这是一篇来自已证抗体库的有关小鼠 Csf1r的综述,是根据94篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Csf1r 抗体。
Csf1r 同义词: AI323359; CD115; CSF-1R; Csfmr; Fim-2; Fim2; Fms; M-CSF-R; M-CSFR

BioLegend
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 6f
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Sci Adv (2020) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:400; 图 3s3c
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3s3c). elife (2020) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). Commun Biol (2020) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Sci Adv (2019) ncbi
大鼠 单克隆(AFS98)
  • mass cytometry; 小鼠; 0.75 ug/ml; 图 5d
BioLegend Csf1r抗体(Biolegend, AFS98)被用于被用于mass cytometry在小鼠样本上浓度为0.75 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(AFS98)
  • mass cytometry; 小鼠; 图 1a, 1c, s1
BioLegend Csf1r抗体(Biolegend, AFS98)被用于被用于mass cytometry在小鼠样本上 (图 1a, 1c, s1). Cell Rep (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Csf1r抗体(Biolegend, 135517)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cell (2019) ncbi
大鼠 单克隆(AFS98)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 ex2c
BioLegend Csf1r抗体(BioLegend, 135530)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 ex2c). Nature (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 ex3a
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 ex3a). Nature (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:100; 图 3c
BioLegend Csf1r抗体(BioLegend, 135505)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3c). FASEB J (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:200; 图 e7b
BioLegend Csf1r抗体(Biolegend, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e7b). Nature (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s3f
BioLegend Csf1r抗体(Biolegend, 135525)被用于被用于流式细胞仪在小鼠样本上 (图 s3f). Cell (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:800; 图 ex6i
BioLegend Csf1r抗体(Biolegend, 135517)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 ex6i). Nature (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:700; 图 ex2a
BioLegend Csf1r抗体(BioLegend, 135517)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 ex2a). Nature (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Csf1r抗体(Biolegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s9b
BioLegend Csf1r抗体(Biolegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 s9b). Science (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Csf1r抗体(Biolegend, 135511)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Clin Invest (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 8a
BioLegend Csf1r抗体(BioLegend, ASF98)被用于被用于流式细胞仪在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
BioLegend Csf1r抗体(Biolegend, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). Oncotarget (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). FASEB J (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Eur J Immunol (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Csf1r抗体(BioLegend, 135524)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Immunity (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 2j
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 2j). J Exp Med (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 s5). PLoS ONE (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:300; 图 5
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 5). Nat Commun (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 人类; 图 2b
BioLegend Csf1r抗体(Biolegend, AFS98)被用于被用于流式细胞仪在人类样本上 (图 2b). PLoS ONE (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Gastroenterology (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 表 s6
BioLegend Csf1r抗体(Biolegend, 135508)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
BioLegend Csf1r抗体(BioLegend, AFS98)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2014) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Csf1r抗体(Biolegend, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 3a). PLoS ONE (2013) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
BioLegend Csf1r抗体(Biolegend, AFS98)被用于被用于流式细胞仪在小鼠样本上. Circulation (2013) ncbi
赛默飞世尔
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Csf1r抗体(Thermo Fisher, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Adv (2020) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s9c
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 s9c). Nature (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:10; 图 s3a
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 s3a). Sci Adv (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:100; 图 e7b
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e7b). Nature (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Csf1r抗体(eBioscience, 17-1152-82)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2019) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 2a, 2c
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2c). Ann Rheum Dis (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Mol Cell Biol (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Csf1r抗体(eBiosciences, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS ONE (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Commun (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
赛默飞世尔 Csf1r抗体(eBioScience, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Nutrients (2018) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Csf1r抗体(eBiosciences, 12-1152)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔 Csf1r抗体(eBioscience, 12-1152-82)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:250
赛默飞世尔 Csf1r抗体(eBioscience, 12-1152-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:250. J Exp Med (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
赛默飞世尔 Csf1r抗体(eBioscience, AF598)被用于被用于流式细胞仪在小鼠样本上. Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
赛默飞世尔 Csf1r抗体(eBioscience, 17-1152)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). Hepatology (2017) ncbi
大鼠 单克隆(AFS98)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
赛默飞世尔 Csf1r抗体(eBiosciences, AFS98)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). Nature (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 st2
赛默飞世尔 Csf1r抗体(eBiosciences, 25-1152-80)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Csf1r抗体(eBiosciences, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Csf1r抗体(ebioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Nat Med (2016) ncbi
大鼠 单克隆(AFS98)
  • 免疫组化; 小鼠; 1:50; 图 2
赛默飞世尔 Csf1r抗体(eBioscience, 14-1152)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Csf1r抗体(eBioscience, 25-1152)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
赛默飞世尔 Csf1r抗体(eBioscience, 13-1152-81)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:50; 图 s5a
赛默飞世尔 Csf1r抗体(eBioscience, 13-1152)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s5a). Acta Neuropathol (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Csf1r抗体(eBiosciences, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Nat Commun (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Csf1r抗体(eBioscience, 53-1152)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Mol Cell Cardiol (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 表 s6
赛默飞世尔 Csf1r抗体(eBiosciences, 17-1152-82)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2016) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
赛默飞世尔 Csf1r抗体(BD, 12-1152)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). Cell Physiol Biochem (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Csf1r抗体(eBioscience, 13-1152)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Brain (2015) ncbi
大鼠 单克隆(AFS98)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Csf1r抗体(eBioscience, AF598)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nature (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:300
赛默飞世尔 Csf1r抗体(eBioscience, 12-1152-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. EMBO Mol Med (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Csf1r抗体(eBioscience, AF598)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Hematol (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Csf1r抗体(eBioscience, AFS598)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(AFS98)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Cell Sci (2014) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Csf1r抗体(eBiosciences, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Exp Hematol (2015) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 1:1000; 图 1,5,6,7
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1,5,6,7). PLoS ONE (2014) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 人类
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(AFS98)
  • 抑制或激活实验; 小鼠; 5 ug/ml
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. PLoS ONE (2014) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 s10
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 s10). PLoS Pathog (2012) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上. Nature (2011) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Csf1r抗体(eBioscience, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2008) ncbi
Bio X Cell
大鼠 单克隆(AFS98)
  • 抑制或激活实验; 小鼠; 图 5a
Bio X Cell Csf1r抗体(BioXCell, AFS98)被用于被用于抑制或激活实验在小鼠样本上 (图 5a). J Clin Invest (2018) ncbi
大鼠 单克隆(AFS98)
  • 抑制或激活实验; 小鼠; 图 6b
Bio X Cell Csf1r抗体(BioXcell, AFS98)被用于被用于抑制或激活实验在小鼠样本上 (图 6b). J Exp Med (2017) ncbi
大鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 2d
Bio X Cell Csf1r抗体(Bio X Cell, AFS98)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nature (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(SP211)
  • 免疫组化-石蜡切片; 人类; 1:150; 图 s4a
艾博抗(上海)贸易有限公司 Csf1r抗体(Abcam, ab183316)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 s4a). Cancer Cell (2019) ncbi
Tonbo Biosciences
小鼠 单克隆(AFS98)
  • 流式细胞仪; 小鼠; 图 s4a
Tonbo Biosciences Csf1r抗体(Tonbo, 20-1152)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Cell (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Csf1r抗体(Cell Signaling, 3152)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Csf1r抗体(cell Signaling Tech, 3152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
文章列表
  1. Wang S, Li R, Ng T, Luthria G, Oudin M, Prytyskach M, et al. Efficient blockade of locally reciprocated tumor-macrophage signaling using a TAM-avid nanotherapy. Sci Adv. 2020;6:eaaz8521 pubmed 出版商
  2. Burfeind K, Zhu X, Norgard M, Levasseur P, Huisman C, Buenafe A, et al. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. elife. 2020;9: pubmed 出版商
  3. Wuggenig P, Kaya B, Melhem H, Ayata C, Hruz P, Sayan A, et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol. 2020;3:130 pubmed 出版商
  4. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  5. Eastman A, Xu J, Bermik J, Potchen N, den Dekker A, Neal L, et al. Epigenetic stabilization of DC and DC precursor classical activation by TNFα contributes to protective T cell polarization. Sci Adv. 2019;5:eaaw9051 pubmed 出版商
  6. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  7. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  8. Brown C, Gudjonson H, Pritykin Y, Deep D, Lavallée V, Mendoza A, et al. Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell. 2019;179:846-863.e24 pubmed 出版商
  9. Chu C, Murdock M, Jing D, Won T, Chung H, Kressel A, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574:543-548 pubmed 出版商
  10. Liu Z, Gu Y, Chakarov S, Blériot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178:1509-1525.e19 pubmed 出版商
  11. Culemann S, Grüneboom A, Nicolás Ávila J, Weidner D, Lämmle K, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572:670-675 pubmed 出版商
  12. Croft A, Campos J, Jansen K, Turner J, Marshall J, Attar M, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570:246-251 pubmed 出版商
  13. Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086 pubmed 出版商
  14. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  15. Jacome Galarza C, Percin G, Muller J, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568:541-545 pubmed 出版商
  16. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  17. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  18. Pijuan Sala B, Griffiths J, Guibentif C, Hiscock T, Jawaid W, Calero Nieto F, et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature. 2019;566:490-495 pubmed 出版商
  19. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  20. Chopin M, Lun A, Zhan Y, Schreuder J, Coughlan H, D Amico A, et al. Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity. 2019;50:77-90.e5 pubmed 出版商
  21. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  22. Choi H, Suwanpradid J, Kim I, Staats H, Haniffa M, Macleod A, et al. Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science. 2018;362: pubmed 出版商
  23. Puchner A, Saferding V, Bonelli M, Mikami Y, Hofmann M, Brunner J, et al. Non-classical monocytes as mediators of tissue destruction in arthritis. Ann Rheum Dis. 2018;77:1490-1497 pubmed 出版商
  24. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  25. Baba O, Horie T, Nakao T, Hakuno D, Nakashima Y, Nishi H, et al. MicroRNA 33 Regulates the Population of Peripheral Inflammatory Ly6Chigh Monocytes through Dual Pathways. Mol Cell Biol. 2018;38: pubmed 出版商
  26. Durai V, Bagadia P, Briseño C, Theisen D, Iwata A, Davidson J, et al. Altered compensatory cytokine signaling underlies the discrepancy between Flt3-/- and Flt3l-/- mice. J Exp Med. 2018;215:1417-1435 pubmed 出版商
  27. Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9:11209-11226 pubmed 出版商
  28. Baranska A, Shawket A, Jouve M, Baratin M, Malosse C, Voluzan O, et al. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med. 2018;215:1115-1133 pubmed 出版商
  29. Huang L, Nazarova E, Tan S, Liu Y, Russell D. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215:1135-1152 pubmed 出版商
  30. Metghalchi S, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS ONE. 2018;13:e0193737 pubmed 出版商
  31. Westhorpe C, Norman M, Hall P, Snelgrove S, Finsterbusch M, Li A, et al. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes. Nat Commun. 2018;9:747 pubmed 出版商
  32. Hoving L, De Vries M, de Jong R, Katiraei S, Pronk A, Quax P, et al. The Prebiotic Inulin Aggravates Accelerated Atherosclerosis in Hypercholesterolemic APOE*3-Leiden Mice. Nutrients. 2018;10: pubmed 出版商
  33. Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, et al. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med. 2018;215:481-500 pubmed 出版商
  34. Tang H, Liang Y, Anders R, Taube J, Qiu X, Mulgaonkar A, et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest. 2018;128:580-588 pubmed 出版商
  35. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  36. Dehn S, Thorp E. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J. 2018;32:254-264 pubmed 出版商
  37. Anderson D, Grajales Reyes G, Satpathy A, Vasquez Hueichucura C, Murphy T, Murphy K. Revisiting the specificity of the MHC class?II transactivator CIITA in classical murine dendritic cells in vivo. Eur J Immunol. 2017;47:1317-1323 pubmed 出版商
  38. Mildner A, Schönheit J, Giladi A, David E, Lara Astiaso D, Lorenzo Vivas E, et al. Genomic Characterization of Murine Monocytes Reveals C/EBP? Transcription Factor Dependence of Ly6C- Cells. Immunity. 2017;46:849-862.e7 pubmed 出版商
  39. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  40. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  41. Kwan B, Zhu E, Tzeng A, Sugito H, Eltahir A, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med. 2017;214:1679-1690 pubmed 出版商
  42. Thomas D, Clare S, Sowerby J, Pardo M, Juss J, Goulding D, et al. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med. 2017;214:1111-1128 pubmed 出版商
  43. Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214:905-917 pubmed 出版商
  44. Kasaai B, Caolo V, Peacock H, Lehoux S, Gomez Perdiguero E, Luttun A, et al. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep. 2017;7:43817 pubmed 出版商
  45. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  46. Sharif S, Nakatani Y, Wise L, Corbett M, Real N, Stuart G, et al. A Broad-Spectrum Chemokine-Binding Protein of Bovine Papular Stomatitis Virus Inhibits Neutrophil and Monocyte Infiltration in Inflammatory and Wound Models of Mouse Skin. PLoS ONE. 2016;11:e0168007 pubmed 出版商
  47. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  48. Ravà M, D Andrea A, Doni M, Kress T, Ostuni R, Bianchi V, et al. Mutual epithelium-macrophage dependency in liver carcinogenesis mediated by ST18. Hepatology. 2017;65:1708-1719 pubmed 出版商
  49. Takács E, Boto P, Simo E, Csuth T, Toth B, Raveh Amit H, et al. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. J Immunol. 2017;198:239-248 pubmed
  50. Dong L, Yu W, Zheng H, Loh M, Bunting S, Pauly M, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature. 2016;539:304-308 pubmed 出版商
  51. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  52. Johnston L, Hsu C, Krier Burris R, Chhiba K, Chien K, McKenzie A, et al. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J Immunol. 2016;197:3445-3453 pubmed
  53. Kim K, Williams J, Wang Y, Ivanov S, Gilfillan S, Colonna M, et al. MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. J Exp Med. 2016;213:1951-9 pubmed 出版商
  54. Imhof B, Jemelin S, Ballet R, Vesin C, Schapira M, Karaca M, et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A. 2016;113:E4847-56 pubmed 出版商
  55. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  56. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  57. Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 2016;22:945-51 pubmed 出版商
  58. Li Y, Jalili R, Ghahary A. Accelerating skin wound healing by M-CSF through generating SSEA-1 and -3 stem cells in the injured sites. Sci Rep. 2016;6:28979 pubmed 出版商
  59. Al Sadoun H, Burgess M, Hentges K, Mace K. Enforced Expression of Hoxa3 Inhibits Classical and Promotes Alternative Activation of Macrophages In Vitro and In Vivo. J Immunol. 2016;197:872-84 pubmed 出版商
  60. Gadd V, Patel P, Jose S, Horsfall L, Powell E, Irvine K. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation. PLoS ONE. 2016;11:e0157771 pubmed 出版商
  61. Hanna J, Garcia M, Go J, Finkelstein D, Kodali K, Pagala V, et al. PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma. Cell Death Dis. 2016;7:e2256 pubmed 出版商
  62. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  63. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  64. Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf W, Grozdanov V, et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol. 2016;132:391-411 pubmed 出版商
  65. Lancaster G, Kammoun H, Kraakman M, Kowalski G, Bruce C, Febbraio M. PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications. Nat Commun. 2016;7:10626 pubmed 出版商
  66. Scott C, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7:10321 pubmed 出版商
  67. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  68. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  69. Borrell Pages M, Romero J, Crespo J, Juan Babot O, Badimon L. LRP5 associates with specific subsets of macrophages: Molecular and functional effects. J Mol Cell Cardiol. 2016;90:146-56 pubmed 出版商
  70. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  71. Cole C, Verdoni A, Ketkar S, Leight E, Russler Germain D, Lamprecht T, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126:85-98 pubmed 出版商
  72. Merches K, Khairnar V, Knuschke T, Shaabani N, Honke N, Duhan V, et al. Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection. Cell Physiol Biochem. 2015;36:2379-92 pubmed 出版商
  73. Zhang J, Li L, Baldwin A, Friedman A, Paz Priel I. Loss of IKKβ but Not NF-κB p65 Skews Differentiation towards Myeloid over Erythroid Commitment and Increases Myeloid Progenitor Self-Renewal and Functional Long-Term Hematopoietic Stem Cells. PLoS ONE. 2015;10:e0130441 pubmed 出版商
  74. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  75. Koronyo Y, Salumbides B, Sheyn J, Pelissier L, Li S, Ljubimov V, et al. Therapeutic effects of glatiramer acetate and grafted CD115⁺ monocytes in a mouse model of Alzheimer's disease. Brain. 2015;138:2399-422 pubmed 出版商
  76. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson A, et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522:349-53 pubmed 出版商
  77. Carmi Y, Spitzer M, Linde I, Burt B, Prestwood T, Perlman N, et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature. 2015;521:99-104 pubmed 出版商
  78. Bretscher P, Egger J, Shamshiev A, Trötzmüller M, Köfeler H, Carreira E, et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol Med. 2015;7:593-607 pubmed 出版商
  79. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  80. Evrard M, Chong S, Devi S, Chew W, Lee B, Poidinger M, et al. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol. 2015;97:611-9 pubmed 出版商
  81. Zhang H, Hu H, Greeley N, Jin J, Matthews A, Ohashi E, et al. STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nat Commun. 2014;5:5798 pubmed 出版商
  82. Svahn S, Grahnemo L, Pálsdóttir V, Nookaew I, Wendt K, Gabrielsson B, et al. Dietary polyunsaturated fatty acids increase survival and decrease bacterial load during septic Staphylococcus aureus infection and improve neutrophil function in mice. Infect Immun. 2015;83:514-21 pubmed 出版商
  83. Lou J, Low Nam S, Kerkvliet J, Hoppe A. Delivery of CSF-1R to the lumen of macropinosomes promotes its destruction in macrophages. J Cell Sci. 2014;127:5228-39 pubmed 出版商
  84. Becker A, Walcheck B, Bhattacharya D. ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors. Exp Hematol. 2015;43:44-52.e1-3 pubmed 出版商
  85. Sauter K, Pridans C, Sehgal A, Bain C, Scott C, Moffat L, et al. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS ONE. 2014;9:e105429 pubmed 出版商
  86. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  87. Sheng K, Herrero L, Taylor A, Hapel A, Mahalingam S. IL-3 and CSF-1 interact to promote generation of CD11c+ IL-10-producing macrophages. PLoS ONE. 2014;9:e95208 pubmed 出版商
  88. Sauter K, Pridans C, Sehgal A, Tsai Y, Bradford B, Raza S, et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014;96:265-74 pubmed 出版商
  89. Weber B, Schuster S, Zysset D, Rihs S, Dickgreber N, Schürch C, et al. TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. PLoS Pathog. 2014;10:e1003900 pubmed 出版商
  90. Stoilova B, Kowenz Leutz E, Scheller M, Leutz A. Lymphoid to myeloid cell trans-differentiation is determined by C/EBP? structure and post-translational modifications. PLoS ONE. 2013;8:e65169 pubmed 出版商
  91. Ryu J, Davidson B, Xie A, Qi Y, Zha D, Belcik J, et al. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation. 2013;127:710-9 pubmed 出版商
  92. Cho J, Guo Y, Ramos R, Hebroni F, Plaisier S, Xuan C, et al. Neutrophil-derived IL-1? is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog. 2012;8:e1003047 pubmed 出版商
  93. Qian B, Li J, Zhang H, Kitamura T, Zhang J, Campion L, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222-5 pubmed 出版商
  94. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商