这是一篇来自已证抗体库的有关小鼠 Cdh1的综述,是根据1047篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cdh1 抗体。
Cdh1 同义词: AA960649; ARC-1; E-cad; Ecad; L-CAM; UVO; Um

赛默飞世尔
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 图 s2b
赛默飞世尔 Cdh1抗体(Novex, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2b). Cell Rep (2021) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:250; 图 5c
赛默飞世尔 Cdh1抗体(Thermo-Fisher Scientific, 53-3249-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 5c). Nat Commun (2021) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3k
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3k). J Clin Invest (2021) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
赛默飞世尔 Cdh1抗体(Thermo Fisher Scientific, 14-3249-80)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b). elife (2020) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1s3a
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1s3a). elife (2020) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3d
赛默飞世尔 Cdh1抗体(Thermo Fisher, 13-1900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3d). Nat Commun (2020) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 1j
赛默飞世尔 Cdh1抗体(Thermo Fisher, 13-1900)被用于被用于免疫组化在小鼠样本上 (图 1j). Dev Cell (2019) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 图 s4p
赛默飞世尔 Cdh1抗体(Thermo Fisher, 13-1900)被用于被用于免疫细胞化学在小鼠样本上 (图 s4p). Cell (2019) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠; 图 1b
赛默飞世尔 Cdh1抗体(生活技术, 13-C1900)被用于被用于免疫印迹在小鼠样本上 (图 1b). Nature (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔 Cdh1抗体(eBioscience/Thermo, 50-3249-82)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 小鼠; 1:500; 图 s1c
赛默飞世尔 Cdh1抗体(eBioscience, 14-3249-82)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1c). Science (2019) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4s3b
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4s3b). elife (2019) ncbi
小鼠 单克隆(NCH-38)
  • 免疫印迹; 人类; 图 4f
赛默飞世尔 Cdh1抗体(Thermo Fisher, MA5-12547)被用于被用于免疫印迹在人类样本上 (图 4f). Cancer Cell Int (2019) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:200; 图 6c
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6c). J Clin Invest (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4d
赛默飞世尔 Cdh1抗体(eBiosciences, 50-C3249-C80)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). Oncogene (2019) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 犬; 1:500; 图 s1a
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 s1a). J Cell Sci (2018) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔 Cdh1抗体(ThermoFisher Scientific, 50-3249-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上 (图 s1b). Cell Stem Cell (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 小鼠; 1:800; 图 6a
赛默飞世尔 Cdh1抗体(Thermo Pierce, DECMA-1)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 6a). Dev Biol (2017) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:500; 图 2n
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2n). elife (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 小鼠; 1:700; 图 s6c
赛默飞世尔 Cdh1抗体(eBiosciences, 14-3249-82)被用于被用于免疫组化在小鼠样本上浓度为1:700 (图 s6c). Nature (2017) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于流式细胞仪在人类样本上 (图 1b). Stem Cells (2017) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:250; 图 5c
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5c). Development (2017) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 1:500; 图 s2a
  • 免疫印迹; 人类; 1:500; 图 s2e
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s2a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s2e). Mol Biol Cell (2017) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 e1d
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 e1d). Nature (2017) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 图 5g
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在小鼠样本上 (图 5g). Sci Rep (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 1:200; 图 3g
赛默飞世尔 Cdh1抗体(Affymetrix eBioscience, 53-3249-80)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3g). Nature (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 1:200; 图 4d
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4d). Cancer Lett (2017) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5d
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5d). J Cell Biol (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 犬; 图 4d
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫细胞化学在犬样本上 (图 4d). PLoS ONE (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 图 1d
赛默飞世尔 Cdh1抗体(ThermoFisher, 13-1900)被用于被用于免疫细胞化学在人类样本上 (图 1d). Int J Biochem Cell Biol (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔 Cdh1抗体(ThermoFisher, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Am J Pathol (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 1:500; 图 1a
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). Cell Cycle (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). Development (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 人类; 图 4g
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4g). Mol Biol Cell (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 5
赛默飞世尔 Cdh1抗体(eBioscience, 53-3249-82)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 5). Nat Commun (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:1000; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Development (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). JCI Insight (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Integr Biol (Camb) (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s5
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 s5). PLoS Genet (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 图 7
赛默飞世尔 Cdh1抗体(ThermoFisher Scientific, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠; 1:200
  • 免疫细胞化学; 小鼠; 1:200; 图 5c
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5c). J Cell Biol (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 6e
赛默飞世尔 Cdh1抗体(eBioscience, 14-3249-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 6e). Genes Dev (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2) 和 被用于流式细胞仪在小鼠样本上 (图 2). Dev Dyn (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 1:200; 图 s3
  • 免疫细胞化学; 仓鼠; 1:200; 图 4d
  • 免疫细胞化学; 犬; 1:200; 图 1a
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3), 被用于免疫细胞化学在仓鼠样本上浓度为1:200 (图 4d) 和 被用于免疫细胞化学在犬样本上浓度为1:200 (图 1a). Oncotarget (2016) ncbi
大鼠 单克隆(ECCD-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1e
赛默飞世尔 Cdh1抗体(生活技术, 131800)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1e). Cancer Res (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 5
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化在小鼠样本上 (图 5). Am J Pathol (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 人类; 1:100; 图 2
赛默飞世尔 Cdh1抗体(ThermoFisher Scientific, ECCD-2)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2). Nat Med (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 1:3000; 图 4
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在小鼠样本上浓度为1:3000 (图 4). Dev Cell (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Development (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2
  • 免疫印迹; 小鼠; 1:800; 图 2
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:800 (图 2). Cell Death Differ (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛默飞世尔 Cdh1抗体(Ebiosciences, 14-3249-80)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Stem Cell Reports (2016) ncbi
大鼠 单克隆(ECCD-1)
  • 免疫组化-冰冻切片; 小鼠; 图 7
赛默飞世尔 Cdh1抗体(Zymed, 13-1800)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). Stem Cells (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:150
赛默飞世尔 Cdh1抗体(eBioscience, DECMA-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:150. Nat Commun (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 3:1000; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为3:1000 (图 1). Biol Open (2016) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:500; 图 6
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6). J Cell Biol (2015) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:200; 图 6
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6). Am J Pathol (2015) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cdh1抗体(Invitrogen, 13?C1900)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Dis Model Mech (2015) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 1:500; 图 s3
  • 免疫印迹; 人类; 1:500; 图 s1h
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s3) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s1h). Nat Cell Biol (2015) ncbi
小鼠 单克隆(7H12)
  • 免疫印迹; 小鼠
赛默飞世尔 Cdh1抗体(生活技术, MA5-15711)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
赛默飞世尔 Cdh1抗体(eBioscience, 50-3249-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). Stem Cell Reports (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 图 2b
赛默飞世尔 Cdh1抗体(eBioscience, 53-3249)被用于被用于免疫细胞化学在人类样本上 (图 2b). Cell Death Dis (2015) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:200; 图 2h
赛默飞世尔 Cdh1抗体(Invitrogen, 13?C1900)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2h). Sci Rep (2015) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:100; 图 3
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(NCH-38)
  • 免疫印迹; 人类
赛默飞世尔 Cdh1抗体(Chemicon, MA5-12547)被用于被用于免疫印迹在人类样本上. Oncol Lett (2015) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Am J Physiol Gastrointest Liver Physiol (2015) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 图 3
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(ECCD-2)
赛默飞世尔 Cdh1抗体(Invitrogen, 13-900)被用于. Cytoskeleton (Hoboken) (2014) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6). Development (2014) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS Genet (2014) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
赛默飞世尔 Cdh1抗体(生活技术, 13900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Genes Cells (2014) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Cdh1抗体(eBiosciences, DECMA-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). Am J Respir Cell Mol Biol (2015) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:1000; 图 7b
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7b). Nat Commun (2014) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在小鼠样本上. Genesis (2014) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化基因敲除验证; 小鼠; 1:250; 图 s1a
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 s1a
  • 免疫组化-冰冻切片; 小鼠; 图 s1f
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:250 (图 s1a), 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 s1a) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 s1f). J Cell Biol (2014) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). J Cell Biol (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:200; 图 7
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). PLoS ONE (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫组化在小鼠样本上 (图 6). Nat Commun (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Development (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫细胞化学在人类样本上. Nat Struct Mol Biol (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cdh1抗体(生活技术, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上. BMC Gastroenterol (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6). Nat Cell Biol (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Angiogenesis (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Cdh1抗体(Invitrogen, clone ECCD-2)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS Pathog (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2). Nat Cell Biol (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Cell Biol (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, cat #13-1900)被用于被用于免疫细胞化学在人类样本上 (图 1). Differentiation (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 1:200; 图 1
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Genes Dev (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 S8
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 S8). Nat Cell Biol (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 S1
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 S1). PLoS ONE (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化在小鼠样本上 (图 4). PLoS ONE (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 人类; 1:500; 图 5
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5). J Cell Biol (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 犬; 图 3
赛默飞世尔 Cdh1抗体(Invitrogen, 13-900)被用于被用于免疫细胞化学在犬样本上 (图 3). PLoS ONE (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫印迹在小鼠样本上 (图 3). Tissue Eng Part C Methods (2013) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 1:250; 图 5
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 5). Dev Biol (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫细胞化学在人类样本上 (图 3). J Invest Dermatol (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, 13-900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 1). Development (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, 13?C1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). Birth Defects Res B Dev Reprod Toxicol (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4). Dev Dyn (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2
赛默飞世尔 Cdh1抗体(Invitrogen, 131900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 2). Mech Dev (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:250
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫组化在小鼠样本上浓度为1:250. Nat Cell Biol (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠; 1:200; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1). PLoS Genet (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Placenta (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 图 4
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Dev Biol (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 犬; 图 4
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫细胞化学在犬样本上 (图 4). BMC Cancer (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1
  • 流式细胞仪; 人类; 1:400; 图 2
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1) 和 被用于流式细胞仪在人类样本上浓度为1:400 (图 2). Dev Biol (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫组化在小鼠样本上 (图 2). J Exp Med (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 6 ug/ml; 图 4
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为6 ug/ml (图 4). Development (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 5
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在小鼠样本上 (图 5). Biol Reprod (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在小鼠样本上 (图 1). Development (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Neurosci (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫组化在小鼠样本上 (图 2). J Dent Res (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Endocrinology (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化在小鼠样本上. Sci Signal (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 4). Carcinogenesis (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 1:200; 图 7
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 7). Development (2011) ncbi
大鼠 单克隆(ECCD-1)
  • 抑制或激活实验; 人类; 200 ug/ml; 图 1
  • 免疫细胞化学; 人类; 10 ug/ml; 图 1
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-1)被用于被用于抑制或激活实验在人类样本上浓度为200 ug/ml (图 1) 和 被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 1). Stem Cells Dev (2012) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 8
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化在小鼠样本上 (图 8). Am J Gastroenterol (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫印迹在人类样本上 (图 5). EMBO J (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 1:200; 图 s2
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2). J Biol Chem (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:500; 图 5
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Dev Biol (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). J Invest Dermatol (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 Cdh1抗体(Zymed, 13900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Dev Dyn (2010) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cell Biol (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 人类; 1:50; 图 1
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Mod Pathol (2011) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 Cdh1抗体(Invitrogen, clone ECCD-2)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Biol Cell (2010) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1). BMC Dev Biol (2010) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4
赛默飞世尔 Cdh1抗体(Invitrogen, 13-1900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4). Invest Ophthalmol Vis Sci (2010) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 10 ug/ml; 图 6
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为10 ug/ml (图 6). PLoS ONE (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫印迹在小鼠样本上 (图 3a). Am J Pathol (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Cdh1抗体(Zymed Laboratories, ECCD-2)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Blood (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 9
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 9). Mol Cell Biol (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫印迹在小鼠样本上 (图 6). Am J Nephrol (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 1:200; 图 3A
  • 免疫细胞化学; 犬; 1:200; 图 2A
赛默飞世尔 Cdh1抗体(Zymed, ECCD2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3A) 和 被用于免疫细胞化学在犬样本上浓度为1:200 (图 2A). Mol Biol Cell (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). Dev Biol (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 Cdh1抗体(Zymed Laboratories, 13-1900)被用于被用于免疫组化在小鼠样本上浓度为1:500. Dev Biol (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔 Cdh1抗体(Zymed, ECCD2)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. J Neurosci (2009) ncbi
大鼠 单克隆(ECCD-1)
  • 抑制或激活实验; 小鼠; 1.0 ug/ml; 图 5a
赛默飞世尔 Cdh1抗体(Zymed, ECCD-1)被用于被用于抑制或激活实验在小鼠样本上浓度为1.0 ug/ml (图 5a). J Neurosci (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠; 1:100
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 和 被用于免疫细胞化学在小鼠样本上浓度为1:100. Stem Cells (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-2)被用于被用于免疫细胞化学在人类样本上. J Cell Biol (2008) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔 Cdh1抗体(Zymed Laboratories, ECCD-2)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2008) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化在小鼠样本上 (图 3). J Invest Dermatol (2009) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Dev Biol (2008) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫印迹在小鼠样本上 (图 3a). Arthritis Rheum (2008) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Cancer Res (2008) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 Cdh1抗体(zymed, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Dev Biol (2008) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 图 4C
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫细胞化学在小鼠样本上 (图 4C). J Biol Chem (2007) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化在小鼠样本上 (图 6). Mol Cell Neurosci (2007) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化在小鼠样本上. Development (2007) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠; 1:100; 图 7E
  • 免疫组化; 小鼠; 1:100; 图 7F
赛默飞世尔 Cdh1抗体(Zymed/Invitrogen, ECCD-2)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7E) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 7F). Tissue Eng (2007) ncbi
大鼠 单克隆(ECCD-1)
  • 抑制或激活实验; 小鼠; 图 4
赛默飞世尔 Cdh1抗体(Invitrogen, ECCD-1)被用于被用于抑制或激活实验在小鼠样本上 (图 4). Tissue Eng (2007) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化在小鼠样本上 (图 3). Dev Dyn (2007) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化在小鼠样本上. Mol Endocrinol (2006) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫细胞化学在小鼠样本上. J Cell Sci (2006) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫细胞化学在小鼠样本上. Methods Mol Biol (2006) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫沉淀; 小鼠; 图 7
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔 Cdh1抗体(Zymed, 13?C1900)被用于被用于免疫沉淀在小鼠样本上 (图 7) 和 被用于免疫细胞化学在小鼠样本上 (图 6). Oncogene (2006) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于流式细胞仪在小鼠样本上. Invest Ophthalmol Vis Sci (2006) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化在小鼠样本上 (图 4). Development (2006) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2006) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Dev Biol (2005) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 5 ug/ml; 图 3
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为5 ug/ml (图 3). Kidney Int (2005) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Mod Pathol (2005) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于流式细胞仪在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 1). Development (2005) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 人类; 图 3
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 1). Am J Pathol (2004) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:250; 图 5
  • 免疫印迹; 小鼠; 1:2500; 图 4
赛默飞世尔 Cdh1抗体(Zymed Laboratories, ECCD-2)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 4). J Biol Chem (2004) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化在小鼠样本上 (图 1). J Leukoc Biol (2004) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于流式细胞仪在小鼠样本上 (图 3). Endothelium (2003) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 图 5h
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化在小鼠样本上 (图 5h) 和 被用于免疫印迹在小鼠样本上 (图 6). Am J Pathol (2003) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫沉淀; 小鼠; 2 ug
  • 免疫细胞化学; 小鼠; 1:250
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫沉淀在小鼠样本上浓度为2 ug 和 被用于免疫细胞化学在小鼠样本上浓度为1:250. Genes Dev (2003) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 小鼠; 2 ug/ml
赛默飞世尔 Cdh1抗体(Zymed, 13-1900)被用于被用于免疫印迹在小鼠样本上浓度为2 ug/ml. J Cell Sci (2003) ncbi
大鼠 单克隆(ECCD-1)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-1)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Dev Biol (2003) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Res (2002) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 犬; 图 7
  • 免疫印迹; 犬; 图 7
赛默飞世尔 Cdh1抗体(Zymed, 13-900)被用于被用于免疫细胞化学在犬样本上 (图 7) 和 被用于免疫印迹在犬样本上 (图 7). Pflugers Arch (2002) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠; 1:800
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800. Cancer Cell (2002) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Cdh1抗体(Zymed Laboratories, clone ECCD-2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2001) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Immunol (2000) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 Cdh1抗体(Zymed, clone ECCD-2)被用于被用于免疫细胞化学在人类样本上 (图 1). Int J Cancer (2000) ncbi
大鼠 单克隆(ECCD-1)
  • 免疫印迹; 人类
赛默飞世尔 Cdh1抗体(Zymed, ECCD-1)被用于被用于免疫印迹在人类样本上. Cell Death Differ (1999) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于流式细胞仪在小鼠样本上. Development (1999) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Cell Sci (1998) ncbi
大鼠 单克隆(ECCD-2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于流式细胞仪在小鼠样本上. Blood (1998) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Cdh1抗体(Zymed Laboratories, ECCD-2)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Res (1996) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫细胞化学在小鼠样本上. Mol Biol Cell (1996) ncbi
大鼠 单克隆(ECCD-2)
  • 免疫沉淀; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Cdh1抗体(Zymed, ECCD-2)被用于被用于免疫沉淀在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Cell Biol (1995) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3d). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab231303)被用于被用于免疫印迹在人类样本上 (图 4b). Thorac Cancer (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab231303)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Front Oncol (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 图 1b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76319)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Aging (Albany NY) (2022) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 1:500; 图 2e
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2e). J Bone Oncol (2022) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab231303)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cancer Cell Int (2022) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Sci Adv (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3a
艾博抗(上海)贸易有限公司 Cdh1抗体(abcam, ab51034)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). J Nutr (2021) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:100; 图 4c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4c). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 鸡; 1:250; 图 5m
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:250 (图 5m). elife (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 大鼠; 图 3b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab231303)被用于被用于免疫印迹在大鼠样本上 (图 3b). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 1b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Sci Rep (2021) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 1:1000; 图 4j
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5d
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4j) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5d). elife (2021) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 图 3c, 3d
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上 (图 3c, 3d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Front Immunol (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化; 人类; 图 2k
  • 免疫印迹; 人类; 图 2g, 3g
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab231303)被用于被用于免疫组化在人类样本上 (图 2k) 和 被用于免疫印迹在人类样本上 (图 2g, 3g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76319)被用于被用于免疫组化在人类样本上 (图 1a). Am J Clin Exp Urol (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Cdh1抗体(abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3c
  • 免疫细胞化学; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, Ab76319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c) 和 被用于免疫细胞化学在小鼠样本上 (图 7a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 5h
艾博抗(上海)贸易有限公司 Cdh1抗体(abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5h). Stem Cell Res Ther (2021) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 斑马鱼; 1:100; 图 3e
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 3e). elife (2021) ncbi
小鼠 单克隆(M168)
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab 76055)被用于被用于免疫组化在小鼠样本上 (图 3a). J Endocrinol (2021) ncbi
小鼠 单克隆(M168)
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, 76055)被用于被用于免疫组化在小鼠样本上浓度为1:250. J Clin Invest (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 图 s1g
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76319)被用于被用于免疫组化在小鼠样本上 (图 s1g). Theranostics (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; domestic rabbit; 1:50; 图 5c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:50 (图 5c). Invest Ophthalmol Vis Sci (2020) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Front Immunol (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 4h
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4h). Cell Res (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:1000; 图 6h
  • 免疫印迹; 人类; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 4g
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4g). Cell Tissue Res (2020) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Front Oncol (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Int J Mol Sci (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 4g
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Mol Cancer (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Oncogenesis (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:500; 图 7a, 7b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a, 7b). Oncol Rep (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 1s1c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1s1c). elife (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1b, 7a
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上 (图 1b, 7a) 和 被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2020) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:1000; 图 s2i
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, Ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2i). Nat Commun (2020) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:300; 图 e1b
  • 免疫细胞化学; 小鼠; 1:300; 图 e1b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 e1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 e1b). Nature (2020) ncbi
小鼠 单克隆(HECD-1)
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, Ab1416)被用于. Oncol Lett (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫组化在人类样本上浓度为1:100. J Cell Biol (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1a). Aging Cell (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 1:200; 图 e9f
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, Ab11512)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 e9f). Nature (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 人类; 图 1f
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫组化在人类样本上 (图 1f). Cell (2019) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 1:500; 图 2a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2a). Science (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 2c). Cancer Cell Int (2019) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 8c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 8c). Oncotarget (2019) ncbi
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Cell Rep (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 1a). Stem Cells Int (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 6a
  • 免疫印迹; 人类; 1:50; 图 3b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:50 (图 3b). Cancer Cell Int (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3a, 3c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3a, 3c). Breast Cancer (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:2000; 图 3e, 3f
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e, 3f). Biosci Rep (2019) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 人类; 图 2f
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f), 被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 2d). Biomed Res Int (2019) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:400; 图 3d
  • 免疫印迹; 人类; 图 6h
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3d) 和 被用于免疫印迹在人类样本上 (图 6h). J Clin Invest (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:3000; 图 2b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2b). Mol Med Rep (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3a). J Mol Med (Berl) (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, Ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). PLoS ONE (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Cdh1抗体(AbCam, Ab1416)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). Oncotarget (2017) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 图 3b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上 (图 3b). Prostate (2018) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:250; 图 s1a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76319)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s1a). Development (2018) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Cancer Res (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 1b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Mol Med Rep (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 6i
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫组化在人类样本上 (图 6i) 和 被用于免疫印迹在人类样本上 (图 5d). J Biol Chem (2017) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 图 s4b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于流式细胞仪在人类样本上 (图 s4b). MBio (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 2e). Cancer Lett (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:50; 图 s7c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s7c). Sci Rep (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1f). Matrix Biol (2017) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 1:500; 图 3c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3c). Mol Med Rep (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 7a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7a). Biomaterials (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 1h). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:50; 图 4a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 4a). Int J Cancer (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫组化; 人类; 图 1h
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 1d), 被用于免疫组化在人类样本上 (图 1h) 和 被用于免疫印迹在人类样本上 (图 1e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell Int (2016) ncbi
小鼠 单克隆(M168)
  • 免疫组化; 小鼠; 1:200; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Cdh1抗体(abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab16505)被用于被用于免疫印迹在人类样本上 (图 5). Cell Res (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, DECMA-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). PLoS Pathog (2016) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 图 8
  • 免疫印迹; 人类; 1:200; 图 10a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 10a). Cancer Cell Int (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3D
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3D). Onco Targets Ther (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Cell Cycle (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 人类; 1:200; 图 5
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 1
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, 16505)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). Virology (2016) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3). Fertil Steril (2016) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 8
  • 免疫细胞化学; 人类; 1:50; 图 6
  • 免疫印迹; 人类; 1:50; 图 6
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, Ab1416)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 8), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:50 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:50,000; 图 2
艾博抗(上海)贸易有限公司 Cdh1抗体(abcam, ab16505)被用于被用于免疫印迹在斑马鱼样本上浓度为1:50,000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s3b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab16505)被用于被用于免疫细胞化学在人类样本上 (图 s3b). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 9
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9). J Orthop Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:50,000; 图 5
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab16505)被用于被用于免疫印迹在斑马鱼样本上浓度为1:50,000 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:250; 图 2
  • 免疫印迹; 人类; 1:2500; 图 2
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:50,000; 图 5
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab16505)被用于被用于免疫印迹在斑马鱼样本上浓度为1:50,000 (图 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上 (图 7a). Onco Targets Ther (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 图 1
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, HECD-1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). J Invest Dermatol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 s7a
艾博抗(上海)贸易有限公司 Cdh1抗体(abcam, ab1416)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Oncogene (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 7
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). elife (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, Ab1416)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). PLoS ONE (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, DECMA-1)被用于被用于免疫细胞化学在人类样本上. J Cell Biol (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫沉淀; 人类; 图 4b
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫沉淀在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 牛; 1:100
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫细胞化学在牛样本上浓度为1:100. Anim Reprod Sci (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 猕猴; 1:500; 图 2
  • 免疫印迹; 猕猴; 1:500; 图 8
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在猕猴样本上浓度为1:500 (图 2) 和 被用于免疫印迹在猕猴样本上浓度为1:500 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4
  • 免疫印迹; 人类; 1:600; 图 7
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:600 (图 7). Respir Res (2015) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:400; 图 5
  • 免疫印迹; 人类; 1:400; 图 4
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 4). Int J Med Sci (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, DECMA-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, clone HECD-1)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 2e). PLoS ONE (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2b
  • 免疫细胞化学; 小鼠; 图 s2b
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab11512)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2b) 和 被用于免疫细胞化学在小鼠样本上 (图 s2b). Reprod Sci (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Med Oncol (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Carcinog (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:50
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上. Fertil Steril (2013) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 1:400
  • 免疫细胞化学; 人类; 1:400
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, HECD-1)被用于被用于流式细胞仪在人类样本上浓度为1:400, 被用于免疫细胞化学在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:500; 图 s2
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, Ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s2). Oncogene (2014) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Cdh1抗体(Abcam, ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 人类; 图 5h
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-59778)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5h). Sci Adv (2022) ncbi
小鼠 单克隆(G-10)
  • 免疫组化-石蜡切片; 人类; 图 7e, 7f
  • 免疫细胞化学; 人类; 图 2e, 2f
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-8426)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7e, 7f) 和 被用于免疫细胞化学在人类样本上 (图 2e, 2f). JBMR Plus (2022) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 小鼠; 1:50; 图 7f
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc8426)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 7f). Mol Oncol (2022) ncbi
小鼠 单克隆(CH-19)
  • 免疫组化; 小鼠; 图 3a
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-59876)被用于被用于免疫组化在小鼠样本上 (图 3a). EMBO J (2021) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 5c
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 人类; 1:100; 图 4b
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4b). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:200; 图 2a
圣克鲁斯生物技术 Cdh1抗体(Santa, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2a). World J Surg Oncol (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 人类; 图 1f
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, DECMA-1)被用于被用于免疫组化在人类样本上 (图 1f). Oncogene (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫印迹; 人类; 1:300; 图 6b
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-59778)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 6b). PLoS ONE (2020) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, G-10)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, G-10)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆(5F133)
  • 免疫细胞化学; 人类; 1:500; 图 1c
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Cdh1抗体(SantaCruz, sc-71007)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1c) 和 被用于免疫印迹在人类样本上 (图 2a). Exp Ther Med (2018) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-59876)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:500; 图 4e
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). Int J Mol Med (2017) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 s1
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, SC-8426)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 s1). Biol Open (2017) ncbi
小鼠 单克隆(Sec11)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-59780)被用于被用于免疫印迹在人类样本上 (图 1c). Biosci Rep (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 st7
  • 免疫组化-石蜡切片; 犬; 1:50; 图 st7
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, SC-59778)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 st7) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (图 st7). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(5F133)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, Inc., sc-71007)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Mol Med Rep (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 图 S1b
圣克鲁斯生物技术 Cdh1抗体(Santa cruz, DECMA-1)被用于被用于免疫细胞化学在小鼠样本上 (图 S1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, G-10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 3B
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3B). Oncol Lett (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). BMC Res Notes (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, SC-8426)被用于被用于免疫印迹在小鼠样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, sc8426)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:500; 图 2a
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, G10)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Exp Cell Res (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在小鼠样本上. Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫印迹在人类样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 大鼠; 图 5
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, SC-8426)被用于被用于免疫细胞化学在大鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 s2a
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Cdh1抗体(santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotech, sc-59778)被用于被用于免疫印迹在人类样本上浓度为1:500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫组化-石蜡切片; 人类; 图 6
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6) 和 被用于免疫组化-石蜡切片在人类样本上 (图 6). Cell Cycle (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc59778)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. J Physiol (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; domestic rabbit; 5 ug/ml
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为5 ug/ml. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 1:4000; 图 5c
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, sc-59876)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5c). Nat Neurosci (2014) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz, sc-59778)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Cell Res (2014) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Cdh1抗体(Santa Cruz Biotechnology, SC-8426)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2013) ncbi
BioLegend
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 人类; 1:250; 图 4f
BioLegend Cdh1抗体(Biolegend, 147307)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4f). Commun Biol (2022) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Cdh1抗体(BioLegend, 147307)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; pigs ; 图 4a
BioLegend Cdh1抗体(BioLegend, 147319)被用于被用于流式细胞仪在pigs 样本上 (图 4a). Animals (Basel) (2021) ncbi
大鼠 单克隆(DECMA-1)
BioLegend Cdh1抗体(BioLegend, DECMA-1)被用于. Nature (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 1:200; 图 s7a
BioLegend Cdh1抗体(Biolegend, 147309)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7a). Physiol Rep (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2f
BioLegend Cdh1抗体(Biolegend, Decma-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2f). Science (2018) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Cdh1抗体(BioLegend, DECMA-1)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2018) ncbi
大鼠 单克隆(DECMA-1)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Cdh1抗体(BioLegend, DECMA-1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫印迹; 小鼠; 图 4g
BioLegend Cdh1抗体(BioLegend, 147302)被用于被用于免疫印迹在小鼠样本上 (图 4g). J Exp Med (2017) ncbi
安迪生物R&D
大鼠 单克隆(114420)
  • 流式细胞仪; 小鼠; 1:100; 图 4d
安迪生物R&D Cdh1抗体(R&D system, 114420)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4d). Oncotarget (2022) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 2m
安迪生物R&D Cdh1抗体(R&D Systems, AF748)被用于被用于免疫组化在小鼠样本上 (图 2m). Front Cell Dev Biol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s2a
安迪生物R&D Cdh1抗体(R&D Systems, AF748)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2a). Development (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠
安迪生物R&D Cdh1抗体(R&D, AF748)被用于被用于免疫细胞化学在小鼠样本上. Nature (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 1:600; 图 2a
安迪生物R&D Cdh1抗体(R&D systems, AF648)被用于被用于免疫组化在人类样本上浓度为1:600 (图 2a). Nat Commun (2021) ncbi
Novus Biologicals
小鼠 单克隆(7H12)
  • 免疫印迹; 人类; 图 3a
Novus Biologicals Cdh1抗体(Novus, NBP2-19051SS)被用于被用于免疫印迹在人类样本上 (图 3a). Front Immunol (2021) ncbi
小鼠 单克隆(7H12)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 4a
Novus Biologicals Cdh1抗体(Novus, NBP2-19051)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Cancer Res (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4i, 4j
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i, 4j). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling technology, 3195T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 5c
  • 免疫印迹; 人类; 1:3000; 图 5f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 5f). Front Oncol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫组化在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 1b). iScience (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 2c). Cell Stem Cell (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 s2b, s6a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b, s6a). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:2000; 图 s6e, s6f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s6e, s6f). Cell Mol Life Sci (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:100; 图 6g
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6g). Front Oncol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2g
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell SignalingTechnology, 3195C)被用于被用于免疫细胞化学在人类样本上 (图 2g) 和 被用于免疫印迹在人类样本上 (图 2f). J Cell Mol Med (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Adv (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 犬; 1:200; 图 1k
  • 免疫细胞化学; 小鼠; 1:200; 图 5f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195T)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 1k) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). iScience (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2g, 8d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 2g, 8d). Bioengineered (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Commun Biol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:2000; 图 6f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6f). Front Oncol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5a). Transl Oncol (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 24E10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:5000
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在小鼠样本上 (图 4c). iScience (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signalling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5a, 5c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, 5c). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6c, 6f
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 6c, 6f). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; pigs ; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 s2d). Virulence (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:200; 图 1l
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1l). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6a, 6b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195S)被用于被用于免疫印迹在人类样本上 (图 6a, 6b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 s2g
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在小鼠样本上 (图 s2g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:250; 图 7a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195s)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 7a). Curr Res Toxicol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; pigs ; 图 s4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195S)被用于被用于免疫组化在pigs 样本上 (图 s4). Sci Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195S)被用于被用于免疫组化在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3d). Theranostics (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 猕猴; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195S)被用于被用于免疫组化在猕猴样本上浓度为1:1000 (图 4a). BMC Biol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Oncogene (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Cancer Gene Ther (2022) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:3000; 图 5e
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:200; 图 2s
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2s). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). Front Oncol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:1000; 图 s10a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 3b). Biomol Ther (Seoul) (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 s6b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 s6b). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:500; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195T)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4b). Redox Biol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 s5-1e
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 s5-1e). elife (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:100; 图 s4a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s4a). Cell Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:100; 图 s2l
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2l). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4b
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4b) 和 被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 4d
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫细胞化学在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 4b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在小鼠样本上 (图 s3b). Cell Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3e, 5c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e, 5c). Neoplasma (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:500; 图 4c
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:50; 图 5c
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:400; 图 s4g, s4h
  • 免疫印迹; 人类; 1:1000; 图 s4d, s4e, s5a
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s4g, s4h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s4d, s4e, s5a). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 24E10)被用于被用于免疫组化在小鼠样本上 (图 3e), 被用于免疫印迹在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 2). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在小鼠样本上 (图 4b). Oncogene (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2k
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 24E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2k). Front Physiol (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 1b, 1c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 1b, 1c). Theranostics (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2d). Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
  • 免疫印迹; 小鼠; 1:1000; 图 s11b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s11b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3a, 3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a, 3b). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4f). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). J Cancer (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上 (图 3a). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在小鼠样本上 (图 7b). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling Technology, 24E10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). elife (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Front Oncol (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:500; 图 s1-3a
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1-3a). elife (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:500; 图 s6-2a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6-2a). elife (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 31958)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 3h
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Signal Transduct Target Ther (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 猕猴; 1:300; 图 s8b
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3199S)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:300 (图 s8b). Science (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 6b, 8b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b, 8b). Commun Biol (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:500; 图 1s4a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1s4a). elife (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500; 图 2g
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2g). Oncogene (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 5i). CNS Neurosci Ther (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 1:500; 图 2f
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2f). Cancer Manag Res (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 8a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 7d). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2g: 2h, 2i
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g: 2h, 2i). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 3f). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e). Dis Model Mech (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 2f). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3a
  • 免疫印迹; 小鼠; 1:5000; 图 3h
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3h). Cancer Cell (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 s1c
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 24E10)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1c). Sci Rep (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). J Cancer (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2i
  • 免疫印迹; 人类; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Front Oncol (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3i). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 小鼠; 1:200; 图 2i
  • 免疫细胞化学; 小鼠; 1:200; 图 2i
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2i), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2i) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Sci Adv (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:200; 图 3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signal Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3b). BMC Ophthalmol (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2d
  • 免疫印迹; 小鼠; 1:1000; 图 s6f
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6f). Science (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 s3b
  • 免疫细胞化学; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3b) 和 被用于免疫细胞化学在人类样本上 (图 2g). Oncogene (2020) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 5e
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫细胞化学在人类样本上 (图 5e) 和 被用于免疫印迹在人类样本上 (图 5a). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:100; 图 2c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). Nature (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:100; 图 s1e
  • 免疫印迹; 小鼠; 1:1000; 图 s1j
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3199)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1j). Sci Adv (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). Theranostics (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4i). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 5d). Science (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signalling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(24E10)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technologies, 3195)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1b, 4d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b, 4d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 24E10)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 1f
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 1f) 和 被用于免疫印迹在小鼠样本上 (图 5f). Cancer Lett (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4a
  • 免疫印迹; 小鼠; 1:200; 图 4c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 24E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 4c). J Allergy Clin Immunol (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 s1f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 s1f). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(24E10)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Mol Med (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Med Rep (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 6g
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 6g). Biol Reprod (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3c). Cancer Res (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 3a2
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signalling, 24E10)被用于被用于免疫组化在人类样本上 (图 3a2). Stem Cells Int (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Life Sci (2018) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technologies, 3195)被用于被用于免疫细胞化学在人类样本上. Cell Stem Cell (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2j
赛信通(上海)生物试剂有限公司 Cdh1抗体(cell signalling, 3195)被用于被用于免疫印迹在人类样本上 (图 2j). Mol Cancer (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 6b
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195S)被用于被用于免疫细胞化学在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 7b
  • 免疫细胞化学; 人类; 图 6d
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195s)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b), 被用于免疫细胞化学在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 6a). EBioMedicine (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Dev Biol (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 6a
  • 免疫印迹; 人类; 图 s3a-b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 s3a-b). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:250; 图 3c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 3c). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technolog, 3195 S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Mol Vis (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nature (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Cdh1抗体(cell signalling, 3195)被用于被用于免疫印迹在人类样本上 (图 2g). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 s2). Neoplasia (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上. Neoplasia (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 7a). Oncogene (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 3e). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Pharmacother (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195p)被用于被用于免疫印迹在小鼠样本上 (图 5b). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 24E10)被用于被用于免疫印迹在人类样本上 (图 10). Oncotarget (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:2000; 图 4b
  • 免疫印迹; 人类; 1:2000; 图 1b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4g). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Breast Cancer Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195s)被用于被用于免疫组化在小鼠样本上 (图 3f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 5b). Respir Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 6a
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 5c). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 s3e
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3e). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s13b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s13b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3,195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7a
  • 免疫组化; 人类; 1:200; 图 7b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7a) 和 被用于免疫组化在人类样本上浓度为1:200 (图 7b). Immunity (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 s1c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 s2a
  • 免疫组化; 人类; 图 3b
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上 (图 s2a), 被用于免疫组化在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 s2a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Cdh1抗体(cell signalling, 3195S)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2e
  • 免疫细胞化学; 人类; 1:200; 图 3e
  • 免疫印迹; 人类; 1:500; 图 3d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2e), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:400; 图 2c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫组化在人类样本上浓度为1:400 (图 2c). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 6
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technologies, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 6a). Clin Sci (Lond) (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195P)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:300; 图 2
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Anticancer Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:500; 图 5
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:500; 图 2b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signalling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2b). Reprod Biomed Online (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 2c). J Proteomics (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Drug Des Devel Ther (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上 (图 4a). Oncogene (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 s3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5m
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5m). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:400; 图 1b
赛信通(上海)生物试剂有限公司 Cdh1抗体(cell signalling, 24E10)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:500; 图 2e
赛信通(上海)生物试剂有限公司 Cdh1抗体(cell signalling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2e). Science (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:500; 图 s7
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Tech, 3195S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). BMC Biol (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:6000; 图 1d
赛信通(上海)生物试剂有限公司 Cdh1抗体(cell signalling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 图 1a
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Dev Biol (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Cdh1抗体(cell signaling, 3195S)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195S)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:3000; 图 5b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5b). Oncogene (2017) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Tech, 3195)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 3g). FEBS Open Bio (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 7a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫细胞化学在人类样本上 (图 6e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Cdh1抗体(cell signalling, 3195P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6f). Int J Biol Sci (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4a). Oncol Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signalling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 23E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 2
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10 3195S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Hepatology (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). Endocrinology (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:250; 图 7
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Int J Biol Sci (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 图 4g
  • 免疫印迹; 小鼠; 图 4f
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195S)被用于被用于免疫细胞化学在小鼠样本上 (图 4g), 被用于免疫印迹在小鼠样本上 (图 4f), 被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1). Development (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:200; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Science (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signalling technology, 3195S)被用于被用于免疫印迹在人类样本上 (图 4d). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3d). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3199)被用于被用于流式细胞仪在小鼠样本上 (图 3). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 6
  • 免疫组化; 人类; 图 4
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫细胞化学在人类样本上 (图 6), 被用于免疫组化在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:75; 图 4c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫组化在人类样本上浓度为1:75 (图 4c). Histopathology (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:100; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 s3
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Endocr Relat Cancer (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Genes Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 5
  • 免疫印迹; 人类; 1:200; 图 5
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Nat Med (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:200; 图 s3c
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3c). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在小鼠样本上 (图 2b). Stem Cells Dev (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 人类; 1:200; 表 4
  • 免疫细胞化学; 人类; 1:500; 表 4
  • 免疫印迹; 人类; 1:1000; 表 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于流式细胞仪在人类样本上浓度为1:200 (表 4), 被用于免疫细胞化学在人类样本上浓度为1:500 (表 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (表 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology , #3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nature (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Dig Dis Sci (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 8). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signal, 24E10)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠; 1:4000; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫细胞化学在人类样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, #3195)被用于被用于免疫印迹在人类样本上. Oncol Rep (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Sigma, 3195)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 1:100; 表 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Tech, 3195s)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Cdh1抗体(CST, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). BMC Complement Altern Med (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:400; 图 6
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 24E10)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 6). BMC Dev Biol (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上浓度为1:500. BMC Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:400; 图 4
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化在人类样本上浓度为1:400 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195P)被用于被用于免疫印迹在人类样本上 (图 3). Int J Gynecol Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). Mol Oncol (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 3). Ann Surg Oncol (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cell Proteomics (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3b). Int J Cancer (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 24E10)被用于被用于免疫组化在人类样本上浓度为1:100. BMC Vet Res (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 流式细胞仪; 小鼠; 1:50; 图 9
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 9). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Clin Invest (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化; 人类; 1:400; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化在人类样本上浓度为1:400 (图 4). Mol Cancer Ther (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫细胞化学在人类样本上 (图 4). Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 4b). Mol Biol Cell (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signalling Technology, 3195S)被用于被用于免疫印迹在人类样本上. Cell Prolif (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 3195)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling technology, 3195P)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 人类; 1:600
  • 免疫印迹; 人类; 1:800
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 和 被用于免疫印迹在人类样本上浓度为1:800. Urol Oncol (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Exp Eye Res (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signal Technology, 24E10)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling Technology, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS Genet (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 24E10)被用于被用于免疫印迹在人类样本上. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫细胞化学; 小鼠; 图 6h
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫细胞化学在小鼠样本上 (图 6h). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling, 24E10)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell signaling, 24E10)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2013) ncbi
domestic rabbit 单克隆(24E10)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Cdh1抗体(Cell Signaling Technology, 3195)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS Genet (2013) ncbi
碧迪BD
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 2e
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2e). Int J Mol Sci (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 4f
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4f). iScience (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3b
碧迪BD Cdh1抗体(BD Biosciences, 36)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 s5e
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上 (图 s5e). Dev Cell (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:10,000
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Nat Commun (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1d
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2a, 4
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1d) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2a, 4). Int J Biol Sci (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4). iScience (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 1c
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 1c). Cells (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 3d, 3h
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d, 3h). Oncol Lett (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s8a
碧迪BD Cdh1抗体(BD Transduction, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s8a). BMC Cancer (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4a
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4a). Cell Rep (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化基因敲除验证; 小鼠; 图 1c
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 1c). Aging (Albany NY) (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 1a
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). elife (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
  • 免疫组化; 小鼠; 1:200; 图 5a
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). Life Sci Alliance (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
碧迪BD Cdh1抗体(BD, 610182)被用于. Mol Oncol (2022) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 4b). Biology (Basel) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 4c
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上 (图 4c). iScience (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2a
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在小鼠样本上 (图 2a). Front Pharmacol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2e
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 2e). Cell Death Dis (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:750; 图 3d
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:750 (图 3d). elife (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 s6a
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s6a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; pigs ; 1:2000; 图 1c
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:2000 (图 1c). Animals (Basel) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 3g
  • 免疫组化; 小鼠; 图 s1-1a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3g) 和 被用于免疫组化在小鼠样本上 (图 s1-1a). elife (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 3b
碧迪BD Cdh1抗体(BD Pharmingen, 612130)被用于被用于免疫组化在小鼠样本上 (图 3b). Front Med (Lausanne) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:5000
碧迪BD Cdh1抗体(BD Biosciences, 610,181)被用于被用于免疫组化在斑马鱼样本上浓度为1:5000. Prion (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1d, 4e
碧迪BD Cdh1抗体(BD Transduction, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1d, 4e). Cell Death Discov (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 1a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000 (图 1a). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 s3d
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 s3d). PLoS Genet (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 4c
碧迪BD Cdh1抗体(BD Transduction, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Cancer Sci (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:2000; 图 4b
  • 免疫印迹; 人类; 1:2000; 图 2d
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2d). J Biol Chem (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1d
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 1d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 3e
  • 免疫组化; 小鼠; 1:500; 图 1a
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫细胞化学在小鼠样本上 (图 3e) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Curr Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2f
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Commun Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1j
碧迪BD Cdh1抗体(BD Biosciences, 560062)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1j). Nat Commun (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:500; 图 5a
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:250; 图 4d
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4d). Stem Cell Res (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100. Dis Model Mech (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 3e
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mucosal Immunol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 大鼠; 1:50; 图 4a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 4a). NPJ Regen Med (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s3c
  • 免疫细胞化学; 人类; 1:200; 图 s4b
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s3c) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4b). Sci Rep (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 图 s5b
  • 免疫印迹; 犬; 图 3h
碧迪BD Cdh1抗体(BD biosciences, 610181)被用于被用于免疫细胞化学在犬样本上 (图 s5b) 和 被用于免疫印迹在犬样本上 (图 3h). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 2d
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫组化在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Mol Cell Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s3m
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s3m). Clin Cancer Res (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 5d, 6f
  • 免疫细胞化学; 人类; 1:100; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2a, 2c
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d, 6f), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2c). Oncogenesis (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 5f
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5f). elife (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 4h
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4h). Cell Stem Cell (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3a). Dis Markers (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 1g
  • 免疫印迹; 人类; 1:1000; 图 8h
碧迪BD Cdh1抗体(BD Bioscience, 36)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 8h). elife (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2500; 图 1b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1b). Nat Commun (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 3f
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3f). elife (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2500; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 5). Oncol Lett (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4e, 4p, e4l
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4e, 4p, e4l). Nature (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 1d
  • 免疫细胞化学; 小鼠; 1:100; 图 1e
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1e). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:500; 图 3i
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3i). Cancer Cell (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 其他; 斑马鱼; 1:100; 图 2
碧迪BD Cdh1抗体(BD Bio transductions, 610182)被用于被用于其他在斑马鱼样本上浓度为1:100 (图 2). elife (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
碧迪BD Cdh1抗体(BD Transduction Labs, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1h
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1h). Nature (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:200; 图 2c
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2c). Breast Cancer Res (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 1d
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上 (图 1d). Cell Stem Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:200; 图 4c
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4c). Endocrinology (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 1a). Biol Open (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3j
碧迪BD Cdh1抗体(BD-Transductions, 610182)被用于被用于免疫印迹在人类样本上 (图 3j). Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7d
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7d). Nature (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 3d, 4g
  • 免疫印迹; 人类; 1:1000; 图 3d
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3d, 4g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). EBioMedicine (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1g
碧迪BD Cdh1抗体(BD Pharmingen, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1g). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 4b
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4b). Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 2f
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). elife (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). Nat Cell Biol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠; 1:5000; 图 s3b
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s3b). J Cell Sci (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4c
碧迪BD Cdh1抗体(BD, 36/E-Cadherin)被用于被用于免疫细胞化学在人类样本上 (图 4c). Nat Commun (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5a
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在人类样本上 (图 5a). J Pathol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 6a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
  • 免疫组化-石蜡切片; 人类; 图 7m
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7m). Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于. Nature (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2i
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). J Biol Chem (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 6b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Oncol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 4d
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2d
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2d). Mol Biol Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 8c
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 8c). Oncotarget (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
碧迪BD Cdh1抗体(BD Biosciences, G10181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • proximity ligation assay; 人类; 1:1000; 图 2e
  • 免疫细胞化学; 人类; 1:1000; 图 2d
碧迪BD Cdh1抗体(BD, 610181)被用于被用于proximity ligation assay在人类样本上浓度为1:1000 (图 2e) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2d). Oncogene (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 s4c
  • 免疫印迹; 人类; 1:10,000; 图 1a
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s4c) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). Nat Commun (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2a
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 3). Biol Pharm Bull (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1c
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1c). Nature (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2i
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2i). Genes Dev (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 3a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 图 6e
碧迪BD Cdh1抗体(MilliporeBD Transduction Lab, BD610181)被用于被用于免疫印迹在犬样本上 (图 6e). Nature (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 1i
碧迪BD Cdh1抗体(BD Transduction Laboratory, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1i). Cell Stem Cell (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 1:1000; 图 4c
碧迪BD Cdh1抗体(BD Transduction, 61081)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 4c). J Cell Sci (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 2a
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5c
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5c). Development (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:1000; 图 1
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Am J Physiol Renal Physiol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 7g
碧迪BD Cdh1抗体(BD Biosciences, 36/E-Cadherin)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7g). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 ex1a
碧迪BD Cdh1抗体(BD Biosciences, BD610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex1a). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 1d
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:200; 图 s1d
碧迪BD Cdh1抗体(BD Bioscience, 36)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1d). PLoS Genet (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 图 6b
碧迪BD Cdh1抗体(BDTransduction实验室, 610182)被用于被用于免疫印迹在犬样本上 (图 6b). Oncogene (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7c
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7c). EMBO Mol Med (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Clin Invest (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 1:50; 图 5c
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 5c). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:2000; 图 3a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 2c
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上 (图 2c). J Clin Invest (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 2.5 ug/ml; 表 s3
碧迪BD Cdh1抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化在人类样本上浓度为2.5 ug/ml (表 s3). Development (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:200; 图 1
  • 免疫印迹; 犬; 图 7b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 1) 和 被用于免疫印迹在犬样本上 (图 7b). Mol Biol Cell (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 1:10,000; 图 4a
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 4a). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 犬; 1:500; 图 st7
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 st7
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:500 (图 st7) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 st7). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 3A
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3A). Oncotarget (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1d
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 1d). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
碧迪BD Cdh1抗体(BD, 560062)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Cell Biol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 图 1b
碧迪BD Cdh1抗体(BD Pharmingen, 612130)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Cycle (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 3b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3b). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 4a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4a). Int J Oncol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 4g
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上 (图 4g). J Exp Med (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 犬; 0.8 ug/ml; 图 4k
  • 免疫印迹; 犬; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化-石蜡切片在犬样本上浓度为0.8 ug/ml (图 4k) 和 被用于免疫印迹在犬样本上 (图 2). J Vet Med Sci (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:500; 图 7D
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 7D). elife (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
  • 免疫细胞化学; 人类; 1:100; 图 2b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 s7h
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s7h). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 1a
碧迪BD Cdh1抗体(Becton Dickinson Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Biol Chem (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 s2k
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2k). Autophagy (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 2c
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2c). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Nature (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2c
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2c). Breast Cancer Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 图 s2b
碧迪BD Cdh1抗体(BD Bioscience, 560061)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上 (图 s2b). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3). J Dent Res (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 st4
碧迪BD Cdh1抗体(BD Transduction Lab, 610181)被用于被用于免疫组化在人类样本上浓度为1:500 (图 st4). Development (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD Cdh1抗体(BD Transduction Laboratories, 36/E-Cadherin)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 s3a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 s3a). J Cell Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1a
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1a). Stem Cell Reports (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 4d
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 4d). Immunity (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4e
碧迪BD Cdh1抗体(BD Biosciences, 564186)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; African green monkey; 2 ug/ml; 图 7c
  • 免疫印迹; 人类; 图 4b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在African green monkey样本上浓度为2 ug/ml (图 7c) 和 被用于免疫印迹在人类样本上 (图 4b). J Cell Physiol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 3A
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3A). elife (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:25; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 1). Neoplasia (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4a). Am J Pathol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BD Cdh1抗体(BD Bioscience, 610182)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 s1c
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 s1c). EMBO Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2c
  • 免疫印迹; 人类; 图 3b, 4c
碧迪BD Cdh1抗体(BD BIOSCIENCES, 610181)被用于被用于免疫印迹在小鼠样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 3b, 4c). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2a
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上 (图 2a). Gastroenterol Res Pract (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:250; 图 3a
碧迪BD Cdh1抗体(BD Transduction, 610182)被用于被用于免疫组化在人类样本上浓度为1:250 (图 3a). J Cell Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2e
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上 (图 2e). Breast Cancer Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1b
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1a
碧迪BD Cdh1抗体(BD Biosciences, 61082)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:300; 图 2
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6c
  • 免疫细胞化学; 人类; 图 5d
  • 免疫印迹; 人类; 图 5c
碧迪BD Cdh1抗体(BD Transduction Laboratories, 612130)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6c), 被用于免疫细胞化学在人类样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 st1
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 6e
碧迪BD Cdh1抗体(BD Pharmingen, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6e). Gut (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:10,000; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3c
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Science (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 4
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). J Mol Psychiatry (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 s5
碧迪BD Cdh1抗体(BD Pharmingen, 610182)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50; 图 5b
  • 免疫印迹; 人类; 图 5a
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 2c
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c). Pflugers Arch (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 s2a
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2a). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 1
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Mol Cancer (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 6
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). EMBO Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 2
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610,182)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 s7
  • 免疫组化; 小鼠; 图 4
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7) 和 被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 s3
  • 免疫细胞化学; 仓鼠; 图 s2
  • 免疫细胞化学; 犬; 图 1a
碧迪BD Cdh1抗体(BD Transduction Laboratories, 36)被用于被用于免疫细胞化学在人类样本上 (图 s3), 被用于免疫细胞化学在仓鼠样本上 (图 s2) 和 被用于免疫细胞化学在犬样本上 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Mol Biol Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3b
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1i
碧迪BD Cdh1抗体(BD Pharmingen, 36)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1i). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 s7
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BD Cdh1抗体(BD Pharmingen, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠; 1:1000; 图 7
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). J Cell Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
  • 免疫细胞化学; 人类; 1:100; 图 3
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Tissue Eng Part C Methods (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:200; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 3). Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:100; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; pigs ; 图 1
  • 免疫印迹; pigs ; 1:1000; 图 1
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在pigs 样本上 (图 1), 被用于免疫印迹在pigs 样本上浓度为1:1000 (图 1), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 61081)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2b
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫细胞化学; 人类; 1:100; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Oncol Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 s3
碧迪BD Cdh1抗体(BD Transductio, 610181)被用于被用于免疫细胞化学在人类样本上 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50; 图 4
碧迪BD Cdh1抗体(BD Transduction Laboratories, 36)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4). Nat Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:50; 图 1b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:2000; 图 3
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
  • 免疫印迹; 小鼠; 1:2000; 图 4
碧迪BD Cdh1抗体(BD Transduction Laboratories, BD610181)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 3), 被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; pigs ; 1:100; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 图 3
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在犬样本上 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 3a
  • 免疫细胞化学; 人类; 1:200; 图 3a
碧迪BD Cdh1抗体(BD, 560064)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3a) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3a). Cell Death Differ (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 6
  • 免疫印迹; 人类; 图 6
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:250; 图 1
  • 免疫印迹; 人类; 1:1000
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BD Cdh1抗体(BD transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 2). Biochem J (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:300; 图 2
  • 免疫印迹; 人类; 1:300; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:300 (图 2). elife (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 1b
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化在人类样本上 (图 1b). Int J Oncol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 图 st1
碧迪BD Cdh1抗体(BD, 560061)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 s1
碧迪BD Cdh1抗体(BD科学, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 s1). BMC Cancer (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:50; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2). Bone (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a). Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 1c
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1c). Science (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). J Pathol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 1f
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 1f). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 6
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 2a
碧迪BD Cdh1抗体(BD Biosciences, 36/E-Cadherin)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2a). Cell Cycle (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1e
碧迪BD Cdh1抗体(BD, 36/E-Cadherin)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1e). Science (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 36)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Cancer Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 10 ug/ml; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为10 ug/ml (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 6
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Int J Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 1
碧迪BD Cdh1抗体(bD Bioscience, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 0.25 ug/ml; 图 1
碧迪BD Cdh1抗体(BD Bioscience, 610 182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.25 ug/ml (图 1). Endocrinology (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:400; 图 4
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4). Dev Cell (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Neoplasia (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 4
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 e5
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:100 (图 e5). Nature (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 s3
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 大鼠; 1:150; 图 1
  • 免疫印迹; 大鼠; 图 2
碧迪BD Cdh1抗体(BD Biosciences Pharmingen, 610181)被用于被用于免疫细胞化学在大鼠样本上浓度为1:150 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 鸡; 1:200
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫组化在鸡样本上浓度为1:200. Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:500; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 5). elife (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 s4b
碧迪BD Cdh1抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 s4b). J Clin Invest (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 s2
  • 免疫印迹; 小鼠; 图 s2
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在小鼠样本上 (图 s2) 和 被用于免疫印迹在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 4
碧迪BD Cdh1抗体(BD Biosciences, 36)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 1a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 1a). Cytoskeleton (Hoboken) (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 3
碧迪BD Cdh1抗体(BD Biosciences, BD610182)被用于被用于免疫印迹在小鼠样本上 (图 3). Nutr Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-自由浮动切片; 鸡; 1:1000; 图 5
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-自由浮动切片在鸡样本上浓度为1:1000 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Am Soc Nephrol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 图 1c
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在犬样本上 (图 1c). BMC Genomics (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
碧迪BD Cdh1抗体(Transduction Laboratories, 36)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). Pathol Res Pract (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 4
  • 免疫组化; 人类; 1:500; 图 6
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4) 和 被用于免疫组化在人类样本上浓度为1:500 (图 6). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 7
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 2
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 7e
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫组化在人类样本上 (图 7e). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠
碧迪BD Cdh1抗体(BD-Transduction laboratories, 610181)被用于被用于免疫组化在小鼠样本上. Dev Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1c
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:300
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 st1
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 st1). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BD Cdh1抗体(BD -Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 1d
碧迪BD Cdh1抗体(BD Transduction/BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BD Cdh1抗体(BD Transduction Laboratories, 36)被用于被用于免疫印迹在人类样本上 (图 2). Int J Cancer (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 1e
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1e). Stem Cell Reports (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS Med (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:600; 图 2c
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:600 (图 2c). Mol Biol Cell (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 表 2
碧迪BD Cdh1抗体(BD Bioscience, 612130)被用于被用于免疫细胞化学在人类样本上 (表 2). Exp Cell Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
碧迪BD Cdh1抗体(BD Bioscience, 36)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). Hum Pathol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BD Cdh1抗体(BD Transduction Laboratories, 36/E-cadherin)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD Cdh1抗体(bD Bioscience, 36)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 鸡; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在鸡样本上 (图 1). Development (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BD Cdh1抗体(BD Science Transduction, 610181)被用于被用于免疫印迹在人类样本上 (图 4). J Biomed Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:250; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1). Development (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BD Cdh1抗体(Becton Dickinson, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Dev Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 4
碧迪BD Cdh1抗体(Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 6b
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫组化在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 6
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000. Int J Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
  • 免疫沉淀; 人类; 图 6
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1), 被用于免疫沉淀在人类样本上 (图 6), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Oncogenesis (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 5
碧迪BD Cdh1抗体(BD Biosciences, BD612131)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Science (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Pharmingen, 610182)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 4
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 表 1
  • 免疫印迹; 人类; 1:2500; 图 3B
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 3B). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:200; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Dev Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100
碧迪BD Cdh1抗体(BD biosciences, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100. Mitochondrion (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Cdh1抗体(BD Transduction lab, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上. Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 1e
碧迪BD Cdh1抗体(BD Biosciences, 36/E)被用于被用于免疫组化在小鼠样本上 (图 1e). Nat Immunol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:50
碧迪BD Cdh1抗体(BD Biosciences Pharmingen, BD 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 牛
  • 免疫印迹; 牛
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在牛样本上 和 被用于免疫印迹在牛样本上. Int J Mol Med (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫沉淀; 人类; 图 4
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 4
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫沉淀在人类样本上 (图 4), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2
碧迪BD Cdh1抗体(BD, 612130)被用于被用于免疫细胞化学在人类样本上 (图 2). BMC Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 1:10,000
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:10,000. BMC Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cancer Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 3
碧迪BD Cdh1抗体(BD Bioscience, 560061)被用于被用于免疫组化在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 s5
碧迪BD Cdh1抗体(BD Biosciences, 36)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5). Nature (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4d
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 2d
碧迪BD Cdh1抗体(BD Transduction labs, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 2d). Stem Cell Reports (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 1). Gastroenterology (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 1:100; 图 5
  • 免疫细胞化学; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4h
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上 (图 4h). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 1b
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Sci Signal (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 4
  • 免疫组化; 小鼠; 图 5b
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上 (图 4) 和 被用于免疫组化在小鼠样本上 (图 5b). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; pigs
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在pigs 样本上. Biomaterials (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 1
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在人类样本上 (图 1). Nat Cell Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 其他; 人类; 图 6a
  • 免疫印迹; 人类; 图 2a
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于其他在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:200
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:200. Ann Biomed Eng (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 s4
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Cell (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 s6
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫印迹在人类样本上 (图 s6). Genes Dev (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 大鼠; 1:200
碧迪BD Cdh1抗体(BD Transduction, 36/E-cadherin)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Biosciences Dickinson, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100, 被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上浓度为1:100. J Cancer Res Clin Oncol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类
碧迪BD Cdh1抗体(BD Bioscience, 610182)被用于被用于免疫组化在人类样本上. J Invest Dermatol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 6
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠
碧迪BD Cdh1抗体(BD Bioscience, 610182)被用于被用于免疫印迹在大鼠样本上. Endocrinology (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Eur J Pharm Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Cytoskeleton (Hoboken) (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BD Cdh1抗体(BD Transduction Lab, 610181)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:4000
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上浓度为1:4000. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Cdh1抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Eur J Pharm Biopharm (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BD Cdh1抗体(BD Bioscience, 612 131)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Endocrinology (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠
碧迪BD Cdh1抗体(BD Bioscience, 610182)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 大鼠; 1:50; 图 3b
碧迪BD Cdh1抗体(BD Biosciences, 61081)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3b). Am J Pathol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1 ug/ml
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml. J Lab Autom (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Mol Hum Reprod (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:200; 图 4
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 4). Nat Commun (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200 or 1:1000
  • 免疫组化-石蜡切片; 小鼠; 1:200 or 1:1000
碧迪BD Cdh1抗体(BD, BDB610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 or 1:1000 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 or 1:1000. Cell Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
碧迪BD Cdh1抗体(BD Biosciences, BD610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:1000. Cell Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 7
碧迪BD Cdh1抗体(BDbiosciences, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). Mol Cancer Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BD Cdh1抗体(BD Transduction Laboratories, 36)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 3b
碧迪BD Cdh1抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3b). Mol Biol Cell (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:100; 图 2
碧迪BD Cdh1抗体(BD Transduction, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 2). PLoS Genet (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:35; 图 5
碧迪BD Cdh1抗体(BD Biosciences, 36/E-Cadherin)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:35 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Cdh1抗体(BD BioSciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:200
碧迪BD Cdh1抗体(Becton Dickinson, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:200. Dev Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 1:100
碧迪BD Cdh1抗体(BD, 612131)被用于被用于流式细胞仪在人类样本上浓度为1:100. Biomed Mater (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上. Pharm Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Biol Chem (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:300
  • 免疫印迹; 人类; 1:1000
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:300 和 被用于免疫印迹在人类样本上浓度为1:1000. J Cell Biochem (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(Sigma Aldrich, 610181)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 大鼠
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在大鼠样本上. Traffic (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 犬; 图 3
  • 免疫印迹; 犬; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 36)被用于被用于免疫组化在犬样本上 (图 3) 和 被用于免疫印迹在犬样本上 (图 1). Am J Vet Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 0.25 ug/ml
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为0.25 ug/ml. J Cell Sci (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:120; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 6
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:120 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncogene (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:200
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncogene (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:400
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:400. J Vet Med Sci (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
碧迪BD Cdh1抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Psychiatry (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 犬
碧迪BD Cdh1抗体(BD, 36)被用于被用于免疫组化在犬样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS Genet (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BD Cdh1抗体(BD Biosciences Pharmingen, clone 36)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 1a
碧迪BD Cdh1抗体(BD Transduction lab, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Dev Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 1
碧迪BD Cdh1抗体(BD Transduction Labs, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Biol Open (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cancer Discov (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 2
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Front Physiol (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 3
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:300
碧迪BD Cdh1抗体(BD, 36/E)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Virchows Arch (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; pigs ; 1:200
碧迪BD Cdh1抗体(Becton Dickinson Pharmingen, 560062)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:200. Br J Nutr (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 大鼠
碧迪BD Cdh1抗体(BD Transduction Labs, 36)被用于被用于免疫组化在大鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Epigenetics (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上. Reproduction (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BD Cdh1抗体(BD Transduction, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. Breast Cancer Res (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000
碧迪BD Cdh1抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Carcinog (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Mol Endocrinol (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500
碧迪BD Cdh1抗体(BD Pharmingen, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cancer Res (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Bioscience, 610182)被用于被用于免疫印迹在人类样本上. Evid Based Complement Alternat Med (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD Cdh1抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:200
碧迪BD Cdh1抗体(BD Transduction Lab, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:200. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-石蜡切片; 人类
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BD Cdh1抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). PLoS Genet (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠
碧迪BD Cdh1抗体(BD Transduction Labs, 36)被用于被用于免疫印迹在大鼠样本上. Invest Ophthalmol Vis Sci (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. Int J Cancer (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD Cdh1抗体(BD, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Development (2012) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD Cdh1抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 3
碧迪BD Cdh1抗体(BD科学, 610181)被用于被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 0.8 ug/ml; 图 2g
  • 免疫印迹; 犬; 0.05 ug/ml; 图 1
碧迪BD Cdh1抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化在小鼠样本上浓度为0.8 ug/ml (图 2g) 和 被用于免疫印迹在犬样本上浓度为0.05 ug/ml (图 1). Am J Vet Res (2011) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BD Cdh1抗体(BD实验室, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Cell (2011) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 人类; 图 3
碧迪BD Cdh1抗体(BD, 36)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Hum Mol Genet (2011) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫沉淀; 小鼠; 1:2000; 图 1c
  • 免疫细胞化学; 小鼠; 1:2000; 图 1a
  • 免疫印迹; 小鼠; 1:2000; 图 6a
碧迪BD Cdh1抗体(BD, 36)被用于被用于免疫沉淀在小鼠样本上浓度为1:2000 (图 1c), 被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Dev Cell (2010) ncbi
西格玛奥德里奇
小鼠 单克隆(CH-19)
  • 免疫组化; 大鼠; 1:500; 图 1d
西格玛奥德里奇 Cdh1抗体(Sigma-Aldrich, C1821)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1d). Sci Rep (2021) ncbi
文章列表
  1. Zhang X, Luo Y, Cen Y, Qiu X, Li J, Jie M, et al. MACC1 promotes pancreatic cancer metastasis by interacting with the EMT regulator SNAI1. Cell Death Dis. 2022;13:923 pubmed 出版商
  2. Aboouf M, Armbruster J, Thiersch M, Guscetti F, Kristiansen G, Schraml P, et al. Pro-Apoptotic and Anti-Invasive Properties Underscore the Tumor-Suppressing Impact of Myoglobin on a Subset of Human Breast Cancer Cells. Int J Mol Sci. 2022;23: pubmed 出版商
  3. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  4. Huang Q, Xiao R, Lu J, Zhang Y, Xu L, Gao J, et al. Endoglin aggravates peritoneal fibrosis by regulating the activation of TGF-β/ALK/Smads signaling. Front Pharmacol. 2022;13:973182 pubmed 出版商
  5. Pi xf1 eiro Hermida S, Mart xed nez P, Bosso G, Flores J, Saraswati S, Connor J, et al. Consequences of telomere dysfunction in fibroblasts, club and basal cells for lung fibrosis development. Nat Commun. 2022;13:5656 pubmed 出版商
  6. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  7. Canesin G, Feldbr xfc gge L, Wei G, Janovičová Ľ, Janikova M, Csizmadia E, et al. Heme oxygenase-1 mitigates liver injury and fibrosis via modulation of LNX1/Notch1 pathway in myeloid cells. iScience. 2022;25:104983 pubmed 出版商
  8. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  9. Pham T, Panda A, Kagawa H, To S, Ertekin C, Georgolopoulos G, et al. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell. 2022;29:1346-1365.e10 pubmed 出版商
  10. Miguel Escalada I, Maestro M, Balboa D, Elek A, Bernal A, Bernardo E, et al. Pancreas agenesis mutations disrupt a lead enhancer controlling a developmental enhancer cluster. Dev Cell. 2022;57:1922-1936.e9 pubmed 出版商
  11. Zheng S, Lin J, Pang Z, Zhang H, Wang Y, Ma L, et al. Aberrant Cholesterol Metabolism and Wnt/β-Catenin Signaling Coalesce via Frizzled5 in Supporting Cancer Growth. Adv Sci (Weinh). 2022;9:e2200750 pubmed 出版商
  12. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  13. Tang Y, Dong L, Zhang C, Li X, Li R, Lin H, et al. PRMT5 acts as a tumor suppressor by inhibiting Wnt/β-catenin signaling in murine gastric tumorigenesis. Int J Biol Sci. 2022;18:4329-4340 pubmed 出版商
  14. Werder R, Liu T, Abo K, Lindstrom Vautrin J, Villacorta Martin C, Huang J, et al. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Sci Adv. 2022;8:eabo6566 pubmed 出版商
  15. Huebner K, Erlenbach Wuensch K, Prochazka J, Sheraj I, Hampel C, Mrazkova B, et al. ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2. Cell Mol Life Sci. 2022;79:423 pubmed 出版商
  16. Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, et al. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol. 2022;12:887257 pubmed 出版商
  17. Song M, Meng Q, Jiang X, Liu J, Xiao M, Zhang Z, et al. Phospholipase D1 promotes cervical cancer progression by activating the RAS pathway. J Cell Mol Med. 2022;26:4244-4253 pubmed 出版商
  18. Li J, Camirand A, Zakikhani M, Sellin K, Guo Y, Luan X, et al. Parathyroid Hormone-Related Protein Inhibition Blocks Triple-Negative Breast Cancer Expansion in Bone Through Epithelial to Mesenchymal Transition Reversal. JBMR Plus. 2022;6:e10587 pubmed 出版商
  19. Tran C, Scurr M, O Connor L, Buzzelli J, Ng G, Chin S, et al. IL-33 promotes gastric tumour growth in concert with activation and recruitment of inflammatory myeloid cells. Oncotarget. 2022;13:785-799 pubmed 出版商
  20. Fleming Martinez A, D xf6 ppler H, Bastea L, Edenfield B, Liou G, Storz P. Ym1+ macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. iScience. 2022;25:104327 pubmed 出版商
  21. Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, et al. Galectin-3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in HER2-positive breast cancer cells. Thorac Cancer. 2022;13:1961-1973 pubmed 出版商
  22. Naydenov N, Lechuga S, Zalavadia A, Mukherjee P, Gordon I, Skvasik D, et al. P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells. 2022;11: pubmed 出版商
  23. Liu X, Wang Z, Yang Q, Hu X, Fu Q, Zhang X, et al. RNA Demethylase ALKBH5 Prevents Lung Cancer Progression by Regulating EMT and Stemness via Regulating p53. Front Oncol. 2022;12:858694 pubmed 出版商
  24. Yokoyama Y, Iioka H, Horii A, Kondo E. Crumbs3 is expressed in oral squamous cell carcinomas and promotes cell migration and proliferation by affecting RhoA activity. Oncol Lett. 2022;23:173 pubmed 出版商
  25. Tanton H, Sewastianik T, Seo H, Remillard D, Pierre R, Bala P, et al. A novel β-catenin/BCL9 complex inhibitor blocks oncogenic Wnt signaling and disrupts cholesterol homeostasis in colorectal cancer. Sci Adv. 2022;8:eabm3108 pubmed 出版商
  26. Choudhury M, Li Y, Mistriotis P, Vasconcelos A, DIXON E, Yang J, et al. Kidney epithelial cells are active mechano-biological fluid pumps. Nat Commun. 2022;13:2317 pubmed 出版商
  27. Aibara D, Takahashi S, Yagai T, Kim D, Brocker C, Levi M, et al. Gene repression through epigenetic modulation by PPARA enhances hepatocellular proliferation. iScience. 2022;25:104196 pubmed 出版商
  28. Kleinberger I, Sanders E, Staes K, Van Troys M, Hirano S, Hochepied T, et al. Innovative mouse models for the tumor suppressor activity of Protocadherin-10 isoforms. BMC Cancer. 2022;22:451 pubmed 出版商
  29. Mauduit O, Aure M, Delcroix V, Basova L, Srivastava A, Umazume T, et al. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep. 2022;39:110663 pubmed 出版商
  30. Wu S, Yuan W, Luo W, Nie K, Wu X, Meng X, et al. miR-126 downregulates CXCL12 expression in intestinal epithelial cells to suppress the recruitment and function of macrophages and tumorigenesis in a murine model of colitis-associated colorectal cancer. Mol Oncol. 2022;16:3465-3489 pubmed 出版商
  31. Pascal L, Igarashi T, Mizoguchi S, Chen W, Rigatti L, Madigan C, et al. E-cadherin deficiency promotes prostate macrophage inflammation and bladder overactivity in aged male mice. Aging (Albany NY). 2022;14:2945-2965 pubmed 出版商
  32. Yi B, Dai K, Yan Z, Yin Z. Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages. Bioengineered. 2022;13:6243-6256 pubmed 出版商
  33. Wang J, Liu C, He L, Xie Z, Bai L, Yu W, et al. Selective YAP activation in Procr cells is essential for ovarian stem/progenitor expansion and epithelium repair. elife. 2022;11: pubmed 出版商
  34. Wang J, Wang W, Huang X, Cao J, Hou S, Ni X, et al. m6A-dependent upregulation of TRAF6 by METTL3 is associated with metastatic osteosarcoma. J Bone Oncol. 2022;32:100411 pubmed 出版商
  35. Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, et al. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance. 2022;5: pubmed 出版商
  36. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  37. Li P, Li L, Li Z, Wang S, Li R, Zhao W, et al. Annexin A1 promotes the progression of bladder cancer via regulating EGFR signaling pathway. Cancer Cell Int. 2022;22:7 pubmed 出版商
  38. Wang Y, Xu X, Marshall J, Gong M, Zhao Y, Dua K, et al. Loss of Hyaluronan and Proteoglycan Link Protein-1 Induces Tumorigenesis in Colorectal Cancer. Front Oncol. 2021;11:754240 pubmed 出版商
  39. Yang J, Liao Q, Price M, Moriarity B, Wolf N, Felices M, et al. Chondroitin sulfate proteoglycan 4, a targetable oncoantigen that promotes ovarian cancer growth, invasion, cisplatin resistance and spheroid formation. Transl Oncol. 2022;16:101318 pubmed 出版商
  40. Bruun J, Eide P, Bergsland C, Brück O, Svindland A, Arjama M, et al. E-cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Mol Oncol. 2022;16:2312-2329 pubmed 出版商
  41. Jacquet M, Hervouet E, Baudu T, Herfs M, Parratte C, Feugeas J, et al. GABARAPL1 Inhibits EMT Signaling through SMAD-Tageted Negative Feedback. Biology (Basel). 2021;10: pubmed 出版商
  42. Lin G, Li J, Cai J, Zhang H, Xin Q, Wang N, et al. RNA-binding Protein MBNL2 regulates Cancer Cell Metastasis through MiR-182-MBNL2-AKT Pathway. J Cancer. 2021;12:6715-6726 pubmed 出版商
  43. Passman A, Strauss R, McSpadden S, Finch Edmondson M, Andrewartha N, Woo K, et al. Maraviroc Prevents HCC Development by Suppressing Macrophages and the Liver Progenitor Cell Response in a Murine Chronic Liver Disease Model. Cancers (Basel). 2021;13: pubmed 出版商
  44. Fu H, Gui Y, Liu S, Wang Y, Bastacky S, Qiao Y, et al. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience. 2021;24:103112 pubmed 出版商
  45. Sun W, Byon C, Kim D, Choi H, Park J, Joo S, et al. Renoprotective Effects of Maslinic Acid on Experimental Renal Fibrosis in Unilateral Ureteral Obstruction Model via Targeting MyD88. Front Pharmacol. 2021;12:708575 pubmed 出版商
  46. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  47. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  48. Baeza V, Cifuentes M, Martinez F, Ramírez E, Nualart F, Ferrada L, et al. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep. 2021;11:18537 pubmed 出版商
  49. Chen R, Sheng C, Ma R, Zhang L, Yang L, Chen Y. PLAC1 is an independent predictor of poor survival, and promotes cell proliferation and invasion in cervical cancer. Mol Med Rep. 2021;24: pubmed 出版商
  50. Zhang Y, Wen P, Luo J, Ding H, Cao H, He W, et al. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death Dis. 2021;12:847 pubmed 出版商
  51. Aryal Y, Kim T, Lee E, An C, Kim J, Yamamoto H, et al. Signaling Modulation by miRNA-221-3p During Tooth Morphogenesis in Mice. Front Cell Dev Biol. 2021;9:697243 pubmed 出版商
  52. Sun Z, Sun D, Feng Y, Zhang B, Sun P, Zhou B, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther Nucleic Acids. 2021;26:253-268 pubmed 出版商
  53. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  54. Fu Q, North P, Ke X, Huang Y, Fritz K, Majnik A, et al. Adverse Maternal Environment and Postweaning Western Diet Alter Hepatic CD36 Expression and Methylation Concurrently with Nonalcoholic Fatty Liver Disease in Mouse Offspring. J Nutr. 2021;151:3102-3112 pubmed 出版商
  55. Cao Q, Wei W, Wang H, Wang Z, Lv Y, Dai M, et al. Cleavage of E-cadherin by porcine respiratory bacterial pathogens facilitates airway epithelial barrier disruption and bacterial paracellular transmigration. Virulence. 2021;12:2296-2313 pubmed 出版商
  56. Malenica I, Adam J, Corgnac S, Mezquita L, Auclin E, Damei I, et al. Integrin-αV-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat Commun. 2021;12:5209 pubmed 出版商
  57. Wu K, Feng J, Lyu F, Xing F, Sharma S, Liu Y, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat Commun. 2021;12:5196 pubmed 出版商
  58. La Rocca G, King B, Shui B, Li X, Zhang M, Akat K, et al. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. elife. 2021;10: pubmed 出版商
  59. Gu P, Wang D, Zhang J, Wang X, Chen Z, Gu L, et al. Protective function of interleukin-22 in pulmonary fibrosis. Clin Transl Med. 2021;11:e509 pubmed 出版商
  60. Wang C, Yang Z, Xu E, Shen X, Wang X, Li Z, et al. Apolipoprotein C-II induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway. Clin Transl Med. 2021;11:e522 pubmed 出版商
  61. da Silva F, Zhang K, Pinson A, Fatti E, Wilsch Bräuninger M, Herbst J, et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 2021;40:e108041 pubmed 出版商
  62. Li T, Yang X, Xu D, Gao Z, Gao Y, Jin F, et al. OC-STAMP Overexpression Drives Lung Alveolar Epithelial Cell Type II Senescence in Silicosis. Oxid Med Cell Longev. 2021;2021:4158495 pubmed 出版商
  63. Mateos Quiros C, Garrido Jimenez S, Álvarez Hernán G, Diaz Chamorro S, Barrera Lopez J, Francisco Morcillo J, et al. Junctional Adhesion Molecule 3 Expression in the Mouse Airway Epithelium Is Linked to Multiciliated Cells. Front Cell Dev Biol. 2021;9:622515 pubmed 出版商
  64. Tan X, Tong L, Li L, Xu J, Xie S, Ji L, et al. Loss of Smad4 promotes aggressive lung cancer metastasis by de-repression of PAK3 via miRNA regulation. Nat Commun. 2021;12:4853 pubmed 出版商
  65. Bernardini C, La Mantia D, Salaroli R, Zannoni A, Nauwelaerts N, Deferm N, et al. Development of a Pig Mammary Epithelial Cell Culture Model as a Non-Clinical Tool for Studying Epithelial Barrier-A Contribution from the IMI-ConcePTION Project. Animals (Basel). 2021;11: pubmed 出版商
  66. Keil Stietz K, Kennedy C, Sethi S, Valenzuela A, Nunez A, Wang K, et al. In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Curr Res Toxicol. 2021;2:1-18 pubmed 出版商
  67. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  68. Osborne J, Kinney M, Han A, Akinnola K, Yermalovich A, Vo L, et al. Lin28 paralogs regulate lung branching morphogenesis. Cell Rep. 2021;36:109408 pubmed 出版商
  69. Guillot C, Djeffal Y, Michaut A, Rabe B, Pourquie O. Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo. elife. 2021;10: pubmed 出版商
  70. Wu Y, Zhang J, Li C, Hu H, Qin B, Wang T, et al. The Activation of ROS/NF-κB/MMP-9 Pathway Promotes Calcium-Induced Kidney Crystal Deposition. Oxid Med Cell Longev. 2021;2021:8836355 pubmed 出版商
  71. Bailey K, Cartwright S, Patel N, Remmers N, Lazenby A, Hollingsworth M, et al. Porcine pancreatic ductal epithelial cells transformed with KRASG12D and SV40T are tumorigenic. Sci Rep. 2021;11:13436 pubmed 出版商
  72. Perez García V, Lea G, Lopez Jimenez P, Okkenhaug H, Burton G, Moffett A, et al. BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. elife. 2021;10: pubmed 出版商
  73. Shelton W, Thomas S, Alexander H, Thomes C, Conway D, Dubash A. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep. 2021;11:13295 pubmed 出版商
  74. Zhou Y, Ji H, Xu Q, Zhang X, Cao X, Chen Y, et al. Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver. Theranostics. 2021;11:7262-7275 pubmed 出版商
  75. Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 2021;40:199 pubmed 出版商
  76. Rosenkrantz J, Gaffney J, Roberts V, Carbone L, CHAVEZ S. Transcriptomic analysis of primate placentas and novel rhesus trophoblast cell lines informs investigations of human placentation. BMC Biol. 2021;19:127 pubmed 出版商
  77. Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, et al. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene. 2021;40:4770-4782 pubmed 出版商
  78. Stolzer I, Dressel A, Chiriac M, Neurath M, Günther C. An IFN-STAT Axis Augments Tissue Damage and Inflammation in a Mouse Model of Crohn's Disease. Front Med (Lausanne). 2021;8:644244 pubmed 出版商
  79. Pollock N, Leighton P, Neil G, Allison W. Transcriptomic analysis of zebrafish prion protein mutants supports conserved cross-species function of the cellular prion protein. Prion. 2021;15:70-81 pubmed 出版商
  80. Song M, Zhao G, Sun H, Yao S, Zhou Z, Jiang P, et al. circPTPN12/miR-21-5 p/∆Np63α pathway contributes to human endometrial fibrosis. elife. 2021;10: pubmed 出版商
  81. Ianni A, Hofmann M, Kumari P, Tarighi S, Al tamari H, Görgens A, et al. Depletion of Numb and Numblike in Murine Lung Epithelial Cells Ameliorates Bleomycin-Induced Lung Fibrosis by Inhibiting the β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:639162 pubmed 出版商
  82. Liu Q, Li H, Yang M, Mei Y, Niu T, Zhou Z, et al. Suppression of tumor growth and metastasis in Shkbp1 knockout mice. Cancer Gene Ther. 2022;29:709-721 pubmed 出版商
  83. Lasierra Losada M, Pauler M, Vandamme N, Goossens S, Berx G, Leppkes M, et al. Pancreas morphogenesis and homeostasis depends on tightly regulated Zeb1 levels in epithelial cells. Cell Death Discov. 2021;7:138 pubmed 出版商
  84. DeLaForest A, Kohlnhofer B, Franklin O, Stavniichuk R, Thompson C, Pulakanti K, et al. GATA4 Controls Epithelial Morphogenesis in the Developing Stomach to Promote Establishment of Glandular Columnar Epithelium. Cell Mol Gastroenterol Hepatol. 2021;12:1391-1413 pubmed 出版商
  85. Yin S, Liu L, Brobbey C, PALANISAMY V, Ball L, Olsen S, et al. PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun. 2021;12:3444 pubmed 出版商
  86. Janmaat V, Nesteruk K, Spaander M, Verhaar A, Yu B, Silva R, et al. HOXA13 in etiology and oncogenic potential of Barrett's esophagus. Nat Commun. 2021;12:3354 pubmed 出版商
  87. Monsivais D, Nagashima T, Prunskaite Hyyryläinen R, Nozawa K, Shimada K, Tang S, et al. Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis. Nat Commun. 2021;12:3386 pubmed 出版商
  88. Jiang H, Deng W, Zhu K, Zeng Z, Hu B, Zhou Z, et al. LINC00467 Promotes Prostate Cancer Progression via M2 Macrophage Polarization and the miR-494-3p/STAT3 Axis. Front Oncol. 2021;11:661431 pubmed 出版商
  89. Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar O, et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 2021;17:e1009605 pubmed 出版商
  90. Muranushi R, Araki K, Yokobori T, Chingunjav B, Hoshino K, Dolgormaa G, et al. High membrane expression of CMTM6 in hepatocellular carcinoma is associated with tumor recurrence. Cancer Sci. 2021;112:3314-3323 pubmed 出版商
  91. Carter P, Schnell U, Chaney C, TONG B, Pan X, ye J, et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J Clin Invest. 2021;131: pubmed 出版商
  92. Goswami S, Balasubramanian I, D Agostino L, Bandyopadhyay S, Patel R, Avasthi S, et al. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297:100848 pubmed 出版商
  93. Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, et al. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development. 2021;148: pubmed 出版商
  94. Wojnarowicz P, Escolano M, Huang Y, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58 pubmed 出版商
  95. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  96. Yao J, Yang Z, Yang J, Wang Z, Zhang Z. Long non-coding RNA FEZF1-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma via targeting miR-107/Wnt/β-catenin axis. Aging (Albany NY). 2021;13:13726-13738 pubmed 出版商
  97. Eriksen A, Møller R, Makovoz B, Uhl S, tenOever B, Blenkinsop T. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell. 2021;28:1205-1220.e7 pubmed 出版商
  98. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004 pubmed 出版商
  99. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  100. Liberti D, Kremp M, Liberti W, Penkala I, Li S, Zhou S, et al. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep. 2021;35:109092 pubmed 出版商
  101. Fukunaga I, Oe Y, Chen C, Danzaki K, Ohta S, Koike A, et al. Activin/Nodal/TGF-β Pathway Inhibitor Accelerates BMP4-Induced Cochlear Gap Junction Formation During in vitro Differentiation of Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:602197 pubmed 出版商
  102. Delepine C, Pham V, Tsang H, Sur M. GSK3ß inhibitor CHIR 99021 modulates cerebral organoid development through dose-dependent regulation of apoptosis, proliferation, differentiation and migration. PLoS ONE. 2021;16:e0251173 pubmed 出版商
  103. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, et al. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol. 2021;12:645100 pubmed 出版商
  104. Wang X, Li X, Lin F, Sun H, Lin Y, Wang Z, et al. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis. J Exp Clin Cancer Res. 2021;40:151 pubmed 出版商
  105. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  106. Oh T, Lee M, Lee Y, Kim G, Lee D, You J, et al. PGC1α Loss Promotes Lung Cancer Metastasis through Epithelial-Mesenchymal Transition. Cancers (Basel). 2021;13: pubmed 出版商
  107. Hill W, Zaragkoulias A, Salvador Barbero B, Parfitt G, Alatsatianos M, Padilha A, et al. EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr Biol. 2021;31:2550-2560.e5 pubmed 出版商
  108. Srivastava S, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, et al. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun. 2021;12:2368 pubmed 出版商
  109. Kariya Y, Oyama M, Suzuki T, Kariya Y. αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol. 2021;4:490 pubmed 出版商
  110. Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12:2281 pubmed 出版商
  111. Carstens J, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews K, et al. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep. 2021;35:108990 pubmed 出版商
  112. Fayad R, Rojas M, Partisani M, Finetti P, Dib S, Abélanet S, et al. EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun. 2021;12:2198 pubmed 出版商
  113. Pascal L, Dhir R, Balasubramani G, Chen W, Hudson C, Srivastava P, et al. E-cadherin expression is inversely correlated with aging and inflammation in the prostate. Am J Clin Exp Urol. 2021;9:140-149 pubmed
  114. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  115. Zhang L, Li M, Tian C, Wang T, Mi S. CCAAT enhancer binding protein α suppresses proliferation, metastasis, and epithelial-mesenchymal transition of ovarian cancer cells via suppressing the Wnt/β-catenin signaling. Neoplasma. 2021;68:602-612 pubmed 出版商
  116. Hocevar S, Liu L, Duncan R. Matrigel is required for efficient differentiation of isolated, stem cell-derived otic vesicles into inner ear organoids. Stem Cell Res. 2021;53:102295 pubmed 出版商
  117. Wan L, Wang Y, Zhang Z, Wang J, Niu M, Wu Y, et al. Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis. 2021;12:325 pubmed 出版商
  118. Cleal L, McHaffie S, Lee M, Hastie N, Martínez Estrada O, Chau Y. Resolving the heterogeneity of diaphragmatic mesenchyme: a novel mouse model of congenital diaphragmatic hernia. Dis Model Mech. 2021;14: pubmed 出版商
  119. Krausová A, Buresova P, Sarnova L, Oyman Eyrilmez G, Skarda J, Wohl P, et al. Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunol. 2021;14:691-702 pubmed 出版商
  120. Bilodeau C, Shojaie S, Goltsis O, Wang J, Luo D, Ackerley C, et al. TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. NPJ Regen Med. 2021;6:12 pubmed 出版商
  121. Evstatiev R, Cervenka A, Austerlitz T, Deim G, Baumgartner M, Beer A, et al. The food additive EDTA aggravates colitis and colon carcinogenesis in mouse models. Sci Rep. 2021;11:5188 pubmed 出版商
  122. Mrouj K, Andrés Sánchez N, Dubra G, Singh P, Sobecki M, Chahar D, et al. Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  123. Zheng H, Zhang Y, Li L, Zhang R, Luo Z, Yang Z, et al. Depletion of Toll-Like Receptor-9 Attenuates Renal Tubulointerstitial Fibrosis After Ischemia-Reperfusion Injury. Front Cell Dev Biol. 2021;9:641527 pubmed 出版商
  124. Jiang C, Javed A, Kaiser L, Nava M, Xu R, Brandt D, et al. Mechanochemical control of epidermal stem cell divisions by B-plexins. Nat Commun. 2021;12:1308 pubmed 出版商
  125. Can xe8 S, Van Snick J, Uyttenhove C, Pilotte L, van den Eynde B. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J Immunother Cancer. 2021;9: pubmed 出版商
  126. Matsuzawa F, Kamachi H, Mizukami T, Einama T, Kawamata F, Fujii Y, et al. Mesothelin blockage by Amatuximab suppresses cell invasiveness, enhances gemcitabine sensitivity and regulates cancer cell stemness in mesothelin-positive pancreatic cancer cells. BMC Cancer. 2021;21:200 pubmed 出版商
  127. He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, et al. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med. 2021;11:e289 pubmed 出版商
  128. Kumar B, Ahmad R, Giannico G, Zent R, Talmon G, Harris R, et al. Claudin-2 inhibits renal clear cell carcinoma progression by inhibiting YAP-activation. J Exp Clin Cancer Res. 2021;40:77 pubmed 出版商
  129. Wan X, Hou J, Liu S, Zhang Y, Li W, Zhang Y, et al. Estrogen Receptor α Mediates Doxorubicin Sensitivity in Breast Cancer Cells by Regulating E-Cadherin. Front Cell Dev Biol. 2021;9:583572 pubmed 出版商
  130. Solan J, Hingorani S, Lampe P. Cx43 phosphorylation sites regulate pancreatic cancer metastasis. Oncogene. 2021;40:1909-1920 pubmed 出版商
  131. Yokomizo R, Fujiki Y, Kishigami H, Kishi H, Kiyono T, Nakayama S, et al. Endometrial regeneration with endometrial epithelium: homologous orchestration with endometrial stroma as a feeder. Stem Cell Res Ther. 2021;12:130 pubmed 出版商
  132. Ding L, Fang Y, Li Y, Hu Q, Ai M, Deng K, et al. AIMP3 inhibits cell growth and metastasis of lung adenocarcinoma through activating a miR-96-5p-AIMP3-p53 axis. J Cell Mol Med. 2021;25:3019-3030 pubmed 出版商
  133. Haraguchi R, Yamada G, Murashima A, Matsumaru D, Kitazawa R, Kitazawa S. New Insights into Development of Female Reproductive Tract-Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development. Int J Mol Sci. 2021;22: pubmed 出版商
  134. Fazio M, van Rooijen E, Dang M, van de Hoek G, Ablain J, Mito J, et al. SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. elife. 2021;10: pubmed 出版商
  135. Vong K, Ma T, Li B, Leung T, Nong W, Ngai S, et al. SOX9-COL9A3-dependent regulation of choroid plexus epithelial polarity governs blood-cerebrospinal fluid barrier integrity. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  136. Delgado E, Erickson H, Tao J, Monga S, Duncan A, Anakk S. Scaffolding Protein IQGAP1 is Dispensable But Its Overexpression Promotes Hepatocellular Carcinoma via YAP1 Signaling. Mol Cell Biol. 2021;: pubmed 出版商
  137. Zhang H, Xie J, So K, Tong K, Sae Pang J, Wang L, et al. Hoxb3 Regulates Jag1 Expression in Pharyngeal Epithelium and Affects Interaction With Neural Crest Cells. Front Physiol. 2020;11:612230 pubmed 出版商
  138. Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature. 2021;590:344-350 pubmed 出版商
  139. Li B, Yin J, Chang J, Zhang J, Wang Y, Huang H, et al. Apelin/APJ relieve diabetic cardiomyopathy by reducing microvascular dysfunction. J Endocrinol. 2021;249:1-18 pubmed 出版商
  140. Wang H, Guo S, Kim S, Shao F, Ho J, Wong K, et al. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics. 2021;11:2442-2459 pubmed 出版商
  141. Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, et al. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  142. Steele N, Biffi G, Kemp S, Zhang Y, Drouillard D, Syu L, et al. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res. 2021;: pubmed 出版商
  143. Tyagi A, Sharma S, Wu K, Wu S, Xing F, Liu Y, et al. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun. 2021;12:474 pubmed 出版商
  144. Shams A, Binothman N, Boudreault J, Wang N, Shams F, Hamam D, et al. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis. 2021;10:10 pubmed 出版商
  145. Blanc V, Riordan J, Soleymanjahi S, Nadeau J, Nalbantoglu I, Xie Y, et al. Apobec1 complementation factor overexpression promotes hepatic steatosis, fibrosis, and hepatocellular cancer. J Clin Invest. 2021;131: pubmed 出版商
  146. Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur R, Travnickova J, et al. MITF reprograms the extracellular matrix and focal adhesion in melanoma. elife. 2021;10: pubmed 出版商
  147. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:72 pubmed 出版商
  148. Zhang K, Wang D, Cai H, Cao M, Zhang Y, Zhuang P, et al. IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncol Rep. 2021;45:1105-1117 pubmed 出版商
  149. Sarvestani S, SIGNS S, Hu B, Yeu Y, Feng H, Ni Y, et al. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun. 2021;12:262 pubmed 出版商
  150. Hexiao T, Yuquan B, Lecai X, Yanhong W, Li S, Weidong H, et al. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging (Albany NY). 2021;13:2604-2625 pubmed 出版商
  151. Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, et al. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics. 2021;11:1795-1813 pubmed 出版商
  152. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13 pubmed 出版商
  153. Ye D, Wang S, Huang Y, Wang X, Chi P. USP43 directly regulates ZEB1 protein, mediating proliferation and metastasis of colorectal cancer. J Cancer. 2021;12:404-416 pubmed 出版商
  154. Samuel R, Majd H, Richter M, Ghazizadeh Z, Zekavat S, Navickas A, et al. Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. Cell Stem Cell. 2020;27:876-889.e12 pubmed 出版商
  155. Ma Z, Gao Y, Liu W, Zheng L, Jin B, Duan B, et al. CD82 Suppresses ADAM17-Dependent E-Cadherin Cleavage and Cell Migration in Prostate Cancer. Dis Markers. 2020;2020:8899924 pubmed 出版商
  156. Fomicheva M, Macara I. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. elife. 2020;9: pubmed 出版商
  157. Sun Q, Chen J, Xu L, Kang J, Wu X, Ren Y, et al. MUTYH Deficiency Is Associated with Attenuated Pulmonary Fibrosis in a Bleomycin-Induced Model. Oxid Med Cell Longev. 2020;2020:4828256 pubmed 出版商
  158. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci. 2021;112:1822-1838 pubmed 出版商
  159. Wang C, Weng M, Xia S, Zhang M, Chen C, Tang J, et al. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci. 2021;112:178-193 pubmed 出版商
  160. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  161. Zhu W, Liu C, Lu T, Zhang Y, Zhang S, Chen Q, et al. Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer. Front Oncol. 2020;10:1451 pubmed 出版商
  162. Aikin T, Peterson A, Pokrass M, Clark H, Regot S. MAPK activity dynamics regulate non-cell autonomous effects of oncogene expression. elife. 2020;9: pubmed 出版商
  163. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  164. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  165. Xi L, Carroll T, Matos I, Luo J, Polak L, Pasolli H, et al. m6A RNA methylation impacts fate choices during skin morphogenesis. elife. 2020;9: pubmed 出版商
  166. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598 pubmed 出版商
  167. Huang F, Zheng C, Huang L, Lin C, Wang J. USP18 directly regulates Snail1 protein through ubiquitination pathway in colorectal cancer. Cancer Cell Int. 2020;20:346 pubmed 出版商
  168. Li Y, He J, Wang F, Wang X, Yang F, Zhao C, et al. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol. 2020;18:181 pubmed 出版商
  169. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794-809 pubmed 出版商
  170. Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int. 2020;20:228 pubmed 出版商
  171. Wen X, Wan J, He Q, Wang M, Li S, Jiang M, et al. p190A inactivating mutations cause aberrant RhoA activation and promote malignant transformation via the Hippo-YAP pathway in endometrial cancer. Signal Transduct Target Ther. 2020;5:81 pubmed 出版商
  172. Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, et al. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY). 2020;12:9085-9102 pubmed 出版商
  173. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  174. Zhang K, Yao E, Lin C, Chou Y, Wong J, Li J, et al. A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. elife. 2020;9: pubmed 出版商
  175. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  176. Wu X, Gardashova G, Lan L, Han S, Zhong C, Marquez R, et al. Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol. 2020;3:193 pubmed 出版商
  177. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  178. Vidal V, Jian Motamedi F, Rekima S, Gregoire E, Szenker Ravi E, Leushacke M, et al. R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors. elife. 2020;9: pubmed 出版商
  179. Qi J, Liu S, Liu W, Cai G, Liao G. Identification of UAP1L1 as tumor promotor in gastric cancer through regulation of CDK6. Aging (Albany NY). 2020;12:6904-6927 pubmed 出版商
  180. Matos I, Asare A, Levorse J, Ouspenskaia T, de la Cruz Racelis J, Schuhmacher L, et al. Progenitors oppositely polarize WNT activators and inhibitors to orchestrate tissue development. elife. 2020;9: pubmed 出版商
  181. Tian Q, Yuan P, Quan C, Li M, Xiao J, Zhang L, et al. Phosphorylation of BCKDK of BCAA catabolism at Y246 by Src promotes metastasis of colorectal cancer. Oncogene. 2020;39:3980-3996 pubmed 出版商
  182. Hreha T, Collins C, Daugherty A, Twentyman J, Paluri N, Hunstad D. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol Rep. 2020;8:e14401 pubmed 出版商
  183. Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett. 2020;19:2272-2280 pubmed 出版商
  184. Schley G, Grampp S, Goppelt Struebe M. Inhibition of oxygen-sensing prolyl hydroxylases increases lipid accumulation in human primary tubular epithelial cells without inducing ER stress. Cell Tissue Res. 2020;381:125-140 pubmed 出版商
  185. Alafate W, Li X, Zuo J, Zhang H, Xiang J, Wu W, et al. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther. 2020;26:475-485 pubmed 出版商
  186. Calandrini C, Schutgens F, Oka R, Margaritis T, Candelli T, Mathijsen L, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun. 2020;11:1310 pubmed 出版商
  187. Guo Y, Zhang Z, Wang Z, Liu G, Liu Y, Wang H. Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep. 2020;40: pubmed 出版商
  188. Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, et al. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol. 2020;10:170 pubmed 出版商
  189. Honarpisheh P, Reynolds C, Blasco Conesa M, Moruno Manchon J, Putluri N, Bhattacharjee M, et al. Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-β in Tg2576 Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  190. Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40 pubmed 出版商
  191. Wang X, Jian X, Dou J, Wei Z, Zhao F. Decreasing Microtubule Actin Cross-Linking Factor 1 Inhibits Melanoma Metastasis by Decreasing Epithelial to Mesenchymal Transition. Cancer Manag Res. 2020;12:663-673 pubmed 出版商
  192. Tian S, Peng P, Li J, Deng H, Zhan N, Zeng Z, et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging (Albany NY). 2020;12:3574-3593 pubmed 出版商
  193. Zhang Y, Du P, Li Y, Zhu Q, Song X, Liu S, et al. TASP1 Promotes Gallbladder Cancer Cell Proliferation and Metastasis by Up-regulating FAM49B via PI3K/AKT Pathway. Int J Biol Sci. 2020;16:739-751 pubmed 出版商
  194. Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, et al. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis. 2020;9:26 pubmed 出版商
  195. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  196. Liu K, Yu Q, Li H, Xie C, Wu Y, Ma D, et al. BIRC7 promotes epithelial-mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy. Am J Cancer Res. 2020;10:78-94 pubmed
  197. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  198. Kluz P, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, et al. Cancer cell-intrinsic function of CD177 in attenuating β-catenin signaling. Oncogene. 2020;39:2877-2889 pubmed 出版商
  199. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  200. Tan S, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578:437-443 pubmed 出版商
  201. Feng Y, Ji D, Huang Y, Ji B, Zhang Y, Li J, et al. TGM3 functions as a tumor suppressor by repressing epithelial‑to‑mesenchymal transition and the PI3K/AKT signaling pathway in colorectal cancer. Oncol Rep. 2020;43:864-876 pubmed 出版商
  202. Guoren Z, Zhaohui F, Wei Z, Mei W, Yuan W, Lin S, et al. TFAP2A Induced ITPKA Serves as an Oncogene and Interacts with DBN1 in Lung Adenocarcinoma. Int J Biol Sci. 2020;16:504-514 pubmed 出版商
  203. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117:3748-3758 pubmed 出版商
  204. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  205. Carpinelli M, de Vries M, Auden A, Butt T, Deng Z, Partridge D, et al. Inactivation of Zeb1 in GRHL2-deficient mouse embryos rescues mid-gestation viability and secondary palate closure. Dis Model Mech. 2020;13: pubmed 出版商
  206. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  207. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  208. Arora P, Dongre S, Raman R, Sonawane M. Stepwise polarisation of developing bilayered epidermis is mediated by aPKC and E-cadherin in zebrafish. elife. 2020;9: pubmed 出版商
  209. Rahman M, Wruck W, Spitzhorn L, Nguyen L, Bohndorf M, Martins S, et al. The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Sci Rep. 2020;10:739 pubmed 出版商
  210. Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, et al. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer. 2020;11:1257-1269 pubmed 出版商
  211. Kasendra M, Luc R, Yin J, Manatakis D, Kulkarni G, Lucchesi C, et al. Duodenum Intestine-Chip for preclinical drug assessment in a human relevant model. elife. 2020;9: pubmed 出版商
  212. Du X, Zhang Z, Zheng X, Zhang H, Dong D, Zhang Z, et al. An electrochemical biosensor for the detection of epithelial-mesenchymal transition. Nat Commun. 2020;11:192 pubmed 出版商
  213. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  214. Cai H, Li J, Zhang Y, Liao Y, Zhu Y, Wang C, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446 pubmed 出版商
  215. Diaz Cuadros M, Wagner D, Budjan C, Hubaud A, Tarazona O, Donelly S, et al. In vitro characterization of the human segmentation clock. Nature. 2020;580:113-118 pubmed 出版商
  216. Liang L, Wu J, Luo J, Wang L, Chen Z, Han C, et al. Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling in vitro. Oncol Lett. 2020;19:519-526 pubmed 出版商
  217. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  218. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  219. Wan L, Chong S, Xuan F, Liang A, Cui X, Gates L, et al. Impaired cell fate through gain-of-function mutations in a chromatin reader. Nature. 2020;577:121-126 pubmed 出版商
  220. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  221. Jhang J, Birder L, Jiang Y, Hsu Y, Ho H, Kuo H. Dysregulation of bladder corticotropin-releasing hormone receptor in the pathogenesis of human interstitial cystitis/bladder pain syndrome. Sci Rep. 2019;9:19169 pubmed 出版商
  222. Esfahani M, Lee L, Jeon Y, Flynn R, Stehr H, Hui A, et al. Functional significance of U2AF1 S34F mutations in lung adenocarcinomas. Nat Commun. 2019;10:5712 pubmed 出版商
  223. Belote R, Simon S. Ca2+ transients in melanocyte dendrites and dendritic spine-like structures evoked by cell-to-cell signaling. J Cell Biol. 2020;219: pubmed 出版商
  224. Wu Y, Chen K, Xing G, Li L, Ma B, Hu Z, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci Adv. 2019;5:eaax7525 pubmed 出版商
  225. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  226. Foster A, El Chami C, O Neill C, Watson R. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell. 2020;19:e13058 pubmed 出版商
  227. Li X, Wang F, Ren M, Du M, Zhou J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol. 2019;19:219 pubmed 出版商
  228. Wang Z, Li Y, Zhan S, Zhang L, Zhang S, Tang Q, et al. SMAD4 Y353C promotes the progression of PDAC. BMC Cancer. 2019;19:1037 pubmed 出版商
  229. Lu Y, Zheng Y, Coyaud E, Zhang C, Selvabaskaran A, Yu Y, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science. 2019;366:460-467 pubmed 出版商
  230. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  231. Ouadah Y, Rojas E, Riordan D, Capostagno S, Kuo C, Krasnow M. Rare Pulmonary Neuroendocrine Cells Are Stem Cells Regulated by Rb, p53, and Notch. Cell. 2019;179:403-416.e23 pubmed 出版商
  232. Gomes A, Ilter D, Low V, Rosenzweig A, Shen Z, Schild T, et al. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell. 2019;36:402-417.e13 pubmed 出版商
  233. Bi J, Yang S, Li L, Dai Q, Borcherding N, Wagner B, et al. Metadherin enhances vulnerability of cancer cells to ferroptosis. Cell Death Dis. 2019;10:682 pubmed 出版商
  234. Li L, Yan S, Zhang H, Zhang M, Huang G, Chen M. Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer. 2019;19:894 pubmed 出版商
  235. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  236. Ombrato L, Nolan E, Kurelac I, Mavousian A, Bridgeman V, Heinze I, et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature. 2019;572:603-608 pubmed 出版商
  237. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  238. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  239. Dumortier J, Le Verge Serandour M, Tortorelli A, Mielke A, de Plater L, Turlier H, et al. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science. 2019;365:465-468 pubmed 出版商
  240. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  241. Dvela Levitt M, Kost Alimova M, Emani M, Kohnert E, Thompson R, Sidhom E, et al. Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell. 2019;178:521-535.e23 pubmed 出版商
  242. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  243. Low J, Li P, Chew E, Zhou B, Suzuki K, Zhang T, et al. Generation of Human PSC-Derived Kidney Organoids with Patterned Nephron Segments and a De Novo Vascular Network. Cell Stem Cell. 2019;25:373-387.e9 pubmed 出版商
  244. Buchrieser J, Degrelle S, Couderc T, Nevers Q, Disson O, Manet C, et al. IFITM proteins inhibit placental syncytiotrophoblast formation and promote fetal demise. Science. 2019;365:176-180 pubmed 出版商
  245. Haider S, Gamperl M, Burkard T, Kunihs V, Kaindl U, Junttila S, et al. Estrogen Signaling Drives Ciliogenesis in Human Endometrial Organoids. Endocrinology. 2019;160:2282-2297 pubmed 出版商
  246. Vazquez Iglesias L, Barcia Castro L, Rodríguez Quiroga M, Páez de la Cadena M, Rodríguez Berrocal J, Cordero O. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biol Open. 2019;8: pubmed 出版商
  247. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  248. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  249. Saatcioglu H, Kano M, Horn H, Zhang L, Samore W, Nagykery N, et al. Single-cell sequencing of neonatal uterus reveals an Misr2+ endometrial progenitor indispensable for fertility. elife. 2019;8: pubmed 出版商
  250. Oz Levi D, Olender T, Bar Joseph I, Zhu Y, Marek Yagel D, Barozzi I, et al. Noncoding deletions reveal a gene that is critical for intestinal function. Nature. 2019;: pubmed 出版商
  251. Moamer A, Hachim I, Binothman N, Wang N, Lebrun J, Ali S. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine. 2019;: pubmed 出版商
  252. He W, Tang J, Li W, Li Y, Mei Y, He L, et al. Mutual regulation of JAG2 and PRAF2 promotes migration and invasion of colorectal cancer cells uncoupled from epithelial-mesenchymal transition. Cancer Cell Int. 2019;19:160 pubmed 出版商
  253. Dosh R, Jordan Mahy N, Sammon C, Le Maitre C. Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget. 2019;10:3559-3575 pubmed 出版商
  254. Yin M, Zhou H, Lin C, Long L, Yang X, Zhang H, et al. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019;27:2709-2724.e3 pubmed 出版商
  255. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  256. Fan M, Zou Y, He P, Zhang S, Sun X, Li C. Long non-coding RNA SPRY4-IT1 promotes epithelial-mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis. Biosci Rep. 2019;: pubmed 出版商
  257. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  258. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  259. Hu J, Guan W, Yan L, Ye Z, Wu L, Xu H. Cancer Stem Cell Marker Endoglin (CD105) Induces Epithelial Mesenchymal Transition (EMT) but Not Metastasis in Clear Cell Renal Cell Carcinoma. Stem Cells Int. 2019;2019:9060152 pubmed 出版商
  260. Kim E, Lisby A, Ma C, Lo N, Ehmer U, Hayer K, et al. Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat Commun. 2019;10:1909 pubmed 出版商
  261. Tang L, Wen J, Wen P, Li X, Gong M, Li Q. Long non-coding RNA LINC01314 represses cell migration, invasion, and angiogenesis in gastric cancer via the Wnt/β-catenin signaling pathway by down-regulating KLK4. Cancer Cell Int. 2019;19:94 pubmed 出版商
  262. Gao X, Liu X, Lu Y, Wang Y, Cao W, Liu X, et al. PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation. Breast Cancer. 2019;: pubmed 出版商
  263. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  264. Stock K, Borrink R, Mikesch J, Hansmeier A, Rehkämper J, Trautmann M, et al. Overexpression and Tyr421-phosphorylation of cortactin is induced by three-dimensional spheroid culturing and contributes to migration and invasion of pancreatic ductal adenocarcinoma (PDAC) cells. Cancer Cell Int. 2019;19:77 pubmed 出版商
  265. Liu Y, Xue M, Du S, Feng W, Zhang K, Zhang L, et al. Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun. 2019;10:1637 pubmed 出版商
  266. Li Y, Lu Y, Chen Y. Long non-coding RNA SNHG16 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer via sponging miR-200a-3p. Biosci Rep. 2019;39: pubmed 出版商
  267. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  268. Zhang D, Zhou H, Liu J, Mao J. Long Noncoding RNA ASB16-AS1 Promotes Proliferation, Migration, and Invasion in Glioma Cells. Biomed Res Int. 2019;2019:5437531 pubmed 出版商
  269. Fearnley G, Young K, Edgar J, Antrobus R, Hay I, Liang W, et al. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. elife. 2019;8: pubmed 出版商
  270. Li L, Kang H, Zhang Q, D Agati V, Al Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129:2374-2389 pubmed 出版商
  271. Li Y, Li H, Duan Y, Cai X, You D, Zhou F, et al. Blockage of TGF-α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. Biomed Res Int. 2019;2019:8231267 pubmed 出版商
  272. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  273. Jalal S, Shi S, Acharya V, Huang R, Viasnoff V, Bershadsky A, et al. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J Cell Sci. 2019;132: pubmed 出版商
  274. Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129:1129-1151 pubmed 出版商
  275. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  276. Paul D, Islam S, Manne R, Dinesh U, Malonia S, Maity B, et al. F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear β-catenin function. J Pathol. 2019;248:266-279 pubmed 出版商
  277. Kast D, Dominguez R. Mechanism of IRSp53 inhibition by 14-3-3. Nat Commun. 2019;10:483 pubmed 出版商
  278. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  279. Nerurkar N, Lee C, Mahadevan L, Tabin C. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature. 2019;565:480-484 pubmed 出版商
  280. Aggarwal S, Gabrovsek L, Langeberg L, Golkowski M, Ong S, Smith F, et al. Depletion of dAKAP1-protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J Biol Chem. 2019;294:3152-3168 pubmed 出版商
  281. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  282. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  283. Flood B, Manils J, Nulty C, Flis E, Kenealy S, Barber G, et al. Caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis. Oncogene. 2019;38:2658-2674 pubmed 出版商
  284. Lee C, Cheng Y, Chang C, Lin C, Chang J. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep. 2018;8:17477 pubmed 出版商
  285. Tang Z, Ding Y, Shen Q, Zhang C, Li J, Nazar M, et al. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl). 2019;97:127-140 pubmed 出版商
  286. Song X, Chen H, Zhang C, Yu Y, Chen Z, Liang H, et al. SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Lett. 2019;442:310-319 pubmed 出版商
  287. Pinette J, Mao S, Millis B, Krystofiak E, Faust J, Tyska M. Brush border protocadherin CDHR2 promotes the elongation and maximized packing of microvilli in vivo. Mol Biol Cell. 2019;30:108-118 pubmed 出版商
  288. Ke X, Do D, Li C, Zhao Y, Kollarik M, Fu Q, et al. Ras homolog family member A/Rho-associated protein kinase 1 signaling modulates lineage commitment of mesenchymal stem cells in asthmatic patients through lymphoid enhancer-binding factor 1. J Allergy Clin Immunol. 2019;143:1560-1574.e6 pubmed 出版商
  289. Espinoza Sánchez N, Enciso J, Pelayo R, Fuentes Panana E. An NF?B-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget. 2018;9:26679-26700 pubmed 出版商
  290. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  291. Klein M, Dickson M, Antonescu C, Qin L, Dooley S, Barlas A, et al. PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene. 2018;37:5066-5078 pubmed 出版商
  292. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  293. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  294. Wang X, Du C, He X, Deng X, He Y, Zhou X. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep. 2018;38: pubmed 出版商
  295. Zhu Y, Qu C, Hong X, Jia Y, Lin M, Luo Y, et al. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ. 2019;26:306-320 pubmed 出版商
  296. Rademaker G, Hennequière V, Brohée L, Nokin M, Lovinfosse P, Durieux F, et al. Myoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness. Oncogene. 2018;37:4398-4412 pubmed 出版商
  297. Suzuki S, Tanaka A, Nakamura H, Murayama T. Knockout of Ceramide Kinase Aggravates Pathological and Lethal Responses in Mice with Experimental Colitis. Biol Pharm Bull. 2018;41:797-805 pubmed 出版商
  298. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  299. Perez García V, Fineberg E, Wilson R, Murray A, Mazzeo C, Tudor C, et al. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature. 2018;555:463-468 pubmed 出版商
  300. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  301. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  302. Hsieh W, Ramadesikan S, FEKETE D, Aguilar R. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS ONE. 2018;13:e0192635 pubmed 出版商
  303. Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine K. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J Cell Sci. 2018;131: pubmed 出版商
  304. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  305. Fang L, Wu J, Huang T, Zhang P, Xin X, Shi Y. TGF-?1 stimulates epithelial-mesenchymal transition mediated by ADAM33. Exp Ther Med. 2018;15:985-992 pubmed 出版商
  306. Sallais J, Alahari S, Tagliaferro A, Bhattacharjee J, Post M, Caniggia I. Factor inhibiting HIF1-A novel target of SUMOylation in the human placenta. Oncotarget. 2017;8:114002-114018 pubmed 出版商
  307. Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed 出版商
  308. Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, et al. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med. 2018;215:481-500 pubmed 出版商
  309. Ekoue D, Ansong E, Liu L, Macias V, Deaton R, Lacher C, et al. Correlations of SELENOF and SELENOP genotypes with serum selenium levels and prostate cancer. Prostate. 2018;78:279-288 pubmed 出版商
  310. Palesch D, Bosinger S, Tharp G, Vanderford T, Paiardini M, Chahroudi A, et al. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature. 2018;553:77-81 pubmed 出版商
  311. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  312. Yui S, Azzolin L, Maimets M, Pedersen M, Fordham R, Hansen S, et al. YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration. Cell Stem Cell. 2018;22:35-49.e7 pubmed 出版商
  313. El Zowalaty A, Li R, Chen W, Ye X. Seipin deficiency leads to increased endoplasmic reticulum stress and apoptosis in mammary gland alveolar epithelial cells during lactation. Biol Reprod. 2018;98:570-578 pubmed 出版商
  314. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  315. Spitzhorn L, Rahman M, Schwindt L, Ho H, Wruck W, Bohndorf M, et al. Isolation and Molecular Characterization of Amniotic Fluid-Derived Mesenchymal Stem Cells Obtained from Caesarean Sections. Stem Cells Int. 2017;2017:5932706 pubmed 出版商
  316. Van Itallie C, Tietgens A, Aponte A, Gucek M, Cartagena Rivera A, Chadwick R, et al. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells. J Cell Sci. 2018;131: pubmed 出版商
  317. Tucker A, Dyer C, Fons Romero J, Teshima T, Fuchs J, Thompson H. Mapping the distribution of stem/progenitor cells across the mouse middle ear during homeostasis and inflammation. Development. 2018;145: pubmed 出版商
  318. Ma Q, Wang Y, Zhang T, Zuo W. Notch-mediated Sox9+ cell activation contributes to kidney repair after partial nephrectomy. Life Sci. 2018;193:104-109 pubmed 出版商
  319. Brooks J, Fleischmann Mundt B, Woller N, Niemann J, Ribback S, Peters K, et al. Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic Cancer. Cancer Res. 2018;78:475-488 pubmed 出版商
  320. Ruetz T, Pfisterer U, Di Stefano B, Ashmore J, Beniazza M, Tian T, et al. Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Cell Stem Cell. 2017;21:791-805.e9 pubmed 出版商
  321. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  322. You S, Guan Y, Li W. Epithelial?mesenchymal transition in colorectal carcinoma cells is mediated by DEK/IMP3. Mol Med Rep. 2017;: pubmed 出版商
  323. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  324. Tchieu J, Zimmer B, Fattahi F, Amin S, Zeltner N, Chen S, et al. A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages. Cell Stem Cell. 2017;21:399-410.e7 pubmed 出版商
  325. Hama T, Nakanishi K, Sato M, Mukaiyama H, Togawa H, Shima Y, et al. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol. 2017;:ajprenal.00697.2016 pubmed 出版商
  326. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  327. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  328. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed 出版商
  329. Ren D, Yang Q, Dai Y, Guo W, Du H, Song L, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-?B signaling pathway. Mol Cancer. 2017;16:117 pubmed 出版商
  330. Viswanathan V, Ryan M, Dhruv H, Gill S, Eichhoff O, Seashore Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453-457 pubmed 出版商
  331. Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002 pubmed 出版商
  332. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed 出版商
  333. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  334. Liang X, Yuan X, Yu J, Wu Y, Li K, Sun C, et al. Histone Chaperone ASF1A Predicts Poor Outcomes for Patients With Gastrointestinal Cancer and Drives Cancer Progression by Stimulating Transcription of β-Catenin Target Genes. EBioMedicine. 2017;21:104-116 pubmed 出版商
  335. Richardson R, Mitchell K, Hammond N, Mollo M, Kouwenhoven E, Wyatt N, et al. p63 exerts spatio-temporal control of palatal epithelial cell fate to prevent cleft palate. PLoS Genet. 2017;13:e1006828 pubmed 出版商
  336. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  337. Cetera M, Leybova L, Woo F, Deans M, Devenport D. Planar cell polarity-dependent and independent functions in the emergence of tissue-scale hair follicle patterns. Dev Biol. 2017;428:188-203 pubmed 出版商
  338. Logan C, Rajakaruna S, Bowen C, Radice G, Robinson M, Menko A. N-cadherin regulates signaling mechanisms required for lens fiber cell elongation and lens morphogenesis. Dev Biol. 2017;428:118-134 pubmed 出版商
  339. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  340. Xia L, Huang W, Bellani M, Seidman M, Wu K, Fan D, et al. CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes. Cancer Cell. 2017;31:653-668.e7 pubmed 出版商
  341. Giroux V, Lento A, Islam M, Pitarresi J, Kharbanda A, Hamilton K, et al. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Invest. 2017;127:2378-2391 pubmed 出版商
  342. Olvedy M, Tisserand J, Luciani F, Boeckx B, Wouters J, Lopez S, et al. Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. J Clin Invest. 2017;127:2310-2325 pubmed 出版商
  343. Samson E, Tsao D, Zimak J, McLaughlin R, Trenton N, Mace E, et al. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks. Biol Open. 2017;6:785-799 pubmed 出版商
  344. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  345. Jeong S, Lim S, Schevzov G, Gunning P, Helfman D. Loss of Tpm4.1 leads to disruption of cell-cell adhesions and invasive behavior in breast epithelial cells via increased Rac1 signaling. Oncotarget. 2017;8:33544-33559 pubmed 出版商
  346. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  347. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  348. Kannan A, Hertweck K, Philley J, Wells R, Dasgupta S. Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer. Sci Rep. 2017;7:46102 pubmed 出版商
  349. Cho H, Kim J, Jang H, Lee T, Jung M, Kim T, et al. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice. Sci Rep. 2017;7:46065 pubmed 出版商
  350. Ahmed S, Macara I. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat Commun. 2017;8:14867 pubmed 出版商
  351. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  352. Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, et al. E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Res. 2017;77:2090-2101 pubmed 出版商
  353. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  354. Solis N, Swidergall M, Bruno V, Gaffen S, Filler S. The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis. MBio. 2017;8: pubmed 出版商
  355. Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson Peer K, et al. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. elife. 2017;6: pubmed 出版商
  356. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  357. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  358. Li X, Liu W, Chen X, Wang Y, Shi D, Zhang H, et al. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med. 2017;39:927-935 pubmed 出版商
  359. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  360. Chang Y, Lin T, Campbell M, Pan C, Lee S, Lee H, et al. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep. 2017;7:42795 pubmed 出版商
  361. Garrido Gomez T, Ona K, Kapidzic M, Gormley M, Simon C, Genbacev O, et al. Severe pre-eclampsia is associated with alterations in cytotrophoblasts of the smooth chorion. Development. 2017;144:767-777 pubmed 出版商
  362. Zhang L, Liu H, Mu X, Cui J, Peng Z. Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition. Biosci Rep. 2017;37: pubmed 出版商
  363. Lapierre L, Manning E, Mitchell K, Caldwell C, Goldenring J. Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition. Mol Biol Cell. 2017;28:1088-1100 pubmed 出版商
  364. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:14228 pubmed 出版商
  365. Tao L, Xiang D, Xie Y, Bronson R, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun. 2017;8:14431 pubmed 出版商
  366. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  367. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  368. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  369. Qiu X, Pascal L, Song Q, Zang Y, Ai J, O Malley K, et al. Physical and Functional Interactions between ELL2 and RB in the Suppression of Prostate Cancer Cell Proliferation, Migration, and Invasion. Neoplasia. 2017;19:207-215 pubmed 出版商
  370. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  371. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  372. Schiering C, Wincent E, Metidji A, Iseppon A, Li Y, Potocnik A, et al. Feedback control of AHR signalling regulates intestinal immunity. Nature. 2017;542:242-245 pubmed 出版商
  373. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  374. Scheele C, Hannezo E, Muraro M, Zomer A, Langedijk N, van Oudenaarden A, et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature. 2017;542:313-317 pubmed 出版商
  375. He Y, Northey J, Pelletier A, Kos Z, Meunier L, Haibe Kains B, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene. 2017;36:3490-3503 pubmed 出版商
  376. Gamal W, Treskes P, Samuel K, Sullivan G, Siller R, Srsen V, et al. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver. Sci Rep. 2017;7:37541 pubmed 出版商
  377. Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, et al. The pattern of hMENA isoforms is regulated by TGF-?1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556 pubmed 出版商
  378. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  379. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  380. Edwards R, Kopp S, Ifergan I, Shui J, Kronenberg M, Miller S, et al. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci. 2017;58:282-291 pubmed 出版商
  381. Yu M, Lu B, Liu Y, Me Y, Wang L, Li H. Interference with Tim-3 protein expression attenuates the invasion of clear cell renal cell carcinoma and aggravates anoikis. Mol Med Rep. 2017;15:1103-1108 pubmed 出版商
  382. Das S, Jackson W, Prasain J, Hanna A, Bailey S, Tucker J, et al. Loss of Merlin induces metabolomic adaptation that engages dependence on Hedgehog signaling. Sci Rep. 2017;7:40773 pubmed 出版商
  383. Griggs L, Hassan N, Malik R, Griffin B, Martinez B, Elmore L, et al. Fibronectin fibrils regulate TGF-?1-induced Epithelial-Mesenchymal Transition. Matrix Biol. 2017;60-61:157-175 pubmed 出版商
  384. Zhang Y, An J, Lv W, Lou T, Liu Y, Kang W. miRNA-129-5p suppresses cell proliferation and invasion in lung cancer by targeting microspherule protein 1, E-cadherin and vimentin. Oncol Lett. 2016;12:5163-5169 pubmed 出版商
  385. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  386. Lango Chavarría M, Chimal Ramírez G, Ruiz Tachiquín M, Espinoza Sánchez N, Suárez Arriaga M, Fuentes Pananá E. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients. Int J Oncol. 2017;50:432-440 pubmed 出版商
  387. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  388. Hu C, Gan J. TRIM37 promotes epithelial?mesenchymal transition in colorectal cancer. Mol Med Rep. 2017;15:1057-1062 pubmed 出版商
  389. Mescher M, Jeong P, Knapp S, Rübsam M, Saynisch M, Kranen M, et al. The epidermal polarity protein Par3 is a non-cell autonomous suppressor of malignant melanoma. J Exp Med. 2017;214:339-358 pubmed 出版商
  390. Jiang F, Li K, Archer M, Mehta M, Jamieson E, Charles A, et al. Differentiation of Islet Progenitors Regulated by Nicotinamide into Transcriptome-Verified β Cells That Ameliorate Diabetes. Stem Cells. 2017;35:1341-1354 pubmed 出版商
  391. Yokoyama N, Ohta H, Kagawa Y, Leela Arporn R, Dermlim A, Nisa K, et al. Expression of apical junction complex proteins in colorectal mucosa of miniature dachshunds with inflammatory colorectal polyps. J Vet Med Sci. 2017;79:456-463 pubmed 出版商
  392. Price A, Huang E, Sebastiano V, Dunn A. A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment. Biomaterials. 2017;121:179-192 pubmed 出版商
  393. Maatouk D, Natarajan A, Shibata Y, Song L, Crawford G, Ohler U, et al. Genome-wide identification of regulatory elements in Sertoli cells. Development. 2017;144:720-730 pubmed 出版商
  394. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  395. Salomon J, Gaston C, Magescas J, Duvauchelle B, Canioni D, Sengmanivong L, et al. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat Commun. 2017;8:13998 pubmed 出版商
  396. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  397. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  398. Hichino A, Okamoto M, Taga S, Akizuki R, Endo S, Matsunaga T, et al. Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. J Biol Chem. 2017;292:2411-2421 pubmed 出版商
  399. Eritja N, Chen B, Rodríguez Barrueco R, Santacana M, Gatius S, Vidal A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13:608-624 pubmed 出版商
  400. McCracken K, Aihara E, Martin B, Crawford C, Broda T, Treguier J, et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature. 2017;541:182-187 pubmed 出版商
  401. Boylan K, Buchanan P, Manion R, Shukla D, Braumberger K, Bruggemeyer C, et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8:9717-9738 pubmed 出版商
  402. Priya R, Liang X, Teo J, Duszyc K, Yap A, Gomez G. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens. Mol Biol Cell. 2017;28:12-20 pubmed 出版商
  403. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  404. Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, et al. MicroRNA-182 targets SMAD7 to potentiate TGF?-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun. 2016;7:13884 pubmed 出版商
  405. Lin J, Khan M, Zapiec B, Mombaerts P. Efficient derivation of extraembryonic endoderm stem cell lines from mouse postimplantation embryos. Sci Rep. 2016;6:39457 pubmed 出版商
  406. Han X, Fang Z, Wang H, Jiao R, Zhou J, Fang N. CUL4A functions as an oncogene in ovarian cancer and is directly regulated by miR-494. Biochem Biophys Res Commun. 2016;480:675-681 pubmed 出版商
  407. Amoroso M, Matassa D, Agliarulo I, Avolio R, Lu H, Sisinni L, et al. TRAP1 downregulation in human ovarian cancer enhances invasion and epithelial-mesenchymal transition. Cell Death Dis. 2016;7:e2522 pubmed 出版商
  408. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  409. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  410. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  411. Tang Z, Li J, Shen Q, Feng J, Liu H, Wang W, et al. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer. 2017;140:1620-1632 pubmed 出版商
  412. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  413. Gao C, Su Y, Koeman J, Haak E, Dykema K, Essenberg C, et al. Chromosome instability drives phenotypic switching to metastasis. Proc Natl Acad Sci U S A. 2016;113:14793-14798 pubmed 出版商
  414. Tamasas B, Cox T. Massively Increased Caries Susceptibility in an Irf6 Cleft Lip/Palate Model. J Dent Res. 2017;96:315-322 pubmed 出版商
  415. Tsai Y, Nattiv R, Dedhia P, Nagy M, Chin A, Thomson M, et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development. 2017;144:1045-1055 pubmed 出版商
  416. Yuan J, Cha J, Deng W, Bartos A, Sun X, Ho H, et al. Planar cell polarity signaling in the uterus directs appropriate positioning of the crypt for embryo implantation. Proc Natl Acad Sci U S A. 2016;113:E8079-E8088 pubmed
  417. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  418. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  419. Bryson B, Junk D, Cipriano R, Jackson M. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence. Cell Cycle. 2017;16:319-334 pubmed 出版商
  420. Chaudhury A, Cheema S, Fachini J, Kongchan N, Lu G, Simon L, et al. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362 pubmed 出版商
  421. Pu W, Zhang H, Huang X, Tian X, He L, Wang Y, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun. 2016;7:13369 pubmed 出版商
  422. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  423. Platet N, Hinkel I, Richert L, Murdamoothoo D, Moufok Sadoun A, Vanier M, et al. The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton. Cancer Lett. 2017;386:57-64 pubmed 出版商
  424. Noordstra I, Liu Q, Nijenhuis W, Hua S, Jiang K, Baars M, et al. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J Cell Sci. 2016;129:4278-4288 pubmed
  425. Yousefi M, Li N, Nakauka Ddamba A, Wang S, Davidow K, Schoenberger J, et al. Msi RNA-binding proteins control reserve intestinal stem cell quiescence. J Cell Biol. 2016;215:401-413 pubmed
  426. Cheng H, Burroughs Garcia J, Birkness J, Trinidad J, Deans M. Disparate Regulatory Mechanisms Control Fat3 and P75NTR Protein Transport through a Conserved Kif5-Interaction Domain. PLoS ONE. 2016;11:e0165519 pubmed 出版商
  427. JENKINS L, Singh P, Varadaraj A, Lee N, Shah S, Flores H, et al. Altering the Proteoglycan State of Transforming Growth Factor ? Type III Receptor (T?RIII)/Betaglycan Modulates Canonical Wnt/?-Catenin Signaling. J Biol Chem. 2016;291:25716-25728 pubmed
  428. Davis F, Lloyd Lewis B, Harris O, Kozar S, Winton D, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun. 2016;7:13053 pubmed 出版商
  429. Sheets J, Iwanicki M, Liu J, Howitt B, Hirsch M, Gubbels J, et al. SUSD2 expression in high-grade serous ovarian cancer correlates with increased patient survival and defective mesothelial clearance. Oncogenesis. 2016;5:e264 pubmed 出版商
  430. Ray S, Chiba N, Yao C, Guan X, McConnell A, Brockway B, et al. Rare SOX2+ Airway Progenitor Cells Generate KRT5+ Cells that Repopulate Damaged Alveolar Parenchyma following Influenza Virus Infection. Stem Cell Reports. 2016;7:817-825 pubmed 出版商
  431. Rouzaire M, Comptour A, Belville C, Bouvier D, Clairefond G, Ponelle F, et al. All-trans retinoic acid promotes wound healing of primary amniocytes through the induction of LOXL4, a member of the lysyl oxidase family. Int J Biochem Cell Biol. 2016;81:10-19 pubmed 出版商
  432. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  433. Cronan M, Beerman R, ROSENBERG A, Saelens J, Johnson M, Oehlers S, et al. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity. 2016;45:861-876 pubmed 出版商
  434. Zhao X, Li L, Wang X, Fu R, Lv Y, Jin W, et al. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2) Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0164752 pubmed 出版商
  435. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  436. Shenoy A, Jin Y, Luo H, Tang M, Pampo C, Shao R, et al. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J Clin Invest. 2016;126:4174-4186 pubmed 出版商
  437. Liu B, Dong H, Lin X, Yang X, Yue X, Yang J, et al. RND3 promotes Snail 1 protein degradation and inhibits glioblastoma cell migration and invasion. Oncotarget. 2016;7:82411-82423 pubmed 出版商
  438. Mai H, Xu X, Mei G, Hong T, Huang J, Wang T, et al. The interplay between HPIP and casein kinase 1? promotes renal cell carcinoma growth and metastasis via activation of mTOR pathway. Oncogenesis. 2016;5:e260 pubmed 出版商
  439. Little A, Sham D, Hristova M, Danyal K, Heppner D, Bauer R, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016;5:e261 pubmed 出版商
  440. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  441. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  442. Dye B, Dedhia P, Miller A, Nagy M, White E, Shea L, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. elife. 2016;5: pubmed 出版商
  443. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  444. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  445. Priya R, Wee K, Budnar S, Gomez G, Yap A, Michael M. Coronin 1B supports RhoA signaling at cell-cell junctions through Myosin II. Cell Cycle. 2016;15:3033-3041 pubmed
  446. Hubbs A, Fluharty K, Edwards R, Barnabei J, Grantham J, Palmer S, et al. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. Am J Pathol. 2016;186:2887-2908 pubmed 出版商
  447. Bain V, Gordon J, O Neil J, Ramos I, Richie E, Manley N. Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate. Development. 2016;143:4027-4037 pubmed
  448. Coburn L, Lopez H, Caldwell B, Moussa E, Yap C, Priya R, et al. Contact inhibition of locomotion and mechanical cross-talk between cell-cell and cell-substrate adhesion determine the pattern of junctional tension in epithelial cell aggregates. Mol Biol Cell. 2016;27:3436-3448 pubmed
  449. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  450. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016;16:67 pubmed 出版商
  451. Chung I, Reichelt M, Shao L, Akita R, Koeppen H, Rangell L, et al. High cell-surface density of HER2 deforms cell membranes. Nat Commun. 2016;7:12742 pubmed 出版商
  452. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8:1162-1183 pubmed 出版商
  453. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  454. Laresgoiti U, Nikolić M, Rao C, Brady J, Richardson R, Batchen E, et al. Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate. Development. 2016;143:3686-3699 pubmed
  455. Wegwitz F, Lenfert E, Gerstel D, von Ehrenstein L, Einhoff J, Schmidt G, et al. CEACAM1 controls the EMT switch in murine mammary carcinoma in vitro and in vivo. Oncotarget. 2016;7:63730-63746 pubmed 出版商
  456. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  457. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  458. Ayres Pereira M, Mandel Clausen T, Pehrson C, Mao Y, Resende M, Daugaard M, et al. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathog. 2016;12:e1005831 pubmed 出版商
  459. Hong J, Shin M, Douglas I, Chung K, Kim E, Jung J, et al. Inhibition of EphA2/EphrinA1 signal attenuates lipopolysaccharide-induced lung injury. Clin Sci (Lond). 2016;130:1993-2003 pubmed
  460. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  461. Liu L, Phua Y, Lee R, Ma X, Jenkins Y, Novy K, et al. Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases. J Biol Chem. 2016;291:21571-21583 pubmed
  462. Belinson H, Savage A, Fadrosh D, Kuo Y, Lin D, Valladares R, et al. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCI Insight. 2016;1: pubmed 出版商
  463. Arévalo Romero H, Meza I, Vallejo Flores G, Fuentes Panana E. Helicobacter pylori CagA and IL-1? Promote the Epithelial-to-Mesenchymal Transition in a Nontransformed Epithelial Cell Model. Gastroenterol Res Pract. 2016;2016:4969163 pubmed 出版商
  464. Hendrick J, Franz Wachtel M, Moeller Y, Schmid S, Macek B, Olayioye M. The polarity protein Scribble positions DLC3 at adherens junctions to regulate Rho signaling. J Cell Sci. 2016;129:3583-3596 pubmed
  465. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  466. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  467. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  468. Eom B, Joo J, Park B, Jo M, Choi S, Cho S, et al. Nomogram Incorporating CD44v6 and Clinicopathological Factors to Predict Lymph Node Metastasis for Early Gastric Cancer. PLoS ONE. 2016;11:e0159424 pubmed 出版商
  469. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  470. Freddo A, Shoffner S, Shao Y, Taniguchi K, Grosse A, Guysinger M, et al. Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding. Integr Biol (Camb). 2016;8:918-28 pubmed 出版商
  471. Chiang K, Hsu S, Lin S, Yeh C, Pang J, Wang S, et al. PTEN Insufficiency Increases Breast Cancer Cell Metastasis In Vitro and In Vivo in a Xenograft Zebrafish Model. Anticancer Res. 2016;36:3997-4005 pubmed
  472. Kim R, Kaushik N, Suh Y, Yoo K, Cui Y, Kim M, et al. Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer. Oncotarget. 2016;7:53430-53442 pubmed 出版商
  473. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  474. Jiang S, Gao Y, Hou W, Liu R, Qi X, Xu X, et al. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway. Oncol Lett. 2016;12:1380-1386 pubmed
  475. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  476. Mihajlovic A, Bruce A. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod Biomed Online. 2016;33:381-90 pubmed 出版商
  477. Perdigoto C, Dauber K, Bar C, Tsai P, Valdes V, Cohen I, et al. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development. PLoS Genet. 2016;12:e1006151 pubmed 出版商
  478. Fu H, Ma Y, Yang M, Zhang C, Huang H, Xia Y, et al. Persisting and Increasing Neutrophil Infiltration Associates with Gastric Carcinogenesis and E-cadherin Downregulation. Sci Rep. 2016;6:29762 pubmed 出版商
  479. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  480. Pijuan Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry C, et al. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun. 2016;7:12170 pubmed 出版商
  481. Cantú A, Altshuler Keylin S, Laird D. Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling. J Cell Biol. 2016;214:215-29 pubmed 出版商
  482. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  483. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  484. Yang S, Tsai C, Pan Y, Yeh C, Pang J, Takano M, et al. MART-10, a newly synthesized vitamin D analog, represses metastatic potential of head and neck squamous carcinoma cells. Drug Des Devel Ther. 2016;10:1995-2002 pubmed 出版商
  485. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  486. Hatem R, El Botty R, Chateau Joubert S, Servely J, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016;7:48206-48219 pubmed 出版商
  487. Stock K, Estrada M, Vidic S, Gjerde K, Rudisch A, Santo V, et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951 pubmed 出版商
  488. Schokrpur S, Hu J, Moughon D, Liu P, Lin L, Hermann K, et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci Rep. 2016;6:29032 pubmed 出版商
  489. Xie Y, Lu W, Liu S, Yang Q, Goodwin J, Sathyanarayana S, et al. MMP7 interacts with ARF in nucleus to potentiate tumor microenvironments for prostate cancer progression in vivo. Oncotarget. 2016;7:47609-47619 pubmed 出版商
  490. Lin X, Yang Z, Zhang P, Liu Y, Shao G. miR-154 inhibits migration and invasion of human non-small cell lung cancer by targeting ZEB2. Oncol Lett. 2016;12:301-306 pubmed
  491. Li H, Mai R, Huang H, Chou C, Chang Y, Chang Y, et al. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep. 2016;6:28637 pubmed 出版商
  492. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  493. Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, et al. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun. 2016;7:11876 pubmed 出版商
  494. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  495. Helmke C, Raab M, Rodel F, Matthess Y, Oellerich T, Mandal R, et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 2016;26:914-34 pubmed 出版商
  496. Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959-45975 pubmed 出版商
  497. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  498. Quantius J, Schmoldt C, Vazquez Armendariz A, Becker C, El Agha E, Wilhelm J, et al. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair. PLoS Pathog. 2016;12:e1005544 pubmed 出版商
  499. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  500. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  501. Pomo J, Taylor R, Gullapalli R. Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics. Cancer Cell Int. 2016;16:44 pubmed 出版商
  502. Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed 出版商
  503. Dianati E, Poiraud J, Weber Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and ?-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416:52-68 pubmed 出版商
  504. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  505. Guo Y, Wang L, Li B, Xu H, Yang J, Zheng L, et al. Wnt/?-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 2016;7:42513-42526 pubmed 出版商
  506. Wuidart A, Ousset M, Rulands S, Simons B, Van Keymeulen A, Blanpain C. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 2016;30:1261-77 pubmed 出版商
  507. Hao Y, Chow A, Yip W, Li C, Wan T, Tong B, et al. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia. Pflugers Arch. 2016;468:1489-503 pubmed 出版商
  508. Chen H, Lorton B, Gupta V, Shechter D. A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene. 2017;36:373-386 pubmed 出版商
  509. Parang B, Bradley A, Mittal M, Short S, Thompson J, Barrett C, et al. Myeloid translocation genes differentially regulate colorectal cancer programs. Oncogene. 2016;35:6341-6349 pubmed 出版商
  510. Andersen A, Flinck M, Oernbo E, Pedersen N, Viuff B, Pedersen S. Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol Cancer. 2016;15:45 pubmed 出版商
  511. Li N, Yousefi M, Nakauka Ddamba A, Tobias J, Jensen S, Morrisey E, et al. Heterogeneity in readouts of canonical wnt pathway activity within intestinal crypts. Dev Dyn. 2016;245:822-33 pubmed 出版商
  512. Kuang J, Li L, Guo L, Su Y, Wang Y, Xu Y, et al. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. J Exp Clin Cancer Res. 2016;35:88 pubmed 出版商
  513. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016;17:1061-80 pubmed 出版商
  514. Raman R, Damle I, Rote R, Banerjee S, Dingare C, Sonawane M. aPKC regulates apical localization of Lgl to restrict elongation of microridges in developing zebrafish epidermis. Nat Commun. 2016;7:11643 pubmed 出版商
  515. He Y, Ou Z, Chen X, Zu X, Liu L, Li Y, et al. LPS/TLR4 Signaling Enhances TGF-β Response Through Downregulating BAMBI During Prostatic Hyperplasia. Sci Rep. 2016;6:27051 pubmed 出版商
  516. Qi J, Li T, Bian H, Li F, Ju Y, Gao S, et al. SNAI1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis. FEBS Open Bio. 2016;6:326-37 pubmed 出版商
  517. Lee S, Kim H, Kim K, Lee H, Lee S, Lee D. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep. 2016;6:26923 pubmed 出版商
  518. Bai H, Zhu Q, Surcel A, Luo T, Ren Y, Guan B, et al. Yes-associated protein impacts adherens junction assembly through regulating actin cytoskeleton organization. Am J Physiol Gastrointest Liver Physiol. 2016;311:G396-411 pubmed 出版商
  519. Hong L, Pan F, Jiang H, Zhang L, Liu Y, Cai C, et al. miR-125b inhibited epithelial-mesenchymal transition of triple-negative breast cancer by targeting MAP2K7. Onco Targets Ther. 2016;9:2639-48 pubmed 出版商
  520. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  521. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  522. Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016;6:26557 pubmed 出版商
  523. Kokado M, Okada Y, Miyamoto T, Yamanaka O, Saika S. Effects of epiplakin-knockdown in cultured corneal epithelial cells. BMC Res Notes. 2016;9:278 pubmed 出版商
  524. He F, Wei L, Luo W, Liao Z, Li B, Zhou X, et al. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget. 2016;7:37000-37012 pubmed 出版商
  525. Chen C, Wang S, Chan P, Shen M, Chen H. Phosphorylation of E-cadherin at threonine 790 by protein kinase C? reduces ?-catenin binding and suppresses the function of E-cadherin. Oncotarget. 2016;7:37260-37276 pubmed 出版商
  526. Kress T, Pellanda P, Pellegrinet L, Bianchi V, Nicoli P, Doni M, et al. Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors. Cancer Res. 2016;76:3463-72 pubmed 出版商
  527. Petit F, Deng C, Jamin S. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice. Int J Biol Sci. 2016;12:667-76 pubmed 出版商
  528. Lin S, Wang B, Lin C, Chien P, Wu Y, Ko J, et al. Chidamide alleviates TGF-?-induced epithelial-mesenchymal transition in lung cancer cell lines. Mol Biol Rep. 2016;43:687-95 pubmed 出版商
  529. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  530. Benjamin J, Van Der Meer R, Im A, Plosa E, Zaynagetdinov R, Burman A, et al. Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development. Am J Pathol. 2016;186:1786-1800 pubmed 出版商
  531. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  532. Lee Y, Kim S, Song S, Hong H, Lee Y, Oh B, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842-36853 pubmed 出版商
  533. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  534. Marei H, Carpy A, Macek B, Malliri A. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors. Cell Cycle. 2016;15:1961-74 pubmed 出版商
  535. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  536. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  537. Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, et al. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 2016;6:25447 pubmed 出版商
  538. Tokhtaeva E, Sun H, Deiss Yehiely N, Wen Y, Soni P, Gabrielli N, et al. The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits. J Cell Sci. 2016;129:2394-406 pubmed 出版商
  539. Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, et al. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods. 2016;22:621-35 pubmed 出版商
  540. Kolahi K, Louey S, Varlamov O, Thornburg K. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells. PLoS ONE. 2016;11:e0153522 pubmed 出版商
  541. Richardson R, Metzger M, Knyphausen P, Ramezani T, Slanchev K, Kraus C, et al. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development. 2016;143:2077-88 pubmed 出版商
  542. Murray A, Sienerth A, Hemberger M. Plet1 is an epigenetically regulated cell surface protein that provides essential cues to direct trophoblast stem cell differentiation. Sci Rep. 2016;6:25112 pubmed 出版商
  543. Inada M, Izawa G, Kobayashi W, Ozawa M. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules. Int J Mol Med. 2016;37:1521-7 pubmed 出版商
  544. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  545. Rolo A, Savery D, Escuin S, de Castro S, Armer H, Munro P, et al. Regulation of cell protrusions by small GTPases during fusion of the neural folds. elife. 2016;5:e13273 pubmed 出版商
  546. De Boeck M, Cui C, Mulder A, Jost C, Ikeno S, Ten Dijke P. Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model. Sci Rep. 2016;6:24968 pubmed 出版商
  547. Chiang K, Yeh T, Chen S, Pang J, Yeh C, Hsu J, et al. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential. Int J Mol Sci. 2016;17: pubmed 出版商
  548. Lin S, Kao C, Lee H, Creighton C, Ittmann M, Tsai S, et al. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat Commun. 2016;7:11418 pubmed 出版商
  549. Yan M, Li X, Tong D, Han C, Zhao R, He Y, et al. miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep. 2016;36:65-71 pubmed 出版商
  550. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  551. Rios A, Fu N, Jamieson P, Pal B, Whitehead L, Nicholas K, et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun. 2016;7:11400 pubmed 出版商
  552. Sato K, Suda K, Shimizu S, Sakai K, Mizuuchi H, Tomizawa K, et al. Clinical, Pathological, and Molecular Features of Lung Adenocarcinomas with AXL Expression. PLoS ONE. 2016;11:e0154186 pubmed 出版商
  553. Stewart M, Plante I, Penuela S, Laird D. Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis. PLoS ONE. 2016;11:e0154162 pubmed 出版商
  554. Choi V, Herrou J, Hecht A, Teoh W, Turner J, Crosson S, et al. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice. Nat Med. 2016;22:563-7 pubmed 出版商
  555. Chan C, Chu H, Zhang A, Leung L, Sze K, Kao R, et al. Hemagglutinin of influenza A virus binds specifically to cell surface nucleolin and plays a role in virus internalization. Virology. 2016;494:78-88 pubmed 出版商
  556. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  557. Montalbano M, Curcurù G, Shirafkan A, Vento R, Rastellini C, Cicalese L. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion. PLoS ONE. 2016;11:e0153613 pubmed 出版商
  558. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  559. Cozzolino A, Noce V, Battistelli C, Marchetti A, Grassi G, Cicchini C, et al. Modulating the Substrate Stiffness to Manipulate Differentiation of Resident Liver Stem Cells and to Improve the Differentiation State of Hepatocytes. Stem Cells Int. 2016;2016:5481493 pubmed 出版商
  560. Wang Z, Xie J, Yan M, Wang J, Wang X, Zhang J, et al. Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma. Oncotarget. 2016;7:26765-79 pubmed 出版商
  561. Balasooriya G, Johnson J, Basson M, Rawlins E. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell. 2016;37:85-97 pubmed 出版商
  562. Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, et al. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem. 2016;291:11016-29 pubmed 出版商
  563. Kwon J, Jeong S, Choi I, Kim N. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development. PLoS ONE. 2016;11:e0152921 pubmed 出版商
  564. Klinkert K, Rocancourt M, Houdusse A, Echard A. Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nat Commun. 2016;7:11166 pubmed 出版商
  565. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  566. Hornsveld M, Tenhagen M, van de Ven R, Smits A, van Triest M, van Amersfoort M, et al. Restraining FOXO3-dependent transcriptional BMF activation underpins tumour growth and metastasis of E-cadherin-negative breast cancer. Cell Death Differ. 2016;23:1483-92 pubmed 出版商
  567. Ma B, Cheng H, Gao R, Mu C, Chen L, Wu S, et al. Zyxin-Siah2-Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways. Nat Commun. 2016;7:11123 pubmed 出版商
  568. Lee N, Fok K, White A, Wilson N, O Leary C, Cox H, et al. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension. Nat Commun. 2016;7:11082 pubmed 出版商
  569. Vincent A, Berthel E, Dacheux E, Magnard C, Venezia N. BRCA1 affects protein phosphatase 6 signalling through its interaction with ANKRD28. Biochem J. 2016;473:949-60 pubmed 出版商
  570. Falcão V, Maschio D, de Fontes C, Oliveira R, Santos Silva J, Almeida A, et al. Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol. 2016;146:13-31 pubmed 出版商
  571. Holloway K, Sinha V, Bu W, Toneff M, Dong J, Peng Y, et al. Targeting Oncogenes into a Defined Subset of Mammary Cells Demonstrates That the Initiating Oncogenic Mutation Defines the Resulting Tumor Phenotype. Int J Biol Sci. 2016;12:381-8 pubmed 出版商
  572. Vermeer D, Coppock J, Zeng E, Lee K, Spanos W, Onken M, et al. Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis. Oncotarget. 2016;7:24194-207 pubmed 出版商
  573. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  574. Bassey Archibong B, Kwiecien J, Milosavljevic S, Hallett R, Rayner L, Erb M, et al. Kaiso depletion attenuates transforming growth factor-? signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208 pubmed 出版商
  575. Yin S, Fan Y, Zhang H, Zhao Z, Hao Y, Li J, et al. Differential TGF? pathway targeting by miR-122 in humans and mice affects liver cancer metastasis. Nat Commun. 2016;7:11012 pubmed 出版商
  576. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  577. Schmidt T, Perna A, Fugmann T, Böhm M, Jan Hiss -, Haller S, et al. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA. Sci Rep. 2016;6:23264 pubmed 出版商
  578. Zhao N, Sun H, Sun B, Zhu D, Zhao X, Wang Y, et al. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC. Sci Rep. 2016;6:23091 pubmed 出版商
  579. Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina P, et al. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci. 2016;57:877-88 pubmed 出版商
  580. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  581. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  582. Fiorino C, Harrison R. E-cadherin is important for cell differentiation during osteoclastogenesis. Bone. 2016;86:106-18 pubmed 出版商
  583. Hirth S, Bühler A, Bührdel J, Rudeck S, Dahme T, Rottbauer W, et al. Paxillin and Focal Adhesion Kinase (FAK) Regulate Cardiac Contractility in the Zebrafish Heart. PLoS ONE. 2016;11:e0150323 pubmed 出版商
  584. Tan S, Krasnow M. Developmental origin of lung macrophage diversity. Development. 2016;143:1318-27 pubmed 出版商
  585. Tomann P, Paus R, Millar S, Scheidereit C, Schmidt Ullrich R. Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development. 2016;143:1512-22 pubmed 出版商
  586. Shukla S, Schmidt J, Goldfarb K, Cech T, Parker R. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat Struct Mol Biol. 2016;23:286-92 pubmed 出版商
  587. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  588. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  589. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  590. Chang H, Liu Y, Xue M, Liu H, Du S, Zhang L, et al. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. Nucleic Acids Res. 2016;44:2514-27 pubmed 出版商
  591. Yang Z, Liu S, Zhu M, Zhang H, Wang J, Xu Q, et al. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep. 2016;6:22090 pubmed 出版商
  592. Kai T, Tsukamoto Y, Hijiya N, Tokunaga A, Nakada C, Uchida T, et al. Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol. 2016;239:97-108 pubmed 出版商
  593. Rodrigues Pinto R, Berry A, Piper Hanley K, Hanley N, Richardson S, Hoyland J. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res. 2016;34:1327-40 pubmed 出版商
  594. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  595. Jackson S, Olufs Z, Tran K, Zaidan N, Sridharan R. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage. Stem Cell Reports. 2016;6:302-11 pubmed 出版商
  596. Jung B, Padula D, Burtscher I, Landerer C, Lutter D, Theis F, et al. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation. PLoS ONE. 2016;11:e0149477 pubmed 出版商
  597. Matsuda Y, Miura K, Yamane J, Shima H, Fujibuchi W, Ishida K, et al. SERPINI1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. Cancer Sci. 2016;107:619-28 pubmed 出版商
  598. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  599. Hwang S, Lee H, Kim H, Lee H, Shin C, Yun S, et al. Ubiquitin-specific protease 4 controls metastatic potential through β-catenin stabilization in brain metastatic lung adenocarcinoma. Sci Rep. 2016;6:21596 pubmed 出版商
  600. He Y, Ryu T, Shrestha N, Yuan T, Kim H, Shrestha H, et al. Interaction of EGFR to δ-catenin leads to δ-catenin phosphorylation and enhances EGFR signaling. Sci Rep. 2016;6:21207 pubmed 出版商
  601. Yin G, Liu Z, Wang Y, Dou C, Li C, Yang W, et al. BCORL1 is an independent prognostic marker and contributes to cell migration and invasion in human hepatocellular carcinoma. BMC Cancer. 2016;16:103 pubmed 出版商
  602. Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun. 2016;7:10498 pubmed 出版商
  603. Weyemi U, Redon C, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711 pubmed 出版商
  604. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  605. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  606. Haikala H, Klefström J, Eilers M, Wiese K. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle. 2016;15:316-23 pubmed 出版商
  607. Roy J, Kim B, Hill E, Visconti P, Krapf D, Vinegoni C, et al. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun. 2016;7:10666 pubmed 出版商
  608. Boddupally K, Wang G, Chen Y, Kobielak A. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells. Stem Cells. 2016;34:720-31 pubmed 出版商
  609. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  610. Li J, Pan Q, Rowan P, Trotter T, Peker D, Regal K, et al. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget. 2016;7:11299-309 pubmed 出版商
  611. Howitt M, Lavoie S, Michaud M, Blum A, Tran S, Weinstock J, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329-33 pubmed 出版商
  612. Maiden S, Petrova Y, Gumbiner B. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model. PLoS ONE. 2016;11:e0148574 pubmed 出版商
  613. Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci. 2016;17: pubmed 出版商
  614. Kuracha M, Thomas P, Loggie B, Govindarajan V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Med. 2016;5:711-9 pubmed 出版商
  615. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  616. Cheung K, Padmanaban V, Silvestri V, Schipper K, Cohen J, Fairchild A, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A. 2016;113:E854-63 pubmed 出版商
  617. Shah D, Ali M, Pasha Z, Jaboori A, Jassim S, Jain S, et al. Histatin-1 Expression in Human Lacrimal Epithelium. PLoS ONE. 2016;11:e0148018 pubmed 出版商
  618. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med. 2016;37:639-48 pubmed 出版商
  619. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  620. Gaide Chevronnay H, Janssens V, Van Der Smissen P, Rocca C, Liao X, Refetoff S, et al. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology. 2016;157:1363-71 pubmed 出版商
  621. Branco M, King M, Perez García V, Bogutz A, Caley M, Fineberg E, et al. Maternal DNA Methylation Regulates Early Trophoblast Development. Dev Cell. 2016;36:152-63 pubmed 出版商
  622. Couderc C, Boin A, Fuhrmann L, Vincent Salomon A, Mandati V, Kieffer Y, et al. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia. 2016;18:10-24 pubmed 出版商
  623. Guedj N, Vaquero J, Clapéron A, Mergey M, Chrétien Y, Paradis V, et al. Loss of ezrin in human intrahepatic cholangiocarcinoma is associated with ectopic expression of E-cadherin. Histopathology. 2016;69:211-21 pubmed 出版商
  624. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  625. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  626. Loebel D, Plageman T, Tang T, Jones V, Muccioli M, Tam P. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open. 2016;5:130-9 pubmed 出版商
  627. Lu Y, Hu J, Sun W, Li S, Deng S, Li M. MiR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. Onco Targets Ther. 2016;9:99-109 pubmed 出版商
  628. Stahley S, Warren M, Feldman R, Swerlick R, Mattheyses A, Kowalczyk A. Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Tissue from Patients with Pemphigus Vulgaris. J Invest Dermatol. 2016;136:59-66 pubmed 出版商
  629. Little E, Camp E, Wang C, Watson P, Watson D, Cole D. The CaSm (LSm1) oncogene promotes transformation, chemoresistance and metastasis of pancreatic cancer cells. Oncogenesis. 2016;5:e182 pubmed 出版商
  630. Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen W, et al. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 2016;35:4321-34 pubmed 出版商
  631. Chen N, Uddin B, Voit R, Schiebel E. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A. 2016;113:990-5 pubmed 出版商
  632. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  633. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  634. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  635. Benitz S, Regel I, Reinhard T, Popp A, Schäffer I, Raulefs S, et al. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells. Oncotarget. 2016;7:11424-33 pubmed 出版商
  636. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  637. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A. 2016;113:E71-80 pubmed 出版商
  638. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  639. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  640. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  641. Nagy N, Barad C, Graham H, Hotta R, Cheng L, Fejszak N, et al. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Development. 2016;143:264-75 pubmed 出版商
  642. Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. elife. 2015;4:e08887 pubmed 出版商
  643. Osorio L, Farfán N, Castellón E, Contreras H. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 2016;13:778-86 pubmed 出版商
  644. Rafehi S, Ramos Valdes Y, Bertrand M, McGee J, Préfontaine M, Sugimoto A, et al. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer. 2016;23:147-59 pubmed 出版商
  645. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989 pubmed 出版商
  646. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  647. Qi D, Kaur Gill N, Santiskulvong C, Sifuentes J, Dorigo O, Rao J, et al. Screening cell mechanotype by parallel microfiltration. Sci Rep. 2015;5:17595 pubmed 出版商
  648. Huang Y, Lan Q, Ponsonnet L, Blanquet M, Christofori G, Zaric J, et al. The matricellular protein CYR61 interferes with normal pancreatic islets architecture and promotes pancreatic neuroendocrine tumor progression. Oncotarget. 2016;7:1663-74 pubmed 出版商
  649. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  650. Faltermeier C, Drake J, Clark P, Smith B, Zong Y, Volpe C, et al. Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci U S A. 2016;113:E172-81 pubmed 出版商
  651. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  652. Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, et al. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene. 2016;35:4388-98 pubmed 出版商
  653. Cruz L, Vedula P, Gutierrez N, Shah N, Rodriguez S, Ayee B, et al. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers. Cytoskeleton (Hoboken). 2015;72:597-608 pubmed 出版商
  654. Kühne H, Hause G, Grundmann S, Schutkowski A, Brandsch C, Stangl G. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res. 2016;36:184-92 pubmed 出版商
  655. Uribe R, Buzzi A, Bronner M, Strobl Mazzulla P. Histone demethylase KDM4B regulates otic vesicle invagination via epigenetic control of Dlx3 expression. J Cell Biol. 2015;211:815-27 pubmed 出版商
  656. Hernando H, Gelato K, Lesche R, Beckmann G, Koehr S, Otto S, et al. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes. Mol Cancer Ther. 2016;15:287-98 pubmed 出版商
  657. Chow C, Ebine K, Knab L, Bentrem D, Kumar K, Munshi H. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling. J Biol Chem. 2016;291:1605-18 pubmed 出版商
  658. Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, et al. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget. 2016;7:293-307 pubmed 出版商
  659. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, et al. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation. J Am Soc Nephrol. 2016;27:1778-91 pubmed 出版商
  660. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  661. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  662. Kumar N, Richter J, Cutts J, Bush K, Trujillo C, Nigam S, et al. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. elife. 2015;4: pubmed 出版商
  663. Dixon D, Coates J, Del Carpio Pons A, Horabin J, Walker A, Abdul N, et al. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty. Sci Rep. 2015;5:16466 pubmed 出版商
  664. Buczek M, Miles A, Green W, Johnson C, Boocock D, Pockley A, et al. Cytoplasmic PML promotes TGF-β-associated epithelial-mesenchymal transition and invasion in prostate cancer. Oncogene. 2016;35:3465-75 pubmed 出版商
  665. Bhate A, Parker D, Bebee T, Ahn J, Arif W, Rashan E, et al. ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat Commun. 2015;6:8768 pubmed 出版商
  666. Gao X, Bali A, Randell S, Hogan B. GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J Cell Biol. 2015;211:669-82 pubmed 出版商
  667. Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, et al. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol. 2016;1344:147-81 pubmed 出版商
  668. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-71 pubmed 出版商
  669. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  670. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  671. Dong W, Zhang X, Liu W, Chen Y, Huang J, Austin E, et al. A conserved polybasic domain mediates plasma membrane targeting of Lgl and its regulation by hypoxia. J Cell Biol. 2015;211:273-86 pubmed 出版商
  672. Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249-59 pubmed 出版商
  673. Eisses J, Criscimanna A, Dionise Z, Orabi A, Javed T, Sarwar S, et al. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs. Am J Pathol. 2015;185:3304-15 pubmed 出版商
  674. Burns J, Kelly M, Hoa M, Morell R, Kelley M. Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun. 2015;6:8557 pubmed 出版商
  675. Arya P, Rainey M, Bhattacharyya S, Mohapatra B, George M, Kuracha M, et al. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol. 2015;408:41-55 pubmed 出版商
  676. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  677. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  678. Jiang Y, Du M, Wu M, Zhu Y, Zhao X, Cao X, et al. Phosphatidic Acid Improves Reprogramming to Pluripotency by Reducing Apoptosis. Stem Cells Dev. 2016;25:43-54 pubmed 出版商
  679. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  680. Stewart M, Bechberger J, Welch I, Naus C, Laird D. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6:37185-99 pubmed 出版商
  681. Hwang J, Sung W, Tu H, Hsieh K, Yeh C, Chen C, et al. The Overexpression of FEN1 and RAD54B May Act as Independent Prognostic Factors of Lung Adenocarcinoma. PLoS ONE. 2015;10:e0139435 pubmed 出版商
  682. Abou Kheir W, Eid A, El Merahbi R, Assaf R, Daoud G. A Unique Expression of Keratin 14 in a Subset of Trophoblast Cells. PLoS ONE. 2015;10:e0139939 pubmed 出版商
  683. Gamat M, Malinowski R, Parkhurst L, Steinke L, Marker P. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate. PLoS ONE. 2015;10:e0139522 pubmed 出版商
  684. Nath A, Li I, Roberts L, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752 pubmed 出版商
  685. Jeannot P, Callot C, Baer R, Duquesnes N, Guerra C, Guillermet Guibert J, et al. Loss of p27Kip¹ promotes metaplasia in the pancreas via the regulation of Sox9 expression. Oncotarget. 2015;6:35880-92 pubmed 出版商
  686. Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, et al. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer. 2016;138:1207-19 pubmed 出版商
  687. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  688. Yan M, Yao C, Chow J, Chang C, Hwang P, Chuang S, et al. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar Drugs. 2015;13:6099-116 pubmed 出版商
  689. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  690. Buchert M, Rohde F, Eissmann M, Tebbutt N, Williams B, Tan C, et al. A hypermorphic epithelial β-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations. Dis Model Mech. 2015;8:1361-73 pubmed 出版商
  691. Gopal S, Søgaard P, Multhaupt H, Pataki C, Okina E, Xian X, et al. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol. 2015;210:1199-211 pubmed 出版商
  692. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  693. Kuang X, Zhu J, Peng Z, Wang J, Chen Z. Transducin (Beta)-Like 1 X-Linked Receptor 1 Correlates with Clinical Prognosis and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Dig Dis Sci. 2016;61:489-500 pubmed 出版商
  694. Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, et al. Amyloid β Oligomers Disrupt Blood-CSF Barrier Integrity by Activating Matrix Metalloproteinases. J Neurosci. 2015;35:12766-78 pubmed 出版商
  695. Priya R, Gomez G, Budnar S, Verma S, Cox H, Hamilton N, et al. Feedback regulation through myosin II confers robustness on RhoA signalling at E-cadherin junctions. Nat Cell Biol. 2015;17:1282-93 pubmed 出版商
  696. Schnerch D, Nigg E. Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene. 2016;35:2711-22 pubmed 出版商
  697. Wang H, Li G, Zhang J, Gao F, Li W, Qin Y, et al. Novel WT1 Missense Mutations in Han Chinese Women with Premature Ovarian Failure. Sci Rep. 2015;5:13983 pubmed 出版商
  698. Widder M, Lützkendorf J, Caysa H, Unverzagt S, Wickenhauser C, Benndorf R, et al. Multipotent mesenchymal stromal cells promote tumor growth in distinct colorectal cancer cells by a β1-integrin-dependent mechanism. Int J Cancer. 2016;138:964-75 pubmed 出版商
  699. Basak P, Dillon R, Leslie H, Raouf A, Mowat M. The Deleted in Liver Cancer 1 (Dlc1) tumor suppressor is haploinsufficient for mammary gland development and epithelial cell polarity. BMC Cancer. 2015;15:630 pubmed 出版商
  700. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports. 2015;5:448-59 pubmed 出版商
  701. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  702. Maris P, Blomme A, Palacios A, Costanza B, Bellahcène A, Bianchi E, et al. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer. PLoS Med. 2015;12:e1001871 pubmed 出版商
  703. Brusgard J, Choe M, Chumsri S, Renoud K, MacKerell A, Sudol M, et al. RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget. 2015;6:28132-50 pubmed 出版商
  704. Park S, Kim D, Jung Y, Roh S. Thiazovivin, a Rho kinase inhibitor, improves stemness maintenance of embryo-derived stem-like cells under chemically defined culture conditions in cattle. Anim Reprod Sci. 2015;161:47-57 pubmed 出版商
  705. Zhang Y, Wei X, Liang Y, Chen W, Zhang F, Bai J, et al. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation. PLoS ONE. 2015;10:e0135851 pubmed 出版商
  706. Mehrabian M, Brethour D, Wang H, Xi Z, Rogaeva E, Schmitt Ulms G. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis. PLoS ONE. 2015;10:e0133741 pubmed 出版商
  707. Qu D, Weygant N, May R, Chandrakesan P, Madhoun M, Ali N, et al. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis. PLoS ONE. 2015;10:e0134212 pubmed 出版商
  708. Chiang K, Kuo S, Chen C, Ng S, Lin S, Yeh C, et al. MART-10, the vitamin D analog, is a potent drug to inhibit anaplastic thyroid cancer cell metastatic potential. Cancer Lett. 2015;369:76-85 pubmed 出版商
  709. Wang J, Bao L, Yu B, Liu Z, Han W, Deng C, et al. Interleukin-1β Promotes Epithelial-Derived Alveolar Elastogenesis via αvβ6 Integrin-Dependent TGF-β Activation. Cell Physiol Biochem. 2015;36:2198-216 pubmed 出版商
  710. Chantzoura E, Skylaki S, Menendez S, Kim S, Johnsson A, Linnarsson S, et al. Reprogramming Roadblocks Are System Dependent. Stem Cell Reports. 2015;5:350-64 pubmed 出版商
  711. Pickup M, Hover L, Guo Y, Gorska A, Chytil A, Novitskiy S, et al. Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget. 2015;6:22890-904 pubmed
  712. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155 pubmed 出版商
  713. Tille J, Ho L, Shah J, Seyde O, McKee T, Citi S. The Expression of the Zonula Adhaerens Protein PLEKHA7 Is Strongly Decreased in High Grade Ductal and Lobular Breast Carcinomas. PLoS ONE. 2015;10:e0135442 pubmed 出版商
  714. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  715. Kumar P, Thirkill T, Ji J, Monte L, Douglas G. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS ONE. 2015;10:e0135089 pubmed 出版商
  716. Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson R, et al. Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res. 2015;338:203-13 pubmed 出版商
  717. Faura Tellez G, Vandepoele K, Brouwer U, Koning H, Elderman R, Hackett T, et al. Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription. Am J Physiol Lung Cell Mol Physiol. 2015;309:L725-35 pubmed 出版商
  718. Takahashi S, Kohashi K, Yamamoto H, Hirahashi M, Kumagai R, Takizawa N, et al. Expression of adhesion molecules and epithelial-mesenchymal transition factors in medullary carcinoma of the colorectum. Hum Pathol. 2015;46:1257-66 pubmed 出版商
  719. de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, et al. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol. 2015;309:G475-90 pubmed 出版商
  720. Cartón García F, Overeem A, Nieto R, Bazzocco S, Dopeso H, Macaya I, et al. Myo5b knockout mice as a model of microvillus inclusion disease. Sci Rep. 2015;5:12312 pubmed 出版商
  721. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  722. He D, Lu Y, Hu H, Zhang J, Qin B, Wang Y, et al. The Wnt11 Signaling Pathway in Potential Cellular EMT and Osteochondral Differentiation Progression in Nephrolithiasis Formation. Int J Mol Sci. 2015;16:16313-29 pubmed 出版商
  723. Liang S, Marti T, Dorn P, Froment L, Hall S, Berezowska S, et al. Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer. Cell Death Dis. 2015;6:e1824 pubmed 出版商
  724. Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, et al. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 2015;6:e1818 pubmed 出版商
  725. Burkhalter R, Westfall S, Liu Y, Stack M. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma. J Biol Chem. 2015;290:22143-54 pubmed 出版商
  726. Nagahara T, Shiraha H, Sawahara H, Uchida D, Takeuchi Y, Iwamuro M, et al. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells. Oncol Rep. 2015;34:1169-77 pubmed 出版商
  727. Haraguchi M, Sato M, Ozawa M. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. PLoS ONE. 2015;10:e0132260 pubmed 出版商
  728. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  729. Atsuta Y, Takahashi Y. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis. Development. 2015;142:2329-37 pubmed 出版商
  730. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  731. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  732. Wainwright E, Wilhelm D, Combes A, Little M, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol. 2015;404:88-102 pubmed 出版商
  733. Sugiyama Y, Shelley E, Badouel C, McNeill H, McAvoy J. Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation. Invest Ophthalmol Vis Sci. 2015;56:4099-107 pubmed 出版商
  734. Lee Y, Han M, Baek S, Kim S, Oh S. MED30 Regulates the Proliferation and Motility of Gastric Cancer Cells. PLoS ONE. 2015;10:e0130826 pubmed 出版商
  735. Tan C, Hirokawa Y, Burgess A. Analysis of Wnt signalling dynamics during colon crypt development in 3D culture. Sci Rep. 2015;5:11036 pubmed 出版商
  736. Nishioka M, Venkatesan N, Dessalle K, Mogas A, Kyoh S, Lin T, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015;16:72 pubmed 出版商
  737. Ma S, Yin N, Qi X, Pfister S, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320-33 pubmed
  738. Xu N, Zhou X, Wang S, Xu L, Zhou H, Liu X. Artesunate Induces SKM-1 Cells Apoptosis by Inhibiting Hyperactive β-catenin Signaling Pathway. Int J Med Sci. 2015;12:524-9 pubmed 出版商
  739. Preca B, Bajdak K, Mock K, Sundararajan V, Pfannstiel J, Maurer J, et al. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer. 2015;137:2566-77 pubmed 出版商
  740. Su Y, Chang Y, Lin W, Liang C, Lee J. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/β-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis. 2015;4:e157 pubmed 出版商
  741. Zhang Y, Desai A, Yang S, Bae K, Antczak M, Fink S, et al. TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science. 2015;348:aaa2340 pubmed 出版商
  742. Kourtidis A, Yanagisawa M, Huveldt D, Copland J, Anastasiadis P. Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer. PLoS ONE. 2015;10:e0129964 pubmed 出版商
  743. Koos B, Cane G, Grannas K, Löf L, ArngÃ¥rden L, Heldin J, et al. Proximity-dependent initiation of hybridization chain reaction. Nat Commun. 2015;6:7294 pubmed 出版商
  744. Huang R, Kuay K, Tan T, Asad M, Tang H, Ng A, et al. Functional relevance of a six mesenchymal gene signature in epithelial-mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120). Oncotarget. 2015;6:22098-113 pubmed
  745. Causton B, Ramadas R, CHO J, Jones K, Pardo Saganta A, Rajagopal J, et al. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation. J Immunol. 2015;195:683-94 pubmed 出版商
  746. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  747. Poncy A, Antoniou A, Cordi S, Pierreux C, Jacquemin P, Lemaigre F. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 2015;404:136-48 pubmed 出版商
  748. Gonzalez S, Fernando R, Berthelot J, Perrin Tricaud C, Sarzi E, Chrast R, et al. In vivo time-lapse imaging of mitochondria in healthy and diseased peripheral myelin sheath. Mitochondrion. 2015;23:32-41 pubmed 出版商
  749. Coulson Thomas V, Chang S, Yeh L, Coulson Thomas Y, Yamaguchi Y, Esko J, et al. Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound healing. Invest Ophthalmol Vis Sci. 2015;56:3004-14 pubmed 出版商
  750. Hernández P, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol. 2015;16:698-707 pubmed 出版商
  751. Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015;36:113-22 pubmed 出版商
  752. Cicchini C, de Nonno V, Battistelli C, Cozzolino A, De Santis Puzzonia M, Ciafrè S, et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919-29 pubmed 出版商
  753. Izawa G, Kobayashi W, Haraguchi M, Sudo A, Ozawa M. The ectopic expression of Snail in MDBK cells does not induce epithelial-mesenchymal transition. Int J Mol Med. 2015;36:166-72 pubmed 出版商
  754. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  755. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  756. Stewart R, Zubek A, Rosowski K, Schreiner S, Horsley V, King M. Nuclear-cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions. J Cell Biol. 2015;209:403-18 pubmed 出版商
  757. Grikscheit K, Frank T, Wang Y, Grosse R. Junctional actin assembly is mediated by Formin-like 2 downstream of Rac1. J Cell Biol. 2015;209:367-76 pubmed 出版商
  758. Polioudaki H, Agelaki S, Chiotaki R, Politaki E, Mavroudis D, Matikas A, et al. Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer. 2015;15:399 pubmed 出版商
  759. Cheng J, Yang H, Fang J, Ma L, Gong R, Wang P, et al. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun. 2015;6:7023 pubmed 出版商
  760. Mortazavi F, Lu J, Phan R, Lewis M, Trinidad K, Aljilani A, et al. Significance of KRAS/PAK1/Crk pathway in non-small cell lung cancer oncogenesis. BMC Cancer. 2015;15:381 pubmed 出版商
  761. Ruscetti M, Quach B, Dadashian E, Mulholland D, Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59 pubmed 出版商
  762. Bhagirath D, Zhao X, West W, Qiu F, Band H, Band V. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes. Oncotarget. 2015;6:9018-30 pubmed
  763. Drost J, van Jaarsveld R, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521:43-7 pubmed 出版商
  764. Sato S, Kawamata Y, Takahashi A, Imai Y, Hanyu A, Okuma A, et al. Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice. Nat Commun. 2015;6:7035 pubmed 出版商
  765. Malik S, Villanova L, Tanaka S, Aonuma M, Roy N, Berber E, et al. SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Sci Rep. 2015;5:9841 pubmed 出版商
  766. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  767. Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15:126 pubmed 出版商
  768. Giribaldi M, Muñoz A, Halvorsen K, Patel A, Rai P. MTH1 expression is required for effective transformation by oncogenic HRAS. Oncotarget. 2015;6:11519-29 pubmed
  769. Flanagan D, Phesse T, Barker N, Schwab R, Amin N, Malaterre J, et al. Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells. Stem Cell Reports. 2015;4:759-67 pubmed 出版商
  770. Pilli V, Gupta K, Kotha B, Aradhyam G. Snail-mediated Cripto-1 repression regulates the cell cycle and epithelial-mesenchymal transition-related gene expression. FEBS Lett. 2015;589:1249-56 pubmed 出版商
  771. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  772. Modepalli V, Hinds L, Sharp J, Lefevre C, Nicholas K. Role of marsupial tammar wallaby milk in lung maturation of pouch young. BMC Dev Biol. 2015;15:16 pubmed 出版商
  773. ORELLANA R, Kato S, Erices R, Bravo M, Gonzalez P, Oliva B, et al. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290 pubmed 出版商
  774. Chen P, Wu T, Cheng Y, Chen C, Lee H. NKX2-1-mediated p53 expression modulates lung adenocarcinoma progression via modulating IKKβ/NF-κB activation. Oncotarget. 2015;6:14274-89 pubmed
  775. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  776. Ferreira R, Law M, Jahn S, Davis B, Heldermon C, Reinhard M, et al. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget. 2015;6:10445-59 pubmed
  777. Saias L, Gomes A, Cazales M, Ducommun B, Lobjois V. Cell-Cell Adhesion and Cytoskeleton Tension Oppose Each Other in Regulating Tumor Cell Aggregation. Cancer Res. 2015;75:2426-33 pubmed 出版商
  778. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  779. Buchholz M, Honstein T, Kirchhoff S, Kreider R, Schmidt H, Sipos B, et al. A multistep high-content screening approach to identify novel functionally relevant target genes in pancreatic cancer. PLoS ONE. 2015;10:e0122946 pubmed 出版商
  780. Yarilin D, Xu K, Turkekul M, Fan N, Romin Y, Fijisawa S, et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci Rep. 2015;5:9534 pubmed 出版商
  781. Cho J, Lee S, Oh A, Yoon M, Woo T, Park B. NF2 blocks Snail-mediated p53 suppression in mesothelioma. Oncotarget. 2015;6:10073-85 pubmed
  782. Charest J, Okamoto T, Kitano K, Yasuda A, Gilpin S, Mathisen D, et al. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture. Biomaterials. 2015;52:79-87 pubmed 出版商
  783. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  784. Bazellières E, Conte V, Elosegui Artola A, Serra Picamal X, Bintanel Morcillo M, Roca Cusachs P, et al. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 2015;17:409-20 pubmed 出版商
  785. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  786. Yamada A, Aki T, Unuma K, Funakoshi T, Uemura K. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS ONE. 2015;10:e0120192 pubmed 出版商
  787. Chen X, Liu X, Lang H, Zhang S, Luo Y, Zhang J. S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through β-catenin in pancreatic cancer cell line. PLoS ONE. 2015;10:e0121319 pubmed 出版商
  788. Dicay M, Hirota C, Ronaghan N, Peplowski M, Zaheer R, Carati C, et al. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS ONE. 2015;10:e0118713 pubmed 出版商
  789. Yan H, Xu J, Fang L, Qiu Y, Lin X, Huang H, et al. Ectopic expression of the WWOX gene suppresses stemness of human ovarian cancer stem cells. Oncol Lett. 2015;9:1614-1620 pubmed
  790. Sriraman K, Bhartiya D, Anand S, Bhutda S. Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation. Reprod Sci. 2015;22:884-903 pubmed 出版商
  791. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng. 2015;43:2361-73 pubmed 出版商
  792. Conn S, Pillman K, Toubia J, Conn V, Salmanidis M, Phillips C, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125-34 pubmed 出版商
  793. Qiao Y, Shiue C, Zhu J, Zhuang T, Jonsson P, Wright A, et al. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6:7804-14 pubmed
  794. Chang A, Liu Y, Ayyanathan K, Benner C, Jiang Y, Prokop J, et al. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes Dev. 2015;29:603-16 pubmed 出版商
  795. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  796. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  797. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  798. Gendronneau G, Sanii S, Dang T, Deshayes F, Delacour D, Pichard E, et al. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PLoS ONE. 2015;10:e0119031 pubmed 出版商
  799. Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell P, et al. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol. 2015;141:1779-90 pubmed 出版商
  800. Liu C, Dubé P, Girish N, Reddy A, Polk D. Optical reconstruction of murine colorectal mucosa at cellular resolution. Am J Physiol Gastrointest Liver Physiol. 2015;308:G721-35 pubmed 出版商
  801. Wang H, Bao W, Jiang F, Che Q, Chen Z, Wang F, et al. Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGγ. Cancer Lett. 2015;360:269-79 pubmed 出版商
  802. Song E, Yu W, Xiong X, Kuang X, Ai Y, Xiong X. Astrocyte elevated gene-1 promotes progression of cervical squamous cell carcinoma by inducing epithelial-mesenchymal transition via Wnt signaling. Int J Gynecol Cancer. 2015;25:345-55 pubmed 出版商
  803. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:2473-8 pubmed 出版商
  804. Kwon H, Lee J, Jeong K, Jang D, Pak Y. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation. Biochim Biophys Acta. 2015;1853:1022-34 pubmed 出版商
  805. Chen C, Zhao Z, Liu Y, Mu D. microRNA-99a is downregulated and promotes proliferation, migration and invasion in non-small cell lung cancer A549 and H1299 cells. Oncol Lett. 2015;9:1128-1134 pubmed
  806. Kitamura J, Uemura M, Kurozumi M, Sonobe M, Manabe T, Hiai H, et al. Chronic lung injury by constitutive expression of activation-induced cytidine deaminase leads to focal mucous cell metaplasia and cancer. PLoS ONE. 2015;10:e0117986 pubmed 出版商
  807. Gu J, Xu F, Zhao G, Lu C, Lin Z, Ding J, et al. Capn4 promotes non-small cell lung cancer progression via upregulation of matrix metalloproteinase 2. Med Oncol. 2015;32:51 pubmed 出版商
  808. Wagner R, Luciani F, Cario André M, Rubod A, Petit V, Benzekri L, et al. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo. J Invest Dermatol. 2015;135:1810-1819 pubmed 出版商
  809. Liu S, Lee W, Lai D, Wu S, Liu C, Tien H, et al. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol Oncol. 2015;9:834-49 pubmed 出版商
  810. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  811. Hsiao S, Chen M, Chen C, Chien M, Hua K, Hsiao M, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1556-65 pubmed 出版商
  812. Schumacher M, Aihara E, Feng R, Engevik A, Shroyer N, Ottemann K, et al. The use of murine-derived fundic organoids in studies of gastric physiology. J Physiol. 2015;593:1809-27 pubmed 出版商
  813. Chiappetta G, Valentino T, Vitiello M, Pasquinelli R, Monaco M, Palma G, et al. PATZ1 acts as a tumor suppressor in thyroid cancer via targeting p53-dependent genes involved in EMT and cell migration. Oncotarget. 2015;6:5310-23 pubmed
  814. Traenkle B, Emele F, Anton R, Poetz O, Haeussler R, Maier J, et al. Monitoring interactions and dynamics of endogenous beta-catenin with intracellular nanobodies in living cells. Mol Cell Proteomics. 2015;14:707-23 pubmed 出版商
  815. Arriagada A, Albornoz E, Opazo M, Becerra A, Vidal G, Fardella C, et al. Excess iodide induces an acute inhibition of the sodium/iodide symporter in thyroid male rat cells by increasing reactive oxygen species. Endocrinology. 2015;156:1540-51 pubmed 出版商
  816. Kreft M, Jerman U, Lasič E, Hevir Kene N, Rižner T, Peternel L, et al. The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur J Pharm Sci. 2015;69:1-9 pubmed 出版商
  817. Caldwell B, Lucas C, Kee A, Gaus K, Gunning P, Hardeman E, et al. Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens. Cytoskeleton (Hoboken). 2014;71:663-76 pubmed 出版商
  818. Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684 pubmed 出版商
  819. Olsen P, Solberg N, Lund K, Vehus T, Gelazauskaite M, Wilson S, et al. Implications of targeted genomic disruption of β-catenin in BxPC-3 pancreatic adenocarcinoma cells. PLoS ONE. 2014;9:e115496 pubmed 出版商
  820. Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed 出版商
  821. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  822. Vitiello E, Ferreira J, Maiato H, Balda M, Matter K. The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion. Nat Commun. 2014;5:5826 pubmed 出版商
  823. Satelli A, Mitra A, Brownlee Z, Xia X, Bellister S, Overman M, et al. Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res. 2015;21:899-906 pubmed 出版商
  824. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  825. Powell J, Hess B, Hutchison J, Straub T. Construction of an in vitro primary lung co-culture platform derived from New Zealand white rabbits. In Vitro Cell Dev Biol Anim. 2015;51:433-40 pubmed 出版商
  826. Golden D, Cantley L. Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene. 2015;34:4702-12 pubmed 出版商
  827. Smid J, Faulkes S, Rudnicki M. Periostin induces pancreatic regeneration. Endocrinology. 2015;156:824-36 pubmed 出版商
  828. Xu M, Zhu C, Zhao X, Chen C, Zhang H, Yuan H, et al. Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget. 2015;6:979-94 pubmed
  829. Carter E, Miron Buchacra G, Goldoni S, Danahay H, Westwick J, Watson M, et al. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. PLoS ONE. 2014;9:e113555 pubmed 出版商
  830. Jannasch K, Wegwitz F, Lenfert E, Maenz C, Deppert W, Alves F. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination. Int J Cancer. 2015;137:25-36 pubmed 出版商
  831. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  832. Figueira A, Gomes C, de Oliveira J, Vilhena H, Carvalheira J, de Matos A, et al. Aberrant P-cadherin expression is associated to aggressive feline mammary carcinomas. BMC Vet Res. 2014;10:270 pubmed 出版商
  833. Guckenberger D, Berthier E, Beebe D. High-density self-contained microfluidic KOALA kits for use by everyone. J Lab Autom. 2015;20:146-53 pubmed 出版商
  834. Easter S, Mitchell E, Baxley S, Desmond R, Frost A, Serra R. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors. PLoS ONE. 2014;9:e113247 pubmed 出版商
  835. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  836. Akgul Y, Word R, Ensign L, Yamaguchi Y, Lydon J, Hanes J, et al. Hyaluronan in cervical epithelia protects against infection-mediated preterm birth. J Clin Invest. 2014;124:5481-9 pubmed 出版商
  837. Lee Y, Ehninger D, Zhou M, Oh J, Kang M, Kwak C, et al. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci. 2014;17:1736-43 pubmed 出版商
  838. Ciamporcero E, Miles K, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101-10 pubmed 出版商
  839. Poidatz D, Dos Santos E, Gronier H, Vialard F, Maury B, De Mazancourt P, et al. Trophoblast syncytialisation necessitates mitochondrial function through estrogen-related receptor-γ activation. Mol Hum Reprod. 2015;21:206-16 pubmed 出版商
  840. Kim M, Kim M, Lee M, Kim C, Lim D. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun. 2014;5:5370 pubmed 出版商
  841. Soh B, Buac K, Xu H, Li E, Ng S, Wu H, et al. N-cadherin prevents the premature differentiation of anterior heart field progenitors in the pharyngeal mesodermal microenvironment. Cell Res. 2014;24:1420-32 pubmed 出版商
  842. Griner N, Young D, Chaudhary P, Mohamed A, Huang W, Chen Y, et al. ERG oncoprotein inhibits ANXA2 expression and function in prostate cancer. Mol Cancer Res. 2015;13:368-79 pubmed 出版商
  843. Kunasegaran K, Ho V, Chang T, De Silva D, Bakker M, Christoffels V, et al. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. PLoS ONE. 2014;9:e110191 pubmed 出版商
  844. Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T, et al. Competition between human cells by entosis. Cell Res. 2014;24:1299-310 pubmed 出版商
  845. Sun Q, Cibas E, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014;24:1288-98 pubmed 出版商
  846. DiTommaso T, Cottle D, Pearson H, Schlüter H, Kaur P, Humbert P, et al. Keratin 76 is required for tight junction function and maintenance of the skin barrier. PLoS Genet. 2014;10:e1004706 pubmed 出版商
  847. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, et al. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem. 2014;289:34189-204 pubmed 出版商
  848. Kocher B, White L, Piwnica Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015;13:358-67 pubmed 出版商
  849. Laporta J, Keil K, Vezina C, Hernandez L. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice. PLoS ONE. 2014;9:e110190 pubmed 出版商
  850. Yoshida T, Iwata T, Takai Y, Birchmeier W, Yamato M, Okano T. Afadin requirement for cytokine expressions in keratinocytes during chemically induced inflammation in mice. Genes Cells. 2014;19:842-52 pubmed 出版商
  851. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  852. Xia H, Ren X, Bolte C, Ustiyan V, Zhang Y, Shah T, et al. Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol. 2015;52:611-21 pubmed 出版商
  853. Yu S, Yehia G, Wang J, Stypulkowski E, Sakamori R, Jiang P, et al. Global ablation of the mouse Rab11a gene impairs early embryogenesis and matrix metalloproteinase secretion. J Biol Chem. 2014;289:32030-43 pubmed 出版商
  854. Fan C, Jiang G, Zhang X, Miao Y, Lin X, Luan L, et al. Zbed3 contributes to malignant phenotype of lung cancer via regulating β-catenin and P120-catenin 1. Mol Carcinog. 2015;54 Suppl 1:E138-47 pubmed 出版商
  855. Sako Kubota K, Tanaka N, Nagae S, Meng W, Takeichi M. Minus end-directed motor KIFC3 suppresses E-cadherin degradation by recruiting USP47 to adherens junctions. Mol Biol Cell. 2014;25:3851-60 pubmed 出版商
  856. Matsuyama M, Nomori A, Nakakuni K, Shimono A, Fukushima M. Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem. 2014;289:31526-33 pubmed 出版商
  857. Sonal -, Sidhaye J, Phatak M, Banerjee S, Mulay A, Deshpande O, et al. Myosin Vb mediated plasma membrane homeostasis regulates peridermal cell size and maintains tissue homeostasis in the zebrafish epidermis. PLoS Genet. 2014;10:e1004614 pubmed 出版商
  858. Wögenstein K, Szabo S, Lunova M, Wiche G, Haybaeck J, Strnad P, et al. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules. PLoS ONE. 2014;9:e108323 pubmed 出版商
  859. Cao Y, Slaney C, Bidwell B, Parker B, Johnstone C, Rautela J, et al. BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res. 2014;74:5091-102 pubmed 出版商
  860. Wainwright E, Svingen T, Ng E, Wicking C, Koopman P. Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Dev Biol. 2014;395:342-54 pubmed 出版商
  861. Rubashkin M, Cassereau L, Bainer R, DuFort C, Yui Y, Ou G, et al. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 2014;74:4597-611 pubmed 出版商
  862. Tang J, Shen L, Yang Q, Zhang C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif. 2014;47:427-34 pubmed 出版商
  863. Zorin V, Komlev V, Zorina A, Khromova N, Solovieva E, Fedotov A, et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater. 2014;9:055005 pubmed 出版商
  864. Kreft M, Jerman U, Lasič E, LaniÅ¡nik Rižner T, Hevir Kene N, Peternel L, et al. The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res. 2015;32:665-79 pubmed 出版商
  865. Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, et al. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem. 2014;289:27386-99 pubmed 出版商
  866. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  867. Bastos L, de Marcondes P, de Freitas Junior J, Leve F, Mencalha A, de Souza W, et al. Progeny from irradiated colorectal cancer cells acquire an EMT-like phenotype and activate Wnt/?-catenin pathway. J Cell Biochem. 2014;115:2175-87 pubmed 出版商
  868. Crespi A, Bertoni A, Ferrari I, Padovano V, Della Mina P, Berti E, et al. POF1B localizes to desmosomes and regulates cell adhesion in human intestinal and keratinocyte cell lines. J Invest Dermatol. 2015;135:192-201 pubmed 出版商
  869. Balaji K, French C, Miller J, Colicelli J. The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection. Traffic. 2014;15:1206-18 pubmed 出版商
  870. Ohta H, Sunden Y, Yokoyama N, Osuga T, Lim S, Tamura Y, et al. Expression of apical junction complex proteins in duodenal mucosa of dogs with inflammatory bowel disease. Am J Vet Res. 2014;75:746-51 pubmed 出版商
  871. Pidoux G, Gerbaud P, Dompierre J, Lygren B, Solstad T, Evain Brion D, et al. A PKA-ezrin-Cx43 signaling complex controls gap junction communication and thereby trophoblast cell fusion. J Cell Sci. 2014;127:4172-85 pubmed 出版商
  872. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  873. Owens P, Pickup M, Novitskiy S, Giltnane J, Gorska A, Hopkins C, et al. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene. 2015;34:2437-49 pubmed 出版商
  874. Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, et al. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS ONE. 2014;9:e101137 pubmed 出版商
  875. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  876. Liang W, Hao Z, Han J, Zhu D, Jin Z, Xie W. CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol. 2014;32:855-63 pubmed 出版商
  877. Dolega M, Wagh J, Gerbaud S, Kermarrec F, Alcaraz J, Martin D, et al. Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells. PLoS ONE. 2014;9:e99416 pubmed 出版商
  878. Enjoji S, Ohama T, Sato K. Regulation of epithelial cell tight junctions by protease-activated receptor 2. J Vet Med Sci. 2014;76:1225-9 pubmed
  879. Kowtharapu B, Stahnke T, Wree A, Guthoff R, Stachs O. Corneal epithelial and neuronal interactions: role in wound healing. Exp Eye Res. 2014;125:53-61 pubmed 出版商
  880. Alanis D, Chang D, Akiyama H, Krasnow M, Chen J. Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat Commun. 2014;5:3923 pubmed 出版商
  881. Bassagañas S, Carvalho S, Dias A, Pérez Garay M, Ortiz M, Figueras J, et al. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of ?2?1 integrin and E-cadherin function. PLoS ONE. 2014;9:e98595 pubmed 出版商
  882. Lee M, Kim S, Kim B, Won C, Nam S, Kang S, et al. Snail1 induced in breast cancer cells in 3D collagen I gel environment suppresses cortactin and impairs effective invadopodia formation. Biochim Biophys Acta. 2014;1843:2037-54 pubmed 出版商
  883. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  884. Durak O, de Anda F, Singh K, Leussis M, Petryshen T, Sklar P, et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of ?-catenin. Mol Psychiatry. 2015;20:388-97 pubmed 出版商
  885. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  886. Jung S, Ohk J, Jeong D, Li C, Lee S, Duan J, et al. Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int J Oncol. 2014;45:189-96 pubmed 出版商
  887. Bao Y, Cao X, Luo D, Sun R, Peng L, Wang L, et al. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle. 2014;13:1958-69 pubmed 出版商
  888. Rossi G, Pengo G, Caldin M, Palumbo Piccionello A, Steiner J, Cohen N, et al. Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL#3 strains in dogs with idiopathic inflammatory bowel disease. PLoS ONE. 2014;9:e94699 pubmed 出版商
  889. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  890. Huang T, Rivera Perez J. Senescence-associated ?-galactosidase activity marks the visceral endoderm of mouse embryos but is not indicative of senescence. Genesis. 2014;52:300-8 pubmed 出版商
  891. Shamir E, Pappalardo E, Jorgens D, Coutinho K, Tsai W, Aziz K, et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol. 2014;204:839-56 pubmed 出版商
  892. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10:e1004177 pubmed 出版商
  893. Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, et al. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br J Cancer. 2014;110:1497-505 pubmed 出版商
  894. Peitsch W, Doerflinger Y, Fischer Colbrie R, Huck V, Bauer A, Utikal J, et al. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS ONE. 2014;9:e89491 pubmed 出版商
  895. Piao H, Yuan Y, Wang M, Sun Y, Liang H, Ma L. ?-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-?B signalling. Nat Cell Biol. 2014;16:245-54 pubmed 出版商
  896. Berkenkamp B, Susnik N, Baisantry A, Kuznetsova I, Jacobi C, Sörensen Zender I, et al. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS ONE. 2014;9:e88071 pubmed 出版商
  897. Hirokawa Y, Yip K, Tan C, Burgess A. Colonic myofibroblast cell line stimulates colonoid formation. Am J Physiol Gastrointest Liver Physiol. 2014;306:G547-56 pubmed 出版商
  898. Hilliard S, Yao X, El Dahr S. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol. 2014;387:1-14 pubmed 出版商
  899. Weng W, Yin J, Zhang Y, Qiu J, Wang X. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int J Oncol. 2014;44:812-8 pubmed 出版商
  900. Moore R, Tao W, Meng Y, Smith E, Xu X. Cell adhesion and sorting in embryoid bodies derived from N- or E-cadherin deficient murine embryonic stem cells. Biol Open. 2014;3:121-8 pubmed 出版商
  901. Fantozzi A, Gruber D, Pisarsky L, Heck C, Kunita A, Yilmaz M, et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res. 2014;74:1566-75 pubmed 出版商
  902. Miura S, Hamada S, Masamune A, Satoh K, Shimosegawa T. CUB-domain containing protein 1 represses the epithelial phenotype of pancreatic cancer cells. Exp Cell Res. 2014;321:209-18 pubmed 出版商
  903. Shahbazi M, Megias D, Epifano C, Akhmanova A, Gundersen G, Fuchs E, et al. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions. J Cell Biol. 2013;203:1043-61 pubmed 出版商
  904. Balko J, Giltnane J, Wang K, Schwarz L, Young C, Cook R, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232-45 pubmed 出版商
  905. Christensen I, Gyldenholm T, Damkier H, Praetorius J. Polarization of membrane associated proteins in the choroid plexus epithelium from normal and slc4a10 knockout mice. Front Physiol. 2013;4:344 pubmed 出版商
  906. Takasato M, Er P, Becroft M, Vanslambrouck J, Stanley E, Elefanty A, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16:118-26 pubmed 出版商
  907. Luo W, Yao K. Cancer stem cell characteristics, ALDH1 expression in the invasive front of nasopharyngeal carcinoma. Virchows Arch. 2014;464:35-43 pubmed 出版商
  908. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商
  909. Richter J, Pieper R, Zakrzewski S, Gunzel D, Schulzke J, Van Kessel A. Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon. Br J Nutr. 2014;111:1040-9 pubmed 出版商
  910. Dawes L, Sugiyama Y, Lovicu F, Harris C, Shelley E, McAvoy J. Interactions between lens epithelial and fiber cells reveal an intrinsic self-assembly mechanism. Dev Biol. 2014;385:291-303 pubmed 出版商
  911. Tan C, Hirokawa Y, Gardiner B, Smith D, Burgess A. Colon cryptogenesis: asymmetric budding. PLoS ONE. 2013;8:e78519 pubmed 出版商
  912. Wu H, Balsbaugh J, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398-408 pubmed 出版商
  913. McLaughlin N, Wang F, Saifudeen Z, El Dahr S. In situ histone landscape of nephrogenesis. Epigenetics. 2014;9:222-35 pubmed 出版商
  914. Castelli M, Boca M, Chiaravalli M, Ramalingam H, Rowe I, Distefano G, et al. Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis. Nat Commun. 2013;4:2658 pubmed 出版商
  915. Zheng Q, Wang X, Wen Q, Zhang Y, Chen S, Zhang J, et al. Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction. 2014;147:45-52 pubmed 出版商
  916. Bray K, Gillette M, Young J, Loughran E, Hwang M, Sears J, et al. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res. 2013;15:R91 pubmed
  917. Tan F, Vladar E, Ma L, Fuentealba L, Hoh R, Espinoza F, et al. Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development. 2013;140:4277-86 pubmed 出版商
  918. Judson R, Greve T, Parchem R, Blelloch R. MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nat Struct Mol Biol. 2013;20:1227-35 pubmed 出版商
  919. Mann E, Harmel Laws E, Cohen M, Steinbrecher K. Guanylate cyclase C limits systemic dissemination of a murine enteric pathogen. BMC Gastroenterol. 2013;13:135 pubmed 出版商
  920. Findlay V, Moretz R, Wang C, Vaena S, Bandurraga S, Ashenafi M, et al. Slug expression inhibits calcitriol-mediated sensitivity to radiation in colorectal cancer. Mol Carcinog. 2014;53 Suppl 1:E130-9 pubmed 出版商
  921. Das A, Tanigawa S, Karner C, Xin M, Lum L, Chen C, et al. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol. 2013;15:1035-44 pubmed 出版商
  922. Stewart C, Wang Y, Bonilla Claudio M, Martin J, Gonzalez G, Taketo M, et al. CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development. Mol Endocrinol. 2013;27:1442-54 pubmed 出版商
  923. Yin Y, Betsuyaku T, Garbow J, Miao J, Govindan R, Ornitz D. Rapid induction of lung adenocarcinoma by fibroblast growth factor 9 signaling through FGF receptor 3. Cancer Res. 2013;73:5730-41 pubmed 出版商
  924. Chen J, Erikson D, Piltonen T, Meyer M, Barragan F, McIntire R, et al. Coculturing human endometrial epithelial cells and stromal fibroblasts alters cell-specific gene expression and cytokine production. Fertil Steril. 2013;100:1132-43 pubmed 出版商
  925. Chang C, Chen C, Wu M, Chen Y, Chen C, Sheu S, et al. Active Component of Antrodia cinnamomea Mycelia Targeting Head and Neck Cancer Initiating Cells through Exaggerated Autophagic Cell Death. Evid Based Complement Alternat Med. 2013;2013:946451 pubmed 出版商
  926. Cedervall J, Zhang Y, Ringvall M, Thulin A, Moustakas A, Jahnen Dechent W, et al. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment. Angiogenesis. 2013;16:889-902 pubmed 出版商
  927. Sangar F, Schreurs A, Umana Diaz C, Claperon A, Desbois Mouthon C, Calmel C, et al. Involvement of small ArfGAP1 (SMAP1), a novel Arf6-specific GTPase-activating protein, in microsatellite instability oncogenesis. Oncogene. 2014;33:2758-67 pubmed 出版商
  928. Garcia Murillas I, Sharpe R, Pearson A, Campbell J, Natrajan R, Ashworth A, et al. An siRNA screen identifies the GNAS locus as a driver in 20q amplified breast cancer. Oncogene. 2014;33:2478-86 pubmed 出版商
  929. Tsai Y, Disson O, Bierne H, Lecuit M. Murinization of internalin extends its receptor repertoire, altering Listeria monocytogenes cell tropism and host responses. PLoS Pathog. 2013;9:e1003381 pubmed 出版商
  930. Biehs B, Hu J, Strauli N, Sangiorgi E, Jung H, Heber R, et al. BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat Cell Biol. 2013;15:846-52 pubmed 出版商
  931. Gillette M, Bray K, Blumenthaler A, Vargo Gogola T. P190B RhoGAP overexpression in the developing mammary epithelium induces TGF?-dependent fibroblast activation. PLoS ONE. 2013;8:e65105 pubmed 出版商
  932. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS ONE. 2013;8:e62757 pubmed 出版商
  933. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  934. Boehlke C, Kotsis F, Buchholz B, Powelske C, Eckardt K, Walz G, et al. Kif3a guides microtubular dynamics, migration and lumen formation of MDCK cells. PLoS ONE. 2013;8:e62165 pubmed 出版商
  935. Xu X, Jin D, Durgan J, Hall A. LKB1 controls human bronchial epithelial morphogenesis through p114RhoGEF-dependent RhoA activation. Mol Cell Biol. 2013;33:2671-82 pubmed 出版商
  936. Priya R, Yap A, Gomez G. E-cadherin supports steady-state Rho signaling at the epithelial zonula adherens. Differentiation. 2013;86:133-40 pubmed 出版商
  937. Park J, Morley T, Scherer P. Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Mol Med. 2013;5:935-48 pubmed 出版商
  938. Correia A, Mori H, Chen E, Schmitt F, Bissell M. The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90?. Genes Dev. 2013;27:805-17 pubmed 出版商
  939. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  940. Sigurdsson V, Ingthorsson S, Hilmarsdottir B, Gustafsdottir S, Franzdóttir S, Arason A, et al. Expression and functional role of sprouty-2 in breast morphogenesis. PLoS ONE. 2013;8:e60798 pubmed 出版商
  941. Reginensi A, Scott R, Gregorieff A, Bagherie Lachidan M, Chung C, Lim D, et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 2013;9:e1003380 pubmed 出版商
  942. Tiwari N, Meyer Schaller N, Arnold P, Antoniadis H, Pachkov M, van Nimwegen E, et al. Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8). PLoS ONE. 2013;8:e57329 pubmed 出版商
  943. Dawes L, Sugiyama Y, Tanedo A, Lovicu F, McAvoy J. Wnt-frizzled signaling is part of an FGF-induced cascade that promotes lens fiber differentiation. Invest Ophthalmol Vis Sci. 2013;54:1582-90 pubmed 出版商
  944. Chou J, Lin J, Brenot A, Kim J, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013;15:201-13 pubmed 出版商
  945. Shukla S, Sharma H, Abbas A, MacLennan G, Fu P, Danielpour D, et al. Upregulation of SATB1 is associated with prostate cancer aggressiveness and disease progression. PLoS ONE. 2013;8:e53527 pubmed 出版商
  946. Chen J, Krasnow M. Integrin Beta 1 suppresses multilayering of a simple epithelium. PLoS ONE. 2012;7:e52886 pubmed 出版商
  947. Waldmeier L, Meyer Schaller N, Diepenbruck M, Christofori G. Py2T murine breast cancer cells, a versatile model of TGF?-induced EMT in vitro and in vivo. PLoS ONE. 2012;7:e48651 pubmed 出版商
  948. Queen K, Shi M, Zhang F, Cvek U, Scott R. Epstein-Barr virus-induced epigenetic alterations following transient infection. Int J Cancer. 2013;132:2076-86 pubmed 出版商
  949. Spiller C, Feng C, Jackson A, Gillis A, Rolland A, Looijenga L, et al. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development. 2012;139:4123-32 pubmed 出版商
  950. Magudia K, Lahoz A, Hall A. K-Ras and B-Raf oncogenes inhibit colon epithelial polarity establishment through up-regulation of c-myc. J Cell Biol. 2012;198:185-94 pubmed 出版商
  951. Wei C, Bhattaram V, Igwe J, Fleming E, Tirnauer J. The LKB1 tumor suppressor controls spindle orientation and localization of activated AMPK in mitotic epithelial cells. PLoS ONE. 2012;7:e41118 pubmed 出版商
  952. Chavez M, Yu W, Biehs B, Harada H, Snead M, Lee J, et al. Characterization of dental epithelial stem cells from the mouse incisor with two-dimensional and three-dimensional platforms. Tissue Eng Part C Methods. 2013;19:15-24 pubmed 出版商
  953. Jameson S, Lin Y, Capel B. Testis development requires the repression of Wnt4 by Fgf signaling. Dev Biol. 2012;370:24-32 pubmed 出版商
  954. Wu C, Tang S, Wang P, Lee H, Ko J. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292-302 pubmed 出版商
  955. Stoll S, Rittie L, Johnson J, Elder J. Heparin-binding EGF-like growth factor promotes epithelial-mesenchymal transition in human keratinocytes. J Invest Dermatol. 2012;132:2148-57 pubmed 出版商
  956. Heaney J, Anderson E, Michelson M, Zechel J, Conrad P, Page D, et al. Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development. 2012;139:1577-86 pubmed 出版商
  957. O Mahony F, Faratian D, Varley J, Nanda J, Theodoulou M, Riddick A, et al. The use of automated quantitative analysis to evaluate epithelial-to-mesenchymal transition associated proteins in clear cell renal cell carcinoma. PLoS ONE. 2012;7:e31557 pubmed 出版商
  958. Hajduk P, May A, Puri P, Murphy P. The effect of adriamycin exposure on the notochord of mouse embryos. Birth Defects Res B Dev Reprod Toxicol. 2012;95:175-83 pubmed 出版商
  959. Le T, Conley K, Mead T, Rowan S, Yutzey K, Brown N. Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens development. Dev Dyn. 2012;241:493-504 pubmed 出版商
  960. Mork L, Tang H, Batchvarov I, Capel B. Mouse germ cell clusters form by aggregation as well as clonal divisions. Mech Dev. 2012;128:591-6 pubmed 出版商
  961. Stubbs J, Vladar E, Axelrod J, Kintner C. Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat Cell Biol. 2012;14:140-7 pubmed 出版商
  962. Laird D, Altshuler Keylin S, Kissner M, Zhou X, Anderson K. Ror2 enhances polarity and directional migration of primordial germ cells. PLoS Genet. 2011;7:e1002428 pubmed 出版商
  963. Zakariyah A, Hou W, Slim R, Jerome Majewska L. TMED2/p24?1 is expressed in all gestational stages of human placentas and in choriocarcinoma cell lines. Placenta. 2012;33:214-9 pubmed 出版商
  964. Saravanamuthu S, Le T, Gao C, Cojocaru R, Pandiyan P, Liu C, et al. Conditional ablation of the Notch2 receptor in the ocular lens. Dev Biol. 2012;362:219-29 pubmed 出版商
  965. Rodríguez Rigueiro T, Valladares Ayerbes M, Haz Conde M, Aparicio L, Figueroa A. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion. BMC Cancer. 2011;11:474 pubmed 出版商
  966. Paca A, Séguin C, Clements M, Ryczko M, Rossant J, Rodriguez T, et al. BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Dev Biol. 2012;361:90-102 pubmed 出版商
  967. Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med. 2011;208:2263-77 pubmed 出版商
  968. Loebel D, Studdert J, Power M, Radziewic T, Jones V, Coultas L, et al. Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm. Development. 2011;138:4511-22 pubmed 出版商
  969. Chawengsaksophak K, Svingen T, Ng E, Epp T, Spiller C, Clark C, et al. Loss of Wnt5a disrupts primordial germ cell migration and male sexual development in mice. Biol Reprod. 2012;86:1-12 pubmed 出版商
  970. Grosse A, Pressprich M, Curley L, Hamilton K, Margolis B, Hildebrand J, et al. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development. 2011;138:4423-32 pubmed 出版商
  971. Collado M, Thiede B, Baker W, Askew C, Igbani L, Corwin J. The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs. J Neurosci. 2011;31:11855-66 pubmed 出版商
  972. Ohta H, Yamaguchi T, Rajapakshage B, Murakami M, Sasaki N, Nakamura K, et al. Expression and subcellular localization of apical junction proteins in canine duodenal and colonic mucosa. Am J Vet Res. 2011;72:1046-51 pubmed 出版商
  973. Musselmann K, Green J, Sone K, Hsu J, Bothwell I, Johnson S, et al. Salivary gland gene expression atlas identifies a new regulator of branching morphogenesis. J Dent Res. 2011;90:1078-84 pubmed 出版商
  974. Sun Z, Shushanov S, LeRoith D, Wood T. Decreased IGF type 1 receptor signaling in mammary epithelium during pregnancy leads to reduced proliferation, alveolar differentiation, and expression of insulin receptor substrate (IRS)-1 and IRS-2. Endocrinology. 2011;152:3233-45 pubmed 出版商
  975. Silvis M, Kreger B, Lien W, Klezovitch O, Rudakova G, Camargo F, et al. ?-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal. 2011;4:ra33 pubmed 出版商
  976. Kovtun I, Harris K, Jatoi A, Jevremovic D. Increased incidence of endometrioid tumors caused by aberrations in E-cadherin promoter of mismatch repair-deficient mice. Carcinogenesis. 2011;32:1085-92 pubmed 出版商
  977. Kobayashi A, Stewart C, Wang Y, Fujioka K, Thomas N, Jamin S, et al. ?-Catenin is essential for Müllerian duct regression during male sexual differentiation. Development. 2011;138:1967-75 pubmed 出版商
  978. Moore R, Cherry J, Mathur V, Cohen R, Grumet M, Moghe P. E-cadherin-expressing feeder cells promote neural lineage restriction of human embryonic stem cells. Stem Cells Dev. 2012;21:30-41 pubmed 出版商
  979. Jovov B, Que J, Tobey N, Djukic Z, Hogan B, Orlando R. Role of E-cadherin in the pathogenesis of gastroesophageal reflux disease. Am J Gastroenterol. 2011;106:1039-47 pubmed 出版商
  980. Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, Van Damme P, et al. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 2011;30:1742-52 pubmed 出版商
  981. Eckert M, Lwin T, Chang A, Kim J, Danis E, Ohno Machado L, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19:372-86 pubmed 出版商
  982. Pigors M, Kiritsi D, Krümpelmann S, Wagner N, He Y, Podda M, et al. Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity. Hum Mol Genet. 2011;20:1811-9 pubmed 出版商
  983. Durgan J, Kaji N, Jin D, Hall A. Par6B and atypical PKC regulate mitotic spindle orientation during epithelial morphogenesis. J Biol Chem. 2011;286:12461-74 pubmed 出版商
  984. Sand F, Hörnblad A, Johansson J, Lorén C, Edsbagge J, Ståhlberg A, et al. Growth-limiting role of endothelial cells in endoderm development. Dev Biol. 2011;352:267-77 pubmed 出版商
  985. Kirschner N, Haftek M, Niessen C, Behne M, Furuse M, Moll I, et al. CD44 regulates tight-junction assembly and barrier function. J Invest Dermatol. 2011;131:932-43 pubmed 出版商
  986. Gladden A, Hebert A, Schneeberger E, McClatchey A. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell. 2010;19:727-39 pubmed 出版商
  987. Yoshida T, Miyoshi J, Takai Y, Thesleff I. Cooperation of nectin-1 and nectin-3 is required for normal ameloblast function and crown shape development in mouse teeth. Dev Dyn. 2010;239:2558-69 pubmed 出版商
  988. Wallace S, Magalhaes A, Hall A. The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells. Mol Cell Biol. 2011;31:81-91 pubmed 出版商
  989. Lim M, Adsay N, Grignon D, Osunkoya A. E-cadherin expression in plasmacytoid, signet ring cell and micropapillary variants of urothelial carcinoma: comparison with usual-type high-grade urothelial carcinoma. Mod Pathol. 2011;24:241-7 pubmed 出版商
  990. Wallace S, Durgan J, Jin D, Hall A. Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B. Mol Biol Cell. 2010;21:2996-3006 pubmed 出版商
  991. Kopinke D, Murtaugh L. Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev Biol. 2010;10:38 pubmed 出版商
  992. Wiley L, Dattilo L, Kang K, Giovannini M, Beebe D. The tumor suppressor merlin is required for cell cycle exit, terminal differentiation, and cell polarity in the developing murine lens. Invest Ophthalmol Vis Sci. 2010;51:3611-8 pubmed 出版商
  993. Nagao K, Zhu J, Heneghan M, Hanson J, Morasso M, Tessarollo L, et al. Abnormal placental development and early embryonic lethality in EpCAM-null mice. PLoS ONE. 2009;4:e8543 pubmed 出版商
  994. MANICONE A, Huizar I, McGuire J. Matrilysin (Matrix Metalloproteinase-7) regulates anti-inflammatory and antifibrotic pulmonary dendritic cells that express CD103 (alpha(E)beta(7)-integrin). Am J Pathol. 2009;175:2319-31 pubmed 出版商
  995. Banh C, Fugere C, Brossay L. Immunoregulatory functions of KLRG1 cadherin interactions are dependent on forward and reverse signaling. Blood. 2009;114:5299-306 pubmed 出版商
  996. Cattin A, Le Beyec J, Barreau F, Saint Just S, Houllier A, Gonzalez F, et al. Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol Cell Biol. 2009;29:6294-308 pubmed 出版商
  997. Wenderfer S, Dubinsky W, Hernandez Sanabria M, Braun M. Urine proteome analysis in murine nephrotoxic serum nephritis. Am J Nephrol. 2009;30:450-8 pubmed 出版商
  998. den Elzen N, Buttery C, Maddugoda M, Ren G, Yap A. Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell. 2009;20:3740-50 pubmed 出版商
  999. Le T, Conley K, Brown N. Jagged 1 is necessary for normal mouse lens formation. Dev Biol. 2009;328:118-26 pubmed 出版商
  1000. Cook M, Coveney D, Batchvarov I, Nadeau J, Capel B. BAX-mediated cell death affects early germ cell loss and incidence of testicular teratomas in Dnd1(Ter/Ter) mice. Dev Biol. 2009;328:377-83 pubmed 出版商
  1001. Karpowicz P, Willaime Morawek S, Balenci L, DeVeale B, Inoue T, van der Kooy D. E-Cadherin regulates neural stem cell self-renewal. J Neurosci. 2009;29:3885-96 pubmed 出版商
  1002. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  1003. Lim S, Pereira L, Wong M, Hirst C, Van Vranken B, Pick M, et al. Enforced expression of Mixl1 during mouse ES cell differentiation suppresses hematopoietic mesoderm and promotes endoderm formation. Stem Cells. 2009;27:363-74 pubmed 出版商
  1004. Jaffe A, Kaji N, Durgan J, Hall A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol. 2008;183:625-33 pubmed 出版商
  1005. Morel E, Fouquet S, Strup Perrot C, Pichol Thievend C, Thievend C, Petit C, et al. The cellular prion protein PrP(c) is involved in the proliferation of epithelial cells and in the distribution of junction-associated proteins. PLoS ONE. 2008;3:e3000 pubmed 出版商
  1006. Singh P, Chen C, Pal Ghosh S, Stepp M, Sheppard D, Van De Water L. Loss of integrin alpha9beta1 results in defects in proliferation, causing poor re-epithelialization during cutaneous wound healing. J Invest Dermatol. 2009;129:217-28 pubmed 出版商
  1007. Rowan S, Conley K, Le T, Donner A, Maas R, Brown N. Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol. 2008;321:111-22 pubmed 出版商
  1008. Agarwal S, Lee D, Kiener H, Brenner M. Coexpression of two mesenchymal cadherins, cadherin 11 and N-cadherin, on murine fibroblast-like synoviocytes. Arthritis Rheum. 2008;58:1044-54 pubmed 出版商
  1009. Hebbard L, Garlatti M, Young L, Cardiff R, Oshima R, Ranscht B. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res. 2008;68:1407-16 pubmed 出版商
  1010. Marose T, Merkel C, McMahon A, Carroll T. Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol. 2008;314:112-26 pubmed 出版商
  1011. Kaimori A, Potter J, Kaimori J, Wang C, Mezey E, Koteish A. Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem. 2007;282:22089-101 pubmed
  1012. Perrin Tricaud C, Rutishauser U, Tricaud N. P120 catenin is required for thickening of Schwann cell myelin. Mol Cell Neurosci. 2007;35:120-9 pubmed
  1013. Kashiwagi M, Morgan B, Georgopoulos K. The chromatin remodeler Mi-2beta is required for establishment of the basal epidermis and normal differentiation of its progeny. Development. 2007;134:1571-82 pubmed
  1014. Wei C, Larsen M, Hoffman M, Yamada K. Self-organization and branching morphogenesis of primary salivary epithelial cells. Tissue Eng. 2007;13:721-35 pubmed
  1015. Rivera Perez J, Diefes H, Magnuson T. A simple enzymatic method for parietal yolk sac removal in early postimplantation mouse embryos. Dev Dyn. 2007;236:489-93 pubmed
  1016. Suh J, Yu C, Tang K, Tanaka T, Kodama T, Tsai M, et al. The expression profiles of nuclear receptors in the developing and adult kidney. Mol Endocrinol. 2006;20:3412-20 pubmed
  1017. Larsen M, Wei C, Yamada K. Cell and fibronectin dynamics during branching morphogenesis. J Cell Sci. 2006;119:3376-84 pubmed
  1018. McCloskey K, Stice S, Nerem R. In vitro derivation and expansion of endothelial cells from embryonic stem cells. Methods Mol Biol. 2006;330:287-301 pubmed
  1019. Janda E, Nevolo M, Lehmann K, Downward J, Beug H, Grieco M. Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene. 2006;25:7117-30 pubmed
  1020. Keino H, Masli S, Sasaki S, Streilein J, Stein Streilein J. CD8+ T regulatory cells use a novel genetic program that includes CD103 to suppress Th1 immunity in eye-derived tolerance. Invest Ophthalmol Vis Sci. 2006;47:1533-42 pubmed
  1021. Ormestad M, Astorga J, Landgren H, Wang T, Johansson B, Miura N, et al. Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development. 2006;133:833-43 pubmed
  1022. Gründemann C, Bauer M, Schweier O, von Oppen N, Lässing U, Saudan P, et al. Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J Immunol. 2006;176:1311-5 pubmed
  1023. Rivera Perez J, Magnuson T. Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev Biol. 2005;288:363-71 pubmed
  1024. Naim E, Bernstein A, Bertram J, Caruana G. Mutagenesis of the epithelial polarity gene, discs large 1, perturbs nephrogenesis in the developing mouse kidney. Kidney Int. 2005;68:955-65 pubmed
  1025. Schuetz A, Rubin B, Goldblum J, Shehata B, Weiss S, Liu W, et al. Intercellular junctions in Ewing sarcoma/primitive neuroectodermal tumor: additional evidence of epithelial differentiation. Mod Pathol. 2005;18:1403-10 pubmed
  1026. Ng E, Azzola L, Sourris K, Robb L, Stanley E, Elefanty A. The primitive streak gene Mixl1 is required for efficient haematopoiesis and BMP4-induced ventral mesoderm patterning in differentiating ES cells. Development. 2005;132:873-84 pubmed
  1027. Shen X, Kramer R. Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor. Am J Pathol. 2004;165:1315-29 pubmed
  1028. Fouquet S, Lugo Martínez V, Faussat A, Renaud F, Cardot P, Chambaz J, et al. Early loss of E-cadherin from cell-cell contacts is involved in the onset of Anoikis in enterocytes. J Biol Chem. 2004;279:43061-9 pubmed
  1029. Chang Rodriguez S, Ecker R, Stingl G, Elbe Bürger A. Autocrine IL-10 partially prevents differentiation of neonatal dendritic epidermal leukocytes into Langerhans cells. J Leukoc Biol. 2004;76:657-66 pubmed
  1030. McCloskey K, Lyons I, Rao R, Stice S, Nerem R. Purified and proliferating endothelial cells derived and expanded in vitro from embryonic stem cells. Endothelium. 2003;10:329-36 pubmed
  1031. McGuire J, Li Q, Parks W. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol. 2003;162:1831-43 pubmed
  1032. Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey A. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev. 2003;17:1090-100 pubmed
  1033. Davis J, Duncan M, Robison W, Piatigorsky J. Requirement for Pax6 in corneal morphogenesis: a role in adhesion. J Cell Sci. 2003;116:2157-67 pubmed
  1034. Duguay D, Foty R, Steinberg M. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol. 2003;253:309-23 pubmed
  1035. Tong W, Cortes U, Hande M, Ohgaki H, Cavalli L, Lansdorp P, et al. Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res. 2002;62:6990-6 pubmed
  1036. Contreras R, Shoshani L, Flores Maldonado C, Lazaro A, Monroy A, Roldán M, et al. E-Cadherin and tight junctions between epithelial cells of different animal species. Pflugers Arch. 2002;444:467-75 pubmed
  1037. Lopez T, Hanahan D. Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell. 2002;1:339-53 pubmed
  1038. Carothers A, Melstrom K, Mueller J, Weyant M, Bertagnolli M. Progressive changes in adherens junction structure during intestinal adenoma formation in Apc mutant mice. J Biol Chem. 2001;276:39094-102 pubmed
  1039. Feng C, Britton W, Palendira U, Groat N, Briscoe H, Bean A. Up-regulation of VCAM-1 and differential expansion of beta integrin-expressing T lymphocytes are associated with immunity to pulmonary Mycobacterium tuberculosis infection. J Immunol. 2000;164:4853-60 pubmed
  1040. Ong A, Maines Bandiera S, Roskelley C, Auersperg N. An ovarian adenocarcinoma line derived from SV40/E-cadherin-transfected normal human ovarian surface epithelium. Int J Cancer. 2000;85:430-7 pubmed
  1041. Schmeiser K, Grand R. The fate of E- and P-cadherin during the early stages of apoptosis. Cell Death Differ. 1999;6:377-86 pubmed
  1042. Anderson R, Fassler R, Georges Labouesse E, Hynes R, Bader B, Kreidberg J, et al. Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development. 1999;126:1655-64 pubmed
  1043. Danjo Y, Gipson I. Actin 'purse string' filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement. J Cell Sci. 1998;111 ( Pt 22):3323-32 pubmed
  1044. Izon D, Rozenfeld S, Fong S, Komuves L, Largman C, Lawrence H. Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood. 1998;92:383-93 pubmed
  1045. Mbalaviele G, Dunstan C, Sasaki A, Williams P, Mundy G, Yoneda T. E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model. Cancer Res. 1996;56:4063-70 pubmed
  1046. Wesseling J, van der Valk S, Hilkens J. A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol Cell. 1996;7:565-77 pubmed
  1047. Fannon A, Sherman D, Ilyina Gragerova G, Brophy P, Friedrich V, Colman D. Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol. 1995;129:189-202 pubmed