这是一篇来自已证抗体库的有关小鼠 Ctla4的综述,是根据86篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ctla4 抗体。
Ctla4 同义词: Cd152; Ctla-4; Ly-56

BioLegend
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
BioLegend Ctla4抗体(BioLegend, 106312)被用于被用于流式细胞仪在小鼠样本上. Cell (2020) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend Ctla4抗体(Biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Cell (2020) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s3c, s4a
BioLegend Ctla4抗体(BioLegend, 106310)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s3c, s4a). Cancers (Basel) (2020) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Ctla4抗体(Biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 2c). elife (2020) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Ctla4抗体(Biolegend, 106306)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell Rep (2019) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s4f
BioLegend Ctla4抗体(Biolegend, 106306)被用于被用于流式细胞仪在小鼠样本上 (图 s4f). Cell (2019) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s5c
BioLegend Ctla4抗体(Biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). J Clin Invest (2019) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
BioLegend Ctla4抗体(BioLegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Ctla4抗体(Biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Science (2019) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s8b
BioLegend Ctla4抗体(BioLegend, 106311)被用于被用于流式细胞仪在小鼠样本上 (图 s8b). Nat Commun (2019) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Ctla4抗体(Biolegend, 106313)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2018) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend Ctla4抗体(Biolegend, 106309)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). J Clin Invest (2018) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ctla4抗体(Biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2018) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 1:100; 图 4d
BioLegend Ctla4抗体(BioLegend, uc10-4B9)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4d). Nat Commun (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 1:300; 图 6g
BioLegend Ctla4抗体(BioLegend, 106316)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6g). Nat Commun (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 5e
BioLegend Ctla4抗体(BioLegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Antimicrob Agents Chemother (2016) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Ctla4抗体(Biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Ctla4抗体(Biolegend, 106305)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Ctla4抗体(Biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nat Immunol (2016) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Ctla4抗体(BioLegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Immunol Cell Biol (2016) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ctla4抗体(Biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2015) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Ctla4抗体(biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Theranostics (2015) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Ctla4抗体(BioLegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 6). Mol Cancer Ther (2015) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
BioLegend Ctla4抗体(BioLegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
Syrian golden hamster 单克隆(9H10)
  • 抑制或激活实验; 小鼠; 图 3
BioLegend Ctla4抗体(Biolegend, 9H10)被用于被用于抑制或激活实验在小鼠样本上 (图 3). Clin Exp Immunol (2015) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ctla4抗体(BioLegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2015) ncbi
Syrian golden hamster 单克隆(9H10)
  • 流式细胞仪; 小鼠
BioLegend Ctla4抗体(BioLegend, 106210)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
BioLegend Ctla4抗体(BioLegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ctla4抗体(Biolegend, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2014) ncbi
赛默飞世尔
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s5b
赛默飞世尔 Ctla4抗体(eBioscience, 12-1522-82)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Cell Rep (2020) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Ctla4抗体(eBiosciences, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Exp Med (2019) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Ctla4抗体(Thermo Fisher Scientific, 17-1522-82)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2019) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Exp Med (2018) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Ctla4抗体(eBioscience, 121522)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Br J Pharmacol (2018) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, 17-1522-82)被用于被用于流式细胞仪在小鼠样本上. Nature (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Immunology (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 1:200; 图 4c
赛默飞世尔 Ctla4抗体(eBioscience, 12-1522)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4c). Nat Commun (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Blood (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 人类; 1:200; 图 1
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔 Ctla4抗体(eBiosciences, 12-1522-82)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1) 和 被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Commun (2016) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Ctla4抗体(eBiosciences, 17-1522-80)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Immunol Cell Biol (2017) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ctla4抗体(eBioscience, 12-1522)被用于被用于流式细胞仪在小鼠样本上 (图 5). EMBO Mol Med (2015) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
Syrian golden hamster 单克隆(9H10)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, 9H10)被用于被用于抑制或激活实验在小鼠样本上. J Immunol Methods (2014) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 人类
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2014) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ctla4抗体(eBioscience, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ctla4抗体(eBiosciences, UC10-4B9)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2007) ncbi
仓鼠 单克隆(1B8)
  • 抑制或激活实验; 小鼠; 图 1
赛默飞世尔 Ctla4抗体(noco, noca)被用于被用于抑制或激活实验在小鼠样本上 (图 1). Science (1996) ncbi
Bio X Cell
小鼠 单克隆(9D9)
  • 抑制或激活实验; 小鼠; 图 1a
Bio X Cell Ctla4抗体(BioXCell, 9D9)被用于被用于抑制或激活实验在小鼠样本上 (图 1a). BMC Biol (2020) ncbi
小鼠 单克隆(9D9)
  • 抑制或激活实验; 小鼠; ; 图 4a
Bio X Cell Ctla4抗体(Bioxcell, BE0164)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 4a). Cell Res (2020) ncbi
Syrian golden hamster 单克隆(9H10)
  • 免疫组化; 小鼠; 图 s5
Bio X Cell Ctla4抗体(BioXcell, 9H10)被用于被用于免疫组化在小鼠样本上 (图 s5). BMC Genomics (2020) ncbi
小鼠 单克隆(9D9)
  • 抑制或激活实验; 小鼠; 图 2b
Bio X Cell Ctla4抗体(BioXcell, 9D9)被用于被用于抑制或激活实验在小鼠样本上 (图 2b). JCI Insight (2018) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 抑制或激活实验; 小鼠; 图 4d
Bio X Cell Ctla4抗体(Bio-X-cell, UC10-4F10-1)被用于被用于抑制或激活实验在小鼠样本上 (图 4d). J Immunol (2018) ncbi
Syrian golden hamster 单克隆(9H10)
  • 抑制或激活实验; 小鼠; 图 s2a
Bio X Cell Ctla4抗体(BioXcell, 9H10)被用于被用于抑制或激活实验在小鼠样本上 (图 s2a). Nat Commun (2017) ncbi
小鼠 单克隆(9D9)
  • 抑制或激活实验; 小鼠
Bio X Cell Ctla4抗体(BioXcell, 9D9)被用于被用于抑制或激活实验在小鼠样本上. Nature (2017) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 抑制或激活实验; 小鼠; 图 2a
Bio X Cell Ctla4抗体(Bio X Cell, UC10-4F10-11)被用于被用于抑制或激活实验在小鼠样本上 (图 2a). elife (2015) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 抑制或激活实验; 小鼠; 图 6
Bio X Cell Ctla4抗体(BioxCell, UC10-4F10)被用于被用于抑制或激活实验在小鼠样本上 (图 6). J Clin Invest (2015) ncbi
Syrian golden hamster 单克隆(9H10)
  • 抑制或激活实验; 小鼠; 图 s3
Bio X Cell Ctla4抗体(BioXCell, 9H10)被用于被用于抑制或激活实验在小鼠样本上 (图 s3). J Immunother Cancer (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-8)
  • 免疫组化; 小鼠; 1:5000; 图 7d
圣克鲁斯生物技术 Ctla4抗体(Santa Cruz Biotechnology, sc-376016)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 7d). JCI Insight (2020) ncbi
小鼠 单克隆(F-8)
  • 流式细胞仪; 小鼠; 图 1b
圣克鲁斯生物技术 Ctla4抗体(Santa Cruz, sc-376016)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Braz J Med Biol Res (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3c
圣克鲁斯生物技术 Ctla4抗体(Santa Cruz, sc-376016)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3c). J Immunol Res (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
圣克鲁斯生物技术 Ctla4抗体(Santa Cruz, SC-376016)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). Breast Cancer Res (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 4
圣克鲁斯生物技术 Ctla4抗体(Santa Cruz, sc-376016)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 4). Oncotarget (2016) ncbi
美天旎
仓鼠 单克隆(UC10-4B9)
  • 流式细胞仪; 小鼠; 1:20; 图 4a
美天旎 Ctla4抗体(Miltenyi, 130-102-570)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 4a). Nat Commun (2019) ncbi
艾博抗(上海)贸易有限公司
单克隆
  • 流式细胞仪; 小鼠; 1:200; 图 4c
艾博抗(上海)贸易有限公司 Ctla4抗体(Abcam, ab105155)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4c). Cell Metab (2016) ncbi
domestic rabbit 单克隆(EPR1476)
  • 免疫印迹; 小鼠; 图 12
艾博抗(上海)贸易有限公司 Ctla4抗体(Abcam, ab134090)被用于被用于免疫印迹在小鼠样本上 (图 12). Oncotarget (2016) ncbi
单克隆
  • 流式细胞仪; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Ctla4抗体(Abcam, ab105155)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Med (2015) ncbi
Tonbo Biosciences
单克隆(UC104F1011)
  • 流式细胞仪; 小鼠; 表 s1
Tonbo Biosciences Ctla4抗体(TONBO, UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
碧迪BD
仓鼠 单克隆(UC10-4F10-11)
  • 流式细胞仪; 小鼠; 1:200; 图 s6-1e
碧迪BD Ctla4抗体(BD Biosciences, UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6-1e). elife (2020) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 流式细胞仪; 小鼠
碧迪BD Ctla4抗体(BD Biosciences, clone UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 流式细胞仪; 小鼠; 图 1g
碧迪BD Ctla4抗体(BD Biosciences, UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Clin Invest (2019) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 流式细胞仪; 小鼠; 图 3c, 4f
碧迪BD Ctla4抗体(BD, UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上 (图 3c, 4f). Proc Natl Acad Sci U S A (2018) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD Ctla4抗体(Becton Dickinson, UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Immunity (2017) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 抑制或激活实验; 小鼠; 图 2a
碧迪BD Ctla4抗体(BD Biosciences, UC10-4F10)被用于被用于抑制或激活实验在小鼠样本上 (图 2a). Cell Death Differ (2017) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 流式细胞仪; 小鼠
碧迪BD Ctla4抗体(BD Biosciences, UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Ctla4抗体(BD PharMingen, UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Immunol (2016) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD Ctla4抗体(BD Bioscience, UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Endod (2016) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 免疫细胞化学; 小鼠
碧迪BD Ctla4抗体(BD, UC10-4F10-11)被用于被用于免疫细胞化学在小鼠样本上. Immunol Cell Biol (2015) ncbi
仓鼠 单克隆(UC10-4F10-11)
  • 流式细胞仪; 小鼠
碧迪BD Ctla4抗体(BD Biosciences, UC10-4F10-11)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
文章列表
  1. Rundqvist H, Veliça P, Barbieri L, Gameiro P, Bargiela D, Gojkovic M, et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. elife. 2020;9: pubmed 出版商
  2. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  3. Li H, Lu C, Zhang H, Hu Q, Zhang J, Cuevas I, et al. A PoleP286R mouse model of endometrial cancer recapitulates high mutational burden and immunotherapy response. JCI Insight. 2020;5: pubmed 出版商
  4. Gryzik S, Hoang Y, Lischke T, Mohr E, Venzke M, Kadner I, et al. Identification of a super-functional Tfh-like subpopulation in murine lupus by pattern perception. elife. 2020;9: pubmed 出版商
  5. Ruscetti M, Morris J, Mezzadra R, Russell J, Leibold J, Romesser P, et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 2020;181:424-441.e21 pubmed 出版商
  6. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  7. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  8. Cohen G, Chandran P, Lorsung R, Tomlinson L, Sundby M, Burks S, et al. The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel). 2020;12: pubmed 出版商
  9. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  10. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  11. Zhong W, Myers J, Wang F, Wang K, Lucas J, Rosfjord E, et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics. 2020;21:2 pubmed 出版商
  12. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  13. Benci J, Johnson L, Choa R, Xu Y, Qiu J, Zhou Z, et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell. 2019;178:933-948.e14 pubmed 出版商
  14. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  15. Papaioannou E, Yanez D, Ross S, Lau C, Solanki A, Chawda M, et al. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest. 2019;129:3153-3170 pubmed 出版商
  16. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  17. Sugiura D, Maruhashi T, Okazaki I, Shimizu K, Maeda T, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364:558-566 pubmed 出版商
  18. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  19. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  20. Michaels Y, Barnkob M, Barbosa H, Baeumler T, Thompson M, Andre V, et al. Precise tuning of gene expression levels in mammalian cells. Nat Commun. 2019;10:818 pubmed 出版商
  21. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  22. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  23. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  24. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  25. Emmerson A, Trevelin S, Mongue Din H, Becker P, Ortiz C, Smyth L, et al. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J Clin Invest. 2018;128:3088-3101 pubmed 出版商
  26. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  27. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  28. Shi B, Geng J, Wang Y, Wei H, Walters B, Li W, et al. Foxp1 Negatively Regulates T Follicular Helper Cell Differentiation and Germinal Center Responses by Controlling Cell Migration and CTLA-4. J Immunol. 2018;200:586-594 pubmed 出版商
  29. Kishore M, Cheung K, Fu H, Bonacina F, Wang G, Coe D, et al. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47:875-889.e10 pubmed 出版商
  30. Singh M, Vianden C, Cantwell M, Dai Z, Xiao Z, Sharma M, et al. Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain. Nat Commun. 2017;8:1447 pubmed 出版商
  31. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739-1749 pubmed 出版商
  32. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  33. Meinicke H, Bremser A, Brack M, Akeus P, Pearson C, Bullers S, et al. Tumour-associated changes in intestinal epithelial cells cause local accumulation of KLRG1+ GATA3+ regulatory T cells in mice. Immunology. 2017;152:74-88 pubmed 出版商
  34. Chien C, Yu H, Chen S, Chiang B. Characterization of c-Maf+Foxp3- Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells. Sci Rep. 2017;7:46348 pubmed 出版商
  35. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  36. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  37. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  38. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  39. Engler J, Kursawe N, Solano M, Patas K, Wehrmann S, Heckmann N, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A. 2017;114:E181-E190 pubmed 出版商
  40. Marshall N, Vong A, Devarajan P, Brauner M, Kuang Y, Nayar R, et al. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol. 2017;198:1142-1155 pubmed 出版商
  41. Mai T, Ma R, Li Z, Bi S. Construction of a fusion plasmid containing the PSCA gene and cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and its anti-tumor effect in an animal model of prostate cancer. Braz J Med Biol Res. 2016;49:e5620 pubmed 出版商
  42. Kaewkangsadan V, Verma C, Eremin J, Cowley G, Ilyas M, Eremin O. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J Immunol Res. 2016;2016:4757405 pubmed
  43. Fabbiano S, Suárez Zamorano N, Rigo D, Veyrat Durebex C, Stevanovic Dokic A, Colin D, et al. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metab. 2016;24:434-446 pubmed 出版商
  44. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  45. Yoshioka D, Kajiwara C, Ishii Y, Umeki K, Hiramatsu K, Kadota J, et al. Efficacy of ?-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob Agents Chemother. 2016;60:6146-54 pubmed 出版商
  46. Alberdi M, Iglesias M, Tejedor S, Merino R, Lopez Rodriguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFN? expression by the transcription factor NFAT5. Immunol Cell Biol. 2017;95:56-67 pubmed 出版商
  47. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  48. Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Hervé R, et al. In Vivo Expansion of Activated Foxp3+ Regulatory T Cells and Establishment of a Type 2 Immune Response upon IL-33 Treatment Protect against Experimental Arthritis. J Immunol. 2016;197:1708-19 pubmed 出版商
  49. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  50. Duchnowska R, Pęksa R, Radecka B, Mandat T, Trojanowski T, Jarosz B, et al. Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis. Breast Cancer Res. 2016;18:43 pubmed 出版商
  51. Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss D, Frappart L, et al. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget. 2016;7:23006-18 pubmed 出版商
  52. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  53. Helbig D, Ihle M, Pütz K, Tantcheva Poor I, Mauch C, Büttner R, et al. Oncogene and therapeutic target analyses in atypical fibroxanthomas and pleomorphic dermal sarcomas. Oncotarget. 2016;7:21763-74 pubmed 出版商
  54. Lee E, Oh J, Selvaraj S, Park S, Choi M, Spanel R, et al. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice. Oncotarget. 2016;7:14983-5017 pubmed 出版商
  55. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  56. Xiong Y, Ahmad S, Iwami D, Brinkman C, Bromberg J. T-bet Regulates Natural Regulatory T Cell Afferent Lymphatic Migration and Suppressive Function. J Immunol. 2016;196:2526-40 pubmed 出版商
  57. Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G. Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol. 2016;94:388-99 pubmed 出版商
  58. Francisconi C, Vieira A, Biguetti C, Glowacki A, Trombone A, Letra A, et al. Characterization of the Protective Role of Regulatory T Cells in Experimental Periapical Lesion Development and Their Chemoattraction Manipulation as a Therapeutic Tool. J Endod. 2016;42:120-6 pubmed 出版商
  59. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  60. Suárez Zamorano N, Fabbiano S, Chevalier C, Stojanović O, Colin D, Stevanović A, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med. 2015;21:1497-1501 pubmed 出版商
  61. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  62. Welten S, Redeker A, Franken K, Oduro J, Ossendorp F, ÄŒičin Å ain L, et al. The viral context instructs the redundancy of costimulatory pathways in driving CD8(+) T cell expansion. elife. 2015;4: pubmed 出版商
  63. Deppisch N, Ruf P, Eissler N, Neff F, Buhmann R, Lindhofer H, et al. Efficacy and Tolerability of a GD2-Directed Trifunctional Bispecific Antibody in a Preclinical Model: Subcutaneous Administration Is Superior to Intravenous Delivery. Mol Cancer Ther. 2015;14:1877-83 pubmed 出版商
  64. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  65. Guillerey C, Ferrari de Andrade L, Vuckovic S, Miles K, Ngiow S, Yong M, et al. Immunosurveillance and therapy of multiple myeloma are CD226 dependent. J Clin Invest. 2015;125:2077-89 pubmed 出版商
  66. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  67. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  68. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  69. Glatigny S, Duhen R, Arbelaez C, Kumari S, Bettelli E. Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4. Sci Rep. 2015;5:7834 pubmed 出版商
  70. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  71. Chu K, Chiang B. Characterization and functional studies of forkhead box protein 3(-) lymphocyte activation gene 3(+) CD4(+) regulatory T cells induced by mucosal B cells. Clin Exp Immunol. 2015;180:316-28 pubmed 出版商
  72. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  73. Naik A, Hawwari A, Krangel M. Specification of Vδ and Vα usage by Tcra/Tcrd locus V gene segment promoters. J Immunol. 2015;194:790-4 pubmed 出版商
  74. Thauland T, Koguchi Y, Dustin M, Parker D. CD28-CD80 interactions control regulatory T cell motility and immunological synapse formation. J Immunol. 2014;193:5894-903 pubmed 出版商
  75. Lin W, Fan Z, Suo Y, Deng Y, Zhang M, Wang J, et al. The bullseye synapse formed between CD4+ T-cell and staphylococcal enterotoxin B-pulsed dendritic cell is a suppressive synapse in T-cell response. Immunol Cell Biol. 2015;93:99-110 pubmed 出版商
  76. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  77. Verhagen J, Wraith D. Blockade of LFA-1 augments in vitro differentiation of antigen-induced Foxp3? Treg cells. J Immunol Methods. 2014;414:58-64 pubmed 出版商
  78. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  79. Berod L, Stüve P, Varela F, Behrends J, Swallow M, Kruse F, et al. Rapid rebound of the Treg compartment in DEREG mice limits the impact of Treg depletion on mycobacterial burden, but prevents autoimmunity. PLoS ONE. 2014;9:e102804 pubmed 出版商
  80. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  81. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  82. Blache C, Adriouch S, Calbo S, Drouot L, Dulauroy S, Arnoult C, et al. Cutting edge: CD4-independent development of functional FoxP3+ regulatory T cells. J Immunol. 2009;183:4182-6 pubmed 出版商
  83. Kiesel J, Buchwald Z, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182:5477-87 pubmed 出版商
  84. Saito K, Torii M, Ma N, Tsuchiya T, Wang L, Hori T, et al. Differential regulatory function of resting and preactivated allergen-specific CD4+ CD25+ regulatory T cells in Th2-type airway inflammation. J Immunol. 2008;181:6889-97 pubmed
  85. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed
  86. Leach D, Krummel M, Allison J. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734-6 pubmed