这是一篇来自已证抗体库的有关小鼠 Cd68的综述,是根据408篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd68 抗体。
Cd68 同义词: Lamp4; Scard1; gp110

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 4a). Front Cardiovasc Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s5a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5a). Sci Transl Med (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3b). Theranostics (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 4b). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(EPR23917-164)
  • 免疫组化-石蜡切片; 人类; 图 s5n
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab283654)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5n). J Clin Invest (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a). Theranostics (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 s1e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1e). Theranostics (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1e). Cell Death Discov (2022) ncbi
domestic rabbit 单克隆(EPR23917-164)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab283654)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6e). PLoS ONE (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6a). BMC Gastroenterol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5h
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上 (图 5h). Sci Adv (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
  • 免疫组化; 人类; 图 6f
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e) 和 被用于免疫组化在人类样本上 (图 6f). Sci Adv (2022) ncbi
domestic rabbit 单克隆(EPR23917-164)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab283654)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 5b). Nutrients (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2j
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2j). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Nat Commun (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Front Cardiovasc Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Clin Sci (Lond) (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Oxid Med Cell Longev (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 7m
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上 (图 7m). Theranostics (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:100; 图 2e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). Sci Adv (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:250; 图 6g
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 6g). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). Front Pharmacol (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:200; 图 7b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上浓度为1:200 (图 7b). Eur Respir J (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上 (图 4h). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 1b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1b). Cell Rep (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 s3c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab216701)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(EPR23917-164)
  • 免疫组化; 小鼠; 1:100; 图 3f
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab283654)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3f). Int J Mol Med (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1h
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1h). Cell Death Dis (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上 (图 3a). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上 (图 s2e). JCI Insight (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上 (图 1c). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab201844)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5d). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上. Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). Cell Rep (2021) ncbi
小鼠 单克隆(KP1)
  • dot blot; 小鼠; 1:1000; 图 7c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于dot blot在小鼠样本上浓度为1:1000 (图 7c). Basic Res Cardiol (2021) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:500; 图 6c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c). Int J Mol Sci (2021) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(AbCam, ab 125212)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 2a). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1 ug/ml; 图 1e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1 ug/ml (图 1e). NPJ Aging Mech Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). EMBO J (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Clin Transl Med (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上 (图 6). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ED1)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3d). Dis Model Mech (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上 (图 5a). Sci Rep (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4b). Cell Death Dis (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 s7e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 s7e). Sci Adv (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4b). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1g
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1g). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s2d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2d). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1 ug/ml; 图 5d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1 ug/ml (图 5d). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4f
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4f). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Vascul Pharmacol (2021) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ED1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(ED1)
  • 免疫印迹; 小鼠; 1:900
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫印迹在小鼠样本上浓度为1:900. J Cell Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 2c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, 125212)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1c). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, 125212)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). J Clin Invest (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:400; 图 6a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 6a). elife (2020) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8b
  • 免疫印迹; 小鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). PLoS Pathog (2020) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2c4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ED1)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2c4). PLoS ONE (2020) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Cd68抗体(abcam, ED1)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Commun Biol (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 1e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab5344)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1e). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 1:100; 图 s1e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab31630)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; pigs ; 1:1000; 图 s1b
  • 免疫组化-石蜡切片; pigs ; 1:400; 图 2a, 2b, 2c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-自由浮动切片在pigs 样本上浓度为1:1000 (图 s1b) 和 被用于免疫组化-石蜡切片在pigs 样本上浓度为1:400 (图 2a, 2b, 2c). PLoS ONE (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, AB53444)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1c, d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c, d). Nutrients (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 4a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, AB125212)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 4a). J Nanobiotechnology (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上 (图 5a). Autophagy (2020) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 1:800; 图 8a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 8a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s8a, s9a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s8a, s9a). BMC Immunol (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b). Nature (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 人类; 图 1h
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1h). Cancer Cell (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上 (图 4). Nanomedicine (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). J Exp Med (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 图 3a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 7g
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 7g). Cell Death Dis (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d). Sci Adv (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 1b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上 (图 1b). Redox Biol (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
  • 免疫组化; 小鼠; 1:200; 图 5g
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 5g). Nat Commun (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1:400
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, clone KP1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400. Nature (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7a). Atherosclerosis (2019) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3g
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3g). Haematologica (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). J Cell Biol (2019) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1h'
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1h'). Cell Death Dis (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, AB53444)被用于被用于免疫组化在小鼠样本上 (图 5d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 8a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1b). J Mol Cell Cardiol (2018) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f). Br J Pharmacol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 5b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 5b). Redox Biol (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Biomed Pharmacother (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Oncoimmunology (2018) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:150; 图 7d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab955)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 7d). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Am J Transl Res (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 2g
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KPI)被用于被用于免疫组化在小鼠样本上 (图 2g). Nature (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 5 ug/ml; 图 s2d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为5 ug/ml (图 s2d). Nat Med (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6b). Eur J Vasc Endovasc Surg (2017) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 7k
  • 免疫细胞化学; 小鼠; 1:50; 图 4e
  • 免疫组化; 小鼠; 1:50; 图 2l
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab53444)被用于被用于流式细胞仪在小鼠样本上 (图 7k), 被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 4e) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 2l). Hear Res (2017) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2b
  • 免疫印迹; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). J Vis Exp (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). EMBO Mol Med (2017) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在小鼠样本上浓度为1:50. Redox Biol (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). Drug Des Devel Ther (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 5j
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5j). Sci Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Cd68抗体(abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 图 10a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab125212)被用于被用于免疫组化在pigs 样本上 (图 10a). Biomaterials (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). J Virol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 6e
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6e). J Virol (2016) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2016) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 表 1
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab-955)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). J Oral Pathol Med (2017) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5). Eur J Pharmacol (2016) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 大鼠; 1:500; 图 s3
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Nephrol Dial Transplant (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Methods Mol Biol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:15,000; 图 1d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:15,000 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s3
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Cell Death Dis (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 1:50; 图 1
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 s3c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3c). Gastroenterology (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司 Cd68抗体(abcam, Ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). J Mol Cell Cardiol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1l
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1l). Tumour Biol (2016) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab3163)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Cancer Sci (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Rep (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 7
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化在人类样本上 (图 7). BMC Cancer (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫印迹; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上. Laryngoscope (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Int Forum Allergy Rhinol (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫细胞化学; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 10
艾博抗(上海)贸易有限公司 Cd68抗体(abcam, ab-31630)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 10). Biochem Cell Biol (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 s2b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA11-ab5344)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s2b). Nature (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-冰冻切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. Brain Inj (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 1:100; 图 7c
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7c). Brain (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). J Neuroinflammation (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫印迹在小鼠样本上. Liver Int (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). PLoS ONE (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Neurosci (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; 人类; 1 ug/ml; 图 3a
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1 ug/ml (图 3a). J Clin Invest (2015) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 2b). Mol Cell Endocrinol (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Transpl Int (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 8
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 8). Development (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-自由浮动切片; 小鼠; 1:800; 图 8
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:800 (图 8). Front Neuroanat (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 5d
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, KP1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). PLoS ONE (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫细胞化学; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Neurosci Lett (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:100. Stem Cells Dev (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5). Oncogene (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. FASEB J (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Mater Chem B (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化在大鼠样本上浓度为1:500. Biomaterials (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫印迹在人类样本上. J Clin Endocrinol Metab (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab31630)被用于被用于免疫组化在小鼠样本上浓度为1:200. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ED-1)被用于被用于免疫细胞化学在大鼠样本上. Acta Biomater (2014) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-冰冻切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Brain Struct Funct (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Clone FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Transfusion (2014) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-自由浮动切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, Ab955)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 和 被用于免疫细胞化学在人类样本上浓度为1:500. Glia (2013) ncbi
小鼠 单克隆(ED1)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化在人类样本上浓度为1:100. Gene Ther (2013) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 人类
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab53444)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(ED1)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司 Cd68抗体(Abcam, ab31630)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. J Neuroinflammation (2012) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s10d
伯乐(Bio-Rad)公司 Cd68抗体(AbDserotec-BioRad, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s10d). Nat Commun (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 4o
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4o). Cell Rep (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6c). Nat Commun (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s16d
伯乐(Bio-Rad)公司 Cd68抗体(Biorad, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s16d). Proc Natl Acad Sci U S A (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 图 s8b
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s8b). J Biomed Sci (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b, 4g
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b, 4g). Eneuro (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). STAR Protoc (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
伯乐(Bio-Rad)公司 Cd68抗体(Biorad, MCA1957T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Cancers (Basel) (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:800; 图 1b
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 1b). Int J Mol Sci (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 3b
伯乐(Bio-Rad)公司 Cd68抗体(AbDSerotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 3b). Nagoya J Med Sci (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:250; 图 s1j
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s1j). elife (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:50; 图 5c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5c). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 1i
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1i). Nat Commun (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 4e
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4e). J Neuroinflammation (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:400; 图 5a
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5a). Sci Rep (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 图 1e
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). J Cell Mol Med (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 s3a
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 s3a). PLoS Biol (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 3d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3d). elife (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2g
伯乐(Bio-Rad)公司 Cd68抗体(ABD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 2g). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 人类; 1:200
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫组化在人类样本上浓度为1:200. Nat Immunol (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4f
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4f). elife (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:1000; 图 2g
伯乐(Bio-Rad)公司 Cd68抗体(Bio Rad Laboratories, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2g). Cells (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:250; 图 2b
伯乐(Bio-Rad)公司 Cd68抗体(Biorad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2b). Commun Biol (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 2c). Sci Adv (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 5h
伯乐(Bio-Rad)公司 Cd68抗体(Bio Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5h). Neuron (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 s1c
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 s1c). J Cell Mol Med (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 图 s7a
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫细胞化学在小鼠样本上 (图 s7a). Cell Rep (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 人类; 1:100; 图 s2h
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s2h). Sci Adv (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2c). Front Immunol (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
  • 免疫组化-石蜡切片; 小鼠; 图 1f
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 1f). Front Cell Dev Biol (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 6a
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化在小鼠样本上 (图 6a). Sci Rep (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 6
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, FA-11)被用于被用于免疫组化在小鼠样本上 (图 6). Theranostics (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 5c
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). Diabetes (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 2
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1857)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). J Neuroinflammation (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 s4b
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4b). JCI Insight (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 图 7c
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫细胞化学在小鼠样本上 (图 7c). PLoS Biol (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2b
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2b). elife (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:800; 图 3c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 3c). Neurol Neuroimmunol Neuroinflamm (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4b
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4b). Cell Rep (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:900; 图 3a
伯乐(Bio-Rad)公司 Cd68抗体(Biorad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:900 (图 3a). Acta Neuropathol Commun (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 9d
  • 免疫印迹; 小鼠; 1:1000; 图 4c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957G)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 9d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). elife (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:300; 图 2s2a
伯乐(Bio-Rad)公司 Cd68抗体(BioRad Laboratories, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2s2a). elife (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 4f
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, mca1957)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4f). Nat Commun (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). Hum Mol Genet (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
伯乐(Bio-Rad)公司 Cd68抗体(BIO-RAD, MCA1957T)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). J Neuroinflammation (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:400; 图 1e, 2c
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1e, 2c). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 小鼠; 1:200; 图 s3f
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s3f). Aging Cell (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4d). J Neuroinflammation (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 6c
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957B)被用于被用于免疫组化在小鼠样本上 (图 6c). Cell Death Dis (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Nat Commun (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 1:200; 图 1
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec BioRad, mca1957)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1). Mol Neurodegener (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6i
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6i). Eneuro (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3a). Cell Rep (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). Sci Adv (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2a
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2a). FASEB J (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 1d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). Nat Commun (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3a). Acta Neuropathol (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 3a
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 3a). Nat Commun (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
  • 免疫组化; 小鼠; 图 5b
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, FA-11)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a) 和 被用于免疫组化在小鼠样本上 (图 5b). Science (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 3e
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e). J Exp Med (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 5c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). elife (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. elife (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1d
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1d). Nat Med (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 3f
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957T)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3f). Breast Cancer Res (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3b
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3b). Cell (2018) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:8; 图 5c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957B)被用于被用于流式细胞仪在小鼠样本上浓度为1:8 (图 5c). Endocrinology (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 1h
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA 1957)被用于被用于免疫组化在小鼠样本上 (图 1h). Clin Exp Immunol (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 1b
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化在小鼠样本上 (图 1b). Atherosclerosis (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, FA11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7d). EMBO J (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, FA-11)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2c). FASEB J (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:600; 图 s2c
伯乐(Bio-Rad)公司 Cd68抗体(BioRad, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:600 (图 s2c). Nature (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4e
伯乐(Bio-Rad)公司 Cd68抗体(BIO RAD, MCA1957GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4e). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 9a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 9a). Sci Rep (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 人类; 图 s2d
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在人类样本上 (图 s2d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:250; 图 s4a
伯乐(Bio-Rad)公司 Cd68抗体(AbDSerotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s4a). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:25; 图 3a
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957A488)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 3a). Nat Commun (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 1f
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 1f). Neuron (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 s7c
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化在小鼠样本上 (图 s7c). Science (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2p
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 2p). Cell Stem Cell (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:1000; 图 3a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). Acta Neuropathol (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 人类; 1:100; 图 1c
  • 免疫组化; 小鼠; 1:100; 图 1d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1c) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). J Am Heart Assoc (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2c). J Clin Invest (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Sci Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Am J Physiol Heart Circ Physiol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:1000; 图 6e
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6e). Nanomedicine (Lond) (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 5
伯乐(Bio-Rad)公司 Cd68抗体(bio-rad, MCA 1957)被用于被用于免疫组化在小鼠样本上 (图 5). J Mol Cell Cardiol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 7a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化在小鼠样本上 (图 7a). Neuroimage (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6e
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6e). Dis Model Mech (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 s6a
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 s6a). Cell Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(Abd serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Mol Neurodegener (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 1e
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1e). Nat Commun (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). J Exp Med (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 s6
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6). Science (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
伯乐(Bio-Rad)公司 Cd68抗体(Abd Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). Nature (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 1d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957GA)被用于被用于免疫组化在小鼠样本上 (图 1d). Nat Neurosci (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4). Theranostics (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). J Clin Invest (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2c
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 2c). Science (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). J Lipid Res (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6). Development (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 4 ug/ml; 图 1g
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为4 ug/ml (图 1g). Am J Pathol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 1
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Int J Mol Med (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 5
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957T)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 5). Am J Pathol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3d
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3d). Nat Commun (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957T)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). Oncotarget (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2e
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2e). Physiol Rep (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 8
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA 1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). PLoS Genet (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:200; 图 2j
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2j). Nat Commun (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 图 3d
伯乐(Bio-Rad)公司 Cd68抗体(Bio-Rad, MCA1957)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Nat Immunol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(ABD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). Theranostics (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:1000; 图 3
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Dis Model Mech (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). PLoS Med (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2h
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 2h). Gut (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Cancer Discov (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotech, MCA1957)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 2
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). EMBO Mol Med (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 4). Stroke (2015) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于流式细胞仪在小鼠样本上. Immunity (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上. Glia (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 5f
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957GA)被用于被用于免疫组化在小鼠样本上 (图 5f). PLoS ONE (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上. Mol Nutr Food Res (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 6c
伯乐(Bio-Rad)公司 Cd68抗体(Abd Serotec, MCA1957 GA)被用于被用于免疫组化在小鼠样本上 (图 6c). Autophagy (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:250
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:250. Surg Neurol Int (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2). Autophagy (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 1
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA 1957)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). PLoS Genet (2014) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(ABD Serotec, FA-11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 2a). Neurosci Lett (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 1:300; 图 4
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 4). Oncotarget (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(ABD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 人类; 图 2C
伯乐(Bio-Rad)公司 Cd68抗体(AbD serotec, clone FA-11)被用于被用于免疫印迹在人类样本上 (图 2C). EMBO J (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 1
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上 (图 1). J Immunol (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. Pain (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA19575)被用于被用于免疫组化在小鼠样本上. Ann Neurol (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫细胞化学; 小鼠; 1:500
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957A647T)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Glia (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 人类; 1:400
伯乐(Bio-Rad)公司 Cd68抗体(ABD Serotec, MCA1957GA)被用于被用于免疫组化在人类样本上浓度为1:400. J Cereb Blood Flow Metab (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, MCA1957)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Immunol (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:3000
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec Ltd, MCA1957GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000. Eur J Neurosci (2014) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:300
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. Angiogenesis (2013) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA 1957)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Renal Physiol (2013) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(AbD Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-石蜡切片在小鼠样本上. Hepatology (2010) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上. ASN Neuro (2009) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:200
伯乐(Bio-Rad)公司 Cd68抗体(Serotec, MCA1957)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Comp Neurol (2009) ncbi
BioLegend
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend Cd68抗体(BioLegend, 137010)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Immunohorizons (2022) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:100; 图 3e
BioLegend Cd68抗体(BioLegend, 137010)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3e). Cell Rep (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 1a
BioLegend Cd68抗体(BioLegend, 137015)被用于被用于免疫组化在小鼠样本上 (图 1a). Nat Commun (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Cd68抗体(BioLegend, 137015)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Brain Commun (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 3i
BioLegend Cd68抗体(Biolegend, 137006)被用于被用于流式细胞仪在小鼠样本上 (图 3i). Front Physiol (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:200; 图 5e
BioLegend Cd68抗体(Biolegend, 137017)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5e). Aging Cell (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:200; 图 5e
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5e). Cancer Res (2021) ncbi
大鼠 单克隆(FA-11)
  • mass cytometry; 小鼠
BioLegend Cd68抗体(Biolegend, 137002)被用于被用于mass cytometry在小鼠样本上. Cancer Cell (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd68抗体(BioLegend, 137010)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Physiol Rep (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 0.4 ug/ml; 图 8b
BioLegend Cd68抗体(BioLegend, 137008)被用于被用于流式细胞仪在小鼠样本上浓度为0.4 ug/ml (图 8b). Basic Res Cardiol (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:1000; 图 4d
BioLegend Cd68抗体(Biolegend, 137001)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠
BioLegend Cd68抗体(Biolegend, 137017)被用于被用于流式细胞仪在小鼠样本上. Cell (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:100; 图 6a
BioLegend Cd68抗体(Biolegend, FA-11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6a). Front Immunol (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Cd68抗体(Biolegend, 137015)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Cell Rep (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 8a, 9a
BioLegend Cd68抗体(BioLegend, 137023)被用于被用于流式细胞仪在小鼠样本上 (图 8a, 9a). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠
BioLegend Cd68抗体(BioLegend, 137024)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
BioLegend Cd68抗体(BioLegend, 137001)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Arterioscler Thromb Vasc Biol (2020) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:300; 图 3e
BioLegend Cd68抗体(BioLegend, FA11)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3e). elife (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7j
BioLegend Cd68抗体(BioLegend, 137002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7j). Cell Rep (2020) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 s12a
BioLegend Cd68抗体(Biolegend, 137013)被用于被用于流式细胞仪在小鼠样本上 (图 s12a). Nat Commun (2019) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Cd68抗体(Biolegend, 137008)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Clin Invest (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s6c
BioLegend Cd68抗体(Biolegend, 137012)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s6c). Nat Metab (2019) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:500; 图 1b
BioLegend Cd68抗体(BioLegend, 137001)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). J Clin Invest (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 s2c
BioLegend Cd68抗体(Biolegend, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2c). J Exp Med (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 ev1b
BioLegend Cd68抗体(Biolegend, FA-11)被用于被用于免疫组化在小鼠样本上 (图 ev1b). EMBO J (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
BioLegend Cd68抗体(Biolegend, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). Respir Res (2018) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2a
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于免疫组化在小鼠样本上 (图 2a). J Clin Invest (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4b
BioLegend Cd68抗体(BioLegend, 137002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(FA-11)
BioLegend Cd68抗体(BioLegend, 137002)被用于. Nat Commun (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
BioLegend Cd68抗体(Biolegend, 137001)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). FEBS Lett (2017) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:100; 图 4b
BioLegend Cd68抗体(Biolegend, 137010)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4b). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:200; 图 s1b
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1b). J Clin Invest (2017) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 图 2h
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于免疫组化在小鼠样本上 (图 2h). Nat Immunol (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(FA-11)
BioLegend Cd68抗体(BioLegend, 137012)被用于. Kidney Int (2016) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 人类; 图 2
BioLegend Cd68抗体(BioLegend, FA-11)被用于被用于流式细胞仪在人类样本上 (图 2). Nat Med (2016) ncbi
大鼠 单克隆(FA-11)
BioLegend Cd68抗体(BioLegend, 137012)被用于. Nat Biotechnol (2016) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 表 s6
BioLegend Cd68抗体(Biolegend, 137008)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Cd68抗体(biolegend, FA-11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 10
BioLegend Cd68抗体(Biolegend, FA-11)被用于被用于流式细胞仪在小鼠样本上 (图 10). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 8
BioLegend Cd68抗体(BioLegend, 137001)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠
BioLegend Cd68抗体(Biolegio, 137002)被用于被用于免疫组化-冰冻切片在小鼠样本上. Biochim Biophys Acta (2014) ncbi
大鼠 单克隆(FA-11)
BioLegend Cd68抗体(BioLegend, 137001)被用于. J Neurosci (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 3
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 3). J Cell Mol Med (2022) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 4
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化在人类样本上 (图 4). Cancers (Basel) (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 大鼠; 图 7j
  • 免疫印迹; 大鼠; 图 7h
圣克鲁斯生物技术 Cd68抗体(Santa Cruz Biotechnology, sc-20060)被用于被用于免疫组化在大鼠样本上 (图 7j) 和 被用于免疫印迹在大鼠样本上 (图 7h). Front Pharmacol (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 图 5m
圣克鲁斯生物技术 Cd68抗体(Santa Cruz Biotechnology, KP1)被用于被用于免疫组化在小鼠样本上 (图 5m). Sci Rep (2021) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 5m
圣克鲁斯生物技术 Cd68抗体(Santa Cruz Biotechnology, KP1)被用于被用于免疫组化在小鼠样本上 (图 5m). Sci Rep (2021) ncbi
小鼠 单克隆(3F103)
  • 免疫组化; 小鼠; 1:100; 图 s1
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-70761)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1). Sci Rep (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:50; 图 7a
圣克鲁斯生物技术 Cd68抗体(Santa Cruz Biotechnology, sc-20060)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7a). Redox Biol (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 小鼠; 1:100; 图 6i
圣克鲁斯生物技术 Cd68抗体(Santa Cruz Mouse, sc-20060)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6i). Nat Commun (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
圣克鲁斯生物技术 Cd68抗体(Santa, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). BMC Infect Dis (2020) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 大鼠; 图 4b
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4b). PLoS ONE (2019) ncbi
小鼠 单克隆(SPM130)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3c
圣克鲁斯生物技术 Cd68抗体(SantaCruz, sc-52998)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3c). J Endod (2017) ncbi
小鼠 单克隆(3F103)
  • 免疫印迹; 人类; 1:1500; 图 s2a
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, SC-70761)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 s2a). J Clin Invest (2017) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 6a
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cd68抗体(Santacruz, sc-20060)被用于被用于免疫印迹在人类样本上. Oncoimmunology (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). Cold Spring Harb Mol Case Stud (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1c
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, KP1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1c). Cold Spring Harb Mol Case Stud (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-冰冻切片; African green monkey; 图 8A
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, KP1)被用于被用于免疫组化-冰冻切片在African green monkey样本上 (图 8A). PLoS Pathog (2016) ncbi
小鼠 单克隆(3F103)
  • 免疫细胞化学; 人类; 1:50; 图 3
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc70761)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 4 ug/ml; 图 4
圣克鲁斯生物技术 Cd68抗体(santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为4 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6). EJNMMI Res (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术 Cd68抗体(santa Cruz, sc-20060)被用于被用于免疫组化在人类样本上 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(6A324)
  • 免疫组化-冰冻切片; 小鼠; 图 5
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, 6A324)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 图 3
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc20060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Nat Med (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-石蜡切片; 大鼠
圣克鲁斯生物技术 Cd68抗体(Santa Cruz Biotechnology, sc-20060)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化-石蜡切片在大鼠样本上. J Pharmacol Sci (2014) ncbi
小鼠 单克隆(SPM130)
  • 免疫组化; 大鼠
圣克鲁斯生物技术 Cd68抗体(Santa Cruz, SPM130)被用于被用于免疫组化在大鼠样本上. NMR Biomed (2014) ncbi
赛默飞世尔
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1c
赛默飞世尔 Cd68抗体(Invitrogen, MA5-16676)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1c). Mol Med (2022) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:250; 图 3f
赛默飞世尔 Cd68抗体(Invitrogen, MA5-16674)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3f). J Biol Chem (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:300; 图 9a
赛默飞世尔 Cd68抗体(Thermo Fisher, 4-0681-80)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 9a). JCI Insight (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:130
赛默飞世尔 Cd68抗体(invitrogen, 25-0681-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:130. MBio (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Cd68抗体(Thermo, MA5-16676)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Cell Rep (2021) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd68抗体(eBioscience, 12 -0681 - 82)被用于被用于流式细胞仪在小鼠样本上. Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:100; 图 4b
赛默飞世尔 Cd68抗体(eBioscience, 14-0681-82)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4b). Cell Death Dis (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
赛默飞世尔 Cd68抗体(Invitrogen, FA-11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). Cancers (Basel) (2021) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:300; 图 4g
赛默飞世尔 Cd68抗体(ThermoFisher, MA5-16674)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4g). elife (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 5a
赛默飞世尔 Cd68抗体(Invitrogen, 14-0681-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 5a). Acta Neuropathol (2020) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:200; 图 4s1
赛默飞世尔 Cd68抗体(ThermoFisher Scientific, FA-11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4s1). elife (2020) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 大鼠; 1:500
赛默飞世尔 Cd68抗体(Abcam, 14-0681-82)被用于被用于免疫组化在大鼠样本上浓度为1:500. Organogenesis (2018) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔 Cd68抗体(eBioscience, FA-11)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Front Cell Infect Microbiol (2017) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Cd68抗体(Dianova, MA1-82739)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS Comput Biol (2016) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd68抗体(eBioscience, FA-11)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(FA-11)
  • 免疫组化; 小鼠; 1:300; 图 3
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1c
赛默飞世尔 Cd68抗体(eBioscience, 14-0681)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1c). Nat Commun (2015) ncbi
大鼠 单克隆(FA-11)
  • 流式细胞仪; 小鼠; 1:5
赛默飞世尔 Cd68抗体(Thermo Fisher Scientific, MA1-82739)被用于被用于流式细胞仪在小鼠样本上浓度为1:5. PLoS ONE (2015) ncbi
Novus Biologicals
小鼠 单克隆(ED1)
  • 免疫组化; 人类; 1:200; 图 2
Novus Biologicals Cd68抗体(Novus Biologicals, NB600-985)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2). Cell Death Discov (2021) ncbi
小鼠 单克隆(KP1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2b
Novus Biologicals Cd68抗体(Novus, NB100-683)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2b). J Pers Med (2021) ncbi
GeneTex
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 5a
GeneTex Cd68抗体(GeneTex, PG-M1)被用于被用于免疫组化在人类样本上 (图 5a). Front Immunol (2017) ncbi
小鼠 单克隆(PG-M1)
  • 免疫组化; 人类; 图 6b
GeneTex Cd68抗体(GeneTex, GTX73723)被用于被用于免疫组化在人类样本上 (图 6b). Arthritis Rheumatol (2016) ncbi
BMA Biomedicals
小鼠 单克隆(ED1)
  • 免疫组化; 大鼠; 图 5a
BMA Biomedicals Cd68抗体(BMA, ED1)被用于被用于免疫组化在大鼠样本上 (图 5a). Int J Ophthalmol (2020) ncbi
文章列表
  1. O Shea T, Ao Y, Wang S, Wollenberg A, Kim J, Ramos Espinoza R, et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun. 2022;13:5702 pubmed 出版商
  2. Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen T, et al. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep. 2022;40:111417 pubmed 出版商
  3. Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med. 2022;9:915903 pubmed 出版商
  4. Dinnon K, Leist S, Okuda K, Dang H, Fritch E, Gully K, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eabo5070 pubmed 出版商
  5. Ma Z, Zhang W, Dong B, Xin Z, Ji Y, Su R, et al. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics. 2022;12:4965-4979 pubmed 出版商
  6. Philpott J, Kazimierczyk S, Korgaonkar P, Bordt E, Zois J, Vasudevan C, et al. RXRα Regulates the Development of Resident Tissue Macrophages. Immunohorizons. 2022;6:366-372 pubmed 出版商
  7. Hannawi Y, Ewees M, Moore J, Zweier J. Characterizing CD38 Expression and Enzymatic Activity in the Brain of Spontaneously Hypertensive Stroke-Prone Rats. Front Pharmacol. 2022;13:881708 pubmed 出版商
  8. Kaufmann J, Brangsch J, Kader A, Saatz J, Mangarova D, Zacharias M, et al. ADAMTS4-specific MR probe to assess aortic aneurysms in vivo using synthetic peptide libraries. Nat Commun. 2022;13:2867 pubmed 出版商
  9. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  10. Luo Y, Li Z, Kong Y, He W, Zheng H, An M, et al. KRAS mutant-driven SUMOylation controls extracellular vesicle transmission to trigger lymphangiogenesis in pancreatic cancer. J Clin Invest. 2022;132: pubmed 出版商
  11. Li J, Chordia M, Zhang Y, Zong H, Pan D, Zuo Z. Critical role of FPR1 in splenocyte migration into brain to worsen inflammation and ischemic brain injury in mice. Theranostics. 2022;12:3024-3044 pubmed 出版商
  12. Maiseyeu A, Di L, Ravodina A, Barajas Espinosa A, Sakamoto A, Chaplin A, et al. Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis. Theranostics. 2022;12:2741-2757 pubmed 出版商
  13. Yang H, Shi Y, Liu H, Lin F, Qiu B, Feng Q, et al. Pyroptosis executor gasdermin D plays a key role in scleroderma and bleomycin-induced skin fibrosis. Cell Death Discov. 2022;8:183 pubmed 出版商
  14. Zhao Q, Dai W, Chen H, Jacobs R, Zlokovic B, Lund B, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022;119:e2113310119 pubmed 出版商
  15. Abd El Rahman S, Fayed H. Improved cognition impairment by activating cannabinoid receptor type 2: Modulating CREB/BDNF expression and impeding TLR-4/NFκBp65/M1 microglia signaling pathway in D-galactose-injected ovariectomized rats. PLoS ONE. 2022;17:e0265961 pubmed 出版商
  16. Duan C, Xu X, Lu X, Wang L, Lu Z. RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol. 2022;22:137 pubmed 出版商
  17. Chou P, Luo C, Wali N, Lin W, Ng S, Wang C, et al. A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J Biomed Sci. 2022;29:20 pubmed 出版商
  18. Xu J, Li Z, Tower R, Negri S, Wang Y, Meyers C, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716 pubmed 出版商
  19. Roldan Montero R, Pérez Sáez J, Cerro Pardo I, Oller J, Martinez Lopez D, Núñez E, et al. Galectin-1 prevents pathological vascular remodeling in atherosclerosis and abdominal aortic aneurysm. Sci Adv. 2022;8:eabm7322 pubmed 出版商
  20. Dai X, Liu S, Cheng L, Huang T, Guo H, Wang D, et al. Betaine Supplementation Attenuates S-Adenosylhomocysteine Hydrolase-Deficiency-Accelerated Atherosclerosis in Apolipoprotein E-Deficient Mice. Nutrients. 2022;14: pubmed 出版商
  21. Wang X, Liu S, Yu T, An S, Deng R, Tan X, et al. Inhibition of Integrin αvβ6 Activation of TGF-β Attenuates Tendinopathy. Adv Sci (Weinh). 2022;9:e2104469 pubmed 出版商
  22. Niemi J, DeFrancesco Oranburg T, Cox A, Lindborg J, Echevarria F, McCluskey J, et al. The Conditioning Lesion Response in Dorsal Root Ganglion Neurons Is Inhibited in Oncomodulin Knock-Out Mice. Eneuro. 2022;9: pubmed 出版商
  23. Lee C, Kim J, Han J, Oh D, Kim M, Jeong H, et al. Formyl peptide receptor 2 determines sex-specific differences in the progression of nonalcoholic fatty liver disease and steatohepatitis. Nat Commun. 2022;13:578 pubmed 出版商
  24. Kushnareva E, Kushnarev V, Artemyeva A, Mitrofanova L, Moiseeva O. Myocardial PD-L1 Expression in Patients With Ischemic and Non-ischemic Heart Failure. Front Cardiovasc Med. 2021;8:759972 pubmed 出版商
  25. Zhao L, Li Y, Xu T, Lv Q, Bi X, Liu X, et al. Dendritic cell-mediated chronic low-grade inflammation is regulated by the RAGE-TLR4-PKCβ1 signaling pathway in diabetic atherosclerosis. Mol Med. 2022;28:4 pubmed 出版商
  26. xd8 stergaard J, Jha J, Sharma A, Dai A, Choi J, de Haan J, et al. Adverse renal effects of NLRP3 inflammasome inhibition by MCC950 in an interventional model of diabetic kidney disease. Clin Sci (Lond). 2022;136:167-180 pubmed 出版商
  27. Pulkka O, Viisanen L, Tynninen O, Laaksonen M, Reichardt P, Reichardt A, et al. Fibrinogen-like protein 2 in gastrointestinal stromal tumour. J Cell Mol Med. 2022;26:1083-1094 pubmed 出版商
  28. Li Y, Acosta F, Quan Y, Li Z, Gu S, Jiang J. Studying macrophage activation in immune-privileged lens through CSF-1 protein intravitreal injection in mouse model. STAR Protoc. 2022;3:101060 pubmed 出版商
  29. Wu Z, Liao F, Luo G, Qian Y, He X, Xu W, et al. NR1D1 Deletion Induces Rupture-Prone Vulnerable Plaques by Regulating Macrophage Pyroptosis via the NF-κB/NLRP3 Inflammasome Pathway. Oxid Med Cell Longev. 2021;2021:5217572 pubmed 出版商
  30. xc5 lgars A, Kemppinen L, Fair M xe4 kel xe4 R, Mustonen H, Haglund C, Jalkanen S. Stage I-IV Colorectal Cancer Prognosis Can Be Predicted by Type and Number of Intratumoral Macrophages and CLEVER-1+ Vessel Density. Cancers (Basel). 2021;13: pubmed 出版商
  31. Fang S, Sun S, Cai H, Zou X, Wang S, Hao X, et al. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1 +/- mice display increases atherosclerotic plaque stability. Theranostics. 2021;11:9358-9375 pubmed 出版商
  32. Passman A, Strauss R, McSpadden S, Finch Edmondson M, Andrewartha N, Woo K, et al. Maraviroc Prevents HCC Development by Suppressing Macrophages and the Liver Progenitor Cell Response in a Murine Chronic Liver Disease Model. Cancers (Basel). 2021;13: pubmed 出版商
  33. Van Maldegem F, Valand K, Cole M, Patel H, Angelova M, Rana S, et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat Commun. 2021;12:5906 pubmed 出版商
  34. Leibowitz B, Zhao G, Wei L, Ruan H, Epperly M, Chen L, et al. Interferon b drives intestinal regeneration after radiation. Sci Adv. 2021;7:eabi5253 pubmed 出版商
  35. Kiepura A, Stachyra K, Wisniewska A, Kus K, Czepiel K, Suski M, et al. The Anti-Atherosclerotic Action of FFAR4 Agonist TUG-891 in ApoE-Knockout Mice Is Associated with Increased Macrophage Polarization towards M2 Phenotype. Int J Mol Sci. 2021;22: pubmed 出版商
  36. Pankiewicz J, Lizińczyk A, Franco L, Díaz J, Martá Ariza M, Sadowski M. Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype. Acta Neuropathol Commun. 2021;9:157 pubmed 出版商
  37. Kuo P, Weng W, Scofield B, Furnas D, Paraiso H, Yu I, et al. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun. 2021;3:fcab187 pubmed 出版商
  38. Zhang P, Ohkawa Y, Yamamoto S, Momota H, Kato A, Kaneko K, et al. St8sia1-deficiency in mice alters tumor environments of gliomas, leading to reduced disease severity. Nagoya J Med Sci. 2021;83:535-549 pubmed 出版商
  39. Kong L, Zhang H, Lu C, Shi K, Huang H, Zheng Y, et al. AICAR, an AMP-Activated Protein Kinase Activator, Ameliorates Acute Pancreatitis-Associated Liver Injury Partially Through Nrf2-Mediated Antioxidant Effects and Inhibition of NLRP3 Inflammasome Activation. Front Pharmacol. 2021;12:724514 pubmed 出版商
  40. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  41. Nies S, Takahashi H, Herber C, Huttner A, Chase A, Strittmatter S. Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β. J Biol Chem. 2021;297:101159 pubmed 出版商
  42. Gredic M, Wu C, Hadžić S, Pak O, Savai R, Kojonazarov B, et al. Myeloid cell-specific deletion of inducible nitric oxide synthase protects against smoke-induced pulmonary hypertension in mice. Eur Respir J. 2021;: pubmed 出版商
  43. Solano Fonseca R, Metang P, Egge N, Liu Y, Zuurbier K, Sivaprakasam K, et al. Glycolytic preconditioning in astrocytes mitigates trauma-induced neurodegeneration. elife. 2021;10: pubmed 出版商
  44. Hu Y, Li C, Wang X, Chen W, Qian Y, Dai X. TREM2, Driving the Microglial Polarization, Has a TLR4 Sensitivity Profile After Subarachnoid Hemorrhage. Front Cell Dev Biol. 2021;9:693342 pubmed 出版商
  45. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Sci Adv. 2021;7: pubmed 出版商
  46. Wu Y, Shao W, Todd T, Tong J, Yue M, Koga S, et al. Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD. Cell Rep. 2021;36:109581 pubmed 出版商
  47. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105 pubmed 出版商
  48. Xu M, Zheng X, Wang D, Fu X, Xing Y, Liu Y, et al. Blockage of C-X-C Motif Chemokine Receptor 2 (CXCR2) Suppressed Uric Acid (UA)-Induced Cardiac Remodeling. Front Physiol. 2021;12:700338 pubmed 出版商
  49. Desimone A, Hong J, Brockie S, Yu W, Laliberte A, Fehlings M. The influence of ApoE4 on the clinical outcomes and pathophysiology of degenerative cervical myelopathy. JCI Insight. 2021;6: pubmed 出版商
  50. He Y, Li H, Yao J, Zhong H, Kuang Y, Li X, et al. HO‑1 knockdown upregulates the expression of VCAM‑1 to induce neutrophil recruitment during renal ischemia‑reperfusion injury. Int J Mol Med. 2021;48: pubmed 出版商
  51. Miyajima H, Itokazu T, Tanabe S, Yamashita T. Interleukin-17A regulates ependymal cell proliferation and functional recovery after spinal cord injury in mice. Cell Death Dis. 2021;12:766 pubmed 出版商
  52. Guo D, Yamamoto M, Hernandez C, Khodadadi H, Baban B, Stranahan A. Beige adipocytes mediate the neuroprotective and anti-inflammatory effects of subcutaneous fat in obese mice. Nat Commun. 2021;12:4623 pubmed 出版商
  53. Funk K, Arutyunov A, Desai P, White J, Soung A, Rosen S, et al. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell. 2021;20:e13412 pubmed 出版商
  54. Lopez Sanz L, Bernal S, Jimenez Castilla L, Prieto I, La Manna S, Gomez Lopez S, et al. Fcγ receptor activation mediates vascular inflammation and abdominal aortic aneurysm development. Clin Transl Med. 2021;11:e463 pubmed 出版商
  55. Gao D, Salomonis N, Henderlight M, Woods C, Thakkar K, Grom A, et al. IFN-γ is essential for alveolar macrophage-driven pulmonary inflammation in macrophage activation syndrome. JCI Insight. 2021;6: pubmed 出版商
  56. Takahashi K, Nakamura S, Otsu W, Shimazawa M, Hara H. Progranulin deficiency in Iba-1+ myeloid cells exacerbates choroidal neovascularization by perturbation of lysosomal function and abnormal inflammation. J Neuroinflammation. 2021;18:164 pubmed 出版商
  57. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  58. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  59. Babcock M, Mikulka C, Wang B, Chandriani S, Chandra S, Xu Y, et al. Substrate reduction therapy for Krabbe disease and metachromatic leukodystrophy using a novel ceramide galactosyltransferase inhibitor. Sci Rep. 2021;11:14486 pubmed 出版商
  60. Roy B, Ahmed I, Stubbs J, Zhang J, Attard T, Septer S, et al. DCLK1 isoforms and aberrant Notch signaling in the regulation of human and murine colitis. Cell Death Discov. 2021;7:169 pubmed 出版商
  61. Xie C, Ye F, Zhang N, Huang Y, Pan Y, Xie X. CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. J Cell Mol Med. 2021;25:7280-7293 pubmed 出版商
  62. Lin K, Bieri G, Gontier G, Müller S, Smith L, Snethlage C, et al. MHC class I H2-Kb negatively regulates neural progenitor cell proliferation by inhibiting FGFR signaling. PLoS Biol. 2021;19:e3001311 pubmed 出版商
  63. Glausen T, Carrillo G, Jin R, Boyle J, Saeij J, Wohlfert E, et al. The Toxoplasma Polymorphic Effector GRA15 Mediates Seizure Induction by Modulating Interleukin-1 Signaling in the Brain. MBio. 2021;12:e0133121 pubmed 出版商
  64. Ryu S, Shchukina I, Youm Y, Qing H, Hilliard B, Dlugos T, et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. elife. 2021;10: pubmed 出版商
  65. Huang S, Luo W, Wu G, Shen Q, Zhuang Z, Yang D, et al. Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging (Albany NY). 2021;13:14892-14909 pubmed 出版商
  66. Ying L, Zhang M, Ma X, Si Y, Li X, Su J, et al. Macrophage LAMTOR1 Deficiency Prevents Dietary Obesity and Insulin Resistance Through Inflammation-Induced Energy Expenditure. Front Cell Dev Biol. 2021;9:672032 pubmed 出版商
  67. Götz P, Braumandl A, Kübler M, Kumaraswami K, Ishikawa Ankerhold H, Lasch M, et al. C3 Deficiency Leads to Increased Angiogenesis and Elevated Pro-Angiogenic Leukocyte Recruitment in Ischemic Muscle Tissue. Int J Mol Sci. 2021;22: pubmed 出版商
  68. West J, Austin E, Rizzi E, Yan L, Tanjore H, Crabtree A, et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci. 2021;22: pubmed 出版商
  69. Mou S, Zhou Z, Feng H, Zhang N, Lin Z, Aiyasiding X, et al. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol. 2021;12:648688 pubmed 出版商
  70. Miura I, Komine S, Okada K, Wada S, Warabi E, Uchida F, et al. Prevention of non-alcoholic steatohepatitis by long-term exercise via the induction of phenotypic changes in Kupffer cells of hyperphagic obese mice. Physiol Rep. 2021;9:e14859 pubmed 出版商
  71. Liu Y, Cong P, Zhang T, Wang R, Wang X, Liu J, et al. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol. 2021;43:102002 pubmed 出版商
  72. Chen S, Han C, Bian S, Chen J, Feng X, Li G, et al. Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE-/- Mice. J Oncol. 2021;2021:6629204 pubmed 出版商
  73. Eyo U, Haruwaka K, Mo M, Campos Salazar A, Wang L, Speros X, et al. Microglia provide structural resolution to injured dendrites after severe seizures. Cell Rep. 2021;35:109080 pubmed 出版商
  74. Frenis K, Helmstädter J, Ruan Y, Schramm E, Kalinovic S, Kröller Schön S, et al. Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Res Cardiol. 2021;116:31 pubmed 出版商
  75. Lu H, Hsu H, Li C, Li S, Lin S, Shih C, et al. Hydrogen Sulfide Attenuates Aortic Remodeling in Aortic Dissection Associating with Moderated Inflammation and Oxidative Stress through a NO-Dependent Pathway. Antioxidants (Basel). 2021;10: pubmed 出版商
  76. Shin Y, Lee M, Lee D, Jang J, Shin S, Yoon M. Fenofibrate Regulates Visceral Obesity and Nonalcoholic Steatohepatitis in Obese Female Ovariectomized C57BL/6J Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  77. Liu Y, Li Y, Loh Y, Singer J, Zhu W, Macia L, et al. Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury Through G-Protein Coupled Receptors and HDAC Inhibition. Front Cell Dev Biol. 2021;9:648639 pubmed 出版商
  78. Kimura K, Ramirez K, Nguyen T, Yamashiro Y, Sada A, Yanagisawa H. Contribution of PDGFRα-positive cells in maintenance and injury responses in mouse large vessels. Sci Rep. 2021;11:8683 pubmed 出版商
  79. Tian F, Zhang Y. Overexpression of SERCA2a Alleviates Cardiac Microvascular Ischemic Injury by Suppressing Mfn2-Mediated ER/Mitochondrial Calcium Tethering. Front Cell Dev Biol. 2021;9:636553 pubmed 出版商
  80. Huang Y, Happonen K, Burrola P, O Connor C, Hah N, Huang L, et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol. 2021;22:586-594 pubmed 出版商
  81. Sherafat A, Pfeiffer F, Reiss A, Wood W, Nishiyama A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat Commun. 2021;12:2265 pubmed 出版商
  82. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  83. Colombo A, Sadler R, Llovera G, Singh V, Roth S, Heindl S, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. elife. 2021;10: pubmed 出版商
  84. Borges P, Waclawiak I, Georgii J, Fraga Junior V, Barros J, Lemos F, et al. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Front Immunol. 2021;12:651740 pubmed 出版商
  85. Bassal M, Liu J, Jankowiak W, Saftig P, Bartsch U. Rapid and Progressive Loss of Multiple Retinal Cell Types in Cathepsin D-Deficient Mice-An Animal Model of CLN10 Disease. Cells. 2021;10: pubmed 出版商
  86. Zhang M, Ceyhan Y, Kaftanovskaya E, Vasquez J, Vacher J, Knop F, et al. INPP4B protects from metabolic syndrome and associated disorders. Commun Biol. 2021;4:416 pubmed 出版商
  87. Voisin M, Shrestha E, Rollet C, Nikain C, Josefs T, Mahe M, et al. Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice. Commun Biol. 2021;4:420 pubmed 出版商
  88. Goncalves S, Yin K, Ito Y, Chan A, Olan I, Gough S, et al. COX2 regulates senescence secretome composition and senescence surveillance through PGE2. Cell Rep. 2021;34:108860 pubmed 出版商
  89. Bi X, Du C, Wang X, Wang X, Han W, Wang Y, et al. Mitochondrial Damage-Induced Innate Immune Activation in Vascular Smooth Muscle Cells Promotes Chronic Kidney Disease-Associated Plaque Vulnerability. Adv Sci (Weinh). 2021;8:2002738 pubmed 出版商
  90. Gonzalez Porras M, Stojkova K, Vaicik M, Pelowe A, Goddi A, Carmona A, et al. Integrins and extracellular matrix proteins modulate adipocyte thermogenic capacity. Sci Rep. 2021;11:5442 pubmed 出版商
  91. Mao F, Lv Y, Hao C, Teng Y, Liu Y, Cheng P, et al. Helicobacter pylori-Induced Rev-erbα Fosters Gastric Bacteria Colonization by Impairing Host Innate and Adaptive Defense. Cell Mol Gastroenterol Hepatol. 2021;12:395-425 pubmed 出版商
  92. Turner C, Bolsoni J, Zeglinski M, Zhao H, Ponomarev T, Richardson K, et al. Granzyme B mediates impaired healing of pressure injuries in aged skin. NPJ Aging Mech Dis. 2021;7:6 pubmed 出版商
  93. Jönsson M, Garza R, Sharma Y, Petri R, Sodersten E, Johansson J, et al. Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO J. 2021;40:e106423 pubmed 出版商
  94. Zarb Y, Sridhar S, Nassiri S, Utz S, Schaffenrath J, Maheshwari U, et al. Microglia control small vessel calcification via TREM2. Sci Adv. 2021;7: pubmed 出版商
  95. Casagrande V, Iuliani G, Menini S, Pugliese G, Federici M, Menghini R. Restoration of renal TIMP3 levels via genetics and pharmacological approach prevents experimental diabetic nephropathy. Clin Transl Med. 2021;11:e305 pubmed 出版商
  96. Mao C, Li D, Zhou E, Zhang J, Wang C, Xue C. Nicotine exacerbates atherosclerosis through a macrophage-mediated endothelial injury pathway. Aging (Albany NY). 2021;13:7627-7643 pubmed 出版商
  97. Szabó P, Ebner J, Koenig X, Hamza O, Watzinger S, Trojanek S, et al. Cardiovascular phenotype of the Dmdmdx rat - a suitable animal model for Duchenne muscular dystrophy. Dis Model Mech. 2021;14: pubmed 出版商
  98. Safaiyan S, Besson Girard S, Kaya T, Cantuti Castelvetri L, Liu L, Ji H, et al. White matter aging drives microglial diversity. Neuron. 2021;109:1100-1117.e10 pubmed 出版商
  99. Jaworek C, Verel Yilmaz Y, Driesch S, Ostgathe S, Cook L, Wagner S, et al. Cohort Analysis of ADAM8 Expression in the PDAC Tumor Stroma. J Pers Med. 2021;11: pubmed 出版商
  100. Gajeton J, Krukovets I, Yendamuri R, Verbovetskiy D, Vasanji A, Sul L, et al. miR-467 regulates inflammation and blood insulin and glucose. J Cell Mol Med. 2021;25:2549-2562 pubmed 出版商
  101. Weisell J, Ruotsalainen A, N xe4 p xe4 nkangas J, Jauhiainen M, Rys xe4 J. Menaquinone 4 increases plasma lipid levels in hypercholesterolemic mice. Sci Rep. 2021;11:3014 pubmed 出版商
  102. Klemke L, De Oliveira T, Witt D, Winkler N, Bohnenberger H, Bucala R, et al. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis. 2021;12:155 pubmed 出版商
  103. Chen J, Sivan U, Tan S, Lippo L, De Angelis J, Labella R, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci Adv. 2021;7: pubmed 出版商
  104. Ni X, Zhang Y, Jia L, Lu W, Zhu Q, Ren J, et al. Inhibition of Notch1-mediated inflammation by intermedin protects against abdominal aortic aneurysm via PI3K/Akt signaling pathway. Aging (Albany NY). 2021;13:5164-5184 pubmed 出版商
  105. Wei H, Wu X, You Y, Duran R, Zheng Y, Narayanan K, et al. Systematic analysis of purified astrocytes after SCI unveils Zeb2os function during astrogliosis. Cell Rep. 2021;34:108721 pubmed 出版商
  106. Zheng Q, Li G, Wang S, Zhou Y, Liu K, Gao Y, et al. Trisomy 21-induced dysregulation of microglial homeostasis in Alzheimer's brains is mediated by USP25. Sci Adv. 2021;7: pubmed 出版商
  107. Ma C, Hunt J, Selenica M, Sanneh A, Sandusky Beltran L, Watler M, et al. Arginase 1 Insufficiency Precipitates Amyloid-β Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Front Immunol. 2020;11:582998 pubmed 出版商
  108. Lv J, Wang H, Cui H, Liu Z, Zhang R, Lu M, et al. Blockade of Macrophage CD147 Protects Against Foam Cell Formation in Atherosclerosis. Front Cell Dev Biol. 2020;8:609090 pubmed 出版商
  109. Rudloff S, Janot M, Rodriguez S, Dessalle K, Jahnen Dechent W, Huynh Do U. Fetuin-A is a HIF target that safeguards tissue integrity during hypoxic stress. Nat Commun. 2021;12:549 pubmed 出版商
  110. da Silva S, Marchi F, Su J, Yang L, Valverde L, Hier J, et al. Co-Overexpression of TWIST1-CSF1 Is a Common Event in Metastatic Oral Cancer and Drives Biologically Aggressive Phenotype. Cancers (Basel). 2021;13: pubmed 出版商
  111. Saiyang X, QingQing W, Man X, Chen L, Min Z, Yun X, et al. Activation of Toll-like receptor 7 provides cardioprotection in septic cardiomyopathy-induced systolic dysfunction. Clin Transl Med. 2021;11:e266 pubmed 出版商
  112. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  113. Yoon S, Bae Y, Oh S, Song W, Chang H, Kim M. Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency. Sci Rep. 2021;11:932 pubmed 出版商
  114. da Silva R, Elizondo D, Brandy N, Haddock N, Boddie T, de Oliveira L, et al. Leishmania donovani infection suppresses Allograft Inflammatory Factor-1 in monocytes and macrophages to inhibit inflammatory responses. Sci Rep. 2021;11:946 pubmed 出版商
  115. Huang Y, Cai K, Xu P, Wang L, Huang C, Fang Y, et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther. 2021;6:10 pubmed 出版商
  116. Varasteh Z, De Rose F, Mohanta S, Li Y, Zhang X, Miritsch B, et al. Imaging atherosclerotic plaques by targeting Galectin-3 and activated macrophages using (89Zr)-DFO- Galectin3-F(ab')2 mAb. Theranostics. 2021;11:1864-1876 pubmed 出版商
  117. Tong W, Hui H, Shang W, Zhang Y, Tian F, Ma Q, et al. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics. 2021;11:506-521 pubmed 出版商
  118. Choi S, Agatisa Boyle C, Gonen A, Kim A, Kim J, Alekseeva E, et al. Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density Lipoprotein)-Induced Mitophagy in Macrophages. Arterioscler Thromb Vasc Biol. 2020;:ATVBAHA120315485 pubmed 出版商
  119. Sharma A, Choi J, Stefanovic N, Al Sharea A, Simpson D, Mukhamedova N, et al. Specific NLRP3 Inhibition Protects Against Diabetes-Associated Atherosclerosis. Diabetes. 2021;70:772-787 pubmed 出版商
  120. Biechele G, Franzmeier N, Blume T, Ewers M, Luque J, Eckenweber F, et al. Glial activation is moderated by sex in response to amyloidosis but not to tau pathology in mouse models of neurodegenerative diseases. J Neuroinflammation. 2020;17:374 pubmed 出版商
  121. Song M, YEKU O, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298 pubmed 出版商
  122. Nakayama A, Albarrán Juárez J, Liang G, Roquid K, Iring A, Tonack S, et al. Disturbed flow-induced Gs-mediated signaling protects against endothelial inflammation and atherosclerosis. JCI Insight. 2020;5: pubmed 出版商
  123. Mia M, Cibi D, Abdul Ghani S, Song W, Tee N, Ghosh S, et al. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol. 2020;18:e3000941 pubmed 出版商
  124. Griffin P, Sheehan P, Dimitry J, Guo C, Kanan M, Lee J, et al. REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. elife. 2020;9: pubmed 出版商
  125. Ding Y, Li X, Zhou M, Cai L, Tang H, Xie T, et al. Factor Xa inhibitor rivaroxaban suppresses experimental abdominal aortic aneurysm progression via attenuating aortic inflammation. Vascul Pharmacol. 2021;136:106818 pubmed 出版商
  126. Song L, Chen X, Swanson T, LaViolette B, Pang J, Cunio T, et al. Lymphangiogenic therapy prevents cardiac dysfunction by ameliorating inflammation and hypertension. elife. 2020;9: pubmed 出版商
  127. . Placental transfer of NMDAR antibodies causes reversible alterations in mice. Neurol Neuroimmunol Neuroinflamm. 2021;8: pubmed 出版商
  128. Kim Y, Oh S, Ahn J, Yook J, Kim C, Park S, et al. The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. Int J Mol Sci. 2020;21: pubmed 出版商
  129. Zhao L, Fan M, Zhao L, Yun H, Yang Y, Wang C, et al. Fibroblast growth factor 1 ameliorates adipose tissue inflammation and systemic insulin resistance via enhancing adipocyte mTORC2/Rictor signal. J Cell Mol Med. 2020;24:12813-12825 pubmed 出版商
  130. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  131. Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics. 2020;10:10712-10728 pubmed 出版商
  132. Grubisic V, McClain J, Fried D, Grants I, Rajasekhar P, Csizmadia E, et al. Enteric Glia Modulate Macrophage Phenotype and Visceral Sensitivity following Inflammation. Cell Rep. 2020;32:108100 pubmed 出版商
  133. Arima T, Igarashi T, Uchiyama M, Kobayashi M, Ohsawa I, Shimizu A, et al. Hydrogen promotes the activation of Cu, Zn superoxide dismutase in a rat corneal alkali-burn model. Int J Ophthalmol. 2020;13:1173-1179 pubmed 出版商
  134. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534 pubmed 出版商
  135. Tang S, Fesharaki Zadeh A, Takahashi H, Nies S, Smith L, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96 pubmed 出版商
  136. BURNS J, Cotleur B, Walther D, Bajrami B, Rubino S, Wei R, et al. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. elife. 2020;9: pubmed 出版商
  137. Chen T, Lennon V, Liu Y, Bosco D, Li Y, Yi M, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025-4038 pubmed 出版商
  138. Macchi M, Magalon K, Zimmer C, Peeva E, El Waly B, Brousse B, et al. Mature oligodendrocytes bordering lesions limit demyelination and favor myelin repair via heparan sulfate production. elife. 2020;9: pubmed 出版商
  139. Sebastian Monasor L, Müller S, Colombo A, Tanrioever G, König J, Roth S, et al. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. elife. 2020;9: pubmed 出版商
  140. Madel M, Ibáñez L, Ciucci T, Halper J, Rouleau M, Boutin A, et al. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of Cx3cr1. elife. 2020;9: pubmed 出版商
  141. Choudhuri S, Garg N. PARP1-cGAS-NF-κB pathway of proinflammatory macrophage activation by extracellular vesicles released during Trypanosoma cruzi infection and Chagas disease. PLoS Pathog. 2020;16:e1008474 pubmed 出版商
  142. Smith R, Ninchoji T, Gordon E, André H, Dejana E, Vestweber D, et al. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. elife. 2020;9: pubmed 出版商
  143. Kwiecien J, Dabrowski W, Dabrowska Bouta B, Sulkowski G, Oakden W, Kwiecien Delaney C, et al. Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS ONE. 2020;15:e0226584 pubmed 出版商
  144. Chan K, Nestor J, Huerta T, Certain N, Moody G, Kowal C, et al. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Nat Commun. 2020;11:1403 pubmed 出版商
  145. Otani Y, Ohno N, Cui J, Yamaguchi Y, Baba H. Upregulation of large myelin protein zero leads to Charcot-Marie-Tooth disease-like neuropathy in mice. Commun Biol. 2020;3:121 pubmed 出版商
  146. Kjell J, Gotz M. Filling the Gaps - A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts. Front Cell Neurosci. 2020;14:32 pubmed 出版商
  147. Pereira J, Gerber J, Ghidinelli M, Gerber D, Tortola L, Ommer A, et al. Mice carrying an analogous heterozygous dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy. Hum Mol Genet. 2020;29:1253-1273 pubmed 出版商
  148. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  149. Lu H, Kim S, Steelman A, Tracy K, Zhou B, Michaud D, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020;117:5430-5441 pubmed 出版商
  150. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  151. Dudiki T, Meller J, Mahajan G, Liu H, Zhevlakova I, Stefl S, et al. Microglia control vascular architecture via a TGFβ1 dependent paracrine mechanism linked to tissue mechanics. Nat Commun. 2020;11:986 pubmed 出版商
  152. Yang Y, He Z, Xing Z, Zuo Z, Yuan L, Wu Y, et al. Influenza vaccination in early Alzheimer's disease rescues amyloidosis and ameliorates cognitive deficits in APP/PS1 mice by inhibiting regulatory T cells. J Neuroinflammation. 2020;17:65 pubmed 出版商
  153. Swier V, White K, Meyerholz D, Chefdeville A, Khanna R, Sieren J, et al. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS ONE. 2020;15:e0228222 pubmed 出版商
  154. Adams C, Ercolano E, Ferluga S, Sofela A, Dave F, Negroni C, et al. A Rapid Robust Method for Subgrouping Non-NF2 Meningiomas According to Genotype and Detection of Lower Levels of M2 Macrophages in AKT1 E17K Mutated Tumours. Int J Mol Sci. 2020;21: pubmed 出版商
  155. Krishnan M, Hwang J, Kim M, Kim Y, Seo J, Jung J, et al. β-hydroxybutyrate Impedes the Progression of Alzheimer's Disease and Atherosclerosis in ApoE-Deficient Mice. Nutrients. 2020;12: pubmed 出版商
  156. Holmkvist A, Agorelius J, Forni M, Nilsson U, Linsmeier C, Schouenborg J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology. 2020;18:27 pubmed 出版商
  157. Cho H, Lim Y, Kim J, Koh W, Song C, Kang M. Different macrophage polarization between drug-susceptible and multidrug-resistant pulmonary tuberculosis. BMC Infect Dis. 2020;20:81 pubmed 出版商
  158. Rahman M, Muppala S, Wu J, Krukovets I, Solovjev D, Verbovetskiy D, et al. Effects of thrombospondin-4 on pro-inflammatory phenotype differentiation and apoptosis in macrophages. Cell Death Dis. 2020;11:53 pubmed 出版商
  159. Burrus C, McKinstry S, Kim N, Ozlu M, Santoki A, Fang F, et al. Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival. Cell Rep. 2020;30:642-657.e6 pubmed 出版商
  160. Gacem N, Kavo A, Zerad L, Richard L, Mathis S, Kapur R, et al. ADAR1 mediated regulation of neural crest derived melanocytes and Schwann cell development. Nat Commun. 2020;11:198 pubmed 出版商
  161. El Gaamouch F, Audrain M, Lin W, Beckmann N, Jiang C, Hariharan S, et al. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener. 2020;15:4 pubmed 出版商
  162. Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky D, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;:1-15 pubmed 出版商
  163. Libner C, Salapa H, Hutchinson C, Lee S, Levin M. Antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 contribute to neuronal cell loss in an animal model of multiple sclerosis. J Comp Neurol. 2020;528:1704-1724 pubmed 出版商
  164. Robison L, Albert N, Camargo L, Anderson B, Salinero A, Riccio D, et al. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. Eneuro. 2020;7: pubmed 出版商
  165. Fusciello M, Fontana F, Tähtinen S, Capasso C, Feola S, Martins B, et al. Artificially cloaked viral nanovaccine for cancer immunotherapy. Nat Commun. 2019;10:5747 pubmed 出版商
  166. Mantani P, Dunér P, Ljungcrantz I, Nilsson J, Bjorkbacka H, Fredrikson G. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol. 2019;20:47 pubmed 出版商
  167. Vagnozzi R, Maillet M, Sargent M, Khalil H, Johansen A, Schwanekamp J, et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577:405-409 pubmed 出版商
  168. Nagai J, Balestrieri B, Fanning L, Kyin T, Cirka H, Lin J, et al. P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation. J Clin Invest. 2019;129:5169-5186 pubmed 出版商
  169. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236-250 pubmed 出版商
  170. Zilberman Itskovich S, Abu Hamad R, Zarura R, Sova M, Hachmo Y, Stark M, et al. Human mesenchymal stromal cells ameliorate complement induced inflammatory cascade and improve renal functions in a rat model of ischemia-reperfusion induced acute kidney injury. PLoS ONE. 2019;14:e0222354 pubmed 出版商
  171. Chen P, Zhao D, Li J, Liang X, Li J, Chang A, et al. Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. Cancer Cell. 2019;35:868-884.e6 pubmed 出版商
  172. Andoh M, Shibata K, Okamoto K, Onodera J, Morishita K, Miura Y, et al. Exercise Reverses Behavioral and Synaptic Abnormalities after Maternal Inflammation. Cell Rep. 2019;27:2817-2825.e5 pubmed 出版商
  173. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  174. von Gamm M, Schaub A, Jones A, Wolf C, Behrens G, Lichti J, et al. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med. 2019;: pubmed 出版商
  175. Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086 pubmed 出版商
  176. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  177. Ben J, Jiang B, Wang D, Liu Q, Zhang Y, Qi Y, et al. Major vault protein suppresses obesity and atherosclerosis through inhibiting IKK-NF-κB signaling mediated inflammation. Nat Commun. 2019;10:1801 pubmed 出版商
  178. Dang A, Teles R, Weiss D, Parvatiyar K, Sarno E, Ochoa M, et al. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest. 2019;129:1926-1939 pubmed 出版商
  179. Bieri G, Brahic M, Bousset L, Couthouis J, Kramer N, Ma R, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961-980 pubmed 出版商
  180. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  181. Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S, et al. Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis. 2019;10:275 pubmed 出版商
  182. Chakarov S, Lim H, Tan L, Lim S, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363: pubmed 出版商
  183. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  184. Pan R, Ma J, Kong X, Wang X, Li S, Qi X, et al. Sodium rutin ameliorates Alzheimer's disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv. 2019;5:eaau6328 pubmed 出版商
  185. Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, et al. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019;22:101116 pubmed 出版商
  186. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  187. Fan J, Liu L, Liu Q, Cui Y, Yao B, Zhang M, et al. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun. 2019;10:425 pubmed 出版商
  188. Yeung M, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature. 2019;566:538-542 pubmed 出版商
  189. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  190. Nahon J, Hoekstra M, van Hulst S, Manta C, Goerdt S, Geerling J, et al. Hematopoietic Stabilin-1 deficiency does not influence atherosclerosis susceptibility in LDL receptor knockout mice. Atherosclerosis. 2019;281:47-55 pubmed 出版商
  191. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  192. Santana Codina N, Gableske S, Quiles Del Rey M, Małachowska B, Jedrychowski M, Biancur D, et al. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica. 2019;: pubmed 出版商
  193. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  194. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  195. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  196. Gibson E, Nagaraja S, Ocampo A, Tam L, Wood L, Pallegar P, et al. Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment. Cell. 2019;176:43-55.e13 pubmed 出版商
  197. Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019;129:631-646 pubmed 出版商
  198. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  199. Kang L, Kwon E, Lee K, Cho C, Lee J, Ryu Y, et al. 3'-Sialyllactose as an inhibitor of p65 phosphorylation ameliorates the progression of experimental rheumatoid arthritis. Br J Pharmacol. 2018;175:4295-4309 pubmed 出版商
  200. Massaro G, Mattar C, Wong A, Sirka E, Buckley S, Herbert B, et al. Fetal gene therapy for neurodegenerative disease of infants. Nat Med. 2018;24:1317-1323 pubmed 出版商
  201. Bang S, Xie Y, Zhang Z, Wang Z, Xu Z, Ji R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Invest. 2018;128:3568-3582 pubmed 出版商
  202. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  203. Norris G, Smirnov I, Filiano A, Shadowen H, Cody K, Thompson J, et al. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789-1801 pubmed 出版商
  204. Chen M, Zheng J, Liu G, Xu E, Wang J, Fuqua B, et al. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biol. 2018;17:432-439 pubmed 出版商
  205. Gurevich D, Severn C, Twomey C, Greenhough A, Cash J, Toye A, et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 2018;37: pubmed 出版商
  206. Ni K, Gill A, Tseng V, Mikosz A, Koike K, Beatman E, et al. Rapid clearance of heavy chain-modified hyaluronan during resolving acute lung injury. Respir Res. 2018;19:107 pubmed 出版商
  207. Han F, Xia X, Dou M, Wang Y, Xue W, Ding X, et al. Arctigenin: A two-edged sword in ischemia/reperfusion induced acute kidney injury. Biomed Pharmacother. 2018;103:1127-1136 pubmed 出版商
  208. Foerster F, Boegel S, Heck R, Pickert G, R ssel N, Rosigkeit S, et al. Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncoimmunology. 2018;7:e1409929 pubmed 出版商
  209. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  210. Sun J, Wang Z, Wang X. Suppression of LRRC19 promotes cutaneous wound healing in pressure ulcers in mice. Organogenesis. 2018;14:13-24 pubmed 出版商
  211. Endo Umeda K, Nakashima H, Umeda N, Seki S, Makishima M. Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice. Endocrinology. 2018;159:1419-1432 pubmed 出版商
  212. Saja M, Cook H, Ruseva M, Szajna M, Pickering M, Woollard K, et al. A triglyceride-rich lipoprotein environment exacerbates renal injury in the accelerated nephrotoxic nephritis model. Clin Exp Immunol. 2018;192:337-347 pubmed 出版商
  213. Dube P, Chikkamenahalli L, Birnbaumer L, Vazquez G. Reduced calcification and osteogenic features in advanced atherosclerotic plaques of mice with macrophage-specific loss of TRPC3. Atherosclerosis. 2018;270:199-204 pubmed 出版商
  214. Ziegler Waldkirch S, d Errico P, Sauer J, Erny D, Savanthrapadian S, Loreth D, et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO J. 2018;37:167-182 pubmed 出版商
  215. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  216. Zhang Y, Liu Y, Chen H, Zheng X, Xie S, Chen W, et al. TIM-1 attenuates the protection of ischemic preconditioning for ischemia reperfusion injury in liver transplantation. Am J Transl Res. 2017;9:3665-3675 pubmed
  217. Kojima M, Gimenes Júnior J, Chan T, Eliceiri B, Baird A, Costantini T, et al. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4. FASEB J. 2018;32:97-110 pubmed 出版商
  218. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  219. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  220. Dunst J, Azzouz N, Liu X, Tsukita S, Seeberger P, Kamena F. Interaction between Plasmodium Glycosylphosphatidylinositol and the Host Protein Moesin Has No Implication in Malaria Pathology. Front Cell Infect Microbiol. 2017;7:183 pubmed 出版商
  221. Cassanta L, Rodrigues V, Violatti Filho J, Teixeira Neto B, Tavares V, Bernal E, et al. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions. J Endod. 2017;43:1122-1129 pubmed 出版商
  222. Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495-499 pubmed 出版商
  223. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  224. Castellano J, Mosher K, Abbey R, McBride A, James M, Berdnik D, et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature. 2017;544:488-492 pubmed 出版商
  225. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  226. Oksala N, Seppala I, Rahikainen R, Mäkelä K, Raitoharju E, Illig T, et al. Synergistic Expression of Histone Deacetylase 9 and Matrix Metalloproteinase 12 in M4 Macrophages in Advanced Carotid Plaques. Eur J Vasc Endovasc Surg. 2017;53:632-640 pubmed 出版商
  227. Langley S, Willeit K, Didangelos A, Matic L, Skroblin P, Barallobre Barreiro J, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest. 2017;127:1546-1560 pubmed 出版商
  228. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  229. Gawlik K, Holmberg J, Svensson M, Einerborg M, Oliveira B, Deierborg T, et al. Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Sci Rep. 2017;7:44059 pubmed 出版商
  230. Carmona Fontaine C, Deforet M, Akkari L, Thompson C, Joyce J, Xavier J. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934-2939 pubmed 出版商
  231. Gómez Pastor R, Burchfiel E, Neef D, Jaeger A, Cabiscol E, McKinstry S, et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nat Commun. 2017;8:14405 pubmed 出版商
  232. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  233. Cuccarese M, Dubach J, Pfirschke C, Engblom C, Garris C, Miller M, et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun. 2017;8:14293 pubmed 出版商
  234. Jackson M, Scatena M, Giachelli C. Osteoclast precursors do not express CD68: results from CD68 promoter-driven RANK transgenic mice. FEBS Lett. 2017;591:728-736 pubmed 出版商
  235. Ebneter A, Kokona D, Schneider N, Zinkernagel M. Microglia Activation and Recruitment of Circulating Macrophages During Ischemic Experimental Branch Retinal Vein Occlusion. Invest Ophthalmol Vis Sci. 2017;58:944-953 pubmed 出版商
  236. Tufail Y, Cook D, Fourgeaud L, Powers C, Merten K, Clark C, et al. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron. 2017;93:574-586.e8 pubmed 出版商
  237. Fuster J, MacLauchlan S, Zuriaga M, Polackal M, Ostriker A, Chakraborty R, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:842-847 pubmed 出版商
  238. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  239. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  240. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  241. Takahashi H, Klein Z, Bhagat S, Kaufman A, Kostylev M, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133:785-807 pubmed 出版商
  242. Guillot Sestier M, Weitz T, Town T. Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer's Disease. J Vis Exp. 2016;: pubmed 出版商
  243. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  244. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  245. Chu F, Esworthy R, Doroshow J, Grasberger H, Donkó A, Leto T, et al. Deficiency in Duox2 activity alleviates ileitis in GPx1- and GPx2-knockout mice without affecting apoptosis incidence in the crypt epithelium. Redox Biol. 2017;11:144-156 pubmed 出版商
  246. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  247. Tsai C, Lin Y, Huang C, Shih C, Tsai Y, Tsao N, et al. Thrombomodulin regulates monocye differentiation via PKC? and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep. 2016;6:38421 pubmed 出版商
  248. Sakata K, Araki K, Nakano H, Nishina T, Komazawa Sakon S, Murai S, et al. Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Sci Rep. 2016;6:37200 pubmed 出版商
  249. Roche S, Wyse Jackson A, Gomez Vicente V, Lax P, Ruiz Lopez A, Byrne A, et al. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE. 2016;11:e0165197 pubmed 出版商
  250. Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, et al. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol. 2016;311:H1485-H1497 pubmed 出版商
  251. He Y, Yan Y, Zhang H, Lin Y, Chen Y, Yan Y, et al. Methyl salicylate 2-O-?-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction. Drug Des Devel Ther. 2016;10:3183-3196 pubmed
  252. Roufaiel M, Gracey E, Siu A, Zhu S, Lau A, Ibrahim H, et al. CCL19-CCR7-dependent reverse transendothelial migration of myeloid cells clears Chlamydia muridarum from the arterial intima. Nat Immunol. 2016;17:1263-1272 pubmed 出版商
  253. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  254. Baghel K, Tewari B, Shrivastava R, Malik S, Lone M, Jain N, et al. Macrophages promote matrix protrusive and invasive function of breast cancer cells via MIP-1? dependent upregulation of MYO3A gene in breast cancer cells. Oncoimmunology. 2016;5:e1196299 pubmed 出版商
  255. Saranchova I, Han J, Huang H, Fenninger F, Choi K, Munro L, et al. Discovery of a Metastatic Immune Escape Mechanism Initiated by the Loss of Expression of the Tumour Biomarker Interleukin-33. Sci Rep. 2016;6:30555 pubmed 出版商
  256. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  257. Otani K, Watanabe T, Shimada S, Takeda S, Itani S, Higashimori A, et al. Colchicine prevents NSAID-induced small intestinal injury by inhibiting activation of the NLRP3 inflammasome. Sci Rep. 2016;6:32587 pubmed 出版商
  258. Xu H, Gelyana E, Rajsombath M, Yang T, Li S, Selkoe D. Environmental Enrichment Potently Prevents Microglia-Mediated Neuroinflammation by Human Amyloid ?-Protein Oligomers. J Neurosci. 2016;36:9041-56 pubmed 出版商
  259. D Amore A, Yoshizumi T, Luketich S, Wolf M, Gu X, Cammarata M, et al. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials. 2016;107:1-14 pubmed 出版商
  260. Liu R, Jin J. Deletion of calponin 2 in macrophages alters cytoskeleton-based functions and attenuates the development of atherosclerosis. J Mol Cell Cardiol. 2016;99:87-99 pubmed 出版商
  261. Fan T, Warmoes M, Sun Q, Song H, Turchan Cholewo J, Martin J, et al. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator ?-glucan in a two-case ex vivo non-small-cell lung cancer study. Cold Spring Harb Mol Case Stud. 2016;2:a000893 pubmed 出版商
  262. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  263. Ploquin M, Madec Y, Casrouge A, Huot N, Passaes C, Lécuroux C, et al. Elevated Basal Pre-infection CXCL10 in Plasma and in the Small Intestine after Infection Are Associated with More Rapid HIV/SIV Disease Onset. PLoS Pathog. 2016;12:e1005774 pubmed 出版商
  264. Wolf H, Damme M, Stroobants S, D Hooge R, Beck H, Hermans Borgmeyer I, et al. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis Model Mech. 2016;9:1015-28 pubmed 出版商
  265. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  266. Lawler C, Tan C, Simas J, Stevenson P. Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection. J Virol. 2016;90:9046-57 pubmed 出版商
  267. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  268. Rex J, Albrecht U, Ehlting C, Thomas M, Zanger U, Sawodny O, et al. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages. PLoS Comput Biol. 2016;12:e1005018 pubmed 出版商
  269. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  270. Shivkumar M, Lawler C, Milho R, Stevenson P. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol. 2016;90:8661-72 pubmed 出版商
  271. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  272. Saita D, Ferrarese R, Foglieni C, Esposito A, Canu T, Perani L, et al. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation. Sci Rep. 2016;6:29353 pubmed 出版商
  273. Neves J, Zhu J, Sousa Victor P, Konjikusic M, Riley R, Chew S, et al. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 2016;353:aaf3646 pubmed 出版商
  274. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  275. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  276. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  277. Ueno K, Takeuchi Y, Samura M, Tanaka Y, Nakamura T, Nishimoto A, et al. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts. Sci Rep. 2016;6:28538 pubmed 出版商
  278. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 2016;19:995-8 pubmed 出版商
  279. Avadhani A, Parachuru V, Milne T, Seymour G, Rich A. Multiple cells express interleukin 17 in oral squamous cell carcinoma. J Oral Pathol Med. 2017;46:39-45 pubmed 出版商
  280. Zhu C, Gopalakrishnan S, Doyle K, Nikkel A, Olson L, Abraham V, et al. A-306989, an inhibitor of adenosine kinase, is renoprotective in rodent models of podocyte, basement membrane, and obstructive injury. Eur J Pharmacol. 2016;788:1-11 pubmed 出版商
  281. Deveza L, Choi J, Lee J, HUANG N, Cooke J, Yang F. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model. Theranostics. 2016;6:1176-89 pubmed 出版商
  282. Kirita Y, Kami D, Ishida R, Adachi T, Tamagaki K, Matoba S, et al. Preserved Nephrogenesis Following Partial Nephrectomy in Early Neonates. Sci Rep. 2016;6:26792 pubmed 出版商
  283. Endo N, Tsuboi N, Furuhashi K, Shi Y, Du Q, Abe T, et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol Dial Transplant. 2016;31:2023-2033 pubmed
  284. Scharn C, Collins A, Nair V, Stamm C, MARCIANO D, Graviss E, et al. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection. J Immunol. 2016;196:4641-9 pubmed 出版商
  285. Ahmad N, Martin S, Storr S. Immunohistochemical Assessment of Leukocyte Involvement in Angiogenesis. Methods Mol Biol. 2016;1430:49-57 pubmed 出版商
  286. Janssen C, Jansen D, Mutsaers M, Dederen P, Geenen B, Mulder M, et al. The Effect of a High-Fat Diet on Brain Plasticity, Inflammation and Cognition in Female ApoE4-Knockin and ApoE-Knockout Mice. PLoS ONE. 2016;11:e0155307 pubmed 出版商
  287. Bell C, Hendriks D, Moro S, Ellis E, Walsh J, Renblom A, et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6:25187 pubmed 出版商
  288. Koeppen A, Ramirez R, Becker A, Mazurkiewicz J. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4:46 pubmed 出版商
  289. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151-66 pubmed 出版商
  290. Liao R, Jiang N, Tang Z, Li D, Huang P, Luo S, et al. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget. 2016;7:30951-61 pubmed 出版商
  291. Tietz O, Wuest M, Marshall A, Glubrecht D, Hamann I, Wang M, et al. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Res. 2016;6:37 pubmed 出版商
  292. Li X, Wu L, Li S, Zhou W, Wang M, Zuo G, et al. Effect of CD16a, the surface receptor of Kupffer cells, on the growth of hepatocellular carcinoma cells. Int J Mol Med. 2016;37:1465-74 pubmed 出版商
  293. Wang T, Wang Z, Yang P, Xia L, Zhou M, Wang S, et al. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice. Cell Death Dis. 2016;7:e2176 pubmed 出版商
  294. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  295. Hong S, Beja Glasser V, Nfonoyim B, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712-716 pubmed 出版商
  296. Lin R, Zhang J, Zhou L, Wang B. Altered function of monocytes/macrophages in patients with autoimmune hepatitis. Mol Med Rep. 2016;13:3874-80 pubmed 出版商
  297. Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman H, et al. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res. 2016;57:832-47 pubmed 出版商
  298. Tan S, Krasnow M. Developmental origin of lung macrophage diversity. Development. 2016;143:1318-27 pubmed 出版商
  299. Gabunia K, Ellison S, Kelemen S, Kako F, Cornwell W, Rogers T, et al. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. Am J Pathol. 2016;186:1361-74 pubmed 出版商
  300. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  301. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  302. Barbour T, Ling G, Ruseva M, Fossati Jimack L, Cook H, Botto M, et al. Complement receptor 3 mediates renal protection in experimental C3 glomerulopathy. Kidney Int. 2016;89:823-32 pubmed 出版商
  303. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  304. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  305. Xiao J, Shao L, Shen J, Jiang W, Feng Y, Zheng P, et al. Effects of ketanserin on experimental colitis in mice and macrophage function. Int J Mol Med. 2016;37:659-68 pubmed 出版商
  306. Winston C, Noël A, Neustadtl A, Parsadanian M, Barton D, Chellappa D, et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. Am J Pathol. 2016;186:552-67 pubmed 出版商
  307. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  308. Ramasamy S, Saez B, Mukhopadhyay S, Ding D, Ahmed A, Chen X, et al. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proc Natl Acad Sci U S A. 2016;113:1871-6 pubmed 出版商
  309. Vegas A, Veiseh O, Gürtler M, Millman J, Pagliuca F, Bader A, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22:306-11 pubmed 出版商
  310. Vegas A, Veiseh O, Doloff J, Ma M, Tam H, Bratlie K, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34:345-52 pubmed 出版商
  311. Osman A, Neumann S, Kuhn H, Blomgren K. Caspase inhibition impaired the neural stem/progenitor cell response after cortical ischemia in mice. Oncotarget. 2016;7:2239-48 pubmed 出版商
  312. Sloboda D, Brooks S. Treatment with selectin blocking antibodies after lengthening contractions of mouse muscle blunts neutrophil accumulation but does not reduce damage. Physiol Rep. 2016;4: pubmed 出版商
  313. Hamada D, Maynard R, Schott E, Drinkwater C, Ketz J, Kates S, et al. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus. Arthritis Rheumatol. 2016;68:1392-402 pubmed 出版商
  314. Bennett B, Davis R, Civelek M, Orozco L, Wu J, Qi H, et al. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genet. 2015;11:e1005711 pubmed 出版商
  315. Roth Flach R, Skoura A, Matevossian A, Danai L, Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6:8995 pubmed 出版商
  316. Shen Z, Yan Y, Ye C, Wang B, Jiang K, Ye Y, et al. The effect of Vasohibin-1 expression and tumor-associated macrophages on the angiogenesis in vitro and in vivo. Tumour Biol. 2016;37:7267-76 pubmed 出版商
  317. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, et al. Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci. 2016;107:123-32 pubmed 出版商
  318. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  319. Qiao J, Huang Y, Xia Y, Chu P, Yao H, Xu L, et al. Busulfan and cyclosphamide induce liver inflammation through NLRP3 activation in mice after hematopoietic stem cell transplantation. Sci Rep. 2015;5:17828 pubmed 出版商
  320. Gravina G, Mancini A, Sanità P, Vitale F, Marampon F, Ventura L, et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin [corrected] in prostate cancer models. BMC Cancer. 2015;15:941 pubmed 出版商
  321. Tarin C, Carril M, Martin Ventura J, Markuerkiaga I, Padro D, Llamas Granda P, et al. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci Rep. 2015;5:17135 pubmed 出版商
  322. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  323. Sikora J, Leddy J, Gulinello M, Walkley S. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech. 2016;9:13-23 pubmed 出版商
  324. Sinadinos A, Young C, Al Khalidi R, Teti A, Kalinski P, Mohamad S, et al. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy. PLoS Med. 2015;12:e1001888 pubmed 出版商
  325. Aoki K, Teshima Y, Kondo H, Saito S, Fukui A, Fukunaga N, et al. Role of Indoxyl Sulfate as a Predisposing Factor for Atrial Fibrillation in Renal Dysfunction. J Am Heart Assoc. 2015;4:e002023 pubmed 出版商
  326. Zhao L, Li C, Jin P, Ng C, Lin Z, Li Y, et al. Histopathological features of sinonasal inverted papillomas in chinese patients. Laryngoscope. 2016;126:E141-7 pubmed 出版商
  327. Loyer X, Paradis V, Hénique C, Vion A, Colnot N, Guerin C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut. 2016;65:1882-1894 pubmed 出版商
  328. Gao T, Ng C, Li C, Li Y, Duan C, Shen L, et al. Smoking is an independent association of squamous metaplasia in Chinese nasal polyps. Int Forum Allergy Rhinol. 2016;6:66-74 pubmed 出版商
  329. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  330. Harney A, Arwert E, Entenberg D, Wang Y, Guo P, Qian B, et al. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA. Cancer Discov. 2015;5:932-43 pubmed 出版商
  331. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577 pubmed 出版商
  332. Krishack P, Bhanvadia C, Lukens J, Sontag T, de Beer M, Getz G, et al. Serum Amyloid A Facilitates Early Lesion Development in Ldlr-/- Mice. J Am Heart Assoc. 2015;4: pubmed 出版商
  333. Han H, Yan P, Chen L, Luo C, Gao H, Deng Q, et al. Flaxseed Oil Containing α -Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice. Oxid Med Cell Longev. 2015;2015:958217 pubmed 出版商
  334. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed 出版商
  335. Felix A, Monteiro N, Rocha V, Oliveira G, Nascimento A, de Carvalho L, et al. Structural and ultrastructural evaluation of the aortic wall after transplantation of bone marrow-derived cells (BMCs) in a model for atherosclerosis. Biochem Cell Biol. 2015;93:367-75 pubmed 出版商
  336. Zhao L, Zabel M, Wang X, Ma W, Shah P, Fariss R, et al. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med. 2015;7:1179-97 pubmed 出版商
  337. Xiong X, Xu L, Wei L, White R, Ouyang Y, Giffard R. IL-4 Is Required for Sex Differences in Vulnerability to Focal Ischemia in Mice. Stroke. 2015;46:2271-6 pubmed 出版商
  338. Attardo A, Fitzgerald J, Schnitzer M. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature. 2015;523:592-6 pubmed 出版商
  339. Zhang M, Jiang S, Tian Z, Wang M, Zhao R, Wang L, et al. CB2R orchestrates fibrogenesis through regulation of inflammatory response during the repair of skeletal muscle contusion. Int J Clin Exp Pathol. 2015;8:3491-502 pubmed
  340. Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, et al. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj. 2015;29:1165-1174 pubmed 出版商
  341. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  342. Koronyo Y, Salumbides B, Sheyn J, Pelissier L, Li S, Ljubimov V, et al. Therapeutic effects of glatiramer acetate and grafted CD115⁺ monocytes in a mouse model of Alzheimer's disease. Brain. 2015;138:2399-422 pubmed 出版商
  343. Haan N, Zhu B, Wang J, Wei X, Song B. Crosstalk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. J Neuroinflammation. 2015;12:109 pubmed 出版商
  344. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  345. Qiao J, Qi K, Chu P, Mi H, Yang N, Yao H, et al. Infusion of endothelial progenitor cells ameliorates liver injury in mice after haematopoietic stem cell transplantation. Liver Int. 2015;35:2611-20 pubmed 出版商
  346. Ahlers K, Karaçay B, Fuller L, Bonthius D, Dailey M. Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration. Glia. 2015;63:1694-713 pubmed 出版商
  347. Li X, Ballantyne L, Che X, Mewburn J, Kang J, Barkley R, et al. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J Am Heart Assoc. 2015;4: pubmed 出版商
  348. Hohsfield L, Humpel C. Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. PLoS ONE. 2015;10:e0121930 pubmed 出版商
  349. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  350. Brulhart Meynet M, Braunersreuther V, Brinck J, Montecucco F, Prost J, Thomas A, et al. Improving reconstituted HDL composition for efficient post-ischemic reduction of ischemia reperfusion injury. PLoS ONE. 2015;10:e0119664 pubmed 出版商
  351. Koeppen A, Ramirez R, Becker A, Bjork S, Levi S, Santambrogio P, et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE. 2015;10:e0116396 pubmed 出版商
  352. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim J, Hsieh C, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci. 2015;35:3384-96 pubmed 出版商
  353. Nishikawa K, Iwaya K, Kinoshita M, Fujiwara Y, Akao M, Sonoda M, et al. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res. 2015;59:1155-70 pubmed 出版商
  354. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271-84 pubmed 出版商
  355. Petraglia A, Plog B, Dayawansa S, Dashnaw M, Czerniecka K, Walker C, et al. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int. 2014;5:184 pubmed 出版商
  356. Gravez B, Tarjus A, Pelloux V, Ouvrard Pascaud A, Delcayre C, Samuel J, et al. Aldosterone promotes cardiac endothelial cell proliferation in vivo. J Am Heart Assoc. 2015;4:e001266 pubmed 出版商
  357. Weston C, Shepherd E, Claridge L, Rantakari P, Curbishley S, Tomlinson J, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501-20 pubmed 出版商
  358. Li D, Wang X, Lan X, Li Y, Liu L, Yi J, et al. Down-regulation of miR-144 elicits proinflammatory cytokine production by targeting toll-like receptor 2 in nonalcoholic steatohepatitis of high-fat-diet-induced metabolic syndrome E3 rats. Mol Cell Endocrinol. 2015;402:1-12 pubmed 出版商
  359. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  360. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden A, Lipinski M. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10:2208-22 pubmed 出版商
  361. Ramsey S, Vengrenyuk Y, Menon P, Podolsky I, Feig J, Aderem A, et al. Epigenome-guided analysis of the transcriptome of plaque macrophages during atherosclerosis regression reveals activation of the Wnt signaling pathway. PLoS Genet. 2014;10:e1004828 pubmed 出版商
  362. Fontana M, Baccarella A, Pancholi N, Pufall M, Herbert D, Kim C. JUNB is a key transcriptional modulator of macrophage activation. J Immunol. 2015;194:177-86 pubmed 出版商
  363. Doyle K, Quach L, Arceuil H, Buckwalter M. Ferumoxytol administration does not alter infarct volume or the inflammatory response to stroke in mice. Neurosci Lett. 2015;584:236-40 pubmed 出版商
  364. Uchiyama M, Jin X, Yin E, Shimokawa T, Niimi M. Treadmill exercise induces murine cardiac allograft survival and generates regulatory T cell. Transpl Int. 2015;28:352-62 pubmed 出版商
  365. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  366. Kelly E, Opanashuk L, Majewska A. The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex. Front Neuroanat. 2014;8:117 pubmed 出版商
  367. Femel J, Huijbers E, Saupe F, Cedervall J, Zhang L, Roswall P, et al. Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget. 2014;5:12418-27 pubmed
  368. Garcia R, Yan M, Search D, Zhang R, Carson N, Ryan C, et al. P2Y6 receptor potentiates pro-inflammatory responses in macrophages and exhibits differential roles in atherosclerotic lesion development. PLoS ONE. 2014;9:e111385 pubmed 出版商
  369. Voss M, Künzel U, Higel F, Kuhn P, Colombo A, Fukumori A, et al. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J. 2014;33:2890-905 pubmed 出版商
  370. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  371. Murakami M, Kaneko T, Nakatsuji T, Kameda K, Okazaki H, Dai X, et al. Vesicular LL-37 contributes to inflammation of the lesional skin of palmoplantar pustulosis. PLoS ONE. 2014;9:e110677 pubmed 出版商
  372. Ahn J, Ruiz P, Barber G. Intrinsic self-DNA triggers inflammatory disease dependent on STING. J Immunol. 2014;193:4634-42 pubmed 出版商
  373. Tugues S, Roche F, Noguer O, Orlova A, Bhoi S, Padhan N, et al. Histidine-rich glycoprotein uptake and turnover is mediated by mononuclear phagocytes. PLoS ONE. 2014;9:e107483 pubmed 出版商
  374. Jebelli J, Hooper C, Pocock J. Microglial p53 activation is detrimental to neuronal synapses during activation-induced inflammation: Implications for neurodegeneration. Neurosci Lett. 2014;583:92-7 pubmed 出版商
  375. Chartier S, Thompson M, Longo G, Fealk M, Majuta L, Mantyh P. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain. 2014;155:2323-36 pubmed 出版商
  376. Astafurov K, Elhawy E, Ren L, Dong C, Igboin C, Hyman L, et al. Oral microbiome link to neurodegeneration in glaucoma. PLoS ONE. 2014;9:e104416 pubmed 出版商
  377. Kadam S, Chen H, Markowitz G, Raja S, George S, Verina T, et al. Systemic injection of CD34(+)-enriched human cord blood cells modulates poststroke neural and glial response in a sex-dependent manner in CD1 mice. Stem Cells Dev. 2015;24:51-66 pubmed 出版商
  378. Bartuzi P, Wijshake T, Dekker D, Fedoseienko A, Kloosterhuis N, Youssef S, et al. A cell-type-specific role for murine Commd1 in liver inflammation. Biochim Biophys Acta. 2014;1842:2257-65 pubmed 出版商
  379. McKinstry S, Karadeniz Y, Worthington A, Hayrapetyan V, Ozlu M, Serafin Molina K, et al. Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J Neurosci. 2014;34:9455-72 pubmed 出版商
  380. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  381. Tepavcevic V, Kerninon C, Aigrot M, Meppiel E, Mozafari S, Arnould Laurent R, et al. Early netrin-1 expression impairs central nervous system remyelination. Ann Neurol. 2014;76:252-68 pubmed 出版商
  382. Peng B, Xiao J, Wang K, So K, Tipoe G, Lin B. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. J Neurosci. 2014;34:8139-50 pubmed 出版商
  383. Hoffmann J, Ospelt M, Troidl C, Voss S, Liebetrau C, Kim W, et al. Sham surgery and inter-individual heterogeneity are major determinants of monocyte subset kinetics in a mouse model of myocardial infarction. PLoS ONE. 2014;9:e98456 pubmed 出版商
  384. Shaghaghi H, Kadlecek S, Deshpande C, Siddiqui S, Martinez D, Pourfathi M, et al. Metabolic spectroscopy of inflammation in a bleomycin-induced lung injury model using hyperpolarized 1-(13) C pyruvate. NMR Biomed. 2014;27:939-47 pubmed 出版商
  385. Gao X, Usas A, Proto J, Lu A, Cummins J, Proctor A, et al. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. FASEB J. 2014;28:3792-809 pubmed 出版商
  386. Ravikumar M, Hageman D, Tomaszewski W, Chandra G, Skousen J, Capadona J. The Effect of Residual Endotoxin Contamination on the Neuroinflammatory Response to Sterilized Intracortical Microelectrodes. J Mater Chem B. 2014;2:2517-2529 pubmed
  387. Potter Baker K, Ravikumar M, Burke A, Meador W, Householder K, Buck A, et al. A comparison of neuroinflammation to implanted microelectrodes in rat and mouse models. Biomaterials. 2014;35:5637-46 pubmed 出版商
  388. Cekanaviciute E, Fathali N, Doyle K, Williams A, Han J, Buckwalter M. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 2014;62:1227-40 pubmed 出版商
  389. Sauter K, Pridans C, Sehgal A, Tsai Y, Bradford B, Raza S, et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014;96:265-74 pubmed 出版商
  390. Tam C, Covington J, Bajpeyi S, Tchoukalova Y, Burk D, Johannsen D, et al. Weight gain reveals dramatic increases in skeletal muscle extracellular matrix remodeling. J Clin Endocrinol Metab. 2014;99:1749-57 pubmed 出版商
  391. Son A, Sheleg M, Cooper M, Sun Y, Kleiman N, Zhou R. Formation of persistent hyperplastic primary vitreous in ephrin-A5-/- mice. Invest Ophthalmol Vis Sci. 2014;55:1594-606 pubmed 出版商
  392. Lenglet S, Montecucco F, Denes A, Coutts G, Pinteaux E, Mach F, et al. Recombinant tissue plasminogen activator enhances microglial cell recruitment after stroke in mice. J Cereb Blood Flow Metab. 2014;34:802-12 pubmed 出版商
  393. Dong Y, Hassan W, Kennedy R, Greiser U, Pandit A, Garcia Y, et al. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Acta Biomater. 2014;10:2076-85 pubmed 出版商
  394. Bignon A, Gaudin F, Hemon P, Tharinger H, Mayol K, Walzer T, et al. CCR1 inhibition ameliorates the progression of lupus nephritis in NZB/W mice. J Immunol. 2014;192:886-96 pubmed 出版商
  395. Pinato L, da Silveira Cruz Machado S, Franco D, Campos L, Cecon E, Fernandes P, et al. Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis. Brain Struct Funct. 2015;220:827-40 pubmed 出版商
  396. Notter T, Panzanelli P, PFISTER S, Mircsof D, Fritschy J. A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur J Neurosci. 2014;39:165-75 pubmed 出版商
  397. Subramanian V, Moorleghen J, Balakrishnan A, Howatt D, Chishti A, Uchida H. Calpain-2 compensation promotes angiotensin II-induced ascending and abdominal aortic aneurysms in calpain-1 deficient mice. PLoS ONE. 2013;8:e72214 pubmed 出版商
  398. Cedervall J, Zhang Y, Ringvall M, Thulin A, Moustakas A, Jahnen Dechent W, et al. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment. Angiogenesis. 2013;16:889-902 pubmed 出版商
  399. Chi X, Zhi L, Vostal J. Human platelets pathogen reduced with riboflavin and ultraviolet light do not cause acute lung injury in a two-event SCID mouse model. Transfusion. 2014;54:74-85 pubmed 出版商
  400. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  401. Smith A, Gibbons H, Oldfield R, Bergin P, Mee E, Faull R, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61:929-42 pubmed 出版商
  402. Day R, Cavaglieri R, Feliers D. Apelin retards the progression of diabetic nephropathy. Am J Physiol Renal Physiol. 2013;304:F788-800 pubmed 出版商
  403. Trabalza A, Georgiadis C, Eleftheriadou I, Hislop J, Ellison S, Karavassilis M, et al. Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther. 2013;20:723-32 pubmed 出版商
  404. Donat U, Weibel S, Hess M, Stritzker J, Härtl B, Sturm J, et al. Preferential colonization of metastases by oncolytic vaccinia virus strain GLV-1h68 in a human PC-3 prostate cancer model in nude mice. PLoS ONE. 2012;7:e45942 pubmed 出版商
  405. Liu H, Shiryaev S, Chernov A, Kim Y, Shubayev I, Remacle A, et al. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain. J Neuroinflammation. 2012;9:119 pubmed 出版商
  406. Uchida Y, Ke B, Freitas M, Ji H, Zhao D, Benjamin E, et al. The emerging role of T cell immunoglobulin mucin-1 in the mechanism of liver ischemia and reperfusion injury in the mouse. Hepatology. 2010;51:1363-72 pubmed 出版商
  407. Wainwright D, Xin J, Mesnard N, Beahrs T, Politis C, Sanders V, et al. Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice. ASN Neuro. 2009;1:e00024 pubmed 出版商
  408. Singer B, Jutkiewicz E, Fuller C, Lichtenwalner R, Zhang H, Velander A, et al. Conditional ablation and recovery of forebrain neurogenesis in the mouse. J Comp Neurol. 2009;514:567-82 pubmed 出版商