这是一篇来自已证抗体库的有关小鼠 CX3C趋化因子受体1 (Cx3cr1) 的综述,是根据38篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CX3C趋化因子受体1 抗体。
其他
CX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于. Front Immunol (2018) ncbi
CX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于. Proc Natl Acad Sci U S A (2018) ncbi
CX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于. J Clin Invest (2018) ncbi
CX3C趋化因子受体1抗体(Biolegend, SA011F11)被用于. Proc Natl Acad Sci U S A (2018) ncbi
CX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于. Nat Commun (2018) ncbi
BioLegend
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegendCX3C趋化因子受体1抗体(BioLegend, 149033)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Immunohorizons (2022) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:200; 图 4d
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4d). Oncotarget (2022) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:200; 图 5e
BioLegendCX3C趋化因子受体1抗体(Biolegend, 149020)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5e). Brain Pathol (2022) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegendCX3C趋化因子受体1抗体(BioLegend, 149008)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Brain Commun (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:250; 图 2f
BioLegendCX3C趋化因子受体1抗体(Biolegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 2f). Nat Commun (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 7a
BioLegendCX3C趋化因子受体1抗体(Biolegend, 149002)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Cancer Cell (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:50; 图 5a
BioLegendCX3C趋化因子受体1抗体(Biolegend, 149007)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5a). elife (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). Sci Rep (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 4e
BioLegendCX3C趋化因子受体1抗体(Biolegend, 149031)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Cell Rep Med (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:100; 图 3c, e8c
BioLegendCX3C趋化因子受体1抗体(Biolegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3c, e8c). Nat Neurosci (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:100; 图 s3j
BioLegendCX3C趋化因子受体1抗体(BioLegend, 149027)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3j). Nature (2021) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠
BioLegendCX3C趋化因子受体1抗体(BioLegend, 149022)被用于被用于流式细胞仪在小鼠样本上. Cell (2020) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:200; 图 1d
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1d). elife (2020) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:100; 图 2s2b
BioLegendCX3C趋化因子受体1抗体(BioLegend, SAO11F11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2s2b). elife (2020) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 s10a
BioLegendCX3C趋化因子受体1抗体(BioLegend, 149036)被用于被用于流式细胞仪在小鼠样本上 (图 s10a). Nat Commun (2020) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Adv (2020) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:2000; 图 s2
BioLegendCX3C趋化因子受体1抗体(Biolegend, 149008)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000 (图 s2). Nat Commun (2020) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s7c
BioLegendCX3C趋化因子受体1抗体(Biolegend, 149018)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s7c). Cell Rep (2019) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendCX3C趋化因子受体1抗体(BioLegend, 149029)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendCX3C趋化因子受体1抗体(BioLegend, 149002)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendCX3C趋化因子受体1抗体(Biolegend, 149005)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2019) ncbi
小鼠 单克隆(SA011F11)
  • mass cytometry; 小鼠; 图 5s2b
BioLegendCX3C趋化因子受体1抗体(Bio Legend, SA011F11)被用于被用于mass cytometry在小鼠样本上 (图 5s2b). elife (2019) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 6j
BioLegendCX3C趋化因子受体1抗体(Biolegend, 149020)被用于被用于流式细胞仪在小鼠样本上 (图 6j). Cell Rep (2018) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Front Immunol (2018) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 8a
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 8a). J Clin Invest (2018) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendCX3C趋化因子受体1抗体(Biolegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 1:100; 图 4e
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4e). Nat Immunol (2018) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendCX3C趋化因子受体1抗体(Biolegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Science (2018) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 s5
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
小鼠 单克隆(SA011F11)
BioLegendCX3C趋化因子受体1抗体(Biolegend, 149013)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(SA011F11)
  • 流式细胞仪; 小鼠; 图 3
BioLegendCX3C趋化因子受体1抗体(BioLegend, SA011F11)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司CX3C趋化因子受体1抗体(Abcam, ab8021)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3a
艾博抗(上海)贸易有限公司CX3C趋化因子受体1抗体(Abcam, 8021)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3a). Front Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司CX3C趋化因子受体1抗体(Abcam, ab8021)被用于被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Med (2016) ncbi
文章列表
  1. Philpott J, Kazimierczyk S, Korgaonkar P, Bordt E, Zois J, Vasudevan C, et al. RXRα Regulates the Development of Resident Tissue Macrophages. Immunohorizons. 2022;6:366-372 pubmed 出版商
  2. Tran C, Scurr M, O Connor L, Buzzelli J, Ng G, Chin S, et al. IL-33 promotes gastric tumour growth in concert with activation and recruitment of inflammatory myeloid cells. Oncotarget. 2022;13:785-799 pubmed 出版商
  3. Ziaei A, Garcia Miralles M, Radulescu C, Sidik H, Silvin A, Bae H, et al. Ermin deficiency leads to compromised myelin, inflammatory milieu, and susceptibility to demyelinating insult. Brain Pathol. 2022;32:e13064 pubmed 出版商
  4. Yu S, Cheng L, Tian D, Li Z, Yao F, Luo Y, et al. Fascin-1 is Highly Expressed Specifically in Microglia After Spinal Cord Injury and Regulates Microglial Migration. Front Pharmacol. 2021;12:729524 pubmed 出版商
  5. Kuo P, Weng W, Scofield B, Furnas D, Paraiso H, Yu I, et al. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun. 2021;3:fcab187 pubmed 出版商
  6. Droho S, Cuda C, Perlman H, Lavine J. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep. 2021;11:18084 pubmed 出版商
  7. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  8. Mathä L, Romera Hernandez M, Steer C, Yin Y, Orangi M, Shim H, et al. Migration of Lung Resident Group 2 Innate Lymphoid Cells Link Allergic Lung Inflammation and Liver Immunity. Front Immunol. 2021;12:679509 pubmed 出版商
  9. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  10. Jeong D, Kim H, Kim H, Kang M, Jung H, Oh Y, et al. Soluble Fas ligand drives autoantibody-induced arthritis by binding to DR5/TRAIL-R2. elife. 2021;10: pubmed 出版商
  11. Nordlohne J, Hulsmann I, Schwafertz S, Zgrajek J, Grundmann M, von Vietinghoff S, et al. A flow cytometry approach reveals heterogeneity in conventional subsets of murine renal mononuclear phagocytes. Sci Rep. 2021;11:13251 pubmed 出版商
  12. Bonilla W, Kirchhammer N, Marx A, Kallert S, Krzyzaniak M, Lu M, et al. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. Cell Rep Med. 2021;2:100209 pubmed 出版商
  13. Mastorakos P, Mihelson N, Luby M, Burks S, Johnson K, Hsia A, et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat Neurosci. 2021;24:245-258 pubmed 出版商
  14. Sanmarco L, Wheeler M, Gutiérrez Vázquez C, Polonio C, Linnerbauer M, Pinho Ribeiro F, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature. 2021;: pubmed 出版商
  15. Jin X, Morro B, Tørresen O, Moiche V, Solbakken M, Jakobsen K, et al. Innovation in Nucleotide-Binding Oligomerization-Like Receptor and Toll-Like Receptor Sensing Drives the Major Histocompatibility Complex-II Free Atlantic Cod Immune System. Front Immunol. 2020;11:609456 pubmed 出版商
  16. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  17. BURNS J, Cotleur B, Walther D, Bajrami B, Rubino S, Wei R, et al. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. elife. 2020;9: pubmed 出版商
  18. Burfeind K, Zhu X, Norgard M, Levasseur P, Huisman C, Buenafe A, et al. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. elife. 2020;9: pubmed 出版商
  19. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  20. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  21. Yu X, Liu H, Hamel K, Morvan M, Yu S, Leff J, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun. 2020;11:264 pubmed 出版商
  22. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  23. Brown C, Gudjonson H, Pritykin Y, Deep D, Lavallée V, Mendoza A, et al. Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell. 2019;179:846-863.e24 pubmed 出版商
  24. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  25. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  26. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  27. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  28. Ushio A, Arakaki R, Otsuka K, Yamada A, Tsunematsu T, Kudo Y, et al. CCL22-Producing Resident Macrophages Enhance T Cell Response in Sjögren's Syndrome. Front Immunol. 2018;9:2594 pubmed 出版商
  29. Paschalis E, Lei F, Zhou C, Kapoulea V, Dana R, Chodosh J, et al. Permanent neuroglial remodeling of the retina following infiltration of CSF1R inhibition-resistant peripheral monocytes. Proc Natl Acad Sci U S A. 2018;115:E11359-E11368 pubmed 出版商
  30. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  31. Huang L, Nazarova E, Tan S, Liu Y, Russell D. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215:1135-1152 pubmed 出版商
  32. Panduro M, Benoist C, Mathis D. Treg cells limit IFN-? production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2018;115:E2585-E2593 pubmed 出版商
  33. Zemmour D, Zilionis R, Kiner E, Klein A, Mathis D, Benoist C. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol. 2018;19:291-301 pubmed 出版商
  34. Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science. 2018;359:232-236 pubmed 出版商
  35. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  36. Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin N, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096 pubmed 出版商
  37. Ding X, Pan L, Wang Y, Xu Q. Baicalin exerts protective effects against lipopolysaccharide-induced acute lung injury by regulating the crosstalk between the CX3CL1-CX3CR1 axis and NF-κB pathway in CX3CL1-knockout mice. Int J Mol Med. 2016;37:703-15 pubmed 出版商
  38. Dal Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong C, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447-56 pubmed 出版商