这是一篇来自已证抗体库的有关小鼠 Csf2的综述,是根据25篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Csf2 抗体。
Csf2 同义词: CSF; Csfgm; GMCSF; Gm-CSf; MGI-IGM

赛默飞世尔
大鼠 单克隆(MP1-22E9)
  • 酶联免疫吸附测定; 小鼠; 图 7d
赛默飞世尔 Csf2抗体(Invitrogen, MPI-22E9)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 7d). Arthritis Res Ther (2021) ncbi
大鼠 单克隆(MP122E9)
  • 酶联免疫吸附测定; 小鼠; 图 7d
赛默飞世尔 Csf2抗体(Invitrogen, MPI-22E9)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 7d). Arthritis Res Ther (2021) ncbi
大鼠 单克隆(MP122E9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Csf2抗体(Thermo Fisher Scientific, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上. J Autoimmun (2021) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Csf2抗体(Thermo Fisher Scientific, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上. J Autoimmun (2021) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 1:200; 图 5
赛默飞世尔 Csf2抗体(eBioscience, 11-7331)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5). JCI Insight (2020) ncbi
大鼠 单克隆(MP122E9)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔 Csf2抗体(eBiosciences, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MP1-22E9)
  • 酶联免疫吸附测定; 小鼠; 图 3D
赛默飞世尔 Csf2抗体(eBiosciences, MP1-22E9)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3D). PLoS ONE (2016) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Csf2抗体(eBioscience, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Neuroinflammation (2015) ncbi
大鼠 单克隆(MP122E9)
  • 流式细胞仪; 小鼠; 图 6b
  • 酶联免疫吸附测定; 小鼠; 图 6c
赛默飞世尔 Csf2抗体(eBioscience, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 6b) 和 被用于酶联免疫吸附测定在小鼠样本上 (图 6c). J Immunol (2015) ncbi
BioLegend
大鼠 单克隆(MP1-22E9)
  • 抑制或激活实验; 小鼠; 图 2a
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Csf2抗体(BioLegend, MP1-22E9)被用于被用于抑制或激活实验在小鼠样本上 (图 2a) 和 被用于流式细胞仪在小鼠样本上 (图 1d). Helicobacter (2022) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Csf2抗体(Biolegend, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Neuroinflammation (2020) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Csf2抗体(Biolegend, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 1:100; 图 s1d
BioLegend Csf2抗体(BioLegend, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1d). Nat Commun (2018) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend Csf2抗体(BioLegend, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 s7). J Clin Invest (2019) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Csf2抗体(Biolegend, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2018) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Csf2抗体(BioLegend, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Exp Med (2016) ncbi
Bio X Cell
大鼠 单克隆(MP1-22E9)
  • 抑制或激活实验; 小鼠; 图 7f
Bio X Cell Csf2抗体(Bio-Xcell, MP1-22E9)被用于被用于抑制或激活实验在小鼠样本上 (图 7f). Cell Death Discov (2022) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B6-2-hGMCSF)
  • 免疫印迹; 人类; 图 s5k
圣克鲁斯生物技术 Csf2抗体(Santa Cruz, sc-32753)被用于被用于免疫印迹在人类样本上 (图 s5k). J Clin Invest (2022) ncbi
碧迪BD
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 1:100; 图 1e
碧迪BD Csf2抗体(BD Bioscience, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1e). J Neuroinflammation (2022) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 1:100; 图 s6a
碧迪BD Csf2抗体(BD Biosciences, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6a). Science (2021) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 图 1g
碧迪BD Csf2抗体(BD Biosciences, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 1g). PLoS ONE (2018) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 1:100; 图 s4a
碧迪BD Csf2抗体(BD, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4a). Nat Commun (2017) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD Csf2抗体(BD Pharmingen, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MP1-22E9)
  • 免疫细胞化学; 小鼠; 1:25; 图 10
碧迪BD Csf2抗体(BD Biosciences, 554404)被用于被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 10). J Immunol Res (2016) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 图 s3e
碧迪BD Csf2抗体(BD Bioscience, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠; 表 1
碧迪BD Csf2抗体(BD Biosciences, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上 (表 1). Am J Pathol (2016) ncbi
大鼠 单克隆(MP1-22E9)
  • 流式细胞仪; 小鼠
碧迪BD Csf2抗体(BD Biosciences, MP1-22E9)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
文章列表
  1. Mukherjee B, Tiwari A, Palo A, Pattnaik N, Samantara S, Dixit M. Reduced expression of FRG1 facilitates breast cancer progression via GM-CSF/MEK-ERK axis by abating FRG1 mediated transcriptional repression of GM-CSF. Cell Death Discov. 2022;8:442 pubmed 出版商
  2. He Y, Luo W, Liu Y, Wang Y, Ma C, Wu Q, et al. IL-20RB mediates tumoral response to osteoclastic niches and promotes bone metastasis of lung cancer. J Clin Invest. 2022;132: pubmed 出版商
  3. Benkhoucha M, Tran N, Breville G, Senoner I, Bradfield P, Papayannopoulou T, et al. CD4+c-Met+Itgα4+ T cell subset promotes murine neuroinflammation. J Neuroinflammation. 2022;19:103 pubmed 出版商
  4. Vaillant L, Oster P, McMillan B, Orozco Fernandez E, Velin D. GM-CSF is key in the efficacy of vaccine-induced reduction of Helicobacter pylori infection. Helicobacter. 2022;27:e12875 pubmed 出版商
  5. Akgul A, Maddaloni M, Jun S, Nelson A, Odreman V, Hoffman C, et al. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren's syndrome. Arthritis Res Ther. 2021;23:99 pubmed 出版商
  6. Hamminger P, Marchetti L, Preglej T, Platzer R, Zhu C, Kamnev A, et al. Histone deacetylase 1 controls CD4+ T cell trafficking in autoinflammatory diseases. J Autoimmun. 2021;119:102610 pubmed 出版商
  7. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  8. Thiele Née Schrewe L, Guse K, Tietz S, Remlinger J, Demir S, Pedreiturria X, et al. Functional relevance of the multi-drug transporter abcg2 on teriflunomide therapy in an animal model of multiple sclerosis. J Neuroinflammation. 2020;17:9 pubmed 出版商
  9. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  10. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  11. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  12. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  13. Cummings M, Arumanayagam A, Zhao P, Kannanganat S, Stuve O, Karandikar N, et al. Presenilin1 regulates Th1 and Th17 effector responses but is not required for experimental autoimmune encephalomyelitis. PLoS ONE. 2018;13:e0200752 pubmed 出版商
  14. Prado C, Gaiazzi M, Gonzalez H, Ugalde V, Figueroa A, Osorio Barrios F, et al. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:571 pubmed 出版商
  15. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  16. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  17. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  18. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  19. Arellano B, Hussain R, Miller Little W, Herndon E, Lambracht Washington D, Eagar T, et al. A Single Amino Acid Substitution Prevents Recognition of a Dominant Human Aquaporin-4 Determinant in the Context of HLA-DRB1*03:01 by a Murine TCR. PLoS ONE. 2016;11:e0152720 pubmed 出版商
  20. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  21. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  22. Goldberg G, Cornish A, Murphy J, Pang E, Lim L, Campbell I, et al. G-CSF and Neutrophils Are Nonredundant Mediators of Murine Experimental Autoimmune Uveoretinitis. Am J Pathol. 2016;186:172-84 pubmed 出版商
  23. McWilliams I, Rajbhandari R, Nozell S, BENVENISTE E, Harrington L. STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE. J Neuroinflammation. 2015;12:128 pubmed 出版商
  24. Paschall A, Zhang R, Qi C, Bardhan K, Peng L, Lu G, et al. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. J Immunol. 2015;194:2369-79 pubmed 出版商
  25. Weber G, Chousterman B, Hilgendorf I, Robbins C, Theurl I, Gerhardt L, et al. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J Exp Med. 2014;211:1243-56 pubmed 出版商