3f). Aging Cell (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 6c
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957B)被用于被用于免疫组化在小鼠样本上 (图 6c). Cell Death Dis (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). Sci Adv (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
  • 免疫组化; 小鼠; 图 5b
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, FA-11)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a) 和 被用于免疫组化在小鼠样本上 (图 5b). Science (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 5c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). elife (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. elife (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1d
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1d). Nat Med (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 3f
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957T)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3f). Breast Cancer Res (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3b
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3b). Cell (2018) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:8; 图 5c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957B)被用于被用于流式细胞仪在小鼠样本上浓度为1:8 (图 5c). Endocrinology (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 1h
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA 1957)被用于被用于免疫组化在小鼠样本上 (图 1h). Clin Exp Immunol (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 1b
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化在小鼠样本上 (图 1b). Atherosclerosis (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, FA11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7d). EMBO J (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, FA-11)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2c). FASEB J (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:600; 图 s2c
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:600 (图 s2c). Nature (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4e
伯乐(Bio-Rad)公司 Cd68抗体(BIO RAD, MCA1957GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4e). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 9a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 9a). Sci Rep (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 人类; 图 s2d
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在人类样本上 (图 s2d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:250; 图 s4a
伯乐(Bio-Rad)公司 Cd68抗体(AbDSerotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s4a). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:25; 图 3a
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957A488)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 3a). Nat Commun (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 1f
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 1f). Neuron (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 s7c
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化在小鼠样本上 (图 s7c). Science (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2p
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 2p). Cell Stem Cell (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:1000; 图 3a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). Acta Neuropathol (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 1d
  • 免疫组化; 人类; 1:100; 图 1c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1d) 和 被用于免疫组化在人类样本上浓度为1:100 (图 1c). J Am Heart Assoc (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2c). J Clin Invest (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Sci Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Am J Physiol Heart Circ Physiol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:1000; 图 6e
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6e). Nanomedicine (Lond) (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 5
伯乐(Bio-Rad)公司 Cd68抗体(bio-rad, MCA 1957)被用于被用于免疫组化在小鼠样本上 (图 5). J Mol Cell Cardiol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 7a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化在小鼠样本上 (图 7a). Neuroimage (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6e
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6e). Dis Model Mech (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 s6a
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 s6a). Cell Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(Abd serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Mol Neurodegener (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 1e
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1e). Nat Commun (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). J Exp Med (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 s6
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6). Science (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
伯乐(Bio-Rad)公司 Cd68抗体(Abd Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). Nature (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 1d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化在小鼠样本上 (图 1d). Nat Neurosci (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4). Theranostics (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). J Clin Invest (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 2c). Science (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). J Lipid Res (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6). Development (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 4 ug/ml; 图 1g
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为4 ug/ml (图 1g). Am J Pathol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 1
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Int J Mol Med (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 5
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957T)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 5). Am J Pathol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3d
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3d). Nat Commun (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957T)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). Oncotarget (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2e
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2e). Physiol Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 8
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA 1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). PLoS Genet (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 2j
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2j). Nat Commun (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 图 3d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Nat Immunol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(ABD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). Theranostics (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:1000; 图 3
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Dis Model Mech (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). PLoS Med (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2h
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 2h). Gut (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Cancer Discov (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotech, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 2
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). EMBO Mol Med (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 4). Stroke (2015) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于流式细胞仪在小鼠样本上. Immunity (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上. Glia (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 5f
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957GA)被用于被用于免疫组化在小鼠样本上 (图 5f). PLoS ONE (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上. Mol Nutr Food Res (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 6c
伯乐(Bio-Rad)公司 Cd68抗体(Abd Serotec, MCA1957 GA)被用于被用于免疫组化在小鼠样本上 (图 6c). Autophagy (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:250
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:250. Surg Neurol Int (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2). Autophagy (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 1
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA 1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). PLoS Genet (2014) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(ABD Serotec, FA-11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 2a). Neurosci Lett (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 1:300; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 4). Oncotarget (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(ABD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 人类; 图 2C
伯乐(Bio-Rad)公司 Cd68抗体(AbD serotec, clone FA-11)被用于被用于免疫印迹在人类样本上 (图 2C). EMBO J (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 1
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 1). J Immunol (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. Pain (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA19575)被用于被用于免疫组化在小鼠样本上. Ann Neurol (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 1:500
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957A647T)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Glia (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 人类; 1:400
伯乐(Bio-Rad)公司 Cd68抗体(ABD Serotec, MCA1957GA)被用于被用于免疫组化在人类样本上浓度为1:400. J Cereb Blood Flow Metab (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Immunol (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:3000
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec Ltd, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000. Eur J Neurosci (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:300
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. Angiogenesis (2013) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA 1957)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Renal Physiol (2013) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-石蜡切片在小鼠样本上. Hepatology (2010) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上. ASN Neuro (2009) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Comp Neurol (2009) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2c4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ED1)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2c4). PLoS ONE (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 1e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab5344)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1e). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 1:800; 图 8a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 8a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). J Exp Med (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 图 3a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3a). J Clin Invest (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d). Sci Adv (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
  • 免疫组化; 小鼠; 1:200; 图 5g
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 5g). Nat Commun (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7a). Atherosclerosis (2019) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3g
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3g). Haematologica (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). J Cell Biol (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1h'
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1h'). Cell Death Dis (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, AB53444)被用于被用于免疫组化在小鼠样本上 (图 5d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 8a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1b). J Mol Cell Cardiol (2018) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f). Br J Pharmacol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 5b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 5b). Redox Biol (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Biomed Pharmacother (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Oncoimmunology (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:150; 图 7d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab955)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 7d). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Am J Transl Res (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 2g
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KPI)被用于被用于免疫组化在小鼠样本上 (图 2g). Nature (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 5 ug/ml; 图 s2d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为5 ug/ml (图 s2d). Nat Med (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6b). Eur J Vasc Endovasc Surg (2017) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 7k
  • 免疫细胞化学; 小鼠; 1:50; 图 4e
  • 免疫组化; 小鼠; 1:50; 图 2l
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab53444)被用于被用于流式细胞仪在小鼠样本上 (图 7k), 被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 4e) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 2l). Hear Res (2017) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2b
  • 免疫印迹; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). J Vis Exp (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). EMBO Mol Med (2017) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在小鼠样本上浓度为1:50. Redox Biol (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). Drug Des Devel Ther (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 5j
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5j). Sci Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Cd68抗体(abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 猪; 图 10a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在猪样本上 (图 10a). Biomaterials (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). J Virol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 6e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6e). J Virol (2016) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2016) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 表 1
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab-955)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). J Oral Pathol Med (2017) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5). Eur J Pharmacol (2016) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 大鼠; 1:500; 图 s3
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Nephrol Dial Transplant (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Methods Mol Biol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:15,000; 图 1d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:15,000 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Cell Death Dis (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:50; 图 1
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 s3c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3c). Gastroenterology (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司 Cd68抗体(abcam, Ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). J Mol Cell Cardiol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1l
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1l). Tumour Biol (2016) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab3163)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Cancer Sci (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Rep (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 7
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上 (图 7). BMC Cancer (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫印迹; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. Laryngoscope (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Int Forum Allergy Rhinol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫细胞化学; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 10
艾博抗(上海)贸易有限公司 Cd68抗体(abcam, ab-31630)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 10). Biochem Cell Biol (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 s2b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA11-ab5344)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s2b). Nature (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-冰冻切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. Brain Inj (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 1:100; 图 7c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7c). Brain (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). J Neuroinflammation (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫印迹在小鼠样本上. Liver Int (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). PLoS ONE (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Neurosci (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1 ug/ml; 图 3a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1 ug/ml (图 3a). J Clin Invest (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2b). Mol Cell Endocrinol (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Transpl Int (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 8
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 8). Development (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-自由浮动切片; 小鼠; 1:800; 图 8
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:800 (图 8). Front Neuroanat (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 5d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). PLoS ONE (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫细胞化学; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Neurosci Lett (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:100. Stem Cells Dev (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5). Oncogene (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. FASEB J (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Mater Chem B (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在大鼠样本上浓度为1:500. Biomaterials (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫印迹在人类样本上. J Clin Endocrinol Metab (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab31630)被用于被用于免疫组化在小鼠样本上浓度为1:200. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ED-1)被用于被用于免疫细胞化学在大鼠样本上. Acta Biomater (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-冰冻切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Brain Struct Funct (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Clone FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Transfusion (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-自由浮动切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab955)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 和 被用于免疫细胞化学在人类样本上浓度为1:500. Glia (2013) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在人类样本上浓度为1:100. Gene Ther (2013) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 人类
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. J Neuroinflammation (2012) ncbi
BioLegend
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s6c
BioLegend Cd68抗体(Biolegend, 137012)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s6c). Nat Metab (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 1b
BioLegend Cd68抗体(BioLegend, 137001)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). J Clin Invest (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 s2c
BioLegend Cd68抗体(Biolegend, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2c). J Exp Med (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 ev1b
BioLegend Cd68抗体(Biolegend, FA-11)被用于被用于免疫组化在小鼠样本上 (图 ev1b). EMBO J (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
BioLegend Cd68抗体(Biolegend, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). Respir Res (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2a
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于免疫组化在小鼠样本上 (图 2a). J Clin Invest (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4b
BioLegend Cd68抗体(BioLegend, 137002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(FA-11)
BioLegend Cd68抗体(BioLegend, 137002)被用于. Nat Commun (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
BioLegend Cd68抗体(Biolegend, 137001)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). FEBS Lett (2017) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:100; 图 4b
BioLegend Cd68抗体(Biolegend, 137010)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4b). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:200; 图 s1b
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1b). J Clin Invest (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2h
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于免疫组化在小鼠样本上 (图 2h). Nat Immunol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(FA-11)
BioLegend Cd68抗体(BioLegend, 137012)被用于. Kidney Int (2016) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 人类; 图 2
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于流式细胞仪在人类样本上 (图 2). Nat Med (2016) ncbi
大鼠 单克隆(FA-11)
BioLegend Cd68抗体(BioLegend, 137012)被用于. Nat Biotechnol (2016) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 表 s6
BioLegend Cd68抗体(Biolegend, 137008)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd68抗体(biolegend, FA-11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 10
BioLegend Cd68抗体(Biolegend, FA-11)被用于被用于流式细胞仪在小鼠样本上 (图 10). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 8
BioLegend Cd68抗体(BioLegend, 137001)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠
BioLegend Cd68抗体(Biolegio, 137002)被用于被用于免疫组化-冰冻切片在小鼠样本上. Biochim Biophys Acta (2014) ncbi
大鼠 单克隆(FA-11)
BioLegend Cd68抗体(BioLegend, 137001)被用于. J Neurosci (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
圣克鲁斯生物技术 Cd68抗体(Santa, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). BMC Infect Dis (2020) ncbi
小鼠 单克隆(SPM130)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3c
圣克鲁斯生物技术 Cd68抗体(SantaCruz, sc-52998)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3c). J Endod (2017) ncbi
小鼠 单克隆(3F103)
  • 免疫印迹; 人类; 1:1500; 图 s2a
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, SC-70761)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 s2a). J Clin Invest (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 6a
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cd68抗体(Santacruz, sc-20060)被用于被用于免疫印迹在人类样本上. Oncoimmunology (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). Cold Spring Harb Mol Case Stud (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). Cold Spring Harb Mol Case Stud (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; African green monkey; 图 8A
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, KP1)被用于被用于免疫组化-冰冻切片在African green monkey样本上 (图 8A). PLoS Pathog (2016) ncbi
小鼠 单克隆(3F103)
  • 免疫细胞化学; 人类; 1:50; 图 3
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc70761)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 4 ug/ml; 图 4
圣克鲁斯生物技术 Cd68抗体(santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为4 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6). EJNMMI Res (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术 Cd68抗体(santa Cruz, sc-20060)被用于被用于免疫组化在人类样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(6A324)
  • 免疫组化-冰冻切片; 小鼠; 图 5
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, 6A324)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 3
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc20060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Nat Med (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术 Cd68抗体(Santa Cruz Biotechnology, sc-20060)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. J Pharmacol Sci (2014) ncbi
小鼠 单克隆(SPM130)
  • 免疫组化; 大鼠
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, SPM130)被用于被用于免疫组化在大鼠样本上. NMR Biomed (2014) ncbi
赛默飞世尔
大鼠 单克隆(FA-11)
  • 免疫组化; 大鼠; 1:500
赛默飞世尔 Cd68抗体(Abcam, 14-0681-82)被用于被用于免疫组化在大鼠样本上浓度为1:500. Organogenesis (2018) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔 Cd68抗体(eBioscience, FA-11)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Front Cell Infect Microbiol (2017) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Cd68抗体(Dianova, MA1-82739)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS Comput Biol (2016) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd68抗体(eBioscience, FA-11)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:300; 图 3
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1c
赛默飞世尔 Cd68抗体(eBioscience, 14-0681)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1c). Nat Commun (2015) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:5
赛默飞世尔 Cd68抗体(Thermo Fisher Scientific, MA1-82739)被用于被用于流式细胞仪在小鼠样本上浓度为1:5. PLoS ONE (2015) ncbi
Novus Biologicals
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 图 s7
Novus Biologicals Cd68抗体(Novus Biologicals, NB100-683)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:800
Novus Biologicals Cd68抗体(Novus Biologicals, KP1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800. FASEB J (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s1
Novus Biologicals Cd68抗体(Novus, NB100-683)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
GeneTex
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 5a
GeneTex Cd68抗体(GeneTex, PG-M1)被用于被用于免疫组化在人类样本上 (图 5a). Front Immunol (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 6b
GeneTex Cd68抗体(GeneTex, GTX73723)被用于被用于免疫组化在人类样本上 (图 6b). Arthritis Rheumatol (2016) ncbi
文章列表
  1. Kwiecien J, Dabrowski W, Dabrowska Bouta B, Sulkowski G, Oakden W, Kwiecien Delaney C, et al. Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS ONE. 2020;15:e0226584 pubmed 出版商
  2. Chan K, Nestor J, Huerta T, Certain N, Moody G, Kowal C, et al. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Nat Commun. 2020;11:1403 pubmed 出版商
  3. Kjell J, Gotz M. Filling the Gaps - A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts. Front Cell Neurosci. 2020;14:32 pubmed 出版商
  4. Lu H, Kim S, Steelman A, Tracy K, Zhou B, Michaud D, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020;117:5430-5441 pubmed 出版商
  5. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  6. Cho H, Lim Y, Kim J, Koh W, Song C, Kang M. Different macrophage polarization between drug-susceptible and multidrug-resistant pulmonary tuberculosis. BMC Infect Dis. 2020;20:81 pubmed 出版商
  7. Rahman M, Muppala S, Wu J, Krukovets I, Solovjev D, Verbovetskiy D, et al. Effects of thrombospondin-4 on pro-inflammatory phenotype differentiation and apoptosis in macrophages. Cell Death Dis. 2020;11:53 pubmed 出版商
  8. Libner C, Salapa H, Hutchinson C, Lee S, Levin M. Antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 contribute to neuronal cell loss in an animal model of multiple sclerosis. J Comp Neurol. 2020;528:1704-1724 pubmed 出版商
  9. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236-250 pubmed 出版商
  10. von Gamm M, Schaub A, Jones A, Wolf C, Behrens G, Lichti J, et al. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med. 2019;: pubmed 出版商
  11. Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086 pubmed 出版商
  12. Dang A, Teles R, Weiss D, Parvatiyar K, Sarno E, Ochoa M, et al. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest. 2019;129:1926-1939 pubmed 出版商
  13. Chakarov S, Lim H, Tan L, Lim S, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363: pubmed 出版商
  14. Pan R, Ma J, Kong X, Wang X, Li S, Qi X, et al. Sodium rutin ameliorates Alzheimer's disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv. 2019;5:eaau6328 pubmed 出版商
  15. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  16. Fan J, Liu L, Liu Q, Cui Y, Yao B, Zhang M, et al. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun. 2019;10:425 pubmed 出版商
  17. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  18. Nahon J, Hoekstra M, van Hulst S, Manta C, Goerdt S, Geerling J, et al. Hematopoietic Stabilin-1 deficiency does not influence atherosclerosis susceptibility in LDL receptor knockout mice. Atherosclerosis. 2019;281:47-55 pubmed 出版商
  19. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  20. Santana Codina N, Gableske S, Quiles Del Rey M, Małachowska B, Jedrychowski M, Biancur D, et al. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica. 2019;: pubmed 出版商
  21. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  22. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  23. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  24. Gibson E, Nagaraja S, Ocampo A, Tam L, Wood L, Pallegar P, et al. Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment. Cell. 2019;176:43-55.e13 pubmed 出版商
  25. Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019;129:631-646 pubmed 出版商
  26. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  27. Kang L, Kwon E, Lee K, Cho C, Lee J, Ryu Y, et al. 3'-Sialyllactose as an inhibitor of p65 phosphorylation ameliorates the progression of experimental rheumatoid arthritis. Br J Pharmacol. 2018;175:4295-4309 pubmed 出版商
  28. Massaro G, Mattar C, Wong A, Sirka E, Buckley S, Herbert B, et al. Fetal gene therapy for neurodegenerative disease of infants. Nat Med. 2018;24:1317-1323 pubmed 出版商
  29. Bang S, Xie Y, Zhang Z, Wang Z, Xu Z, Ji R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Invest. 2018;128:3568-3582 pubmed 出版商
  30. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  31. Norris G, Smirnov I, Filiano A, Shadowen H, Cody K, Thompson J, et al. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789-1801 pubmed 出版商
  32. Chen M, Zheng J, Liu G, Xu E, Wang J, Fuqua B, et al. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biol. 2018;17:432-439 pubmed 出版商
  33. Gurevich D, Severn C, Twomey C, Greenhough A, Cash J, Toye A, et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 2018;37: pubmed 出版商
  34. Ni K, Gill A, Tseng V, Mikosz A, Koike K, Beatman E, et al. Rapid clearance of heavy chain-modified hyaluronan during resolving acute lung injury. Respir Res. 2018;19:107 pubmed 出版商
  35. Han F, Xia X, Dou M, Wang Y, Xue W, Ding X, et al. Arctigenin: A two-edged sword in ischemia/reperfusion induced acute kidney injury. Biomed Pharmacother. 2018;103:1127-1136 pubmed 出版商
  36. Foerster F, Boegel S, Heck R, Pickert G, R ssel N, Rosigkeit S, et al. Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncoimmunology. 2018;7:e1409929 pubmed 出版商
  37. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  38. Sun J, Wang Z, Wang X. Suppression of LRRC19 promotes cutaneous wound healing in pressure ulcers in mice. Organogenesis. 2018;14:13-24 pubmed 出版商
  39. Endo Umeda K, Nakashima H, Umeda N, Seki S, Makishima M. Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice. Endocrinology. 2018;159:1419-1432 pubmed 出版商
  40. Saja M, Cook H, Ruseva M, Szajna M, Pickering M, Woollard K, et al. A triglyceride-rich lipoprotein environment exacerbates renal injury in the accelerated nephrotoxic nephritis model. Clin Exp Immunol. 2018;192:337-347 pubmed 出版商
  41. Xiong Y, Neifert S, Karuppagounder S, Liu Q, Stankowski J, Lee B, et al. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A. 2018;115:1635-1640 pubmed 出版商
  42. Dube P, Chikkamenahalli L, Birnbaumer L, Vazquez G. Reduced calcification and osteogenic features in advanced atherosclerotic plaques of mice with macrophage-specific loss of TRPC3. Atherosclerosis. 2018;270:199-204 pubmed 出版商
  43. Ziegler Waldkirch S, d Errico P, Sauer J, Erny D, Savanthrapadian S, Loreth D, et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO J. 2018;37:167-182 pubmed 出版商
  44. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  45. Zhang Y, Liu Y, Chen H, Zheng X, Xie S, Chen W, et al. TIM-1 attenuates the protection of ischemic preconditioning for ischemia reperfusion injury in liver transplantation. Am J Transl Res. 2017;9:3665-3675 pubmed
  46. Kojima M, Gimenes Júnior J, Chan T, Eliceiri B, Baird A, Costantini T, et al. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4. FASEB J. 2018;32:97-110 pubmed 出版商
  47. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  48. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  49. Dunst J, Azzouz N, Liu X, Tsukita S, Seeberger P, Kamena F. Interaction between Plasmodium Glycosylphosphatidylinositol and the Host Protein Moesin Has No Implication in Malaria Pathology. Front Cell Infect Microbiol. 2017;7:183 pubmed 出版商
  50. Cassanta L, Rodrigues V, Violatti Filho J, Teixeira Neto B, Tavares V, Bernal E, et al. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions. J Endod. 2017;43:1122-1129 pubmed 出版商
  51. Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495-499 pubmed 出版商
  52. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  53. Castellano J, Mosher K, Abbey R, McBride A, James M, Berdnik D, et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature. 2017;544:488-492 pubmed 出版商
  54. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  55. Oksala N, Seppala I, Rahikainen R, Mäkelä K, Raitoharju E, Illig T, et al. Synergistic Expression of Histone Deacetylase 9 and Matrix Metalloproteinase 12 in M4 Macrophages in Advanced Carotid Plaques. Eur J Vasc Endovasc Surg. 2017;53:632-640 pubmed 出版商
  56. Langley S, Willeit K, Didangelos A, Matic L, Skroblin P, Barallobre Barreiro J, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest. 2017;127:1546-1560 pubmed 出版商
  57. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  58. Gawlik K, Holmberg J, Svensson M, Einerborg M, Oliveira B, Deierborg T, et al. Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Sci Rep. 2017;7:44059 pubmed 出版商
  59. Carmona Fontaine C, Deforet M, Akkari L, Thompson C, Joyce J, Xavier J. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934-2939 pubmed 出版商
  60. Gómez Pastor R, Burchfiel E, Neef D, Jaeger A, Cabiscol E, McKinstry S, et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nat Commun. 2017;8:14405 pubmed 出版商
  61. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  62. Cuccarese M, Dubach J, Pfirschke C, Engblom C, Garris C, Miller M, et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun. 2017;8:14293 pubmed 出版商
  63. Jackson M, Scatena M, Giachelli C. Osteoclast precursors do not express CD68: results from CD68 promoter-driven RANK transgenic mice. FEBS Lett. 2017;591:728-736 pubmed 出版商
  64. Ebneter A, Kokona D, Schneider N, Zinkernagel M. Microglia Activation and Recruitment of Circulating Macrophages During Ischemic Experimental Branch Retinal Vein Occlusion. Invest Ophthalmol Vis Sci. 2017;58:944-953 pubmed 出版商
  65. Tufail Y, Cook D, Fourgeaud L, Powers C, Merten K, Clark C, et al. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron. 2017;93:574-586.e8 pubmed 出版商
  66. Fuster J, MacLauchlan S, Zuriaga M, Polackal M, Ostriker A, Chakraborty R, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:842-847 pubmed 出版商
  67. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  68. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  69. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  70. Takahashi H, Klein Z, Bhagat S, Kaufman A, Kostylev M, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133:785-807 pubmed 出版商
  71. Guillot Sestier M, Weitz T, Town T. Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer's Disease. J Vis Exp. 2016;: pubmed 出版商
  72. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  73. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  74. Chu F, Esworthy R, Doroshow J, Grasberger H, Donkó A, Leto T, et al. Deficiency in Duox2 activity alleviates ileitis in GPx1- and GPx2-knockout mice without affecting apoptosis incidence in the crypt epithelium. Redox Biol. 2017;11:144-156 pubmed 出版商
  75. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  76. Tsai C, Lin Y, Huang C, Shih C, Tsai Y, Tsao N, et al. Thrombomodulin regulates monocye differentiation via PKC? and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep. 2016;6:38421 pubmed 出版商
  77. Sakata K, Araki K, Nakano H, Nishina T, Komazawa Sakon S, Murai S, et al. Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Sci Rep. 2016;6:37200 pubmed 出版商
  78. Brocks T, Fedorchenko O, Schliermann N, Stein A, Moll U, Seegobin S, et al. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. FASEB J. 2017;31:526-543 pubmed 出版商
  79. Roche S, Wyse Jackson A, Gomez Vicente V, Lax P, Ruiz Lopez A, Byrne A, et al. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE. 2016;11:e0165197 pubmed 出版商
  80. Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, et al. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol. 2016;311:H1485-H1497 pubmed 出版商
  81. He Y, Yan Y, Zhang H, Lin Y, Chen Y, Yan Y, et al. Methyl salicylate 2-O-?-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction. Drug Des Devel Ther. 2016;10:3183-3196 pubmed
  82. Roufaiel M, Gracey E, Siu A, Zhu S, Lau A, Ibrahim H, et al. CCL19-CCR7-dependent reverse transendothelial migration of myeloid cells clears Chlamydia muridarum from the arterial intima. Nat Immunol. 2016;17:1263-1272 pubmed 出版商
  83. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  84. Baghel K, Tewari B, Shrivastava R, Malik S, Lone M, Jain N, et al. Macrophages promote matrix protrusive and invasive function of breast cancer cells via MIP-1? dependent upregulation of MYO3A gene in breast cancer cells. Oncoimmunology. 2016;5:e1196299 pubmed 出版商
  85. Saranchova I, Han J, Huang H, Fenninger F, Choi K, Munro L, et al. Discovery of a Metastatic Immune Escape Mechanism Initiated by the Loss of Expression of the Tumour Biomarker Interleukin-33. Sci Rep. 2016;6:30555 pubmed 出版商
  86. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  87. Otani K, Watanabe T, Shimada S, Takeda S, Itani S, Higashimori A, et al. Colchicine prevents NSAID-induced small intestinal injury by inhibiting activation of the NLRP3 inflammasome. Sci Rep. 2016;6:32587 pubmed 出版商
  88. Xu H, Gelyana E, Rajsombath M, Yang T, Li S, Selkoe D. Environmental Enrichment Potently Prevents Microglia-Mediated Neuroinflammation by Human Amyloid ?-Protein Oligomers. J Neurosci. 2016;36:9041-56 pubmed 出版商
  89. D Amore A, Yoshizumi T, Luketich S, Wolf M, Gu X, Cammarata M, et al. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials. 2016;107:1-14 pubmed 出版商
  90. Liu R, Jin J. Deletion of calponin 2 in macrophages alters cytoskeleton-based functions and attenuates the development of atherosclerosis. J Mol Cell Cardiol. 2016;99:87-99 pubmed 出版商
  91. Fan T, Warmoes M, Sun Q, Song H, Turchan Cholewo J, Martin J, et al. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator ?-glucan in a two-case ex vivo non-small-cell lung cancer study. Cold Spring Harb Mol Case Stud. 2016;2:a000893 pubmed 出版商
  92. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  93. Ploquin M, Madec Y, Casrouge A, Huot N, Passaes C, Lécuroux C, et al. Elevated Basal Pre-infection CXCL10 in Plasma and in the Small Intestine after Infection Are Associated with More Rapid HIV/SIV Disease Onset. PLoS Pathog. 2016;12:e1005774 pubmed 出版商
  94. Wolf H, Damme M, Stroobants S, D Hooge R, Beck H, Hermans Borgmeyer I, et al. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis Model Mech. 2016;9:1015-28 pubmed 出版商
  95. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  96. Lawler C, Tan C, Simas J, Stevenson P. Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection. J Virol. 2016;90:9046-57 pubmed 出版商
  97. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  98. Rex J, Albrecht U, Ehlting C, Thomas M, Zanger U, Sawodny O, et al. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages. PLoS Comput Biol. 2016;12:e1005018 pubmed 出版商
  99. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  100. Shivkumar M, Lawler C, Milho R, Stevenson P. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol. 2016;90:8661-72 pubmed 出版商
  101. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  102. Saita D, Ferrarese R, Foglieni C, Esposito A, Canu T, Perani L, et al. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation. Sci Rep. 2016;6:29353 pubmed 出版商
  103. Neves J, Zhu J, Sousa Victor P, Konjikusic M, Riley R, Chew S, et al. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 2016;353:aaf3646 pubmed 出版商
  104. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  105. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  106. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  107. Ueno K, Takeuchi Y, Samura M, Tanaka Y, Nakamura T, Nishimoto A, et al. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts. Sci Rep. 2016;6:28538 pubmed 出版商
  108. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 2016;19:995-8 pubmed 出版商
  109. Avadhani A, Parachuru V, Milne T, Seymour G, Rich A. Multiple cells express interleukin 17 in oral squamous cell carcinoma. J Oral Pathol Med. 2017;46:39-45 pubmed 出版商
  110. Zhu C, Gopalakrishnan S, Doyle K, Nikkel A, Olson L, Abraham V, et al. A-306989, an inhibitor of adenosine kinase, is renoprotective in rodent models of podocyte, basement membrane, and obstructive injury. Eur J Pharmacol. 2016;788:1-11 pubmed 出版商
  111. Deveza L, Choi J, Lee J, HUANG N, Cooke J, Yang F. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model. Theranostics. 2016;6:1176-89 pubmed 出版商
  112. Kirita Y, Kami D, Ishida R, Adachi T, Tamagaki K, Matoba S, et al. Preserved Nephrogenesis Following Partial Nephrectomy in Early Neonates. Sci Rep. 2016;6:26792 pubmed 出版商
  113. Endo N, Tsuboi N, Furuhashi K, Shi Y, Du Q, Abe T, et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol Dial Transplant. 2016;31:2023-2033 pubmed
  114. Miao H, Ou J, Peng Y, Zhang X, Chen Y, Hao L, et al. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun. 2016;7:11716 pubmed 出版商
  115. Scharn C, Collins A, Nair V, Stamm C, MARCIANO D, Graviss E, et al. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection. J Immunol. 2016;196:4641-9 pubmed 出版商
  116. Ahmad N, Martin S, Storr S. Immunohistochemical Assessment of Leukocyte Involvement in Angiogenesis. Methods Mol Biol. 2016;1430:49-57 pubmed 出版商
  117. Janssen C, Jansen D, Mutsaers M, Dederen P, Geenen B, Mulder M, et al. The Effect of a High-Fat Diet on Brain Plasticity, Inflammation and Cognition in Female ApoE4-Knockin and ApoE-Knockout Mice. PLoS ONE. 2016;11:e0155307 pubmed 出版商
  118. Bell C, Hendriks D, Moro S, Ellis E, Walsh J, Renblom A, et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6:25187 pubmed 出版商
  119. Koeppen A, Ramirez R, Becker A, Mazurkiewicz J. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4:46 pubmed 出版商
  120. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151-66 pubmed 出版商
  121. Liao R, Jiang N, Tang Z, Li D, Huang P, Luo S, et al. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget. 2016;7:30951-61 pubmed 出版商
  122. Tietz O, Wuest M, Marshall A, Glubrecht D, Hamann I, Wang M, et al. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Res. 2016;6:37 pubmed 出版商
  123. Li X, Wu L, Li S, Zhou W, Wang M, Zuo G, et al. Effect of CD16a, the surface receptor of Kupffer cells, on the growth of hepatocellular carcinoma cells. Int J Mol Med. 2016;37:1465-74 pubmed 出版商
  124. Wang T, Wang Z, Yang P, Xia L, Zhou M, Wang S, et al. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice. Cell Death Dis. 2016;7:e2176 pubmed 出版商
  125. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  126. Hong S, Beja Glasser V, Nfonoyim B, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712-716 pubmed 出版商
  127. Lin R, Zhang J, Zhou L, Wang B. Altered function of monocytes/macrophages in patients with autoimmune hepatitis. Mol Med Rep. 2016;13:3874-80 pubmed 出版商
  128. Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman H, et al. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res. 2016;57:832-47 pubmed 出版商
  129. Tan S, Krasnow M. Developmental origin of lung macrophage diversity. Development. 2016;143:1318-27 pubmed 出版商
  130. Gabunia K, Ellison S, Kelemen S, Kako F, Cornwell W, Rogers T, et al. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. Am J Pathol. 2016;186:1361-74 pubmed 出版商
  131. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  132. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  133. Barbour T, Ling G, Ruseva M, Fossati Jimack L, Cook H, Botto M, et al. Complement receptor 3 mediates renal protection in experimental C3 glomerulopathy. Kidney Int. 2016;89:823-32 pubmed 出版商
  134. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  135. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  136. Xiao J, Shao L, Shen J, Jiang W, Feng Y, Zheng P, et al. Effects of ketanserin on experimental colitis in mice and macrophage function. Int J Mol Med. 2016;37:659-68 pubmed 出版商
  137. Winston C, Noël A, Neustadtl A, Parsadanian M, Barton D, Chellappa D, et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. Am J Pathol. 2016;186:552-67 pubmed 出版商
  138. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  139. Ramasamy S, Saez B, Mukhopadhyay S, Ding D, Ahmed A, Chen X, et al. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proc Natl Acad Sci U S A. 2016;113:1871-6 pubmed 出版商
  140. Vegas A, Veiseh O, Gürtler M, Millman J, Pagliuca F, Bader A, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22:306-11 pubmed 出版商
  141. Vegas A, Veiseh O, Doloff J, Ma M, Tam H, Bratlie K, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34:345-52 pubmed 出版商
  142. Osman A, Neumann S, Kuhn H, Blomgren K. Caspase inhibition impaired the neural stem/progenitor cell response after cortical ischemia in mice. Oncotarget. 2016;7:2239-48 pubmed 出版商
  143. Sloboda D, Brooks S. Treatment with selectin blocking antibodies after lengthening contractions of mouse muscle blunts neutrophil accumulation but does not reduce damage. Physiol Rep. 2016;4: pubmed 出版商
  144. Hamada D, Maynard R, Schott E, Drinkwater C, Ketz J, Kates S, et al. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus. Arthritis Rheumatol. 2016;68:1392-402 pubmed 出版商
  145. Bennett B, Davis R, Civelek M, Orozco L, Wu J, Qi H, et al. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genet. 2015;11:e1005711 pubmed 出版商
  146. Roth Flach R, Skoura A, Matevossian A, Danai L, Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6:8995 pubmed 出版商
  147. Shen Z, Yan Y, Ye C, Wang B, Jiang K, Ye Y, et al. The effect of Vasohibin-1 expression and tumor-associated macrophages on the angiogenesis in vitro and in vivo. Tumour Biol. 2016;37:7267-76 pubmed 出版商
  148. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, et al. Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci. 2016;107:123-32 pubmed 出版商
  149. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  150. Qiao J, Huang Y, Xia Y, Chu P, Yao H, Xu L, et al. Busulfan and cyclosphamide induce liver inflammation through NLRP3 activation in mice after hematopoietic stem cell transplantation. Sci Rep. 2015;5:17828 pubmed 出版商
  151. Gravina G, Mancini A, Sanità P, Vitale F, Marampon F, Ventura L, et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin [corrected] in prostate cancer models. BMC Cancer. 2015;15:941 pubmed 出版商
  152. Tarin C, Carril M, Martin Ventura J, Markuerkiaga I, Padro D, Llamas Granda P, et al. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci Rep. 2015;5:17135 pubmed 出版商
  153. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  154. Sikora J, Leddy J, Gulinello M, Walkley S. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech. 2016;9:13-23 pubmed 出版商
  155. Sinadinos A, Young C, Al Khalidi R, Teti A, Kalinski P, Mohamad S, et al. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy. PLoS Med. 2015;12:e1001888 pubmed 出版商
  156. Aoki K, Teshima Y, Kondo H, Saito S, Fukui A, Fukunaga N, et al. Role of Indoxyl Sulfate as a Predisposing Factor for Atrial Fibrillation in Renal Dysfunction. J Am Heart Assoc. 2015;4:e002023 pubmed 出版商
  157. Zhao L, Li C, Jin P, Ng C, Lin Z, Li Y, et al. Histopathological features of sinonasal inverted papillomas in chinese patients. Laryngoscope. 2016;126:E141-7 pubmed 出版商
  158. Loyer X, Paradis V, Hénique C, Vion A, Colnot N, Guerin C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut. 2016;65:1882-1894 pubmed 出版商
  159. Gao T, Ng C, Li C, Li Y, Duan C, Shen L, et al. Smoking is an independent association of squamous metaplasia in Chinese nasal polyps. Int Forum Allergy Rhinol. 2016;6:66-74 pubmed 出版商
  160. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  161. Harney A, Arwert E, Entenberg D, Wang Y, Guo P, Qian B, et al. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA. Cancer Discov. 2015;5:932-43 pubmed 出版商
  162. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577 pubmed 出版商
  163. Krishack P, Bhanvadia C, Lukens J, Sontag T, de Beer M, Getz G, et al. Serum Amyloid A Facilitates Early Lesion Development in Ldlr-/- Mice. J Am Heart Assoc. 2015;4: pubmed 出版商
  164. Han H, Yan P, Chen L, Luo C, Gao H, Deng Q, et al. Flaxseed Oil Containing α -Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice. Oxid Med Cell Longev. 2015;2015:958217 pubmed 出版商
  165. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed 出版商
  166. Felix A, Monteiro N, Rocha V, Oliveira G, Nascimento A, de Carvalho L, et al. Structural and ultrastructural evaluation of the aortic wall after transplantation of bone marrow-derived cells (BMCs) in a model for atherosclerosis. Biochem Cell Biol. 2015;93:367-75 pubmed 出版商
  167. Zhao L, Zabel M, Wang X, Ma W, Shah P, Fariss R, et al. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med. 2015;7:1179-97 pubmed 出版商
  168. Xiong X, Xu L, Wei L, White R, Ouyang Y, Giffard R. IL-4 Is Required for Sex Differences in Vulnerability to Focal Ischemia in Mice. Stroke. 2015;46:2271-6 pubmed 出版商
  169. Attardo A, Fitzgerald J, Schnitzer M. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature. 2015;523:592-6 pubmed 出版商
  170. Zhang M, Jiang S, Tian Z, Wang M, Zhao R, Wang L, et al. CB2R orchestrates fibrogenesis through regulation of inflammatory response during the repair of skeletal muscle contusion. Int J Clin Exp Pathol. 2015;8:3491-502 pubmed
  171. Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, et al. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj. 2015;29:1165-1174 pubmed 出版商
  172. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  173. Koronyo Y, Salumbides B, Sheyn J, Pelissier L, Li S, Ljubimov V, et al. Therapeutic effects of glatiramer acetate and grafted CD115⁺ monocytes in a mouse model of Alzheimer's disease. Brain. 2015;138:2399-422 pubmed 出版商
  174. Haan N, Zhu B, Wang J, Wei X, Song B. Crosstalk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. J Neuroinflammation. 2015;12:109 pubmed 出版商
  175. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  176. Qiao J, Qi K, Chu P, Mi H, Yang N, Yao H, et al. Infusion of endothelial progenitor cells ameliorates liver injury in mice after haematopoietic stem cell transplantation. Liver Int. 2015;35:2611-20 pubmed 出版商
  177. Ahlers K, Karaçay B, Fuller L, Bonthius D, Dailey M. Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration. Glia. 2015;63:1694-713 pubmed 出版商
  178. Li X, Ballantyne L, Che X, Mewburn J, Kang J, Barkley R, et al. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J Am Heart Assoc. 2015;4: pubmed 出版商
  179. Hohsfield L, Humpel C. Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. PLoS ONE. 2015;10:e0121930 pubmed 出版商
  180. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  181. Brulhart Meynet M, Braunersreuther V, Brinck J, Montecucco F, Prost J, Thomas A, et al. Improving reconstituted HDL composition for efficient post-ischemic reduction of ischemia reperfusion injury. PLoS ONE. 2015;10:e0119664 pubmed 出版商
  182. Koeppen A, Ramirez R, Becker A, Bjork S, Levi S, Santambrogio P, et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE. 2015;10:e0116396 pubmed 出版商
  183. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim J, Hsieh C, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci. 2015;35:3384-96 pubmed 出版商
  184. Nishikawa K, Iwaya K, Kinoshita M, Fujiwara Y, Akao M, Sonoda M, et al. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res. 2015;59:1155-70 pubmed 出版商
  185. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271-84 pubmed 出版商
  186. Petraglia A, Plog B, Dayawansa S, Dashnaw M, Czerniecka K, Walker C, et al. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int. 2014;5:184 pubmed 出版商
  187. Gravez B, Tarjus A, Pelloux V, Ouvrard Pascaud A, Delcayre C, Samuel J, et al. Aldosterone promotes cardiac endothelial cell proliferation in vivo. J Am Heart Assoc. 2015;4:e001266 pubmed 出版商
  188. Weston C, Shepherd E, Claridge L, Rantakari P, Curbishley S, Tomlinson J, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501-20 pubmed 出版商
  189. Li D, Wang X, Lan X, Li Y, Liu L, Yi J, et al. Down-regulation of miR-144 elicits proinflammatory cytokine production by targeting toll-like receptor 2 in nonalcoholic steatohepatitis of high-fat-diet-induced metabolic syndrome E3 rats. Mol Cell Endocrinol. 2015;402:1-12 pubmed 出版商
  190. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  191. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden A, Lipinski M. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10:2208-22 pubmed 出版商
  192. Ramsey S, Vengrenyuk Y, Menon P, Podolsky I, Feig J, Aderem A, et al. Epigenome-guided analysis of the transcriptome of plaque macrophages during atherosclerosis regression reveals activation of the Wnt signaling pathway. PLoS Genet. 2014;10:e1004828 pubmed 出版商
  193. Fontana M, Baccarella A, Pancholi N, Pufall M, Herbert D, Kim C. JUNB is a key transcriptional modulator of macrophage activation. J Immunol. 2015;194:177-86 pubmed 出版商
  194. Doyle K, Quach L, Arceuil H, Buckwalter M. Ferumoxytol administration does not alter infarct volume or the inflammatory response to stroke in mice. Neurosci Lett. 2015;584:236-40 pubmed 出版商
  195. Uchiyama M, Jin X, Yin E, Shimokawa T, Niimi M. Treadmill exercise induces murine cardiac allograft survival and generates regulatory T cell. Transpl Int. 2015;28:352-62 pubmed 出版商
  196. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  197. Kelly E, Opanashuk L, Majewska A. The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex. Front Neuroanat. 2014;8:117 pubmed 出版商
  198. Femel J, Huijbers E, Saupe F, Cedervall J, Zhang L, Roswall P, et al. Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget. 2014;5:12418-27 pubmed
  199. Garcia R, Yan M, Search D, Zhang R, Carson N, Ryan C, et al. P2Y6 receptor potentiates pro-inflammatory responses in macrophages and exhibits differential roles in atherosclerotic lesion development. PLoS ONE. 2014;9:e111385 pubmed 出版商
  200. Voss M, Künzel U, Higel F, Kuhn P, Colombo A, Fukumori A, et al. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J. 2014;33:2890-905 pubmed 出版商
  201. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  202. Murakami M, Kaneko T, Nakatsuji T, Kameda K, Okazaki H, Dai X, et al. Vesicular LL-37 contributes to inflammation of the lesional skin of palmoplantar pustulosis. PLoS ONE. 2014;9:e110677 pubmed 出版商
  203. Ahn J, Ruiz P, Barber G. Intrinsic self-DNA triggers inflammatory disease dependent on STING. J Immunol. 2014;193:4634-42 pubmed 出版商
  204. Tugues S, Roche F, Noguer O, Orlova A, Bhoi S, Padhan N, et al. Histidine-rich glycoprotein uptake and turnover is mediated by mononuclear phagocytes. PLoS ONE. 2014;9:e107483 pubmed 出版商
  205. Jebelli J, Hooper C, Pocock J. Microglial p53 activation is detrimental to neuronal synapses during activation-induced inflammation: Implications for neurodegeneration. Neurosci Lett. 2014;583:92-7 pubmed 出版商
  206. Chartier S, Thompson M, Longo G, Fealk M, Majuta L, Mantyh P. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain. 2014;155:2323-36 pubmed 出版商
  207. Astafurov K, Elhawy E, Ren L, Dong C, Igboin C, Hyman L, et al. Oral microbiome link to neurodegeneration in glaucoma. PLoS ONE. 2014;9:e104416 pubmed 出版商
  208. Kadam S, Chen H, Markowitz G, Raja S, George S, Verina T, et al. Systemic injection of CD34(+)-enriched human cord blood cells modulates poststroke neural and glial response in a sex-dependent manner in CD1 mice. Stem Cells Dev. 2015;24:51-66 pubmed 出版商
  209. Bartuzi P, Wijshake T, Dekker D, Fedoseienko A, Kloosterhuis N, Youssef S, et al. A cell-type-specific role for murine Commd1 in liver inflammation. Biochim Biophys Acta. 2014;1842:2257-65 pubmed 出版商
  210. McKinstry S, Karadeniz Y, Worthington A, Hayrapetyan V, Ozlu M, Serafin Molina K, et al. Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J Neurosci. 2014;34:9455-72 pubmed 出版商
  211. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  212. Tepavcevic V, Kerninon C, Aigrot M, Meppiel E, Mozafari S, Arnould Laurent R, et al. Early netrin-1 expression impairs central nervous system remyelination. Ann Neurol. 2014;76:252-68 pubmed 出版商
  213. Peng B, Xiao J, Wang K, So K, Tipoe G, Lin B. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. J Neurosci. 2014;34:8139-50 pubmed 出版商
  214. Hoffmann J, Ospelt M, Troidl C, Voss S, Liebetrau C, Kim W, et al. Sham surgery and inter-individual heterogeneity are major determinants of monocyte subset kinetics in a mouse model of myocardial infarction. PLoS ONE. 2014;9:e98456 pubmed 出版商
  215. Shaghaghi H, Kadlecek S, Deshpande C, Siddiqui S, Martinez D, Pourfathi M, et al. Metabolic spectroscopy of inflammation in a bleomycin-induced lung injury model using hyperpolarized 1-(13) C pyruvate. NMR Biomed. 2014;27:939-47 pubmed 出版商
  216. Gao X, Usas A, Proto J, Lu A, Cummins J, Proctor A, et al. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. FASEB J. 2014;28:3792-809 pubmed 出版商
  217. Ravikumar M, Hageman D, Tomaszewski W, Chandra G, Skousen J, Capadona J. The Effect of Residual Endotoxin Contamination on the Neuroinflammatory Response to Sterilized Intracortical Microelectrodes. J Mater Chem B. 2014;2:2517-2529 pubmed
  218. Potter Baker K, Ravikumar M, Burke A, Meador W, Householder K, Buck A, et al. A comparison of neuroinflammation to implanted microelectrodes in rat and mouse models. Biomaterials. 2014;35:5637-46 pubmed 出版商
  219. Cekanaviciute E, Fathali N, Doyle K, Williams A, Han J, Buckwalter M. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 2014;62:1227-40 pubmed 出版商
  220. Sauter K, Pridans C, Sehgal A, Tsai Y, Bradford B, Raza S, et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014;96:265-74 pubmed 出版商
  221. Tam C, Covington J, Bajpeyi S, Tchoukalova Y, Burk D, Johannsen D, et al. Weight gain reveals dramatic increases in skeletal muscle extracellular matrix remodeling. J Clin Endocrinol Metab. 2014;99:1749-57 pubmed 出版商
  222. Son A, Sheleg M, Cooper M, Sun Y, Kleiman N, Zhou R. Formation of persistent hyperplastic primary vitreous in ephrin-A5-/- mice. Invest Ophthalmol Vis Sci. 2014;55:1594-606 pubmed 出版商
  223. Lenglet S, Montecucco F, Denes A, Coutts G, Pinteaux E, Mach F, et al. Recombinant tissue plasminogen activator enhances microglial cell recruitment after stroke in mice. J Cereb Blood Flow Metab. 2014;34:802-12 pubmed 出版商
  224. Dong Y, Hassan W, Kennedy R, Greiser U, Pandit A, Garcia Y, et al. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Acta Biomater. 2014;10:2076-85 pubmed 出版商
  225. Bignon A, Gaudin F, Hemon P, Tharinger H, Mayol K, Walzer T, et al. CCR1 inhibition ameliorates the progression of lupus nephritis in NZB/W mice. J Immunol. 2014;192:886-96 pubmed 出版商
  226. Pinato L, da Silveira Cruz Machado S, Franco D, Campos L, Cecon E, Fernandes P, et al. Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis. Brain Struct Funct. 2015;220:827-40 pubmed 出版商
  227. Notter T, Panzanelli P, PFISTER S, Mircsof D, Fritschy J. A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur J Neurosci. 2014;39:165-75 pubmed 出版商
  228. Subramanian V, Moorleghen J, Balakrishnan A, Howatt D, Chishti A, Uchida H. Calpain-2 compensation promotes angiotensin II-induced ascending and abdominal aortic aneurysms in calpain-1 deficient mice. PLoS ONE. 2013;8:e72214 pubmed 出版商
  229. Cedervall J, Zhang Y, Ringvall M, Thulin A, Moustakas A, Jahnen Dechent W, et al. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment. Angiogenesis. 2013;16:889-902 pubmed 出版商
  230. Chi X, Zhi L, Vostal J. Human platelets pathogen reduced with riboflavin and ultraviolet light do not cause acute lung injury in a two-event SCID mouse model. Transfusion. 2014;54:74-85 pubmed 出版商
  231. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  232. Smith A, Gibbons H, Oldfield R, Bergin P, Mee E, Faull R, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61:929-42 pubmed 出版商
  233. Day R, Cavaglieri R, Feliers D. Apelin retards the progression of diabetic nephropathy. Am J Physiol Renal Physiol. 2013;304:F788-800 pubmed 出版商
  234. Trabalza A, Georgiadis C, Eleftheriadou I, Hislop J, Ellison S, Karavassilis M, et al. Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther. 2013;20:723-32 pubmed 出版商
  235. Donat U, Weibel S, Hess M, Stritzker J, Härtl B, Sturm J, et al. Preferential colonization of metastases by oncolytic vaccinia virus strain GLV-1h68 in a human PC-3 prostate cancer model in nude mice. PLoS ONE. 2012;7:e45942 pubmed 出版商
  236. Liu H, Shiryaev S, Chernov A, Kim Y, Shubayev I, Remacle A, et al. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain. J Neuroinflammation. 2012;9:119 pubmed 出版商
  237. Uchida Y, Ke B, Freitas M, Ji H, Zhao D, Benjamin E, et al. The emerging role of T cell immunoglobulin mucin-1 in the mechanism of liver ischemia and reperfusion injury in the mouse. Hepatology. 2010;51:1363-72 pubmed 出版商
  238. Wainwright D, Xin J, Mesnard N, Beahrs T, Politis C, Sanders V, et al. Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice. ASN Neuro. 2009;1:e00024 pubmed 出版商
  239. Singer B, Jutkiewicz E, Fuller C, Lichtenwalner R, Zhang H, Velander A, et al. Conditional ablation and recovery of forebrain neurogenesis in the mouse. J Comp Neurol. 2009;514:567-82 pubmed 出版商