这是一篇来自已证抗体库的有关小鼠 Cd8b1的综述,是根据628篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd8b1 抗体。
Cd8b1 同义词: Cd8b; Ly-3; Ly-C; Lyt-3

赛默飞世尔
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2022) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:1000; 图 3a
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). Theranostics (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 3b, 3c
赛默飞世尔 Cd8b1抗体(Invitrogen, 48-0081-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3b, 3c). Theranostics (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 1:100; 图 s5a
赛默飞世尔 Cd8b1抗体(Invitrogen, 25-0081-81)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s5a). Nat Commun (2022) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:1000; 图 s5b
赛默飞世尔 Cd8b1抗体(Invitrogen, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s5b). Sci Transl Med (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b, 2g
赛默飞世尔 Cd8b1抗体(eBioscience, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 2g). PLoS Pathog (2022) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 1a, 1b
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0083-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 1b). PLoS Pathog (2022) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
赛默飞世尔 Cd8b1抗体(e-Bioscience, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a). In Vivo (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 1c, s3a, s3b
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c, s3a, s3b). Development (2022) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:2000; 图 s6a
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s6a). Nat Commun (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3, 1d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3, 1d). Int J Mol Sci (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 2j, 5g, e5b, s1g
赛默飞世尔 Cd8b1抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2j, 5g, e5b, s1g). EMBO Mol Med (2022) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 6f
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6f). Sci Rep (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
赛默飞世尔 Cd8b1抗体(Invitrogen, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Nat Commun (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:5000; 图 6b
赛默飞世尔 Cd8b1抗体(Ebioscience, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 6b). Cancers (Basel) (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:200; 图 3c
赛默飞世尔 Cd8b1抗体(Invitrogen, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). Cancers (Basel) (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫细胞化学; 小鼠; 1:100; 图 3b
赛默飞世尔 Cd8b1抗体(Thermo Fisher Scientific, 4?C0808)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Cd8b1抗体(eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cell Death Dis (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 4d
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4d). Cells (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7e
赛默飞世尔 Cd8b1抗体(Invitrogen, 14-0808-80)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7e). NPJ Breast Cancer (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 7e
赛默飞世尔 Cd8b1抗体(Thermo fisher, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7e). Cell Rep (2021) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0083-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 1:100; 图 2e
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0081-82)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). Cell Death Discov (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
赛默飞世尔 Cd8b1抗体(Invitrogen, 14-0081-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd8b1抗体(Thermo Fisher Scientific, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 1:40
赛默飞世尔 Cd8b1抗体(ThermoFisher Scientific, 53-0081-82)被用于被用于流式细胞仪在人类样本上浓度为1:40. elife (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
赛默飞世尔 Cd8b1抗体(Ebiosciences, 14-0808-80)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Mol Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 47-0081-82)被用于被用于流式细胞仪在小鼠样本上 (表 2). Int J Mol Sci (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 6c
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6c). Cell Prolif (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell Death Dis (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). BMC Res Notes (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Thermo-Fisher, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上. J Exp Clin Cancer Res (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7e
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7e). Nat Commun (2021) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:50; 图 2
赛默飞世尔 Cd8b1抗体(Thermo Fisher Scientific, 4SM15)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2). NPJ Breast Cancer (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd8b1抗体(ThermoFisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2020) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 人类; 图 5f
赛默飞世尔 Cd8b1抗体(Thermo Fisher, MCD0801)被用于被用于流式细胞仪在人类样本上 (图 5f). Oncogene (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 1c
赛默飞世尔 Cd8b1抗体(Thermofisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1c). Protein Cell (2021) ncbi
大鼠 单克隆(4SM16)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫组化-石蜡切片; 人类; 图 7c
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0195-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7c). Oncogene (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Commun Biol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 10a
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 10a). PLoS Pathog (2021) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0081-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Nat Neurosci (2021) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
赛默飞世尔 Cd8b1抗体(eBioscience, MCD0828)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). J Neuroinflammation (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 6d
赛默飞世尔 Cd8b1抗体(eBiosciences, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 6d). Cancer Res (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 ev4d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 ev4d). EMBO Mol Med (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Mucosal Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Cd8b1抗体(eBioscience, 13-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Eur J Immunol (2021) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 53-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Cell (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a, s1b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, s1b). BMC Immunol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔 Cd8b1抗体(eBioscience, 16-0081-81)被用于被用于免疫组化在小鼠样本上 (图 4a). Basic Res Cardiol (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). Cell (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:50; 图 5e
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5e). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 1:100; 图 6a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). Front Immunol (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔 Cd8b1抗体(Invitrogen, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7b). PLoS Pathog (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 4d
赛默飞世尔 Cd8b1抗体(Invitrogen, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4d). Cell Res (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3, s4
赛默飞世尔 Cd8b1抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3, s4). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Nature (2020) ncbi
大鼠 单克隆(4SM16)
  • 免疫组化-石蜡切片; 小鼠; 图 6e
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0195-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6e). Sci Transl Med (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53.6-7)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
赛默飞世尔 Cd8b1抗体(Fisher Scientific, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Cancers (Basel) (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
赛默飞世尔 Cd8b1抗体(eBioscience, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Acta Neuropathol (2020) ncbi
大鼠 单克隆(KT15)
  • 流式细胞仪; 小鼠; 1:100; 图 s15
赛默飞世尔 Cd8b1抗体(ThermoFisher, MA5-16761)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s15). Nat Commun (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50; 图 s5a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s5a). Mol Ther Methods Clin Dev (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:800; 图 s15b
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s15b). Nat Commun (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 2a
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 2a). Nat Commun (2020) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 s7f
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7f). Nature (2020) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d, s3a, s3b
赛默飞世尔 Cd8b1抗体(ThermoFisher, 47-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2d, s3a, s3b). Cell Rep (2019) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 1:400; 图 s1g
赛默飞世尔 Cd8b1抗体(Thermo Fisher, eBioH35-17.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1g). Cell Rep (2019) ncbi
大鼠 单克隆(4SM16)
  • 免疫组化-石蜡切片; 小鼠; 图 4f
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 4SM16)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4f). Cell Rep (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 5b
赛默飞世尔 Cd8b1抗体(eBioscience, MA1-10304)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s1f
赛默飞世尔 Cd8b1抗体(Invitrogen, 11-0081-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1f). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s4
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4). Nature (2019) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0083-85)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Science (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3a, s3b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b). Sci Adv (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3s1
赛默飞世尔 Cd8b1抗体(eBiosciences, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3s1). elife (2019) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Science (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
赛默飞世尔 Cd8b1抗体(eBioscience, 14-C0808)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Br J Cancer (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 Cd8b1抗体(eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Cell (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:4000; 图 5a
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 5a). Nat Commun (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2h, 3k, 5a
赛默飞世尔 Cd8b1抗体(Ebioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2h, 3k, 5a). Oncoimmunology (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3f
赛默飞世尔 Cd8b1抗体(ebioscience, 14-0808-80)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3f). JCI Insight (2019) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 图 2b
赛默飞世尔 Cd8b1抗体(eBioscience, 13-0081-86)被用于被用于其他在小鼠样本上 (图 2b). Int Immunol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 s5a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s5a). Science (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Cancer Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 e3b
赛默飞世尔 Cd8b1抗体(Invitrogen, 47-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3b). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:2000; 图 e5c
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000 (图 e5c). Nature (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 7e
赛默飞世尔 Cd8b1抗体(eBioscience, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7e). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e3p
赛默飞世尔 Cd8b1抗体(eBioscience, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 e3p). Nature (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Exp Med (2019) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 s7c
赛默飞世尔 Cd8b1抗体(Invitrogen, MCD0830)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell Metab (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd8b1抗体(Thermo Fisher Scientific, A15386)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Clin Invest (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncoimmunology (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 5a
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 5a). Cell (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immune Netw (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Front Immunol (2018) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 4c, 5c
赛默飞世尔 Cd8b1抗体(eBioscience, eBioH35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 4c, 5c). Int J Cancer (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 2d
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd8b1抗体(eBioscience, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫细胞化学; 小鼠; 图 1c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). Science (2019) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
赛默飞世尔 Cd8b1抗体(eBioscience, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). JCI Insight (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a, s2b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a, s2b). J Pathol (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 2d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). PLoS ONE (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s3b
赛默飞世尔 Cd8b1抗体(eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3b). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Blood (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 ev2c
赛默飞世尔 Cd8b1抗体(eBioscience, 53?\6.7)被用于被用于流式细胞仪在小鼠样本上 (图 ev2c). EMBO J (2019) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4i
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4i). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s3c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3c). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔 Cd8b1抗体(eBiosciences, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Science (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd8b1抗体(Thermo Fisher Scientific, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Eur J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). PLoS ONE (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 3c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3c). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 4a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 s11c
赛默飞世尔 Cd8b1抗体(Thermo Fisher Scientific, 47-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s11c). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5k
  • 免疫组化; 小鼠; 图 4d
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5k) 和 被用于免疫组化在小鼠样本上 (图 4d). Cancer Res (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd8b1抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Rep (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 e2c
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 e2c). Nature (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell Stem Cell (2018) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 1:40; 图 5a
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 14-0808-82)被用于被用于免疫组化在小鼠样本上浓度为1:40 (图 5a). J Exp Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4d). EMBO J (2018) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 s3d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于免疫组化在小鼠样本上 (图 s3d). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Virol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd8b1抗体(Thermo Fisher, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Oncogene (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell Metab (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
赛默飞世尔 Cd8b1抗体(Affymetrix/eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd8b1抗体(Thermo Fisher Scientific, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类; 图 s14a
赛默飞世尔 Cd8b1抗体(eBioscience, 25-0081)被用于被用于流式细胞仪在人类样本上 (图 s14a). Nat Med (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Front Immunol (2018) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Cd8b1抗体(eBiosciences, 11-0083-82)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 s4b
赛默飞世尔 Cd8b1抗体(eBiosciences, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s4b). J Clin Invest (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd8b1抗体(eBiosciences, 56-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2018) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔 Cd8b1抗体(eBiosciences, 11-0083-85)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Cell (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cancer Res (2018) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd8b1抗体(ebioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd8b1抗体(eBioscience, 53.6-72)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Clin Invest (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0081-83)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd8b1抗体(eBiosciences, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Immunity (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBiosciences, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 Cd8b1抗体(Thermo, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). J Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd8b1抗体(Thermo Fisher Scientific, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5e
赛默飞世尔 Cd8b1抗体(eBiosciences, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5e). JCI Insight (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. J Exp Med (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3d
赛默飞世尔 Cd8b1抗体(eBioscience, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化; 小鼠; 图 s7b
赛默飞世尔 Cd8b1抗体(eBioscience, 4SM15)被用于被用于免疫组化在小鼠样本上 (图 s7b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c,d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd8b1抗体(ebioscience, 47?\0081?\82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immun Inflamm Dis (2017) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 S4
赛默飞世尔 Cd8b1抗体(eBioscience, eBioH35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 S4). Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:300; 图 6c
赛默飞世尔 Cd8b1抗体(eBioscience, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6c). Nat Commun (2017) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 1:400; 图 1b
赛默飞世尔 Cd8b1抗体(eBioscience, 46-0083)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1b). Nat Commun (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4i
赛默飞世尔 Cd8b1抗体(eBiosciences, 12-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 4i). J Clin Invest (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd8b1抗体(eBioscience, 25-0081)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Blood (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Mol Life Sci (2017) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0081-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd8b1抗体(EBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Haematologica (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3c
赛默飞世尔 Cd8b1抗体(Affymetrix eBioscience, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd8b1抗体(eBioscience, H35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2j
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 2j). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Cd8b1抗体(ebioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:800; 图 4d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 4d). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 Cd8b1抗体(ebioscience, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Front Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2016) ncbi
大鼠 单克隆(YTS105.18)
  • 抑制或激活实验; 小鼠; 图 9b
赛默飞世尔 Cd8b1抗体(Thermo Scientific, YTS105.18)被用于被用于抑制或激活实验在小鼠样本上 (图 9b). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2B
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2B). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(KT15)
  • 流式细胞仪; 小鼠; 图 8a
赛默飞世尔 Cd8b1抗体(Thermo Fisher Scientific, KT15)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b
赛默飞世尔 Cd8b1抗体(eBiosciences, 14-0808)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b). Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0081)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔 Cd8b1抗体(eBioscience, 4SM15)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd8b1抗体(Affymetrix eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 4). Front Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(Ebioscience, 12-0081)被用于被用于流式细胞仪在小鼠样本上 (图 5). BMC Complement Altern Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:200; 图 s4k
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4k). Cell Metab (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a) 和 被用于流式细胞仪在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 8). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5c
赛默飞世尔 Cd8b1抗体(eBiosciences, 11-0081-81)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). J Clin Invest (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd8b1抗体(eBioscience, 47-0081)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd8b1抗体(Affymetrix eBioscience, H35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). Clin Cancer Res (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(BD Biosciences, 17-0081-83)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 免疫组化; 小鼠; 1:75; 图 3e
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0083)被用于被用于免疫组化在小鼠样本上浓度为1:75 (图 3e). Gut (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081)被用于被用于流式细胞仪在小鼠样本上. Front Cell Neurosci (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1-s1
赛默飞世尔 Cd8b1抗体(eBiosciences, 13-0081-86)被用于被用于流式细胞仪在小鼠样本上 (图 1-s1). elife (2016) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔 Cd8b1抗体(Invitrogen, MCD0817)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 45-0081-8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:500; 图 st1
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 st2
赛默飞世尔 Cd8b1抗体(eBioscience, 25-0081)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Atherosclerosis (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 45-0081-80)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). elife (2016) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Cd8b1抗体(eBioscience, H35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Bio Protoc (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3g
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3g). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:66; 图 2f
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:66 (图 2f). Nat Cell Biol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBiosciences, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Cell Biol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 s3
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s6
赛默飞世尔 Cd8b1抗体(eBioscience, 16-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Cell Biol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 48-0081)被用于被用于流式细胞仪在小鼠样本上. Biol Open (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 13-0081-85)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Cd8b1抗体(eBioscience, 55-3030)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Oncoimmunology (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s4
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4). Nat Commun (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(eBioscience, 53-C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 48-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mucosal Immunol (2017) ncbi
大鼠 单克隆(2.43)
  • 免疫组化-石蜡切片; 小鼠; 1:25-1:50; 图 4
赛默飞世尔 Cd8b1抗体(Thermo Scientific, MA1-145)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25-1:50 (图 4). J Lipid Res (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:400; 图 4b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4b). Cellbio (Irvine, Calif) (2015) ncbi
大鼠 单克隆(4SM15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 10
赛默飞世尔 Cd8b1抗体(eBioscience, 14-0808-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 10). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 抑制或激活实验; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(e-Bioscience, H35-17.2)被用于被用于抑制或激活实验在小鼠样本上 (图 3). J Thorac Oncol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s21
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 s21). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s6a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6a). Nat Commun (2016) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, eBio-H35-17.2)被用于被用于流式细胞仪在小鼠样本上. Science (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(eBioscience, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). PLoS ONE (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081-85)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2J
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2J). J Exp Med (2016) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081-82)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Neurosci (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 s8
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s8). Nat Commun (2015) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, eBioH35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(EBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2016) ncbi
大鼠 单克隆(YTS 169AG 101HL)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔 Cd8b1抗体(Pierce Antibodies, MA1-70041)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). Cell Transplant (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Science (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Retrovirology (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cancer Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 46-0081-80)被用于被用于流式细胞仪在小鼠样本上. J Vis Exp (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(eBioscience, # 11-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). Front Immunol (2015) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Cd8b1抗体(Invitrogen, 5H-10)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-石蜡切片; 人类; 图 s8
赛默飞世尔 Cd8b1抗体(ebiosciences, 53.67)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s8). Nat Biotechnol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔 Cd8b1抗体(eBiosciences, 14008182)被用于被用于免疫组化在小鼠样本上 (图 6). Oncotarget (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6e
  • 免疫组化; 小鼠; 图 4k
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6e) 和 被用于免疫组化在小鼠样本上 (图 4k). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd8b1抗体(eBioscience, 55-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 25-0081-82)被用于被用于流式细胞仪在小鼠样本上. Cardiovasc Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:1000; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(eBioscience, 15-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS Negl Trop Dis (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上 (图 5). EMBO Mol Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6b
  • 免疫组化; 小鼠; 图 3a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6b) 和 被用于免疫组化在小鼠样本上 (图 3a). Transplantation (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS Pathog (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3A
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上 (图 3A). J Immunol (2015) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd8b1抗体(eBioscience, eBioH35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Am J Physiol Endocrinol Metab (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 s3
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Blood (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunother Cancer (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1) 和 被用于免疫细胞化学在小鼠样本上 (图 2). J Exp Med (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Immunol Cell Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100; 图 3
赛默飞世尔 Cd8b1抗体(eBioscience, 15-0081)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Biol Reprod (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, H35-17.2)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience or BioLegend, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Cell Mol Immunol (2016) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, clone H35-17.2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Eur J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Development (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5i
赛默飞世尔 Cd8b1抗体(eBioscience, 17-0081)被用于被用于流式细胞仪在小鼠样本上 (图 5i). Nat Biotechnol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Cd8b1抗体(ebioscience, 53.67)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Natl Cancer Inst (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2014) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, H35-17.2)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53.6.7 A700)被用于被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nat Immunol (2014) ncbi
大鼠 单克隆(KT15)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Cd8b1抗体(Thermo Scientific, MA5-16761)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 S2a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 S2a). Mucosal Immunol (2015) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(BD Biosciences, MCD0830)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Med (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠; 1:50
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Mol Pharm (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Cd8b1抗体(ebioscience, 14-0081-82)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Clin Cancer Res (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 人类
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, clone 53-6.)被用于被用于流式细胞仪在小鼠样本上. Development (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Mucosal Immunol (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2014) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Invitrogen, MCD0830)被用于被用于流式细胞仪在小鼠样本上. Kidney Int (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience Inc., 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠; 1:50
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Bone (2014) ncbi
大鼠 单克隆(53-6.7)
  • 免疫细胞化学; 人类; 表 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于免疫细胞化学在人类样本上 (表 2). J Clin Invest (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS Pathog (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd8b1抗体(Ebioscience, 12-008-81)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS Pathog (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:50
赛默飞世尔 Cd8b1抗体(eBioscience, 45-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Acta Neuropathol Commun (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Cd8b1抗体(eBioscience, 11-0081-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cell Transplant (2015) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2013) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化; 小鼠
赛默飞世尔 Cd8b1抗体(ebioscience, 53-6.7)被用于被用于免疫组化在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Surg Infect (Larchmt) (2014) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2013) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Cell Biol (2013) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, H35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Cell Biol (2013) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Cell Biol (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Oral Microbiol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(CALTAG, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Lett (2013) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 1:200; 图 9
赛默飞世尔 Cd8b1抗体(eBioscience, 12-0083-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 9). PLoS ONE (2013) ncbi
大鼠 单克隆(53-6.7)
  • 抑制或激活实验; 小鼠; 图 4b
赛默飞世尔 Cd8b1抗体(eBioscience, 16-0081)被用于被用于抑制或激活实验在小鼠样本上 (图 4b). Hum Vaccin Immunother (2013) ncbi
大鼠 单克隆(YTS 169AG 101HL)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, clone YTS169)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cell Death Dis (2013) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, clone YTS169)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cell Death Dis (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 5b). PLoS ONE (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Invitrogen, MCD0830)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Neuroinflammation (2013) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔 Cd8b1抗体(Invitrogen, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (表 2). Brain Behav Immun (2013) ncbi
大鼠 单克隆(YTS 169AG 101HL)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 免疫组化; 小鼠; 1:50
赛默飞世尔 Cd8b1抗体(Pierce, MA1-70041)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(ebioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Exp Med (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 1). PLoS ONE (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBiosciences, 17-0081)被用于被用于流式细胞仪在小鼠样本上. PLoS Genet (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 图 5
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于其他在小鼠样本上 (图 5) 和 被用于流式细胞仪在小鼠样本上 (图 5). Front Immunol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2013) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(Invitrogen, MCD0801)被用于被用于流式细胞仪在小鼠样本上 (图 4). Methods Mol Biol (2013) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2013) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS ONE (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS Pathog (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(e-Bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nature (2012) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Invitrogen, clone 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 13-0081-82)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
大鼠 单克隆(53-6.7)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于免疫组化-冰冻切片在小鼠样本上. Front Immunol (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(Zymed/Invitrogen, clone 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 5). Vaccine (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2012) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 犬
赛默飞世尔 Cd8b1抗体(eBiosciences, 11-0081-85)被用于被用于流式细胞仪在犬样本上. J Biol Chem (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 25-0081-81)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2012) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioScience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). Mol Biol Cell (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2011) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2011) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Cd8b1抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Arterioscler Thromb Vasc Biol (2012) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(eBioscience, eBioH35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunol Cell Biol (2012) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, clone CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2011) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, clone CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Invitrogen, 53?C6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2011) ncbi
大鼠 单克隆(5H10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4
赛默飞世尔 Cd8b1抗体(分子探针, MCD0801)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4). J Surg Res (2011) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). J Immunol (2010) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Invitrogen, clone CT-CD8b)被用于被用于流式细胞仪在小鼠样本上. Brain Behav Immun (2011) ncbi
大鼠 单克隆(5H10)
  • 免疫细胞化学; 小鼠; 图 s3
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, clone 5H10)被用于被用于免疫细胞化学在小鼠样本上 (图 s3). J Immunol (2010) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2010) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(Invitrogen, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 3). Infect Immun (2010) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2010) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1, 2, 3
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2, 3). Blood (2010) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(Caltag, RM2204)被用于被用于流式细胞仪在小鼠样本上 (表 1). Free Radic Res (2010) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(Invitrogen, 5H10)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2009) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(Caltag, RM2204)被用于被用于流式细胞仪在小鼠样本上 (图 4). Bone Marrow Transplant (2010) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2009) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, RM2215-3)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Virol (2009) ncbi
大鼠 单克隆(eBioH35-17.2 (H35-17.2))
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, H35-17.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(CalTag, clone 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 5). Vaccine (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag-Invitrogen, MCD0830)被用于被用于流式细胞仪在小鼠样本上. Nat Protoc (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2009) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2009) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2, 4
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 2, 4). J Immunol (2009) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2009) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (图 5). Cell Tissue Res (2008) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2008) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Nat Immunol (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2008) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 5 mg/kg
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.72)被用于被用于其他在小鼠样本上浓度为5 mg/kg. Invest Ophthalmol Vis Sci (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Virol (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2007) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2007) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Invitrogen/Caltag Laboratories, 5H10)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, RM2201-3)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Med Microbiol Immunol (2008) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(e-bioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Microbiol Immunol (2007) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Virol (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化-石蜡切片; fruit fly ; 1:100
赛默飞世尔 Cd8b1抗体(Invitrogen, RM2200)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:100. Nat Protoc (2006) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, MCD0805)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫细胞化学; fruit fly ; 1:100
赛默飞世尔 Cd8b1抗体(CALTAG, RM2200)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:100. Nat Protoc (2006) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunol (2007) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2007) ncbi
大鼠 单克隆(5H10)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于免疫组化-冰冻切片在小鼠样本上. Proc Natl Acad Sci U S A (2007) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(ebiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunopharmacol (2006) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2007) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). Infect Immun (2007) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). Circulation (2006) ncbi
大鼠 单克隆(5H10)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, MCD0820)被用于被用于免疫组化-石蜡切片在小鼠样本上. Proc Natl Acad Sci U S A (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(ebiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cytometry A (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2006) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2006) ncbi
大鼠 单克隆(KT15)
  • 免疫组化; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(Biosource, KT15)被用于被用于免疫组化在小鼠样本上 (图 5). Immunology (2006) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2006) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Infect Dis (2006) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CTCD8a)被用于被用于流式细胞仪在小鼠样本上. Crit Care Med (2006) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Virol (2005) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2005) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBiosciences, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CTCD8a)被用于被用于流式细胞仪在小鼠样本上. Parasitol Res (2005) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Virol (2005) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Invitrogen Life Technologies, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2005) ncbi
大鼠 单克隆(CT-CD8b)
  • 其他; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于其他在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(5H10)
  • 其他; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于其他在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2004) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2004) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Immunol (2004) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2004) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(eBioscience, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2004) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Cancer Gene Ther (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Cell Biol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Autoimmun (2004) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Autoimmun (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Autoimmun (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd8b1抗体(Caltag, CTCD8)被用于被用于流式细胞仪在小鼠样本上 (图 6). Int Immunol (2004) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd8b1抗体(Caltag, CTCD8)被用于被用于流式细胞仪在小鼠样本上 (图 6). Int Immunol (2004) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 6). Eur J Immunol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2004) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2003) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (表 1). Exp Hematol (2003) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). Transplantation (2003) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Histochem Cytochem (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Zymed, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cell Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). Eur J Immunol (2003) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Parasite Immunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2003) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (表 1). Eur J Immunol (2003) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上. J Nutr (2003) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nature (2002) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2002) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, clone CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, clone CT-CD8a)被用于被用于免疫组化在小鼠样本上 (图 1). J Neuroimmunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Int Immunol (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2002) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cd8b1抗体(noco, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Clin Invest (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4, 5
赛默飞世尔 Cd8b1抗体(CALTAG, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). J Immunol (2002) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2002) ncbi
大鼠 单克隆(5H10)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, 5H10)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2002) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(生活技术, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2001) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, clone CT-CD8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Scand J Immunol (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, clone CT-CD8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Scand J Immunol (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2001) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(CalTag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 3, 4
赛默飞世尔 Cd8b1抗体(Caltag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (图 3, 4). J Immunol (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8alpha-APC)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunol (2001) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int Immunol (2001) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(生活技术, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于免疫组化-冰冻切片在小鼠样本上. Infect Immun (2000) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2000) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Immunology (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Immunology (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 2, 3
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (图 2, 3). J Immunol (1999) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1, 2
赛默飞世尔 Cd8b1抗体(Caltag, YTS-169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2). Biochim Biophys Acta (1999) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 53?C6.72)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (1998) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8alpha)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1998) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1998) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Blood (1998) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8a)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (1998) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (1998) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Cd8b1抗体(生活技术, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (1998) ncbi
大鼠 单克隆(CT-CD8a)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, T-CD8a)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1998) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, clone 53.6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int Immunol (1997) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(Caltag Laboratories, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (1997) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(Caltag, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Endocrinology (1997) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS169-4)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (1997) ncbi
大鼠 单克隆(CT-CD8b)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(Caltag, CT-CD8b)被用于被用于流式细胞仪在小鼠样本上 (表 1). Int Immunol (1997) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(生活技术, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (1996) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). Clin Exp Immunol (1996) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(CalTag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (表 1). Science (1993) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cd8b1抗体(Caltag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (1995) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cd8b1抗体(Caltag, YTS-169.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (1994) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(noco, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Exp Med (1980) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 表 1
  • 酶联免疫吸附测定; 小鼠; 表 1
赛默飞世尔 Cd8b1抗体(CalTag, YTS 169.4)被用于被用于流式细胞仪在小鼠样本上 (表 1) 和 被用于酶联免疫吸附测定在小鼠样本上 (表 1). Cell (1991) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Exp Med (1992) ncbi
大鼠 单克隆(53-6.7)
  • 其他; 小鼠; 图 2
赛默飞世尔 Cd8b1抗体(noco, 53-6.72)被用于被用于其他在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (1992) ncbi
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔 Cd8b1抗体(Caltag, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (表 2). Am Rev Respir Dis (1992) ncbi
大鼠 单克隆(53-6.7)
  • 流式细胞仪; 小鼠; 图 1C
  • 免疫沉淀; 小鼠; 图 3F
赛默飞世尔 Cd8b1抗体(noco, 53-6.7)被用于被用于流式细胞仪在小鼠样本上 (图 1C) 和 被用于免疫沉淀在小鼠样本上 (图 3F). Immunol Rev (1979) ncbi
BioLegend
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend Cd8b1抗体(BioLegend, 126616)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Cell Rep Med (2022) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 s20a
BioLegend Cd8b1抗体(Biolegend, 126619)被用于被用于流式细胞仪在小鼠样本上 (图 s20a). Nat Commun (2022) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Cd8b1抗体(Biolegend, 140404)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Immunother Cancer (2021) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s22a
BioLegend Cd8b1抗体(Biolegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s22a). Nat Commun (2021) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 s2a, 5d, 5h
BioLegend Cd8b1抗体(Biolegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a, 5d, 5h). Front Immunol (2021) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 1:200; 图 2b
BioLegend Cd8b1抗体(Biolegend, 53-5.8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2b). Front Immunol (2021) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 1:500
BioLegend Cd8b1抗体(Biolegend, 140410)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2021) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 s29b
BioLegend Cd8b1抗体(Biolegend, 53-5.8)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 s29b). Science (2020) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s19d
BioLegend Cd8b1抗体(Biolegend, 126613)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s19d). Nat Commun (2020) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Cd8b1抗体(Biolegend, 126620)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). JCI Insight (2019) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 1a, 1c, 1d, 5d, s5a
BioLegend Cd8b1抗体(BioLegend, 126606)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 1c, 1d, 5d, s5a). Cell Rep (2019) ncbi
大鼠 单克隆(YTS156.7.7)
  • mass cytometry; 小鼠; 图 3, s2
BioLegend Cd8b1抗体(Biolegend, 126602)被用于被用于mass cytometry在小鼠样本上 (图 3, s2). Science (2019) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Cd8b1抗体(Biolegend, 126619)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell (2019) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 1:100; 图 s2f, s2g
BioLegend Cd8b1抗体(Biolegend, 126608)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2f, s2g). Nat Commun (2019) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Cd8b1抗体(BioLegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2019) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Cd8b1抗体(Biolegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Int J Cancer (2019) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 3a, 3f
BioLegend Cd8b1抗体(BioLegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3f). JCI Insight (2018) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Cd8b1抗体(BioLegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Oncoimmunology (2018) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Cd8b1抗体(eBioscience, 53-5.8)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Clin Invest (2018) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Cd8b1抗体(BioLegend, 53-5.8)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Immunol (2018) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd8b1抗体(BioLegend, 140404)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell (2018) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Cd8b1抗体(Biolegend, 53-5.8)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Virol (2018) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend Cd8b1抗体(BioLegend, 53-5.8)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Cd8b1抗体(BioLegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2017) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cd8b1抗体(Biolegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nature (2017) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Cd8b1抗体(BioLegend, 126609)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell (2016) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 4g
BioLegend Cd8b1抗体(Biolegend, 126609)被用于被用于流式细胞仪在小鼠样本上 (图 4g). J Virol (2016) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠
BioLegend Cd8b1抗体(Biolegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(YTS156.7.7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Cd8b1抗体(BioLegend, YTS156.7.7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunol Lett (2014) ncbi
美天旎
人类 单克隆(REA793)
  • 流式细胞仪; 小鼠; 图 3e
美天旎 Cd8b1抗体(Miltenyi, 130-111-715)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Sci Transl Med (2022) ncbi
人类 单克隆(REA793)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
美天旎 Cd8b1抗体(Miltenyi Biotec, 130-111-710)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Sci Rep (2022) ncbi
圣克鲁斯生物技术
小鼠 单克隆(32-M4)
  • 免疫组化; 人类; 图 1a
圣克鲁斯生物技术 Cd8b1抗体(Santa Cruz, SC-1177)被用于被用于免疫组化在人类样本上 (图 1a). J Immunother Cancer (2022) ncbi
小鼠 单克隆(32-M4)
  • 免疫组化; 小鼠; 1:50; 图 9d
圣克鲁斯生物技术 Cd8b1抗体(Santa Cruz, sc-1177)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 9d). J Neuroinflammation (2020) ncbi
Bio X Cell
大鼠 单克隆(53-5.8)
  • 抑制或激活实验; 小鼠; 图 2a
Bio X Cell Cd8b1抗体(BioXcell, 53-5.8)被用于被用于抑制或激活实验在小鼠样本上 (图 2a). JCI Insight (2018) ncbi
大鼠 单克隆(53-5.8)
  • 其他; 小鼠; 图 2f
Bio X Cell Cd8b1抗体(BioXcell, 5358)被用于被用于其他在小鼠样本上 (图 2f). Science (2018) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(YTS169.4)
  • 流式细胞仪; 小鼠; 图 3a
伯乐(Bio-Rad)公司 Cd8b1抗体(Bio-Rad, YTS169.4)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Clin Transl Med (2021) ncbi
碧迪BD
大鼠 单克隆(53-5.8)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3f
碧迪BD Cd8b1抗体(BD Biosciences, 53-5.8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3f). Sci Rep (2021) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 1:300; 图 1d
碧迪BD Cd8b1抗体(BD Biosciences, 553041)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1d). J Clin Invest (2018) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Cd8b1抗体(BD Biosciences, 553038)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Sci Rep (2016) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 1:300; 图 s2a
碧迪BD Cd8b1抗体(BD Biosciences, 553041)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s2a). Nat Immunol (2016) ncbi
大鼠 单克隆(H35-17.2)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd8b1抗体(BD, 550798)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 10-20 ug/ml
碧迪BD Cd8b1抗体(BD Biosciences, 53-5.8)被用于被用于流式细胞仪在小鼠样本上浓度为10-20 ug/ml. Immunology (2015) ncbi
大鼠 单克隆(H35-17.2)
  • 流式细胞仪; 小鼠; 图 8
碧迪BD Cd8b1抗体(BD Pharmigen, eBioH35-17.2)被用于被用于流式细胞仪在小鼠样本上 (图 8). PLoS ONE (2015) ncbi
大鼠 单克隆(53-5.8)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Cd8b1抗体(BD PharMingen, 53-5.8)被用于被用于流式细胞仪在小鼠样本上 (图 5). Cell Cycle (2014) ncbi
大鼠 单克隆(H35-17.2)
  • 流式细胞仪; 小鼠
碧迪BD Cd8b1抗体(BD Biosciences, H35-17.2)被用于被用于流式细胞仪在小鼠样本上. Exp Parasitol (2014) ncbi
大鼠 单克隆(H35-17.2)
  • 流式细胞仪; 小鼠
碧迪BD Cd8b1抗体(BD Biosciences, H35-17.2)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2014) ncbi
文章列表
  1. Yang P, Qin H, Li Y, Xiao A, Zheng E, Zeng H, et al. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat Commun. 2022;13:5782 pubmed 出版商
  2. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  3. Cao S, Hung Y, Wang Y, Chung Y, Qi Y, Ouyang C, et al. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics. 2022;12:6038-6056 pubmed 出版商
  4. Xu D, Ma R, Ju Y, Song X, Niu B, Hong W, et al. Cholesterol sulfate alleviates ulcerative colitis by promoting cholesterol biosynthesis in colonic epithelial cells. Nat Commun. 2022;13:4428 pubmed 出版商
  5. Dinnon K, Leist S, Okuda K, Dang H, Fritch E, Gully K, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eabo5070 pubmed 出版商
  6. Lu L, Li T, Feng X, Liu Z, Liu Y, Chao T, et al. Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog. 2022;18:e1010596 pubmed 出版商
  7. Li H, Liu Z, Liu L, Zhang H, Han C, Girard L, et al. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells. Cell Rep Med. 2022;3:100554 pubmed 出版商
  8. Kumagai Y, Futoh Y, Miyato H, Ohzawa H, Yamaguchi H, Saito S, et al. Effect of Systemic or Intraperitoneal Administration of Anti-PD-1 Antibody for Peritoneal Metastases from Gastric Cancer. In Vivo. 2022;36:1126-1135 pubmed 出版商
  9. Meléndez E, Chondronasiou D, Mosteiro L, Mart xed nez de Villarreal J, Fern xe1 ndez Alfara M, Lynch C, et al. Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development. 2022;149: pubmed 出版商
  10. Wedge M, Jennings V, Crupi M, Poutou J, Jamieson T, Pelin A, et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat Commun. 2022;13:1898 pubmed 出版商
  11. Wennerberg E, Mukherjee S, Spada S, Hung C, Agrusa C, Chen C, et al. Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non-small cell lung cancer. Sci Transl Med. 2022;14:eabe8195 pubmed 出版商
  12. Zhang M, Cui J, Lee D, Yuen V, Chiu D, Goh C, et al. Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat Commun. 2022;13:954 pubmed 出版商
  13. Kinkhabwala A, Herbel C, Pankratz J, Yushchenko D, R xfc berg S, Praveen P, et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep. 2022;12:1911 pubmed 出版商
  14. Keller E, Dvorina N, Jørgensen T. Spontaneous CD4+ T Cell Activation and Differentiation in Lupus-Prone B6.Nba2 Mice Is IFNAR-Independent. Int J Mol Sci. 2022;23: pubmed 出版商
  15. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14:e14502 pubmed 出版商
  16. Stoff M, Ebbecke T, Ciurkiewicz M, Pavasutthipaisit S, Mayer Lambertz S, St xf6 rk T, et al. C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep. 2021;11:23819 pubmed 出版商
  17. Kettwig M, Ternka K, Wendland K, Krüger D, Zampar S, Schob C, et al. Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nat Commun. 2021;12:6530 pubmed 出版商
  18. Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clement S, Maeder C, et al. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  19. Hoefflin R, Harlander S, Abhari B, Peighambari A, Adlesic M, Seidel P, et al. Therapeutic Effects of Inhibition of Sphingosine-1-Phosphate Signaling in HIF-2α Inhibitor-Resistant Clear Cell Renal Cell Carcinoma. Cancers (Basel). 2021;13: pubmed 出版商
  20. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  21. Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021;12:853 pubmed 出版商
  22. Tillie R, Theelen T, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, et al. A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  23. Tulotta C, Lefley D, Moore C, Amariutei A, Spicer Hadlington A, Quayle L, et al. IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer. 2021;7:95 pubmed 出版商
  24. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  25. James O, Vandereyken M, Marchingo J, Singh F, Bray S, Wilson J, et al. IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nat Commun. 2021;12:4290 pubmed 出版商
  26. Lauret Marie Joseph E, Kirilovsky A, Lecoester B, El Sissy C, Boullerot L, Rangan L, et al. Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy. J Immunother Cancer. 2021;9: pubmed 出版商
  27. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  28. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  29. Gehlsen U, Stary D, Maass M, Riesner K, Musial G, Stern M, et al. Ocular Graft-versus-Host Disease in a Chemotherapy-Based Minor-Mismatch Mouse Model Features Corneal (Lymph-) Angiogenesis. Int J Mol Sci. 2021;22: pubmed 出版商
  30. Ryu S, Shchukina I, Youm Y, Qing H, Hilliard B, Dlugos T, et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. elife. 2021;10: pubmed 出版商
  31. Ho D, Tsui Y, Chan L, Sze K, Zhang X, Cheu J, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 2021;12:3684 pubmed 出版商
  32. Ramos M, Tian L, de Ruiter E, Song C, Paucarmayta A, Singh A, et al. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. elife. 2021;10: pubmed 出版商
  33. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  34. Zhang X, Liu X, Zhou W, Du Q, Yang M, Ding Y, et al. Blockade of IDO-Kynurenine-AhR Axis Ameliorated Colitis-Associated Colon Cancer via Inhibiting Immune Tolerance. Cell Mol Gastroenterol Hepatol. 2021;12:1179-1199 pubmed 出版商
  35. West J, Austin E, Rizzi E, Yan L, Tanjore H, Crabtree A, et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci. 2021;22: pubmed 出版商
  36. Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, et al. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif. 2021;54:e13056 pubmed 出版商
  37. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  38. Reis M, Willis G, Fernandez Gonzalez A, Yeung V, Taglauer E, Magaletta M, et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol. 2021;12:640595 pubmed 出版商
  39. Zhang S, Li L, Xie D, Reddy S, Sleasman J, Ma L, et al. Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Front Immunol. 2021;12:620437 pubmed 出版商
  40. Flamini S, Sergeev P, Viana de Barros Z, Mello T, Biagioli M, Paglialunga M, et al. Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis. 2021;12:421 pubmed 出版商
  41. Datta M, Staszewski O. Hdac1 and Hdac2 are essential for physiological maturation of a Cx3cr1 expressing subset of T-lymphocytes. BMC Res Notes. 2021;14:135 pubmed 出版商
  42. Roux C, Mucciolo G, Kopecka J, Novelli F, Riganti C, Cappello P. IL17A Depletion Affects the Metabolism of Macrophages Treated with Gemcitabine. Antioxidants (Basel). 2021;10: pubmed 出版商
  43. Sánchez del Campo L, Martí Díaz R, Montenegro M, González Guerrero R, Hernández Caselles T, Martínez Barba E, et al. MITF induces escape from innate immunity in melanoma. J Exp Clin Cancer Res. 2021;40:117 pubmed 出版商
  44. Shang M, Yang H, Yang R, Chen T, Fu Y, Li Y, et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun. 2021;12:1940 pubmed 出版商
  45. Steenbrugge J, Vander Elst N, Demeyere K, De Wever O, Sanders N, van den Broeck W, et al. OMO-1 reduces progression and enhances cisplatin efficacy in a 4T1-based non-c-MET addicted intraductal mouse model for triple-negative breast cancer. NPJ Breast Cancer. 2021;7:27 pubmed 出版商
  46. Uhl B, Braun C, Dominik J, Luft J, Canis M, Reichel C. A Novel Experimental Approach for In Vivo Analyses of the Salivary Gland Microvasculature. Front Immunol. 2020;11:604470 pubmed 出版商
  47. Liu Y, Li X, Zhang H, Zhang M, Wei Y. HuR up-regulates cell surface PD-L1 via stabilizing CMTM6 transcript in cancer. Oncogene. 2021;40:2230-2242 pubmed 出版商
  48. Sorrentino C, Ciummo S, D Antonio L, Lanuti P, Abrams S, Yin Z, et al. Hindering triple negative breast cancer progression by targeting endogenous interleukin-30 requires IFNγ signaling. Clin Transl Med. 2021;11:e278 pubmed 出版商
  49. Yuan J, Cai T, Zheng X, Ren Y, Qi J, Lu X, et al. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell. 2021;12:240-260 pubmed 出版商
  50. Fletcher R, Tong J, Risnik D, Leibowitz B, Wang Y, Concha Benavente F, et al. Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene. 2021;40:2035-2050 pubmed 出版商
  51. Song L, Chang R, Sun X, Lu L, Gao H, Lu H, et al. Macrophage-derived EDA-A2 inhibits intestinal stem cells by targeting miR-494/EDA2R/β-catenin signaling in mice. Commun Biol. 2021;4:213 pubmed 出版商
  52. Kurashima Y, Kigoshi T, Murasaki S, Arai F, Shimada K, Seki N, et al. Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nat Commun. 2021;12:1067 pubmed 出版商
  53. Mpekris F, Panagi M, Voutouri C, Martin J, Samuel R, Takahashi S, et al. Normalizing the Microenvironment Overcomes Vessel Compression and Resistance to Nano-immunotherapy in Breast Cancer Lung Metastasis. Adv Sci (Weinh). 2021;8:2001917 pubmed 出版商
  54. Yoshikawa T, Taniguchi S, Kato H, Iwata Yoshikawa N, Tani H, Kurosu T, et al. A highly attenuated vaccinia virus strain LC16m8-based vaccine for severe fever with thrombocytopenia syndrome. PLoS Pathog. 2021;17:e1008859 pubmed 出版商
  55. Dorrier C, Aran D, Haenelt E, Sheehy R, Hoi K, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234-244 pubmed 出版商
  56. Malone K, Diaz Diaz A, Shearer J, Moore A, Waeber C. The effect of fingolimod on regulatory T cells in a mouse model of brain ischaemia. J Neuroinflammation. 2021;18:37 pubmed 出版商
  57. Kharkwal S, Johndrow C, Veerapen N, Kharkwal H, Saavedra Avila N, Carreño L, et al. Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Res. 2021;81:1788-1801 pubmed 出版商
  58. Vavassori V, Mercuri E, Marcovecchio G, Castiello M, Schiroli G, Albano L, et al. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol Med. 2021;13:e13545 pubmed 出版商
  59. Suah A, Tran D, Khiew S, Andrade M, Pollard J, Jain D, et al. Pregnancy-induced humoral sensitization overrides T cell tolerance to fetus-matched allografts in mice. J Clin Invest. 2021;131: pubmed 出版商
  60. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  61. Ishii K, Pouzolles M, Chien C, Erwin Cohen R, Kohler M, Qin H, et al. Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients. J Clin Invest. 2020;130:5425-5443 pubmed 出版商
  62. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  63. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  64. Neuper T, Neureiter D, Sarajlic M, Strandt H, Bauer R, Schwarz H, et al. IL-31 transgenic mice show reduced allergen-induced lung inflammation. Eur J Immunol. 2021;51:191-196 pubmed 出版商
  65. Ho J, Angel M, Ma Y, Sloan E, Wang G, Martínez Romero C, et al. Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell. 2020;181:1502-1517.e23 pubmed 出版商
  66. Zhou S, Wu W, Wang Z, Wang Z, Su Q, Li X, et al. RelB regulates the homeostatic proliferation but not the function of Tregs. BMC Immunol. 2020;21:37 pubmed 出版商
  67. Lubos N, van der Gaag S, Gerçek M, Kant S, Leube R, Krusche C. Inflammation shapes pathogenesis of murine arrhythmogenic cardiomyopathy. Basic Res Cardiol. 2020;115:42 pubmed 出版商
  68. Ruscetti M, Morris J, Mezzadra R, Russell J, Leibold J, Romesser P, et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 2020;181:424-441.e21 pubmed 出版商
  69. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  70. Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol. 2020;11:366 pubmed 出版商
  71. Doll J, Hoebe K, Thompson R, Sawtell N. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog. 2020;16:e1008296 pubmed 出版商
  72. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  73. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  74. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  75. Abadie V, Kim S, Lejeune T, Palanski B, Ernest J, Tastet O, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. 2020;578:600-604 pubmed 出版商
  76. Jaynes J, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye Ogunniyan A, et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med. 2020;12: pubmed 出版商
  77. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  78. Cohen G, Chandran P, Lorsung R, Tomlinson L, Sundby M, Burks S, et al. The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel). 2020;12: pubmed 出版商
  79. Williams G, Marmion D, Schonhoff A, Jurkuvenaite A, Won W, Standaert D, et al. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 2020;139:855-874 pubmed 出版商
  80. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  81. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  82. Bliss C, Parsons A, Nachbagauer R, Hamilton J, Cappuccini F, Ulaszewska M, et al. Targeting Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and Non-human Adenoviral Vaccines in Mice. Mol Ther Methods Clin Dev. 2020;16:108-125 pubmed 出版商
  83. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  84. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  85. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  86. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  87. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  88. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  89. Tsao L, Crosby E, Trotter T, Agarwal P, Hwang B, Acharya C, et al. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis. JCI Insight. 2019;4: pubmed 出版商
  90. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  91. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  92. Constantinides M, Link V, Tamoutounour S, Wong A, Pérez Chaparro P, Han S, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366: pubmed 出版商
  93. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  94. Helsley R, Varadharajan V, Brown A, Gromovsky A, Schugar R, Ramachandiran I, et al. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. elife. 2019;8: pubmed 出版商
  95. Mani V, Bromley S, Aijö T, Mora Buch R, Carrizosa E, Warner R, et al. Migratory DCs activate TGF-β to precondition naïve CD8+ T cells for tissue-resident memory fate. Science. 2019;366: pubmed 出版商
  96. Nelson C, Thompson E, Quarnstrom C, Fraser K, Seelig D, Bhela S, et al. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019;28:3092-3104.e5 pubmed 出版商
  97. Schreiber L, Urbiola C, Das K, Spiesschaert B, Kimpel J, Heinemann F, et al. The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer. 2019;121:647-658 pubmed 出版商
  98. Liu Z, Gu Y, Chakarov S, Blériot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178:1509-1525.e19 pubmed 出版商
  99. Zhang F, Parayath N, Ene C, Stephan S, Koehne A, Coon M, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 2019;10:3974 pubmed 出版商
  100. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  101. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  102. Ma L, Dichwalkar T, Chang J, Cossette B, Garafola D, Zhang A, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science. 2019;365:162-168 pubmed 出版商
  103. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  104. Leach S, Shinnakasu R, Adachi Y, Momota M, Makino Okamura C, Yamamoto T, et al. Requirement for memory B cell activation in protection from heterologous influenza virus reinfection. Int Immunol. 2019;: pubmed 出版商
  105. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  106. Dangaj D, Bruand M, Grimm A, Ronet C, Barras D, Duttagupta P, et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell. 2019;35:885-900.e10 pubmed 出版商
  107. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  108. Wilkinson A, Ishida R, Kikuchi M, Sudo K, Morita M, Crisostomo R, et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature. 2019;: pubmed 出版商
  109. Rühl J, Citterio C, Engelmann C, Haigh T, Dzionek A, Dreyer J, et al. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas. J Clin Invest. 2019;129:2071-2087 pubmed 出版商
  110. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  111. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  112. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  113. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  114. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  115. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  116. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  117. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  118. Salerno F, Guislain A, Freen van Heeren J, Nicolet B, Young H, Wolkers M. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8:e1532762 pubmed 出版商
  119. Davies A, Kim H, González Cano R, Choi J, Back S, Roh S, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176:716-728.e18 pubmed 出版商
  120. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  121. Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Front Immunol. 2018;9:2981 pubmed 出版商
  122. Cornelissen L, Blanas A, van der Horst J, Kruijssen L, Zaal A, O Toole T, et al. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer. 2019;144:2290-2302 pubmed 出版商
  123. Chorro L, Suzuki M, Chin S, Williams T, Snapp E, Odagiu L, et al. Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nat Commun. 2018;9:5368 pubmed 出版商
  124. Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin G, Shurin M, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2019;116:1361-1369 pubmed 出版商
  125. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  126. Harrison O, Linehan J, Shih H, Bouladoux N, Han S, SMELKINSON M, et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science. 2019;363: pubmed 出版商
  127. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  128. Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu T, Harden Bowles K, et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A. 2018;115:E11731-E11740 pubmed 出版商
  129. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  130. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  131. Wilgenburg B, Loh L, Chen Z, Pediongco T, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9:4706 pubmed 出版商
  132. Zhang C, Jiang M, Zhou H, Liu W, Wang C, Kang Z, et al. TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. J Clin Invest. 2018;128:5399-5412 pubmed 出版商
  133. Bhagwandin C, Ashbeck E, Whalen M, Bandola Simon J, Roche P, Szajman A, et al. The E3 ubiquitin ligase MARCH1 regulates glucose-tolerance and lipid storage in a sex-specific manner. PLoS ONE. 2018;13:e0204898 pubmed 出版商
  134. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, et al. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun. 2018;9:4381 pubmed 出版商
  135. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  136. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  137. Luo H, Winkelmann E, Zhu S, Ru W, Mays E, Silvas J, et al. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest. 2018;128:4980-4991 pubmed 出版商
  138. Lin Y, Wang L, Lee C, Chen S. Flt3 ligand treatment reduces enterovirus A71 lethality in mice with enhanced B cell responses. Sci Rep. 2018;8:12184 pubmed 出版商
  139. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  140. Poffenberger M, Metcalfe Roach A, Aguilar E, Chen J, Hsu B, Wong A, et al. LKB1 deficiency in T cells promotes the development of gastrointestinal polyposis. Science. 2018;361:406-411 pubmed 出版商
  141. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  142. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed 出版商
  143. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  144. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  145. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  146. Tan B, Shi X, Zhang J, Qin J, Zhang N, Ren H, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018;78:4929-4942 pubmed 出版商
  147. Kirkling M, Cytlak U, Lau C, Lewis K, Resteu A, Khodadadi Jamayran A, et al. Notch Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells. Cell Rep. 2018;23:3658-3672.e6 pubmed 出版商
  148. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  149. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  150. Kanneganti A, Malireddi R, Saavedra P, Vande Walle L, Van Gorp H, Kambara H, et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med. 2018;215:1519-1529 pubmed 出版商
  151. Drobek A, Moudra A, Mueller D, Huranová M, Horková V, Pribikova M, et al. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. 2018;37: pubmed 出版商
  152. Crosby E, Wei J, Yang X, Lei G, Wang T, Liu C, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology. 2018;7:e1421891 pubmed 出版商
  153. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  154. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115:E4041-E4050 pubmed 出版商
  155. Ferrari de Andrade L, Tay R, Pan D, Luoma A, Ito Y, Badrinath S, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 2018;359:1537-1542 pubmed 出版商
  156. Harker J, Wong K, Dallari S, Bao P, Dolgoter A, Jo Y, et al. Interleukin-27R Signaling Mediates Early Viral Containment and Impacts Innate and Adaptive Immunity after Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol. 2018;92: pubmed 出版商
  157. Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K, Mouhieddine T, et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest. 2018;128:2487-2499 pubmed 出版商
  158. Xi J, Huang Q, Wang L, Ma X, Deng Q, Kumar M, et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene. 2018;37:3151-3165 pubmed 出版商
  159. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  160. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  161. A Verghese D, Demir M, Chun N, Fribourg M, Cravedi P, Llaudó I, et al. T Cell Expression of C5a Receptor 2 Augments Murine Regulatory T Cell (TREG) Generation and TREG-Dependent Cardiac Allograft Survival. J Immunol. 2018;200:2186-2198 pubmed 出版商
  162. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  163. Liang W, Mao S, Sun S, Li M, Li Z, Yu R, et al. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation. Front Immunol. 2018;9:78 pubmed 出版商
  164. Mathew N, Baumgartner F, Braun L, O Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24:282-291 pubmed 出版商
  165. King E, Mazor R, Cuburu N, Pastan I. Low-Dose Methotrexate Prevents Primary and Secondary Humoral Immune Responses and Induces Immune Tolerance to a Recombinant Immunotoxin. J Immunol. 2018;200:2038-2045 pubmed 出版商
  166. Böttcher J, Bonavita E, Chakravarty P, Blees H, Cabeza Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022-1037.e14 pubmed 出版商
  167. Ellestad K, Thangavelu G, Haile Y, Lin J, Boon L, Anderson C. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol. 2018;9:12 pubmed 出版商
  168. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  169. Scott J, Lebratti T, Richner J, Jiang X, Fernandez E, Zhao H, et al. Cellular and Humoral Immunity Protect against Vaginal Zika Virus Infection in Mice. J Virol. 2018;92: pubmed 出版商
  170. Tang H, Liang Y, Anders R, Taube J, Qiu X, Mulgaonkar A, et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest. 2018;128:580-588 pubmed 出版商
  171. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  172. Christ A, Günther P, Lauterbach M, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell. 2018;172:162-175.e14 pubmed 出版商
  173. Mazor R, King E, Onda M, Cuburu N, Addissie S, Crown D, et al. Tolerogenic nanoparticles restore the antitumor activity of recombinant immunotoxins by mitigating immunogenicity. Proc Natl Acad Sci U S A. 2018;115:E733-E742 pubmed 出版商
  174. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  175. Burrack A, Malhotra D, Dileepan T, Osum K, Swanson L, Fife B, et al. Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol. 2018;200:477-482 pubmed 出版商
  176. Medaglia C, Giladi A, Stoler Barak L, De Giovanni M, Salame T, Biram A, et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science. 2017;358:1622-1626 pubmed 出版商
  177. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  178. Ernszt D, Banfai K, Kellermayer Z, Pap A, Lord J, Pongracz J, et al. PPARgamma Deficiency Counteracts Thymic Senescence. Front Immunol. 2017;8:1515 pubmed 出版商
  179. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  180. Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed 出版商
  181. Koyanagi N, Imai T, Shindo K, Sato A, Fujii W, Ichinohe T, et al. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis. J Clin Invest. 2017;127:3784-3795 pubmed 出版商
  182. Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, et al. The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation. Cell Rep. 2017;20:600-612 pubmed 出版商
  183. Alloatti A, Rookhuizen D, Joannas L, Carpier J, Iborra S, Magalhaes J, et al. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med. 2017;214:2231-2241 pubmed 出版商
  184. Mildner A, Schönheit J, Giladi A, David E, Lara Astiaso D, Lorenzo Vivas E, et al. Genomic Characterization of Murine Monocytes Reveals C/EBP? Transcription Factor Dependence of Ly6C- Cells. Immunity. 2017;46:849-862.e7 pubmed 出版商
  185. Lis R, Karrasch C, Poulos M, Kunar B, Redmond D, Duran J, et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature. 2017;545:439-445 pubmed 出版商
  186. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  187. Zhang H, Luo J, Alcorn J, Chen K, Fan S, Pilewski J, et al. AIM2 Inflammasome Is Critical for Influenza-Induced Lung Injury and Mortality. J Immunol. 2017;198:4383-4393 pubmed 出版商
  188. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  189. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  190. Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, Schedin P. Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight. 2017;2:e89206 pubmed 出版商
  191. Thomas D, Clare S, Sowerby J, Pardo M, Juss J, Goulding D, et al. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med. 2017;214:1111-1128 pubmed 出版商
  192. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  193. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  194. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  195. Fisher S, Aston W, Chee J, Khong A, Cleaver A, Solin J, et al. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun Inflamm Dis. 2017;5:16-28 pubmed 出版商
  196. Huang A, Peng D, Guo H, Ben Y, Zuo X, Wu F, et al. A human programmed death-ligand 1-expressing mouse tumor model for evaluating the therapeutic efficacy of anti-human PD-L1 antibodies. Sci Rep. 2017;7:42687 pubmed 出版商
  197. Rossey I, Gilman M, Kabeche S, Sedeyn K, Wrapp D, Kanekiyo M, et al. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun. 2017;8:14158 pubmed 出版商
  198. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  199. Ying W, Wollam J, Ofrecio J, Bandyopadhyay G, El Ouarrat D, Lee Y, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127:1019-1030 pubmed 出版商
  200. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  201. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  202. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  203. Ai J, Li J, Gessler D, Su Q, Wei Q, Li H, et al. Adeno-associated virus serotype rh.10 displays strong muscle tropism following intraperitoneal delivery. Sci Rep. 2017;7:40336 pubmed 出版商
  204. Atkin Smith G, Paone S, Zanker D, Duan M, Phan T, Chen W, et al. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci Rep. 2017;7:39846 pubmed 出版商
  205. Cañete A, Carmona R, Ariza L, Sanchez M, Rojas A, Muñoz Chápuli R. A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica. 2017;102:647-655 pubmed 出版商
  206. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  207. Lamprianou S, Gysemans C, Bou Saab J, Pontes H, Mathieu C, Meda P. Glibenclamide Prevents Diabetes in NOD Mice. PLoS ONE. 2016;11:e0168839 pubmed 出版商
  208. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  209. Bieber K, Witte M, Sun S, Hundt J, Kalies K, Dräger S, et al. T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita. Sci Rep. 2016;6:38357 pubmed 出版商
  210. Ma C, Mishra S, Demel E, Liu Y, Zhang N. TGF-? Controls the Formation of Kidney-Resident T Cells via Promoting Effector T Cell Extravasation. J Immunol. 2017;198:749-756 pubmed 出版商
  211. Kuchmiy A, D Hont J, Hochepied T, Lamkanfi M. NLRP2 controls age-associated maternal fertility. J Exp Med. 2016;213:2851-2860 pubmed
  212. Zamora Pineda J, Kumar A, Suh J, Zhang M, Saba J. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med. 2016;213:2773-2791 pubmed
  213. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  214. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  215. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  216. Massaad M, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest. 2016;126:4219-4236 pubmed 出版商
  217. Clement M, Pearson J, Gras S, van den Berg H, Lissina A, Llewellyn Lacey S, et al. Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies. Sci Rep. 2016;6:35332 pubmed 出版商
  218. Alves da Costa T, Di Gangi R, Thomé R, Barreto Felisbino M, Pires Bonfanti A, Lumi Watanabe Ishikawa L, et al. Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS ONE. 2016;11:e0164745 pubmed 出版商
  219. Lopez Guadamillas E, Fernandez Marcos P, Pantoja C, Muñoz Martin M, Martinez D, Gomez Lopez G, et al. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPAR?. Sci Rep. 2016;6:34542 pubmed 出版商
  220. Arunachalam P, Mishra R, Badarinath K, Selvam D, Payeli S, Stout R, et al. Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Sci Rep. 2016;6:33564 pubmed 出版商
  221. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  222. Takeshima T, Pop L, Laine A, Iyengar P, Vitetta E, Hannan R. Key role for neutrophils in radiation-induced antitumor immune responses: Potentiation with G-CSF. Proc Natl Acad Sci U S A. 2016;113:11300-11305 pubmed
  223. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  224. Hirai Yuki A, Hensley L, McGivern D, Gonzalez Lopez O, Das A, Feng H, et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science. 2016;353:1541-1545 pubmed
  225. Hu H, Umemori H, Hsueh Y. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Sci Rep. 2016;6:33592 pubmed 出版商
  226. Bernard Valnet R, Yshii L, Quériault C, Nguyen X, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113:10956-61 pubmed 出版商
  227. Saranchova I, Han J, Huang H, Fenninger F, Choi K, Munro L, et al. Discovery of a Metastatic Immune Escape Mechanism Initiated by the Loss of Expression of the Tumour Biomarker Interleukin-33. Sci Rep. 2016;6:30555 pubmed 出版商
  228. Akk A, Springer L, Pham C. Neutrophil Extracellular Traps Enhance Early Inflammatory Response in Sendai Virus-Induced Asthma Phenotype. Front Immunol. 2016;7:325 pubmed 出版商
  229. Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med. 2016;16:334 pubmed 出版商
  230. Uckelmann H, Blaszkiewicz S, Nicolae C, Haas S, Schnell A, Wurzer S, et al. Extracellular matrix protein Matrilin-4 regulates stress-induced HSC proliferation via CXCR4. J Exp Med. 2016;213:1961-71 pubmed 出版商
  231. Fabbiano S, Suárez Zamorano N, Rigo D, Veyrat Durebex C, Stevanovic Dokic A, Colin D, et al. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metab. 2016;24:434-446 pubmed 出版商
  232. Bombeiro A, Thomé R, Oliveira Nunes S, Monteiro Moreira B, Verinaud L, Oliveira A. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS ONE. 2016;11:e0161463 pubmed 出版商
  233. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum R, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499 pubmed 出版商
  234. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  235. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  236. Carow B, Gao Y, Coquet J, Reilly M, Rottenberg M. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. J Immunol. 2016;197:2261-8 pubmed 出版商
  237. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  238. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun. 2016;7:12369 pubmed 出版商
  239. Imhof B, Jemelin S, Ballet R, Vesin C, Schapira M, Karaca M, et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A. 2016;113:E4847-56 pubmed 出版商
  240. Hwang S, Cobb D, Bhadra R, Youngblood B, Khan I. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016;213:1799-818 pubmed 出版商
  241. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  242. Stifter K, Schuster C, Schlosser M, Boehm B, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep. 2016;6:29419 pubmed 出版商
  243. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  244. Keil M, Sonner J, Lanz T, Oezen I, Bunse T, Bittner S, et al. General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. J Neuroimmunol. 2016;297:117-26 pubmed 出版商
  245. Gorman M, Poddar S, Farzan M, Diamond M. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J Virol. 2016;90:8212-25 pubmed 出版商
  246. Bombeiro A, Santini J, Thomé R, Ferreira E, Nunes S, Moreira B, et al. Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. Front Cell Neurosci. 2016;10:151 pubmed 出版商
  247. Allison K, Sajti E, Collier J, Gosselin D, Troutman T, Stone E, et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. elife. 2016;5: pubmed 出版商
  248. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  249. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  250. Albarrán Juárez J, Kaur H, Grimm M, Offermanns S, Wettschureck N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis. 2016;251:445-453 pubmed 出版商
  251. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  252. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  253. Mkhikian H, Mortales C, Zhou R, Khachikyan K, Wu G, Haslam S, et al. Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis. elife. 2016;5: pubmed 出版商
  254. Sujino T, London M, Hoytema van Konijnenburg D, Rendon T, Buch T, Silva H, et al. Tissue adaptation of regulatory and intraepithelial CD4? T cells controls gut inflammation. Science. 2016;352:1581-6 pubmed 出版商
  255. Seehus C, Kaye J. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells. Bio Protoc. 2016;6: pubmed
  256. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  257. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  258. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  259. Reynaldi A, Smith N, Schlub T, Venturi V, Rudd B, Davenport M. Modeling the dynamics of neonatal CD8+ T-cell responses. Immunol Cell Biol. 2016;94:838-848 pubmed 出版商
  260. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  261. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  262. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  263. Verbist K, Guy C, Milasta S, Liedmann S, Kaminski M, Wang R, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389-93 pubmed 出版商
  264. Lee S, Hong S, Verma V, Lee Y, Duong T, Jeong K, et al. Flagellin is a strong vaginal adjuvant of a therapeutic vaccine for genital cancer. Oncoimmunology. 2016;5:e1081328 pubmed
  265. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  266. Braun J, Meixner A, Brachner A, Foisner R. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE. 2016;11:e0152278 pubmed 出版商
  267. Qi X, Gurung P, Malireddi R, Karmaus P, Sharma D, Vogel P, et al. Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis. Mucosal Immunol. 2017;10:128-138 pubmed 出版商
  268. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  269. Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman H, et al. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res. 2016;57:832-47 pubmed 出版商
  270. Miller M, Blystone S. Human Macrophages Utilize the Podosome Formin FMNL1 for Adhesion and Migration. Cellbio (Irvine, Calif). 2015;4:1-11 pubmed
  271. Marek I, Lichtneger T, Cordasic N, Hilgers K, Volkert G, Fahlbusch F, et al. Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS ONE. 2016;11:e0150471 pubmed 出版商
  272. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  273. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  274. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  275. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  276. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  277. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  278. Masuda T, Wang X, Maeda M, Canver M, Sher F, Funnell A, et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science. 2016;351:285-9 pubmed 出版商
  279. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  280. Duhan V, Khairnar V, Friedrich S, Zhou F, Gassa A, Honke N, et al. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8(+) T-cell priming and viral control. Sci Rep. 2016;6:19191 pubmed 出版商
  281. Yabas M, Jing W, Shafik S, Bröer S, Enders A. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes. PLoS ONE. 2016;11:e0146774 pubmed 出版商
  282. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  283. Gallego Ortega D, Ledger A, Roden D, Law A, Magenau A, Kikhtyak Z, et al. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biol. 2015;13:e1002330 pubmed 出版商
  284. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  285. Ulaganathan V, Sperl B, Rapp U, Ullrich A. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site. Nature. 2015;528:570-4 pubmed 出版商
  286. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  287. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler D, Höpken U, et al. Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE. 2015;10:e0143883 pubmed 出版商
  288. Messaoudi S, He Y, Gutsol A, Wight A, Hébert R, Vilmundarson R, et al. Endothelial Gata5 transcription factor regulates blood pressure. Nat Commun. 2015;6:8835 pubmed 出版商
  289. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  290. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  291. Murayama M, Kakuta S, Inoue A, Umeda N, Yonezawa T, Maruhashi T, et al. CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis. Nat Commun. 2015;6:8483 pubmed 出版商
  292. Buerger S, Herrmann V, Mundt S, Trautwein N, Groettrup M, Basler M. The Ubiquitin-like Modifier FAT10 Is Selectively Expressed in Medullary Thymic Epithelial Cells and Modifies T Cell Selection. J Immunol. 2015;195:4106-16 pubmed 出版商
  293. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  294. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  295. Matsuda Y, Wang X, Oishi H, Guan Z, Saito M, Liu M, et al. Spleen Tyrosine Kinase Modulates Fibrous Airway Obliteration and Associated Lymphoid Neogenesis After Transplantation. Am J Transplant. 2016;16:342-52 pubmed 出版商
  296. Boettler T, Schneider D, Cheng Y, Kadoya K, Brandon E, Martinson L, et al. Pancreatic Tissue Transplanted in TheraCyte Encapsulation Devices Is Protected and Prevents Hyperglycemia in a Mouse Model of Immune-Mediated Diabetes. Cell Transplant. 2016;25:609-14 pubmed 出版商
  297. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  298. Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed 出版商
  299. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  300. Silva O, Crocetti J, Humphries L, Burkhardt J, Miceli M. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS ONE. 2015;10:e0133353 pubmed 出版商
  301. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  302. Pérez Girón J, Gómez Medina S, Lüdtke A, Munoz Fontela C. Intranasal Administration of Recombinant Influenza Vaccines in Chimeric Mouse Models to Study Mucosal Immunity. J Vis Exp. 2015;:e52803 pubmed 出版商
  303. Vogel A, Brown D. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol. 2015;6:327 pubmed 出版商
  304. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  305. Xu G, Wu H, Zhang J, Li D, Wang Y, Wang Y, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med. 2015;87:15-25 pubmed 出版商
  306. Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang J, Bando H, et al. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun. 2015;6:7474 pubmed 出版商
  307. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  308. Deppisch N, Ruf P, Eissler N, Neff F, Buhmann R, Lindhofer H, et al. Efficacy and Tolerability of a GD2-Directed Trifunctional Bispecific Antibody in a Preclinical Model: Subcutaneous Administration Is Superior to Intravenous Delivery. Mol Cancer Ther. 2015;14:1877-83 pubmed 出版商
  309. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  310. Huang H, Chan Y, Hui C, Wu J, Wu C, Chen J. Use of tilapia piscidin 3 (TP3) to protect against MRSA infection in mice with skin injuries. Oncotarget. 2015;6:12955-69 pubmed
  311. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  312. Kato Nagaoka N, Shimada S, Yamakawa Y, Tsujibe S, Naito T, Setoyama H, et al. Enhanced differentiation of intraepithelial lymphocytes in the intestine of polymeric immunoglobulin receptor-deficient mice. Immunology. 2015;146:59-69 pubmed 出版商
  313. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  314. Opata M, Carpio V, Ibitokou S, Dillon B, Obiero J, Stephens R. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells. J Immunol. 2015;194:5346-54 pubmed 出版商
  315. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  316. Wan W, Liu Q, Lionakis M, Marino A, Anderson S, Swamydas M, et al. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res. 2015;106:478-87 pubmed 出版商
  317. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  318. Tsou Y, Lin Y, Shao H, Yu S, Wu S, Lin H, et al. Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease. PLoS Negl Trop Dis. 2015;9:e0003692 pubmed 出版商
  319. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  320. Lal G, Nakayama Y, Sethi A, Singh A, Burrell B, Kulkarni N, et al. Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation. 2015;99:1817-28 pubmed 出版商
  321. Napier R, Norris B, Swimm A, Giver C, Harris W, Laval J, et al. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog. 2015;11:e1004770 pubmed 出版商
  322. Charlton J, Tsoukatou D, Mamalaki C, Chatzidakis I. Programmed death 1 regulates memory phenotype CD4 T cell accumulation, inhibits expansion of the effector memory phenotype subset and modulates production of effector cytokines. PLoS ONE. 2015;10:e0119200 pubmed 出版商
  323. Povinelli B, Kokolus K, Eng J, Dougher C, Curtin L, Capitano M, et al. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells. PLoS ONE. 2015;10:e0120078 pubmed 出版商
  324. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  325. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  326. Pone E, Lam T, Lou Z, Wang R, Chen Y, Liu D, et al. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. J Immunol. 2015;194:3065-78 pubmed 出版商
  327. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  328. Choi E, Park H, Sul O, Rajasekaran M, Yu R, Choi H. Carbon monoxide reverses adipose tissue inflammation and insulin resistance upon loss of ovarian function. Am J Physiol Endocrinol Metab. 2015;308:E621-30 pubmed 出版商
  329. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  330. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler T. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 2015;11:e1004481 pubmed 出版商
  331. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  332. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  333. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  334. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet A, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139-48 pubmed 出版商
  335. Bergot A, Monnet N, Le Tran S, Mittal D, Al Kouba J, Steptoe R, et al. HPV16 E7 expression in skin induces TSLP secretion, type 2 ILC infiltration and atopic dermatitis-like lesions. Immunol Cell Biol. 2015;93:540-7 pubmed 出版商
  336. Sun C, Schattgen S, Pisitkun P, Jorgensen J, Hilterbrand A, Wang L, et al. Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. J Immunol. 2015;194:1819-31 pubmed 出版商
  337. Liu Z, Zhao S, Chen Q, Yan K, Liu P, Li N, et al. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice. Biol Reprod. 2015;92:63 pubmed 出版商
  338. Spada R, Rojas J, Pérez Yagüe S, Mulens V, Cannata Ortiz P, Bragado R, et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol. 2015;97:583-98 pubmed 出版商
  339. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  340. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  341. Hu Z, Molloy M, Usherwood E. CD4(+) T-cell dependence of primary CD8(+) T-cell response against vaccinia virus depends upon route of infection and viral dose. Cell Mol Immunol. 2016;13:82-93 pubmed 出版商
  342. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  343. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  344. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  345. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  346. Kim J, Li W, Choi Y, Lewin S, Verbeke C, Dranoff G, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33:64-72 pubmed 出版商
  347. Pekkonen P, Järviluoma A, Zinovkina N, Cvrljevic A, Prakash S, Westermarck J, et al. KSHV viral cyclin interferes with T-cell development and induces lymphoma through Cdk6 and Notch activation in vivo. Cell Cycle. 2014;13:3670-84 pubmed 出版商
  348. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  349. Kobold S, Steffen J, Chaloupka M, Grassmann S, Henkel J, Castoldi R, et al. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer. J Natl Cancer Inst. 2015;107:364 pubmed 出版商
  350. van Blijswijk J, Schraml B, Rogers N, Whitney P, Zelenay S, Acton S, et al. Altered lymph node composition in diphtheria toxin receptor-based mouse models to ablate dendritic cells. J Immunol. 2015;194:307-15 pubmed 出版商
  351. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  352. Buchan S, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, et al. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. J Immunol. 2015;194:125-133 pubmed 出版商
  353. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  354. Jurkin J, Henkel T, Nielsen A, Minnich M, Popow J, Kaufmann T, et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 2014;33:2922-36 pubmed 出版商
  355. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  356. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  357. Hoelzinger D, Dominguez A, Cohen P, Gendler S. Inhibition of adaptive immunity by IL9 can be disrupted to achieve rapid T-cell sensitization and rejection of progressive tumor challenges. Cancer Res. 2014;74:6845-55 pubmed 出版商
  358. Bertin S, Lozano Ruiz B, Bachiller V, García Martínez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505-15 pubmed 出版商
  359. Castro Rojas C, Deason K, Hussain R, Hayardeny L, Cravens P, Yarovinsky F, et al. Testing effects of glatiramer acetate and fingolimod in an infectious model of CNS immune surveillance. J Neuroimmunol. 2014;276:232-5 pubmed 出版商
  360. Wei F, Yang D, Tewary P, Li Y, Li S, Chen X, et al. The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant. Cancer Res. 2014;74:5989-98 pubmed 出版商
  361. Herranz D, Ambesi Impiombato A, Palomero T, Schnell S, Belver L, Wendorff A, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130-7 pubmed 出版商
  362. Meraz I, Savage D, Segura Ibarra V, Li J, Rhudy J, Gu J, et al. Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm. 2014;11:3484-91 pubmed 出版商
  363. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  364. Rauen J, Kreer C, Paillard A, van Duikeren S, Benckhuijsen W, Camps M, et al. Enhanced cross-presentation and improved CD8+ T cell responses after mannosylation of synthetic long peptides in mice. PLoS ONE. 2014;9:e103755 pubmed 出版商
  365. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  366. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  367. Reeh K, Cardenas K, Bain V, Liu Z, LAURENT M, Manley N, et al. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development. 2014;141:2950-8 pubmed 出版商
  368. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  369. Knoop K, McDonald K, McCrate S, McDole J, Newberry R. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015;8:198-210 pubmed 出版商
  370. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  371. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed 出版商
  372. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258-69 pubmed 出版商
  373. Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J Immunol. 2014;193:268-76 pubmed 出版商
  374. Geem D, Medina Contreras O, McBride M, Newberry R, Koni P, Denning T. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431-8 pubmed 出版商
  375. Sreedharan R, Chen S, Miller M, Haribhai D, Williams C, Van Why S. Mice with an absent stress response are protected against ischemic renal injury. Kidney Int. 2014;86:515-24 pubmed 出版商
  376. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  377. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  378. Meraz I, Hearnden C, Liu X, Yang M, Williams L, Savage D, et al. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes. PLoS ONE. 2014;9:e94703 pubmed 出版商
  379. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  380. Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014;64:155-65 pubmed 出版商
  381. Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82-92 pubmed 出版商
  382. Koga T, Hedrich C, Mizui M, Yoshida N, Otomo K, Lieberman L, et al. CaMK4-dependent activation of AKT/mTOR and CREM-? underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124:2234-45 pubmed 出版商
  383. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  384. Le Saout C, Hasley R, Imamichi H, Tcheung L, Hu Z, Luckey M, et al. Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis. PLoS Pathog. 2014;10:e1003976 pubmed 出版商
  385. Vanoaica L, Richman L, Jaworski M, Darshan D, Luther S, Kühn L. Conditional deletion of ferritin h in mice reduces B and T lymphocyte populations. PLoS ONE. 2014;9:e89270 pubmed 出版商
  386. Lee J, Walsh M, Hoehn K, James D, Wherry E, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-9 pubmed 出版商
  387. Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10:e1003885 pubmed 出版商
  388. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  389. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  390. Gaughan A, Wang J, Pelletier R, Nadasdy T, Brodsky S, Roy S, et al. Key role for CD4 T cells during mixed antibody-mediated rejection of renal allografts. Am J Transplant. 2014;14:284-94 pubmed 出版商
  391. Yang M, Rainone A, Shi X, Fournier S, Zhang J. A new animal model of spontaneous autoimmune peripheral polyneuropathy: implications for Guillain-Barré syndrome. Acta Neuropathol Commun. 2014;2:5 pubmed 出版商
  392. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  393. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  394. Murphy K, Erickson J, Johnson C, Seiler C, Bedi J, Hu P, et al. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol. 2014;192:224-33 pubmed 出版商
  395. Borger J, Zamoyska R, Gakamsky D. Proximity of TCR and its CD8 coreceptor controls sensitivity of T cells. Immunol Lett. 2014;157:16-22 pubmed 出版商
  396. Griffiths K, Stylianou E, Poyntz H, Betts G, Fletcher H, McShane H. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS ONE. 2013;8:e78312 pubmed 出版商
  397. Moriya T, Fukatsu K, Noguchi M, Okamoto K, Murakoshi S, Saitoh D, et al. Intravenous administration of high-dose Paclitaxel reduces gut-associated lymphoid tissue cell number and respiratory immunoglobulin A concentrations in mice. Surg Infect (Larchmt). 2014;15:50-7 pubmed 出版商
  398. Schmitt E, Haribhai D, Jeschke J, Co D, Ziegelbauer J, Yan K, et al. Chronic follicular bronchiolitis requires antigen-specific regulatory T cell control to prevent fatal disease progression. J Immunol. 2013;191:5460-76 pubmed 出版商
  399. Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Sakamoto C, et al. Inactivation of tumor-specific CD8? CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol. 2013;91:545-55 pubmed 出版商
  400. Bittner Eddy P, Fischer L, Costalonga M. Identification of gingipain-specific I-A(b) -restricted CD4+ T cells following mucosal colonization with Porphyromonas gingivalis in C57BL/6 mice. Mol Oral Microbiol. 2013;28:452-66 pubmed 出版商
  401. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  402. Fuertbauer E, Zaujec J, Uhrin P, Raab I, Weber M, Schachner H, et al. Thymic medullar conduits-associated podoplanin promotes natural regulatory T cells. Immunol Lett. 2013;154:31-41 pubmed 出版商
  403. Pioli P, Dahlem T, Weis J, Weis J. Deletion of Snai2 and Snai3 results in impaired physical development compounded by lymphocyte deficiency. PLoS ONE. 2013;8:e69216 pubmed 出版商
  404. Lappalainen S, Tamminen K, Vesikari T, Blazevic V. Comparative immunogenicity in mice of rotavirus VP6 tubular structures and virus-like particles. Hum Vaccin Immunother. 2013;9:1991-2001 pubmed 出版商
  405. Ke F, Bouillet P, Kaufmann T, Strasser A, Kerr J, Voss A. Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell Death Dis. 2013;4:e650 pubmed 出版商
  406. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  407. Cravens P, Kieseier B, Hussain R, Herndon E, Arellano B, Ben L, et al. The neonatal CNS is not conducive for encephalitogenic Th1 T cells and B cells during experimental autoimmune encephalomyelitis. J Neuroinflammation. 2013;10:67 pubmed 出版商
  408. Mandal M, Donnelly R, Elkabes S, Zhang P, Davini D, David B, et al. Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain Behav Immun. 2013;33:33-45 pubmed 出版商
  409. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  410. Gerber S, Sedlacek A, Cron K, Murphy S, Frelinger J, Lord E. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol. 2013;182:2345-54 pubmed 出版商
  411. Billich A, Baumruker T, Beerli C, Bigaud M, Bruns C, Calzascia T, et al. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis. PLoS ONE. 2013;8:e59630 pubmed 出版商
  412. Zinselmeyer B, Heydari S, Sacristán C, Nayak D, Cammer M, Herz J, et al. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J Exp Med. 2013;210:757-74 pubmed 出版商
  413. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  414. Gómez Herreros F, Romero Granados R, Zeng Z, Alvarez Quilón A, Quintero C, Ju L, et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 2013;9:e1003226 pubmed 出版商
  415. Hogan T, Shuvaev A, Commenges D, Yates A, Callard R, Thiebaut R, et al. Clonally diverse T cell homeostasis is maintained by a common program of cell-cycle control. J Immunol. 2013;190:3985-93 pubmed 出版商
  416. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  417. Kipari T, Hadoke P, Iqbal J, Man T, Miller E, Coutinho A, et al. 11?-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis. FASEB J. 2013;27:1519-31 pubmed 出版商
  418. Diken M, Kreiter S, Selmi A, Tureci O, Sahin U. Antitumor vaccination with synthetic mRNA: strategies for in vitro and in vivo preclinical studies. Methods Mol Biol. 2013;969:235-46 pubmed 出版商
  419. Bergmann H, Yabas M, Short A, Miosge L, Barthel N, Teh C, et al. B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8- dendritic cells require the intramembrane endopeptidase SPPL2A. J Exp Med. 2013;210:31-40 pubmed 出版商
  420. Cevik S, Keskin N, Belkaya S, Ozlu M, Deniz E, Tazebay U, et al. CD81 interacts with the T cell receptor to suppress signaling. PLoS ONE. 2012;7:e50396 pubmed 出版商
  421. Oldstone M, Edelmann K, McGavern D, Cruite J, Welch M. Molecular anatomy and number of antigen specific CD8 T cells required to cause type 1 diabetes. PLoS Pathog. 2012;8:e1003044 pubmed 出版商
  422. Sag D, Wingender G, Nowyhed H, Wu R, Gebre A, Parks J, et al. ATP-binding cassette transporter G1 intrinsically regulates invariant NKT cell development. J Immunol. 2012;189:5129-38 pubmed 出版商
  423. Mathew R, Seiler M, Scanlon S, Mao A, Constantinides M, Bertozzi Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618-21 pubmed 出版商
  424. Yassai M, Cooley B, Gorski J. Developmental dynamics of post-selection thymic DN iNKT. PLoS ONE. 2012;7:e43509 pubmed 出版商
  425. Pagán A, Pepper M, Chu H, Green J, Jenkins M. CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J Immunol. 2012;189:2909-17 pubmed 出版商
  426. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  427. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  428. Chevrier S, Genton C, Malissen B, Malissen M, Acha Orbea H. Dominant Role of CD80-CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LAT(Y136F) CD4(+) T Cells. Front Immunol. 2012;3:27 pubmed 出版商
  429. Barral P, Sanchez Nino M, Van Rooijen N, Cerundolo V, Batista F. The location of splenic NKT cells favours their rapid activation by blood-borne antigen. EMBO J. 2012;31:2378-90 pubmed 出版商
  430. Hurez V, Daniel B, Sun L, Liu A, Ludwig S, Kious M, et al. Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res. 2012;72:2089-99 pubmed 出版商
  431. Lumsden J, Nurmukhambetova S, Klein J, Sattabongkot J, Bennett J, Bertholet S, et al. Evaluation of immune responses to a Plasmodium vivax CSP-based recombinant protein vaccine candidate in combination with second-generation adjuvants in mice. Vaccine. 2012;30:3311-9 pubmed 出版商
  432. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney N, Schuijs M, et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7:e32371 pubmed 出版商
  433. Sun L, Hurez V, Thibodeaux S, Kious M, Liu A, Lin P, et al. Aged regulatory T cells protect from autoimmune inflammation despite reduced STAT3 activation and decreased constraint of IL-17 producing T cells. Aging Cell. 2012;11:509-19 pubmed 出版商
  434. Dutra R, Leite D, Bento A, Manjavachi M, Patrício E, Figueiredo C, et al. The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice. PLoS ONE. 2011;6:e27875 pubmed 出版商
  435. Salti S, Hammelev E, Grewal J, Reddy S, Zemple S, Grossman W, et al. Granzyme B regulates antiviral CD8+ T cell responses. J Immunol. 2011;187:6301-9 pubmed 出版商
  436. Badeaux A, Yang Y, Cardenas K, Vemulapalli V, Chen K, Kusewitt D, et al. Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J Biol Chem. 2012;287:429-37 pubmed 出版商
  437. Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, et al. T cell factor 1 regulates thymocyte survival via a RORγt-dependent pathway. J Immunol. 2011;187:5964-73 pubmed 出版商
  438. Adoro S, McCaughtry T, Erman B, Alag A, Van Laethem F, Park J, et al. Coreceptor gene imprinting governs thymocyte lineage fate. EMBO J. 2012;31:366-77 pubmed 出版商
  439. Suliman S, Tan J, Xu K, Kousis P, Kowalski P, Chang G, et al. Notch3 is dispensable for thymocyte ?-selection and Notch1-induced T cell leukemogenesis. PLoS ONE. 2011;6:e24937 pubmed 出版商
  440. Bunnell T, Burbach B, Shimizu Y, Ervasti J. ?-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell. 2011;22:4047-58 pubmed 出版商
  441. Ota N, Wong K, Valdez P, Zheng Y, Crellin N, Diehl L, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12:941-8 pubmed 出版商
  442. Kastenmuller W, Gasteiger G, Subramanian N, Sparwasser T, Busch D, Belkaid Y, et al. Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction. J Immunol. 2011;187:3186-97 pubmed 出版商
  443. Sun J, Sukhova G, Zhang J, Chen H, Sjoberg S, Libby P, et al. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol. 2012;32:15-23 pubmed 出版商
  444. Yan S, Wang L, Liu N, Wang Y, Chu Y. Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol Cell Biol. 2012;90:421-8 pubmed 出版商
  445. Clement M, Ladell K, Ekeruche Makinde J, Miles J, Edwards E, Dolton G, et al. Anti-CD8 antibodies can trigger CD8+ T cell effector function in the absence of TCR engagement and improve peptide-MHCI tetramer staining. J Immunol. 2011;187:654-63 pubmed 出版商
  446. Wojno E, Hosken N, Stumhofer J, O Hara A, Mauldin E, Fang Q, et al. A role for IL-27 in limiting T regulatory cell populations. J Immunol. 2011;187:266-73 pubmed 出版商
  447. Goldstein J, Balderas R, Marodon G. Continuous activation of the CD122/STAT-5 signaling pathway during selection of antigen-specific regulatory T cells in the murine thymus. PLoS ONE. 2011;6:e19038 pubmed 出版商
  448. Zimmerman M, Haskins K, Bradley B, Gilman J, Gamboni Robertson F, Flores S. Autoimmune-mediated vascular injury occurs prior to sustained hyperglycemia in a murine model of type I diabetes mellitus. J Surg Res. 2011;168:e195-202 pubmed 出版商
  449. Gibbert K, Dietze K, Zelinskyy G, Lang K, Barchet W, Kirschning C, et al. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. J Immunol. 2010;185:6179-89 pubmed 出版商
  450. Mandal M, Marzouk A, Donnelly R, Ponzio N. Maternal immune stimulation during pregnancy affects adaptive immunity in offspring to promote development of TH17 cells. Brain Behav Immun. 2011;25:863-71 pubmed 出版商
  451. Weisel F, Appelt U, Schneider A, Horlitz J, Van Rooijen N, Korner H, et al. Unique requirements for reactivation of virus-specific memory B lymphocytes. J Immunol. 2010;185:4011-21 pubmed 出版商
  452. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  453. Charles E, Joshi S, Ash J, Fox B, Farris A, Bzik D, et al. CD4 T-cell suppression by cells from Toxoplasma gondii-infected retinas is mediated by surface protein PD-L1. Infect Immun. 2010;78:3484-92 pubmed 出版商
  454. Mohr C, Arapovic J, Mühlbach H, Panzer M, Weyn A, Dölken L, et al. A spread-deficient cytomegalovirus for assessment of first-target cells in vaccination. J Virol. 2010;84:7730-42 pubmed 出版商
  455. Böiers C, Buza Vidas N, Jensen C, Pronk C, Kharazi S, Wittmann L, et al. Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development. Blood. 2010;115:5061-8 pubmed 出版商
  456. Thompson J, Chu Y, Glass J, Tapp A, Brown S. The manganese superoxide dismutase mimetic, M40403, protects adult mice from lethal total body irradiation. Free Radic Res. 2010;44:529-40 pubmed 出版商
  457. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  458. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  459. Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ruegg C, Christofori G. Myeloid cells contribute to tumor lymphangiogenesis. PLoS ONE. 2009;4:e7067 pubmed 出版商
  460. Thompson J, Chu Y, Glass J, Brown S. Absence of IL-23p19 in donor allogeneic cells reduces mortality from acute GVHD. Bone Marrow Transplant. 2010;45:712-22 pubmed 出版商
  461. Wu S, Rhee K, Albesiano E, RABIZADEH S, Wu X, Yen H, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016-22 pubmed 出版商
  462. Hu X, Shen H, Tian C, Yu H, Zheng G, XuFeng R, et al. Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood. 2009;114:3783-92 pubmed 出版商
  463. Holcmann M, Stoitzner P, Drobits B, Luehrs P, Stingl G, Romani N, et al. Skin inflammation is not sufficient to break tolerance induced against a novel antigen. J Immunol. 2009;183:1133-43 pubmed 出版商
  464. Garidou L, Heydari S, Truong P, Brooks D, McGavern D. Therapeutic memory T cells require costimulation for effective clearance of a persistent viral infection. J Virol. 2009;83:8905-15 pubmed 出版商
  465. Ellestad K, Tsutsui S, Noorbakhsh F, Warren K, Yong V, Pittman Q, et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol. 2009;183:298-309 pubmed 出版商
  466. Seavey M, Mosmann T. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization. Vaccine. 2009;27:2342-9 pubmed 出版商
  467. Schaeffer M, Han S, Chtanova T, van Dooren G, Herzmark P, Chen Y, et al. Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. J Immunol. 2009;182:6379-93 pubmed 出版商
  468. Moon J, Chu H, Hataye J, Pagán A, Pepper M, McLachlan J, et al. Tracking epitope-specific T cells. Nat Protoc. 2009;4:565-81 pubmed 出版商
  469. Tseng K, Chung C, H ng W, Wang S. Early infection termination affects number of CD8+ memory T cells and protective capacities in listeria monocytogenes-infected mice upon rechallenge. J Immunol. 2009;182:4590-600 pubmed 出版商
  470. Rajasagi N, Kassim S, Kollias C, Zhao X, Chervenak R, Jennings S. CD4+ T cells are required for the priming of CD8+ T cells following infection with herpes simplex virus type 1. J Virol. 2009;83:5256-68 pubmed 出版商
  471. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  472. Rogers N, Lees M, Gabriel L, Maniati E, Rose S, Potter P, et al. A defect in Marco expression contributes to systemic lupus erythematosus development via failure to clear apoptotic cells. J Immunol. 2009;182:1982-90 pubmed 出版商
  473. Merck E, Voyle R, MacDonald H. Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. J Immunol. 2009;182:183-92 pubmed
  474. Kanwar N, Fayyazi A, Backofen B, Nitsche M, Dressel R, von Mollard G. Thymic alterations in mice deficient for the SNARE protein VAMP8/endobrevin. Cell Tissue Res. 2008;334:227-42 pubmed 出版商
  475. Koehn B, Ford M, Ferrer I, Borom K, Gangappa S, Kirk A, et al. PD-1-dependent mechanisms maintain peripheral tolerance of donor-reactive CD8+ T cells to transplanted tissue. J Immunol. 2008;181:5313-22 pubmed
  476. Wells J, Cowled C, Farzaneh F, Noble A. Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol. 2008;181:3422-31 pubmed
  477. Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2008;105:9041-6 pubmed 出版商
  478. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商
  479. Westphal K, Leschner S, Jablonska J, Loessner H, Weiss S. Containment of tumor-colonizing bacteria by host neutrophils. Cancer Res. 2008;68:2952-60 pubmed 出版商
  480. Mochimaru H, Usui T, Yaguchi T, Nagahama Y, Hasegawa G, Usui Y, et al. Suppression of alkali burn-induced corneal neovascularization by dendritic cell vaccination targeting VEGF receptor 2. Invest Ophthalmol Vis Sci. 2008;49:2172-7 pubmed 出版商
  481. Sridhar S, Reyes Sandoval A, Draper S, Moore A, Gilbert S, Gao G, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822-33 pubmed 出版商
  482. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  483. Willoughby J, Costello P, Nicolas R, Robinson N, Stamp G, Powrie F, et al. Raf signaling but not the ERK effector SAP-1 is required for regulatory T cell development. J Immunol. 2007;179:6836-44 pubmed
  484. Venanzi E, Gray D, Benoist C, Mathis D. Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J Immunol. 2007;179:5693-700 pubmed
  485. Tyznik A, Bevan M. The surprising kinetics of the T cell response to live antigenic cells. J Immunol. 2007;179:4988-95 pubmed
  486. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  487. Peng J, Kitchen S, West R, Sigler R, Eisenmann K, Alberts A. Myeloproliferative defects following targeting of the Drf1 gene encoding the mammalian diaphanous related formin mDia1. Cancer Res. 2007;67:7565-71 pubmed
  488. Chen X, Vodanovic Jankovic S, Johnson B, Keller M, Komorowski R, Drobyski W. Absence of regulatory T-cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood. 2007;110:3804-13 pubmed
  489. Moulton R, Mashruwala M, Smith A, Lindsey D, Wetsel R, Haviland D, et al. Complement C5a anaphylatoxin is an innate determinant of dendritic cell-induced Th1 immunity to Mycobacterium bovis BCG infection in mice. J Leukoc Biol. 2007;82:956-67 pubmed
  490. Lepenies B, Cramer J, Burchard G, Wagner H, Kirschning C, Jacobs T. Induction of experimental cerebral malaria is independent of TLR2/4/9. Med Microbiol Immunol. 2008;197:39-44 pubmed
  491. Iwabuchi N, Takahashi N, Xiao J, Miyaji K, Iwatsuki K. In vitro Th1 cytokine-independent Th2 suppressive effects of bifidobacteria. Microbiol Immunol. 2007;51:649-60 pubmed
  492. Kueng H, Leb V, Haiderer D, Raposo G, Thery C, Derdak S, et al. General strategy for decoration of enveloped viruses with functionally active lipid-modified cytokines. J Virol. 2007;81:8666-76 pubmed
  493. Wu J, Luo L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc. 2006;1:2110-5 pubmed
  494. Kasler H, Verdin E. Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol. 2007;27:5184-200 pubmed
  495. Wu J, Luo L. A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc. 2006;1:2583-9 pubmed
  496. Hamm S, Heit A, Koffler M, Huster K, Akira S, Busch D, et al. Immunostimulatory RNA is a potent inducer of antigen-specific cytotoxic and humoral immune response in vivo. Int Immunol. 2007;19:297-304 pubmed
  497. de Jersey J, Snelgrove S, Palmer S, Teteris S, Mullbacher A, Miller J, et al. Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2007;104:1295-300 pubmed
  498. Hofmann M, Brinkmann V, Zerwes H. FTY720 preferentially depletes naive T cells from peripheral and lymphoid organs. Int Immunopharmacol. 2006;6:1902-10 pubmed
  499. Taylor P, Tsoni S, Willment J, Dennehy K, Rosas M, Findon H, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31-8 pubmed
  500. Chang S, Wang K, Lu Y, Yang L, Chen W, Lin Y, et al. Characterization of early gamma interferon (IFN-gamma) expression during murine listeriosis: identification of NK1.1+ CD11c+ cells as the primary IFN-gamma-expressing cells. Infect Immun. 2007;75:1167-76 pubmed
  501. Yang Z, Day Y, Toufektsian M, Xu Y, Ramos S, Marshall M, et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation. 2006;114:2056-64 pubmed
  502. McLoughlin R, Solinga R, Rich J, Zaleski K, Cocchiaro J, Risley A, et al. CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc Natl Acad Sci U S A. 2006;103:10408-10413 pubmed 出版商
  503. Chapatte L, Ayyoub M, Morel S, Peitrequin A, Lévy N, Servis C, et al. Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Res. 2006;66:5461-8 pubmed
  504. Hofmann M, Zerwes H. Identification of organ-specific T cell populations by analysis of multiparameter flow cytometry data using DNA-chip analysis software. Cytometry A. 2006;69:533-40 pubmed
  505. Irie J, Wu Y, Wicker L, Rainbow D, Nalesnik M, Hirsch R, et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med. 2006;203:1209-19 pubmed
  506. Chapatte L, Colombetti S, Cerottini J, Lévy F. Efficient induction of tumor antigen-specific CD8+ memory T cells by recombinant lentivectors. Cancer Res. 2006;66:1155-60 pubmed
  507. Ola T, Williams N. Protection of non-obese diabetic mice from autoimmune diabetes by Escherichia coli heat-labile enterotoxin B subunit. Immunology. 2006;117:262-70 pubmed
  508. Zhang J, Raper A, Sugita N, Hingorani R, Salio M, Palmowski M, et al. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood. 2006;107:3600-8 pubmed
  509. Haque A, Easton A, Smith D, O GARRA A, Van Rooijen N, Lertmemongkolchai G, et al. Role of T cells in innate and adaptive immunity against murine Burkholderia pseudomallei infection. J Infect Dis. 2006;193:370-9 pubmed
  510. Fukatsu K, Sakamoto S, Hara E, Ueno C, Maeshima Y, Matsumoto I, et al. Gut ischemia-reperfusion affects gut mucosal immunity: a possible mechanism for infectious complications after severe surgical insults. Crit Care Med. 2006;34:182-7 pubmed
  511. Tsunoda I, Kuang L, Kobayashi Warren M, Fujinami R. Central nervous system pathology caused by autoreactive CD8+ T-cell clones following virus infection. J Virol. 2005;79:14640-6 pubmed
  512. Krieg C, Han P, Stone R, Goularte O, Kaye J. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol. 2005;175:6420-7 pubmed
  513. Lu M, Tayu R, Ikawa T, Masuda K, Matsumoto I, Mugishima H, et al. The earliest thymic progenitors in adults are restricted to T, NK, and dendritic cell lineage and have a potential to form more diverse TCRbeta chains than fetal progenitors. J Immunol. 2005;175:5848-56 pubmed
  514. Garcia Ojeda M, Dejbakhsh Jones S, Chatterjea Matthes D, Mukhopadhyay A, BitMansour A, Weissman I, et al. Stepwise development of committed progenitors in the bone marrow that generate functional T cells in the absence of the thymus. J Immunol. 2005;175:4363-73 pubmed
  515. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed
  516. Koyama K. Dendritic cell expansion occurs in mesenteric lymph nodes of B10.BR mice infected with the murine nematode parasite Trichuris muris. Parasitol Res. 2005;97:186-90 pubmed
  517. Rohrbach F, Weth R, Kursar M, Sloots A, Mittrücker H, Wels W. Targeted delivery of the ErbB2/HER2 tumor antigen to professional APCs results in effective antitumor immunity. J Immunol. 2005;174:5481-9 pubmed
  518. Tivol E, Komorowski R, Drobyski W. Emergent autoimmunity in graft-versus-host disease. Blood. 2005;105:4885-91 pubmed
  519. Gray P, Arimilli S, Palmer E, Parks G, Alexander Miller M. Altered function in CD8+ T cells following paramyxovirus infection of the respiratory tract. J Virol. 2005;79:3339-49 pubmed
  520. Kohu K, Sato T, Ohno S, Hayashi K, Uchino R, Abe N, et al. Overexpression of the Runx3 transcription factor increases the proportion of mature thymocytes of the CD8 single-positive lineage. J Immunol. 2005;174:2627-36 pubmed
  521. Koneru M, Schaer D, Monu N, Ayala A, Frey A. Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte lytic function. J Immunol. 2005;174:1830-40 pubmed
  522. Hoffmann P, Kench J, Vondracek A, Kruk E, Daleke D, Jordan M, et al. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol. 2005;174:1393-404 pubmed
  523. Mischenko V, Kapina M, Eruslanov E, Kondratieva E, Lyadova I, Young D, et al. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J Infect Dis. 2004;190:2137-45 pubmed
  524. Ito F, Li Q, Shreiner A, Okuyama R, Jure Kunkel M, Teitz Tennenbaum S, et al. Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res. 2004;64:8411-9 pubmed
  525. van Santen H, Benoist C, Mathis D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med. 2004;200:1221-30 pubmed
  526. Zheng S, Jiang J, Shen H, Chen Y. Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J Immunol. 2004;173:5652-8 pubmed
  527. Dalton J, Howell G, Pearson J, Scott P, Carding S. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells. J Immunol. 2004;173:3660-7 pubmed
  528. Prockop S, Petrie H. Regulation of thymus size by competition for stromal niches among early T cell progenitors. J Immunol. 2004;173:1604-11 pubmed
  529. Seroogy C, Soares L, Ranheim E, Su L, Holness C, Bloom D, et al. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J Immunol. 2004;173:79-85 pubmed
  530. Mattner J, Wandersee Steinhäuser A, Pahl A, Rollinghoff M, Majeau G, Hochman P, et al. Protection against progressive leishmaniasis by IFN-beta. J Immunol. 2004;172:7574-82 pubmed
  531. Zhang T, He X, Tsang T, Harris D. Transgenic TCR expression: comparison of single chain with full-length receptor constructs for T-cell function. Cancer Gene Ther. 2004;11:487-96 pubmed
  532. Hequet O, Vocanson M, Saint Mezard P, Kaiserlian D, Nicolas J, Berard F. CD4+ T cells prevent skin autoimmunity during chronic autologous graft-versus-host-disease. Am J Transplant. 2004;4:872-8 pubmed
  533. Yuan Y, Shen H, Franklin D, Scadden D, Cheng T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol. 2004;6:436-42 pubmed
  534. Cabarrocas J, Piaggio E, Zappulla J, Desbois S, Mars L, Lassmann H, et al. A transgenic mouse model for T-cell ignorance of a glial autoantigen. J Autoimmun. 2004;22:179-89 pubmed
  535. Steptoe R, Stankovic S, Lopaticki S, Jones L, Harrison L, Morahan G. Persistence of recipient lymphocytes in NOD mice after irradiation and bone marrow transplantation. J Autoimmun. 2004;22:131-8 pubmed
  536. Ishihara K, Sawa S, Ikushima H, Hirota S, Atsumi T, Kamimura D, et al. The point mutation of tyrosine 759 of the IL-6 family cytokine receptor gp130 synergizes with HTLV-1 pX in promoting rheumatoid arthritis-like arthritis. Int Immunol. 2004;16:455-65 pubmed
  537. Chen B, Cui X, Sempowski G, Domen J, Chao N. Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood. 2004;103:4344-52 pubmed
  538. Schleicher U, Mattner J, Blos M, Schindler H, Rollinghoff M, Karaghiosoff M, et al. Control of Leishmania major in the absence of Tyk2 kinase. Eur J Immunol. 2004;34:519-29 pubmed
  539. Eruslanov E, Majorov K, Orlova M, Mischenko V, Kondratieva T, Apt A, et al. Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge. Clin Exp Immunol. 2004;135:19-28 pubmed
  540. Morin J, Faideau B, Gagnerault M, Lepault F, Boitard C, Boudaly S. Passive transfer of flt-3L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin Exp Immunol. 2003;134:388-95 pubmed
  541. Turley S, Poirot L, Hattori M, Benoist C, Mathis D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med. 2003;198:1527-37 pubmed
  542. Choi E, Chen J, Wooldridge L, Salio M, Lissina A, Lissin N, et al. High avidity antigen-specific CTL identified by CD8-independent tetramer staining. J Immunol. 2003;171:5116-23 pubmed
  543. Chen B, Cui X, Sempowski G, Chao N. Growth hormone accelerates immune recovery following allogeneic T-cell-depleted bone marrow transplantation in mice. Exp Hematol. 2003;31:953-8 pubmed
  544. Lugering A, Kucharzik T, Soler D, Picarella D, Hudson J, Williams I. Lymphoid precursors in intestinal cryptopatches express CCR6 and undergo dysregulated development in the absence of CCR6. J Immunol. 2003;171:2208-15 pubmed
  545. Wang Z, Morelli A, Hackstein H, Kaneko K, Thomson A. Marked inhibition of transplant vascular sclerosis by in vivo-mobilized donor dendritic cells and anti-CD154 mAb. Transplantation. 2003;76:562-71 pubmed
  546. Germeraad W, Kawamoto H, Itoi M, Jiang Y, Amagai T, Katsura Y, et al. Development of thymic microenvironments in vitro is oxygen-dependent and requires permanent presence of T-cell progenitors. J Histochem Cytochem. 2003;51:1225-35 pubmed
  547. Richards M, Liu F, Iwasaki H, Akashi K, Link D. Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood. 2003;102:3562-8 pubmed
  548. Chatterjea Matthes D, Garcia Ojeda M, Dejbakhsh Jones S, Jerabek L, Manz M, Weissman I, et al. Early defect prethymic in bone marrow T cell progenitors in athymic nu/nu mice. J Immunol. 2003;171:1207-15 pubmed
  549. Norris H, Lybarger L, Martin A, Andersen H, Chervenak D, Chervenak R. TCRbeta enhancer activation occurs in some but not all cells with T cell lineage developmental potential. Cell Immunol. 2003;222:164-74 pubmed
  550. Blos M, Schleicher U, Soares Rocha F, Meissner U, Rollinghoff M, Bogdan C. Organ-specific and stage-dependent control of Leishmania major infection by inducible nitric oxide synthase and phagocyte NADPH oxidase. Eur J Immunol. 2003;33:1224-34 pubmed
  551. Koyama K. NK1.1+ cell depletion in vivo fails to prevent protection against infection with the murine nematode parasite Trichuris muris. Parasite Immunol. 2002;24:527-33 pubmed
  552. Egan P, Lawlor K, Alexander W, Wicks I. Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J Clin Invest. 2003;111:915-24 pubmed
  553. Kawamoto H, Ohmura K, Fujimoto S, Lu M, Ikawa T, Katsura Y. Extensive proliferation of T cell lineage-restricted progenitors in the thymus: an essential process for clonal expression of diverse T cell receptor beta chains. Eur J Immunol. 2003;33:606-15 pubmed
  554. Yamasaki M, Chujo H, Hirao A, Koyanagi N, Okamoto T, Tojo N, et al. Immunoglobulin and cytokine production from spleen lymphocytes is modulated in C57BL/6J mice by dietary cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid. J Nutr. 2003;133:784-8 pubmed
  555. Shinkai K, Mohrs M, Locksley R. Helper T cells regulate type-2 innate immunity in vivo. Nature. 2002;420:825-9 pubmed
  556. Angulo I, Jiménez Díaz M, García Bustos J, Gargallo D, de las Heras F, Muñoz Fernández M, et al. Candida albicans infection enhances immunosuppression induced by cyclophosphamide by selective priming of suppressive myeloid progenitors for NO production. Cell Immunol. 2002;218:46-58 pubmed
  557. Culley F, Pollott J, Openshaw P. Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood. J Exp Med. 2002;196:1381-6 pubmed
  558. Hsu S, Wu C, Han J, Lai M. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood. 2003;101:970-6 pubmed
  559. Cawthon A, Alexander Miller M. Optimal colocalization of TCR and CD8 as a novel mechanism for the control of functional avidity. J Immunol. 2002;169:3492-8 pubmed
  560. Litvinova E, Maury S, Boyer O, Bruel S, Benard L, Boisserie G, et al. Graft-versus-leukemia effect after suicide-gene-mediated control of graft-versus-host disease. Blood. 2002;100:2020-5 pubmed
  561. Carrithers M, Visintin I, Viret C, Janeway C. Role of genetic background in P selectin-dependent immune surveillance of the central nervous system. J Neuroimmunol. 2002;129:51-7 pubmed
  562. Yu C, Feng M, Shih H, Lai M. Increased p300 expression inhibits glucocorticoid receptor-T-cell receptor antagonism but does not affect thymocyte positive selection. Mol Cell Biol. 2002;22:4556-66 pubmed
  563. Prasad S, Goodnow C. Cell-intrinsic effects of non-MHC NOD genes on dendritic cell generation in vivo. Int Immunol. 2002;14:677-84 pubmed
  564. Carter R, Campbell I, O Donnel K, Wicks I. Vascular cell adhesion molecule-1 (VCAM-1) blockade in collagen-induced arthritis reduces joint involvement and alters B cell trafficking. Clin Exp Immunol. 2002;128:44-51 pubmed
  565. Pan L, Hanrahan J, Li J, Hale L, Zhuang Y. An analysis of T cell intrinsic roles of E2A by conditional gene disruption in the thymus. J Immunol. 2002;168:3923-32 pubmed
  566. Walzer T, Arpin C, Beloeil L, Marvel J. Differential in vivo persistence of two subsets of memory phenotype CD8 T cells defined by CD44 and CD122 expression levels. J Immunol. 2002;168:2704-11 pubmed
  567. Martin P, Ruiz S, Del Hoyo G, Anjuere F, Vargas H, López Bravo M, et al. Dramatic increase in lymph node dendritic cell number during infection by the mouse mammary tumor virus occurs by a CD62L-dependent blood-borne DC recruitment. Blood. 2002;99:1282-8 pubmed
  568. Martinez del Hoyo G, Martin P, Arias C, Marín A, Ardavin C. CD8alpha+ dendritic cells originate from the CD8alpha- dendritic cell subset by a maturation process involving CD8alpha, DEC-205, and CD24 up-regulation. Blood. 2002;99:999-1004 pubmed
  569. Grabbe S, Varga G, Beissert S, Steinert M, Pendl G, Seeliger S, et al. Beta2 integrins are required for skin homing of primed T cells but not for priming naive T cells. J Clin Invest. 2002;109:183-92 pubmed
  570. Wu T, Lee J, Lai Y, Hsu J, Tsai C, Lee Y, et al. Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15 receptor alpha-chain. J Immunol. 2002;168:705-12 pubmed
  571. Chen B, Cui X, Sempowski G, Gooding M, Liu C, Haynes B, et al. A comparison of murine T-cell-depleted adult bone marrow and full-term fetal blood cells in hematopoietic engraftment and immune reconstitution. Blood. 2002;99:364-71 pubmed
  572. O Connell P, Li W, Wang Z, Specht S, Logar A, Thomson A. Immature and mature CD8alpha+ dendritic cells prolong the survival of vascularized heart allografts. J Immunol. 2002;168:143-54 pubmed
  573. Das G, Sheridan S, Janeway C. The source of early IFN-gamma that plays a role in Th1 priming. J Immunol. 2001;167:2004-10 pubmed
  574. Roach D, Martin E, Bean A, Rennick D, Briscoe H, Britton W. Endogenous inhibition of antimycobacterial immunity by IL-10 varies between mycobacterial species. Scand J Immunol. 2001;54:163-70 pubmed
  575. Zhang J, Kabra N, Cado D, Kang C, Winoto A. FADD-deficient T cells exhibit a disaccord in regulation of the cell cycle machinery. J Biol Chem. 2001;276:29815-8 pubmed
  576. Lan F, Zeng D, Huie P, Higgins J, Strober S. Allogeneic bone marrow cells that facilitate complete chimerism and eliminate tumor cells express both CD8 and T-cell antigen receptor-alphabeta. Blood. 2001;97:3458-65 pubmed
  577. Radoja S, Saio M, Frey A. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol. 2001;166:6074-83 pubmed
  578. Ohmura K, Kawamoto H, Lu M, Ikawa T, Ozaki S, Nakao K, et al. Immature multipotent hemopoietic progenitors lacking long-term bone marrow-reconstituting activity in the aorta-gonad-mesonephros region of murine day 10 fetuses. J Immunol. 2001;166:3290-6 pubmed
  579. Leite De Moraes M, Hameg A, Pacilio M, Koezuka Y, Taniguchi M, van Kaer L, et al. IL-18 enhances IL-4 production by ligand-activated NKT lymphocytes: a pro-Th2 effect of IL-18 exerted through NKT cells. J Immunol. 2001;166:945-51 pubmed
  580. Shimizu C, Kawamoto H, Yamashita M, Kimura M, Kondou E, Kaneko Y, et al. Progression of T cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. Int Immunol. 2001;13:105-17 pubmed
  581. Izeradjene K, Revillard J, Genestier L. Inhibition of thymidine synthesis by folate analogues induces a Fas-Fas ligand-independent deletion of superantigen-reactive peripheral T cells. Int Immunol. 2001;13:85-93 pubmed
  582. Hayashi K, Natsume W, Watanabe T, Abe N, Iwai N, Okada H, et al. Diminution of the AML1 transcription factor function causes differential effects on the fates of CD4 and CD8 single-positive T cells. J Immunol. 2000;165:6816-24 pubmed
  583. Martin P, del Hoyo G, Anjuere F, Ruiz S, Arias C, Marín A, et al. Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8alpha(-) and CD8alpha(+) dendritic cells are generated from CD4(low) lymphoid-committed precursors. Blood. 2000;96:2511-9 pubmed
  584. Bauman S, Nichols K, Murphy J. Dendritic cells in the induction of protective and nonprotective anticryptococcal cell-mediated immune responses. J Immunol. 2000;165:158-67 pubmed
  585. Feng C, Britton W, Palendira U, Groat N, Briscoe H, Bean A. Up-regulation of VCAM-1 and differential expansion of beta integrin-expressing T lymphocytes are associated with immunity to pulmonary Mycobacterium tuberculosis infection. J Immunol. 2000;164:4853-60 pubmed
  586. de Oca R, Buendia A, Del Rio L, Sanchez J, Salinas J, Navarro J. Polymorphonuclear neutrophils are necessary for the recruitment of CD8(+) T cells in the liver in a pregnant mouse model of Chlamydophila abortus (Chlamydia psittaci serotype 1) infection. Infect Immun. 2000;68:1746-51 pubmed
  587. Lepault F, Gagnerault M. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J Immunol. 2000;164:240-7 pubmed
  588. Dejbakhsh Jones S, Strober S. Identification of an early T cell progenitor for a pathway of T cell maturation in the bone marrow. Proc Natl Acad Sci U S A. 1999;96:14493-8 pubmed
  589. Ikawa T, Kawamoto H, Fujimoto S, Katsura Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med. 1999;190:1617-26 pubmed
  590. Ohmura K, Kawamoto H, Fujimoto S, Ozaki S, Nakao K, Katsura Y. Emergence of T, B, and myeloid lineage-committed as well as multipotent hemopoietic progenitors in the aorta-gonad-mesonephros region of day 10 fetuses of the mouse. J Immunol. 1999;163:4788-95 pubmed
  591. Kang J, Coles M, Raulet D. Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes. J Exp Med. 1999;190:973-82 pubmed
  592. Pan L, Sato S, Frederick J, Sun X, Zhuang Y. Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol Cell Biol. 1999;19:5969-80 pubmed
  593. Penttilä J, Anttila M, Varkila K, Puolakkainen M, Sarvas M, Makela P, et al. Depletion of CD8+ cells abolishes memory in acquired immunity against Chlamydia pneumoniae in BALB/c mice. Immunology. 1999;97:490-6 pubmed
  594. Inaba M, Kurasawa K, Mamura M, Kumano K, Saito Y, Iwamoto I. Primed T cells are more resistant to Fas-mediated activation-induced cell death than naive T cells. J Immunol. 1999;163:1315-20 pubmed
  595. Deeths M, Kedl R, Mescher M. CD8+ T cells become nonresponsive (anergic) following activation in the presence of costimulation. J Immunol. 1999;163:102-10 pubmed
  596. Pihlgren M, Arpin C, Walzer T, Tomkowiak M, Thomas A, Marvel J, et al. Memory CD44(int) CD8 T cells show increased proliferative responses and IFN-gamma production following antigenic challenge in vitro. Int Immunol. 1999;11:699-706 pubmed
  597. Masurier C, Pioche Durieu C, Colombo B, Lacave R, Lemoine F, Klatzmann D, et al. Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: implications for anti-tumoral cell therapy. Immunology. 1999;96:569-77 pubmed
  598. Zeng D, Lewis D, Dejbakhsh Jones S, Lan F, Garcia Ojeda M, Sibley R, et al. Bone marrow NK1.1(-) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med. 1999;189:1073-81 pubmed
  599. Kawamoto H, Ohmura K, Fujimoto S, Katsura Y. Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J Immunol. 1999;162:2725-31 pubmed
  600. Clark L, Appleby M, Brunkow M, Wilkinson J, Ziegler S, Ramsdell F. Cellular and molecular characterization of the scurfy mouse mutant. J Immunol. 1999;162:2546-54 pubmed
  601. Sasaki T, Kanke Y, Kudoh K, Misawa Y, Shimizu J, Takita T. Effects of dietary docosahexaenoic acid on surface molecules involved in T cell proliferation. Biochim Biophys Acta. 1999;1436:519-30 pubmed
  602. Batteux F, Tourneur L, Trebeden H, Charreire J, Chiocchia G. Gene therapy of experimental autoimmune thyroiditis by in vivo administration of plasmid DNA coding for Fas ligand. J Immunol. 1999;162:603-8 pubmed
  603. Samoilova E, Horton J, Hilliard B, Liu T, Chen Y. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol. 1998;161:6480-6 pubmed
  604. Bix M, Wang Z, Thiel B, Schork N, Locksley R. Genetic regulation of commitment to interleukin 4 production by a CD4(+) T cell-intrinsic mechanism. J Exp Med. 1998;188:2289-99 pubmed
  605. Spiekermann G, Nagler Anderson C. Oral administration of the bacterial superantigen staphylococcal enterotoxin B induces activation and cytokine production by T cells in murine gut-associated lymphoid tissue. J Immunol. 1998;161:5825-31 pubmed
  606. Ferrero I, Anjuere F, Azcoitia I, Renno T, MacDonald H, Ardavin C. Viral superantigen-induced negative selection of TCR transgenic CD4+ CD8+ thymocytes depends on activation, but not proliferation. Blood. 1998;91:4248-54 pubmed
  607. Guttormsen H, Wetzler L, Finberg R, Kasper D. Immunologic memory induced by a glycoconjugate vaccine in a murine adoptive lymphocyte transfer model. Infect Immun. 1998;66:2026-32 pubmed
  608. Contractor N, Bassiri H, Reya T, Park A, Baumgart D, Wasik M, et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol. 1998;160:385-94 pubmed
  609. Salomon B, Cohen J, Masurier C, Klatzmann D. Three populations of mouse lymph node dendritic cells with different origins and dynamics. J Immunol. 1998;160:708-17 pubmed
  610. Samoilova E, Horton J, Bassiri H, Zhang H, Linsley P, Carding S, et al. B7 blockade prevents activation-induced cell death of thymocytes. Int Immunol. 1997;9:1663-8 pubmed
  611. Aiba Y, Hirayama F, Ogawa M. Clonal proliferation and cytokine requirement of murine progenitors for natural killer cells. Blood. 1997;89:4005-12 pubmed
  612. Postel Vinay M, de Mello Coelho V, Gagnerault M, Dardenne M. Growth hormone stimulates the proliferation of activated mouse T lymphocytes. Endocrinology. 1997;138:1816-20 pubmed
  613. Barrat F, Lesourd B, Louise A, Boulouis H, Vincent Naulleau S, Thibault D, et al. Surface antigen expression in spleen cells of C57B1/6 mice during ageing: influence of sex and parity. Clin Exp Immunol. 1997;107:593-600 pubmed
  614. Lin K, Abraham K. Targets of p56(lck) activity in immature thymoblasts: stimulation of the Ras/Raf/MAPK pathway. Int Immunol. 1997;9:291-306 pubmed
  615. Pihlgren M, Dubois P, Tomkowiak M, Sjogren T, Marvel J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J Exp Med. 1996;184:2141-51 pubmed
  616. Hattori N, Kawamoto H, Katsura Y. Isolation of the most immature population of murine fetal thymocytes that includes progenitors capable of generating T, B, and myeloid cells. J Exp Med. 1996;184:1901-8 pubmed
  617. Steeber D, Green N, Sato S, Tedder T. Lyphocyte migration in L-selectin-deficient mice. Altered subset migration and aging of the immune system. J Immunol. 1996;157:1096-106 pubmed
  618. Sumita S, Ozaki S, Okazaki T, Sobajima J, Nakao K. A vascular smooth muscle-specific CD4+ T cell line that induces pulmonary vasculitis in MRL-+/+ mice. Clin Exp Immunol. 1996;105:163-8 pubmed
  619. Pear W, Aster J, Scott M, Hasserjian R, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183:2283-91 pubmed
  620. Locksley R, Reiner S, Hatam F, Littman D, Killeen N. Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science. 1993;261:1448-51 pubmed
  621. Mixter P, Russell J, Durie F, Budd R. Decreased CD4-CD8- TCR-alpha beta + cells in lpr/lpr mice lacking beta 2-microglobulin. J Immunol. 1995;154:2063-74 pubmed
  622. Laouar Y, Ezine S. In vivo CD4+ lymph node T cells from lpr mice generate CD4-CD8-B220+TCR-beta low cells. J Immunol. 1994;153:3948-55 pubmed
  623. Ledbetter J, Rouse R, Micklem H, Herzenberg L. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med. 1980;152:280-95 pubmed
  624. Diamond M, Staunton D, Marlin S, Springer T. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell. 1991;65:961-71 pubmed
  625. Vremec D, Zorbas M, Scollay R, Saunders D, Ardavin C, Wu L, et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med. 1992;176:47-58 pubmed
  626. Takahashi K, Nakata M, Tanaka T, Adachi H, Nakauchi H, Yagita H, et al. CD4 and CD8 regulate interleukin 2 responses of T cells. Proc Natl Acad Sci U S A. 1992;89:5557-61 pubmed
  627. Schuyler M, Gott K, Shopp G, Crooks L. CD3+ and CD4+ cells adoptively transfer experimental hypersensitivity pneumonitis. Am Rev Respir Dis. 1992;146:1582-8 pubmed
  628. Ledbetter J, Herzenberg L. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63-90 pubmed