这是一篇来自已证抗体库的有关小鼠 F4/80的综述,是根据843篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合F4/80 抗体。
F4/80 同义词: DD7A5-7; EGF-TM7; Emr1; F4/80; Gpf480; Ly71; TM7LN3

赛默飞世尔
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 s1a
赛默飞世尔F4/80抗体(CALTAG实验室, F4/80)被用于被用于免疫组化在小鼠样本上 (图 s1a). Front Immunol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6g
赛默飞世尔F4/80抗体(Invitrogen, MF48020)被用于被用于流式细胞仪在小鼠样本上 (图 6g). Front Endocrinol (Lausanne) (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔F4/80抗体(Thermo Fisher, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Adv (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:200; 图 s1a
赛默飞世尔F4/80抗体(Invitrogen, MF48000)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s1a). Sci Adv (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
  • 流式细胞仪; 小鼠; 图 s1i
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a) 和 被用于流式细胞仪在小鼠样本上 (图 s1i). Cell Rep (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4l
赛默飞世尔F4/80抗体(eBioscience, 45-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 4l). Sci Adv (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). MBio (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛默飞世尔F4/80抗体(eBiosciences, 14-4801-82))被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). Nat Microbiol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1g). elife (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2j
赛默飞世尔F4/80抗体(eBioscience, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Sci Adv (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 11b
赛默飞世尔F4/80抗体(Invitrogen, 14480182)被用于被用于免疫组化在小鼠样本上 (图 11b). J Clin Invest (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Clin Invest (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 e3b
赛默飞世尔F4/80抗体(Invitrogen, 47-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3b). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:10; 图 5h
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 5h). Sci Adv (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
  • 流式细胞仪; 小鼠; 1:200; 图 4b
赛默飞世尔F4/80抗体(Thermo Fisher, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a) 和 被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). J Clin Invest (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300; 图 e5a, e5b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 e5a, e5b). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s6d
赛默飞世尔F4/80抗体(Invitrogen, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. elife (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Carcinogenesis (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Oncoimmunology (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3g
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Glia (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
赛默飞世尔F4/80抗体(eBioscience, 12-4801-80)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5r
赛默飞世尔F4/80抗体(eBioscience, 47-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 5r). Cell Rep (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s3e
赛默飞世尔F4/80抗体(eBioscience, 11-4801-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3e). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Blood (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 ev2c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 ev2c). EMBO J (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 4c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4c). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:1000; 图 1e
赛默飞世尔F4/80抗体(eBioscience, 14-4801-82)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1e). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔F4/80抗体(eBioscience, 25-4801)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Neuroinflammation (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔F4/80抗体(ebioscience, 25-48-1)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Mol Cancer Res (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔F4/80抗体(生活技术, MF48020)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:600; 图 1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:600 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 5b
  • 流式细胞仪; 小鼠; 1:10; 图 5c
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 5b) 和 被用于流式细胞仪在小鼠样本上浓度为1:10 (图 5c). Endocrinology (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Infect Immun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 1h
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1h). J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 5a
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5a). Front Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 4d
赛默飞世尔F4/80抗体(Thermo Fisher, 12-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4d). Endocrinology (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 3h
赛默飞世尔F4/80抗体(eBiosciences, 14-4801-81)被用于被用于免疫组化在小鼠样本上 (图 3h). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔F4/80抗体(eBiosciences, 45-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Leukemia (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔F4/80抗体(eBiosciences, 11-4801-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Diabetologia (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s4a
赛默飞世尔F4/80抗体(eBiosciences, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4a). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Front Cell Infect Microbiol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 s3a
赛默飞世尔F4/80抗体(eBiosciences, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3a). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔F4/80抗体(ThermoFisher Scientific, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Science (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Science (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 10s3a
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 47-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 10s3a). elife (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 e3a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 e3a). Nature (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2h
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2h). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). Sci Rep (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300; 图 5f
赛默飞世尔F4/80抗体(eBioscience, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 5f). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 1b
赛默飞世尔F4/80抗体(Thermo Fisher, MF48005)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1b). J Neuroinflammation (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 5:200; 图 6a
  • 免疫细胞化学; 小鼠; 5:200; 图 8a
赛默飞世尔F4/80抗体(分子探针, MF48020)被用于被用于流式细胞仪在小鼠样本上浓度为5:200 (图 6a) 和 被用于免疫细胞化学在小鼠样本上浓度为5:200 (图 8a). J Biol Chem (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 s3c
赛默飞世尔F4/80抗体(eBioscience, 14-4801-82)被用于被用于免疫组化在小鼠样本上 (图 s3c). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). PLoS ONE (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 6d
赛默飞世尔F4/80抗体(Invitrogen, MF48000)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d). J Biol Chem (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔F4/80抗体(Affymetrix eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Front Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 5b
赛默飞世尔F4/80抗体(生活技术, MF48020)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5b). Cell Death Dis (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
赛默飞世尔F4/80抗体(eBiosciences, 12-4801-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Sci Rep (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4j
赛默飞世尔F4/80抗体(eBiosciences, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 4j). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5b
赛默飞世尔F4/80抗体(eBioscience, 12-4801)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:150; 图 6g
赛默飞世尔F4/80抗体(eBioscience, 47-4801)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 6g). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 5c
  • 免疫组化; 小鼠; 1:100; 图 5a
赛默飞世尔F4/80抗体(Invitrogen, MF48005)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5c) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
赛默飞世尔F4/80抗体(生活技术, MF48000)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Oncoimmunology (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). JCI Insight (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Biol Chem (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4
赛默飞世尔F4/80抗体(Thermo Sci, MF48000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛默飞世尔F4/80抗体(Thermo Fischer Scientific, PA5-32399)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Oncotarget (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Development (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s10a
赛默飞世尔F4/80抗体(eBioscience, 17-4801)被用于被用于流式细胞仪在小鼠样本上 (图 s10a). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Prostate (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 1d
赛默飞世尔F4/80抗体(eBioscience, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1d). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:200; 图 4a
赛默飞世尔F4/80抗体(Invitrogen, MF48020)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
赛默飞世尔F4/80抗体(eBioscience, 14-4801-81)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 1a
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:2000; 图 st1
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 st1). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 S10E
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 S10E). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
  • 流式细胞仪; 小鼠; 1:400; 图 1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b) 和 被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1a). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 47-4801-50)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 5f
赛默飞世尔F4/80抗体(ThermoFisher Scientific, MF48000)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Autophagy (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔F4/80抗体(ebioscience, 45-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Front Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4iv
赛默飞世尔F4/80抗体(CALTAG, MF48000)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4iv). Front Physiol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Diabetes Res (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1h
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1h). J Leukoc Biol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 st2
赛默飞世尔F4/80抗体(Invitrogen, MF48020)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, 17-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2c
赛默飞世尔F4/80抗体(Invitrogen, MF480)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 2d
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于免疫组化在小鼠样本上 (图 2d). Cancer Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔F4/80抗体(生活技术, MF48021)被用于被用于流式细胞仪在小鼠样本上 (表 1). Methods (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6E
赛默飞世尔F4/80抗体(eBiosciences, 45-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 6E). Oncoimmunology (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 s12b
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, MA516630)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s12b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 大鼠; 图 6d
赛默飞世尔F4/80抗体(AbCam Inc, MA5-16363)被用于被用于免疫组化在大鼠样本上 (图 6d). Br J Pharmacol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 表 1
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 3k
赛默飞世尔F4/80抗体(eBiosciences, 14-4801-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3k). J Mol Med (Berl) (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Leukoc Biol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6b
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6b). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Infect Immun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1A
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1A). Oncoimmunology (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5i
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5i). Am J Pathol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔F4/80抗体(ebioscience, 17-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS Comput Biol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 s6b
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, MF48000,)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6b). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBioscience, 12-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Int J Mol Sci (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5d
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5d). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s3
赛默飞世尔F4/80抗体(eBioscience, 48-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔F4/80抗体(生活技术, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Theranostics (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 s7a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s7a). Nat Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 5 ug/ml; 图 2b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4d
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4d). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 st2
赛默飞世尔F4/80抗体(eBioscience, 45-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Atherosclerosis (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 17-4801-80)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔F4/80抗体(eBiosciences, 11-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔F4/80抗体(生活技术, MF48020)被用于被用于免疫组化在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cancer Res (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 s1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s1a). Nat Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:20; 图 1
赛默飞世尔F4/80抗体(eBioscience, 53-4801)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 1). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔F4/80抗体(eBioscience, 13-4801)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:400; 图 3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
赛默飞世尔F4/80抗体(Thermo Scientific, MA5-16363)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Oncogene (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s5
赛默飞世尔F4/80抗体(ebioscience, 12-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3j
赛默飞世尔F4/80抗体(eBioscience, 12-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 3j). Oncoimmunology (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔F4/80抗体(eBioscience, 12-4801)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cell Death Dis (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBiosciences, 48-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Lipid Res (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, 14-4801-82)被用于被用于免疫组化在小鼠样本上 (图 6). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔F4/80抗体(eBioscence, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Acta Neuropathol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(eBioscience, 15-4801)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int J Mol Med (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b) 和 被用于流式细胞仪在小鼠样本上. Infect Immun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s21
赛默飞世尔F4/80抗体(eBioscience, 53-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s21). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Microbes Infect (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Dis Model Mech (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔F4/80抗体(Caltag, MF48020)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 5 ug/ml; 图 4
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为5 ug/ml (图 4). Endocrinology (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, 48-4801)被用于被用于流式细胞仪在小鼠样本上 (图 2). Dis Model Mech (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔F4/80抗体(eBioscience, 11-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:200; 图 1d
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 S2d
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 S2d). Nat Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3h
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3h). Nat Med (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s11
赛默飞世尔F4/80抗体(Caltag Laboratories, RM2920)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s11). Science (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3C
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3C). J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscence, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). EMBO Mol Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, MF48005)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s6
赛默飞世尔F4/80抗体(eBiosciences, 17-4801-82)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:150; 图 s5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s5). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Metab (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔F4/80抗体(Invitrogen, MF-48004)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Oncogene (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100-1:200; 图 5
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫组化在小鼠样本上浓度为1:100-1:200 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s5). Nature (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上 (图 1). elife (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔F4/80抗体(eBioscience, 13-4801-85)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Mediators Inflamm (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nat Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(生活技术, MF48020)被用于被用于流式细胞仪在小鼠样本上 (图 4). Am J Pathol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Sci Rep (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:1000; 图 3c, 3d
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3c, 3d). Endocrinology (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1a
赛默飞世尔F4/80抗体(BD, 17-4801)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1a). Cell Physiol Biochem (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Cancer Discov (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔F4/80抗体(eBiosciences, clone:BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Science (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, MF48020)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 7). Cell Res (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, 48-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Am J Respir Cell Mol Biol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Mol Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBioscience, # 45-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 4). Front Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 6
赛默飞世尔F4/80抗体(eBioscience, 45-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔F4/80抗体(eBiosciences, 13-4801)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s3
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, 17-4801)被用于被用于流式细胞仪在小鼠样本上 (图 5). Int J Obes (Lond) (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, 17-4801)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 表 5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在人类样本上 (表 5). Gastroenterology (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:50; 图 1
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Sci Transl Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, MF48004)被用于被用于流式细胞仪在小鼠样本上. MAbs (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nat Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 4
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4). Am J Physiol Endocrinol Metab (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Infect Immun (2015) ncbi
大鼠 单克隆(BM8)
  • 其他; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, 13-4801-85)被用于被用于其他在小鼠样本上 (图 6). Autophagy (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:500; 图 6c
赛默飞世尔F4/80抗体(eBioscience, 14-4801-82)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c). Am J Physiol Endocrinol Metab (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Immunother Cancer (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔F4/80抗体(ebioscince, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cancer Immunol Res (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于流式细胞仪在小鼠样本上 (图 3). Immunology (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Caltag Laboratories, MF48020)被用于被用于流式细胞仪在小鼠样本上 (图 2). Shock (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:15
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化在小鼠样本上浓度为1:15. Carcinogenesis (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Leukoc Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Am J Respir Cell Mol Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 1:200; 图 s4
赛默飞世尔F4/80抗体(eBioscience, 25-4801)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s4). Nat Cell Biol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Am Soc Nephrol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Mol Cell Biol (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 1:100
赛默飞世尔F4/80抗体(THERMO, MA1-91124)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:66
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:66. Clin Vaccine Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300
赛默飞世尔F4/80抗体(eBioscience, 11-4801-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, MF48005)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔F4/80抗体(invitrogen, MF48005)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Cell (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Ebioscience, 17-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上. Kidney Int (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 流式细胞仪; 小鼠; 1:20
赛默飞世尔F4/80抗体(eBioscience, 48-4801-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于流式细胞仪在小鼠样本上浓度为1:20. Stem Cells (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上. Mucosal Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, B-M8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Obesity (Silver Spring) (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5b). PLoS ONE (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:50
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫组化在小鼠样本上浓度为1:50. FASEB J (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:250
赛默飞世尔F4/80抗体(Invitrogen, MF48004-3)被用于被用于免疫组化在小鼠样本上浓度为1:250. Cancer Res (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔F4/80抗体(eBioscience, clone: BM8)被用于被用于免疫组化在小鼠样本上浓度为1:100. Hepatol Res (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫细胞化学在小鼠样本上. Nat Protoc (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上. Hepatology (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠; 1:50
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫组化在小鼠样本上浓度为1:50. J Assoc Res Otolaryngol (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 12-4801)被用于被用于流式细胞仪在小鼠样本上. Endocrinology (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 7
赛默飞世尔F4/80抗体(Invitrogen, MF48005)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7). Lab Invest (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BMP)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, clone BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(Caltag, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nat Immunol (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Arthritis Res Ther (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Caltag, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2012) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Arthritis Res Ther (2012) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:25
赛默飞世尔F4/80抗体(eBioscience, 14-4801-81)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25. Biochim Biophys Acta (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2011) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Caltag, MF48004)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunogenetics (2011) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:50; 图 1
赛默飞世尔F4/80抗体(CALTAG, MF48020)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). PLoS ONE (2011) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, C1:A3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, C1:A3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(Caltag, MF48004)被用于被用于流式细胞仪在小鼠样本上 (图 5). Lipids (2011) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类
赛默飞世尔F4/80抗体(Caltag, MF48005)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Ebioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). PPAR Res (2010) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔F4/80抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上 (表 1). Free Radic Res (2010) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔F4/80抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上 (表 1). Free Radic Res (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioScience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). BMC Immunol (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Caltag, MF48004)被用于被用于流式细胞仪在小鼠样本上 (图 1). Reprod Biol (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2010) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上. Bone Marrow Transplant (2010) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上. Bone Marrow Transplant (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2009) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Caltag, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Pathol (2009) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Caltag, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Pathol (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔F4/80抗体(Caltag, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 8). Cell Immunol (2009) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag Laboratories, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔F4/80抗体(Caltag, MF48004)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag-Invitrogen, MF48028)被用于被用于流式细胞仪在小鼠样本上. Nat Protoc (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag Laboratories, MF48005)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(CALTAG实验室, Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2008) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Nat Immunol (2008) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Caltag, C1:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Lett (2008) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Caltag, C1:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Lett (2008) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Physiol Genomics (2007) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag Laboratories, MF48005)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上. Parasite Immunol (2007) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上. Nature (2007) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, MF48005)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Caltag, CI, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Shock (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2007) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔F4/80抗体(Caltag, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Exp Dermatol (2006) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Cell Physiol (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2006) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:100; 图 1
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 1). J Virol (2005) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上 (图 3). Shock (2005) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 5). Infect Immun (2005) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(Caltag Laboratories, CI:A3?C1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Am J Respir Cell Mol Biol (2005) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 4 ug/ml; 图 2
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上浓度为4 ug/ml (图 2). Cytometry A (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(Caltag, CI: A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI-A3-1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). Eur J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2003) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Gen Virol (2003) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). Eur J Immunol (2003) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2002) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔F4/80抗体(Caltag Laboratories, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2001) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上. J Nutr (2001) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(CalTag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 9
赛默飞世尔F4/80抗体(noco, noca)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9). Cell Tissue Res (1986) ncbi
BioLegend
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 s2f
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2f). Commun Biol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Sci Adv (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Front Immunol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendF4/80抗体(BioLegend, 123115)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Nat Chem Biol (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:170; 图 s1g
BioLegendF4/80抗体(BioLegend, 123101)被用于被用于免疫组化在小鼠样本上浓度为1:170 (图 s1g). Front Immunol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4e, s6a
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 s4e, s6a). Nat Commun (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Acta Neuropathol Commun (2020) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, BM8)被用于. Science (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). Sci Adv (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2c
BioLegendF4/80抗体(BioLegend, 123019)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2c). Sci Adv (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
BioLegendF4/80抗体(BioLegend, 123149)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s6c
BioLegendF4/80抗体(Biolegend, 123122)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s6c). Nat Metab (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2s2a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2s2a). elife (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 ex3d
BioLegendF4/80抗体(BioLegend, 123109)被用于被用于流式细胞仪在小鼠样本上 (图 ex3d). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendF4/80抗体(BioLegend, 123143)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2i
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 s2i). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Aging Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1k
BioLegendF4/80抗体(Biolegend, 123107)被用于被用于流式细胞仪在小鼠样本上 (图 s1k). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 s12
BioLegendF4/80抗体(BioLegend, 123118)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 s12). Science (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegendF4/80抗体(BioLegend, 123124)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 1:200; 图 11a
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 11a). Nat Commun (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 2a). EMBO J (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫印迹; 小鼠; 1:200; 图 s17a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s17a). Science (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:700; 图 ex2c
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 ex2c). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 ex2a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 ex2a). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 5c
BioLegendF4/80抗体(Biolegend, 123120)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5c). Nat Cell Biol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2d
BioLegendF4/80抗体(Biolegend, 123127)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 4a, 5c, 6b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a, 5c, 6b). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). JCI Insight (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3d
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s8
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 1d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1d). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 6a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6a). J Cell Biol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cancer Immunol Immunother (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nature (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s4d
BioLegendF4/80抗体(BioLegend, 123115)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4d). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 s4
BioLegendF4/80抗体(Biolegend, 123107)被用于被用于免疫组化在小鼠样本上 (图 s4). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 s4
BioLegendF4/80抗体(Biolegend, 123115)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 s4). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s13a
BioLegendF4/80抗体(BioLegend, 123102)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s13a). Science (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). EMBO J (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 s4n
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4n). Circulation (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cancer Res (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 图 s1a
BioLegendF4/80抗体(Biolegend, 123118)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Neurosci (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:1000; 图 4a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 4a). Circulation (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). Sci Rep (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). EBioMedicine (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3g
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Nat Med (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s9b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s9b). Science (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1s1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1s1a). elife (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncoimmunology (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Eur J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, 123110)被用于被用于流式细胞仪在小鼠样本上. Nature (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 s1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1a). Exp Mol Med (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s11
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s11). Oncoimmunology (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300; 图 s3a
BioLegendF4/80抗体(BioLegend, 123131)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3a). PLoS Biol (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4d
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4d). Oncotarget (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 2.5 mg/ml; 图 s5b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2.5 mg/ml (图 s5b). J Cell Biol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cell Metab (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 8c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 8c). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:500; 图 s4a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s4a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 4a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4a). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(bioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2j
BioLegendF4/80抗体(BioLegend, 123102)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2j). Food Chem Toxicol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 6c
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6c). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Oncogene (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s5d
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5d). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendF4/80抗体(BioLegend, 123107)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 7d). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2d
BioLegendF4/80抗体(BioLegend, 123106)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
BioLegendF4/80抗体(BioLegend, 123110)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). J Biol Chem (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 其他; 小鼠; 图 5l
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于其他在小鼠样本上 (图 5l). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Ther Methods Clin Dev (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 4a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4a). FASEB J (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s6g
BioLegendF4/80抗体(BD Biosciences, 123128)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6g). Nat Cell Biol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cancer Res (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 st1
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s1
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell Mol Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 s2d
BioLegendF4/80抗体(BioLegend, 123102)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2d). Nature (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s8
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s8). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nat Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 4h
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 4h). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2j
BioLegendF4/80抗体(Biolegend, 123119)被用于被用于流式细胞仪在小鼠样本上 (图 2j). EMBO Rep (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Biol Chem (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s6
BioLegendF4/80抗体(BioLegend, 123141)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Mol Cell (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). Immunology (2017) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123128)被用于. Oncoimmunology (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). JCI Insight (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendF4/80抗体(Biolegend, 123120)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Methods Mol Biol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d) 和 被用于流式细胞仪在小鼠样本上. Am J Physiol Renal Physiol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:80; 图 3b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 3b). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:60; 图 5c
BioLegendF4/80抗体(Biolegend, 123133)被用于被用于流式细胞仪在小鼠样本上浓度为1:60 (图 5c). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5c). EMBO Mol Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300; 图 s3c
BioLegendF4/80抗体(BioLegend, 123109)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3c). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cancer Res (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 S10E
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 S10E). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Virol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 s3b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s3b). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5d
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Mol Ther (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Inflammation (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, 123128)被用于被用于流式细胞仪在小鼠样本上. Cell (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s12b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s12b). Science (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendF4/80抗体(Biolegend, 123109)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nanomedicine (Lond) (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 1:400
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在人类样本上浓度为1:400. Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Oncogene (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 3
BioLegendF4/80抗体(Biolegend, 123118)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(biolegend, 12310)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Antimicrob Agents Chemother (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c) 和 被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Nat Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s6b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Nat Med (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 2
BioLegendF4/80抗体(Biolegend, 123105)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
BioLegendF4/80抗体(BioLegend, 123119)被用于被用于流式细胞仪在小鼠样本上 (图 2). Am J Transl Res (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 图 8
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在人类样本上 (图 8). Cell Death Dis (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, 123115)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
BioLegendF4/80抗体(Biolegend/Ozyme, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123122)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100; 图 1
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4j
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4j). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s3d
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3d). Nat Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2f
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Science (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2b, 1d
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2b, 1d). Science (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Innate Immun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:50; 图 1
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). EMBO Mol Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:1000; 图 8b
BioLegendF4/80抗体(Biolegend, 123130)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 8b). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Thorac Oncol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Crit Care Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Toxicol Sci (2016) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123117)被用于. PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s6
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
BioLegendF4/80抗体(biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2
BioLegendF4/80抗体(BioLegend, 123127)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123107)被用于. Sci Rep (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Mucosal Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s11
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s11). J Clin Invest (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 2f
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2f). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123110)被用于. PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:500; 图 s1
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s1). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
BioLegendF4/80抗体(biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Immunity (2015) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, 123113)被用于. Leukemia (2016) ncbi
大鼠 单克隆(BM8)
  • 其他; 小鼠; 图 s4
BioLegendF4/80抗体(Biolegend, 123120)被用于被用于其他在小鼠样本上 (图 s4). Cell Death Differ (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(BioLegend, 123121)被用于被用于流式细胞仪在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100
BioLegendF4/80抗体(BioLegend, 123102)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Orthop Res (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s2
BioLegendF4/80抗体(Biolegend, 123137)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 8
BioLegendF4/80抗体(BioLegend, 123109)被用于被用于流式细胞仪在小鼠样本上 (图 8). Oncoimmunology (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nature (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, 123120)被用于. EMBO Mol Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:500; 图 4
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 4). MBio (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 4
BioLegendF4/80抗体(BioLegend, 123127)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s3
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s4). PLoS Pathog (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2c). EMBO Mol Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Am J Physiol Endocrinol Metab (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 2
BioLegendF4/80抗体(Biolegend, 123109)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Biol Reprod (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 流式细胞仪; 小鼠; 图 6
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于流式细胞仪在小鼠样本上 (图 6). PLoS Pathog (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Brain (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5). AAPS J (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). Mol Pharmacol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Methods Mol Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). Glia (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 3,4,s2
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3,4,s2). PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123115)被用于. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, BM8)被用于. J Exp Med (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS Negl Trop Dis (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Cancer Discov (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠
BioLegendF4/80抗体(Biolegend, 123120)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Diabetes (2014) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 s5b, s5c
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 s5b, s5c). Nat Commun (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 2e
伯乐(Bio-Rad)公司F4/80抗体(BioRad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). elife (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, Cl:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). J Immunother Cancer (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Cell Mol Gastroenterol Hepatol (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2f
伯乐(Bio-Rad)公司F4/80抗体(BioRad, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2f). elife (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s1b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1b). Cell Death Differ (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:5000; 图 1d
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 1d). elife (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 5s1c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5s1c). elife (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:50; 图 3h
伯乐(Bio-Rad)公司F4/80抗体(BIORAD, A3-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3h). Front Immunol (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a, s2b
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a, s2b). J Pathol (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s2a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS ONE (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 4d
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497RT)被用于被用于免疫组化在小鼠样本上 (图 4d). Sci Rep (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3c). J Clin Invest (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). PLoS ONE (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(BioRad, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5a). Acta Med Okayama (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7d
伯乐(Bio-Rad)公司F4/80抗体(Bio-rad, MCA497R)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7d). EMBO J (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:2000; 图 6a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, CI:A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:25; 图 5f
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 5f). Science (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Int J Obes (Lond) (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497RT)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). J Clin Invest (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 7
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). Sci Rep (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4d
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). Sci Rep (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 s3d
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, A3-1)被用于被用于免疫组化在小鼠样本上 (图 s3d). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, Cl:A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b). J Clin Invest (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:50; 图 1a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1a). Oncotarget (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500; 图 6h
伯乐(Bio-Rad)公司F4/80抗体(BioRad, Cl:A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6h). Nat Commun (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497B)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). PLoS ONE (2017) ncbi
大鼠 单克隆(Cl:A3-1)
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, Cl:A3-1)被用于. Cell (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5d
伯乐(Bio-Rad)公司F4/80抗体(Bio Rad, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5d). Toxicol Appl Pharmacol (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3d
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3d). Sci Rep (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1d
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 1d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 s1a
  • 免疫印迹; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). Sci Rep (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:40; 图 7a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:40 (图 7a). JCI Insight (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 s1a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497A488T)被用于被用于免疫组化在小鼠样本上 (图 s1a). Neuron (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2c). J Clin Invest (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497RT)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cancer Res (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CIA31)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 5:200; 图 6a
  • 免疫细胞化学; 小鼠; 5:200; 图 8a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A488)被用于被用于流式细胞仪在小鼠样本上浓度为5:200 (图 6a) 和 被用于免疫细胞化学在小鼠样本上浓度为5:200 (图 8a). J Biol Chem (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2f
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f). EMBO Rep (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 0.5 ug/ml; 图 S5
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为0.5 ug/ml (图 S5). J Neuroinflammation (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 3j
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 3j). J Exp Med (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3b). Sci Rep (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 人类; 图 6B
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在人类样本上 (图 6B). Biomaterials (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 s1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497EL)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:100; 图 5c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497PBT)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5c). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 3f
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3f). EMBO J (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1j
伯乐(Bio-Rad)公司F4/80抗体(ABD Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上 (图 1j). Cell Mol Gastroenterol Hepatol (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 2q
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 2q). Cell Stem Cell (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, CI:A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). Cell (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 S7A
伯乐(Bio-Rad)公司F4/80抗体(Bio-rad, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 S7A). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:50; 图 s1g
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s1g). Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫印迹; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫印迹在小鼠样本上. Circ Res (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497A488)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). EMBO Mol Med (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497RT)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Dev Cell (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 6a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad AbD SeroTec, CL:A3:1)被用于被用于免疫组化在小鼠样本上 (图 6a). J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 3c
伯乐(Bio-Rad)公司F4/80抗体(ABDserotec, MCA497GA)被用于被用于免疫组化在小鼠样本上 (图 3c). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 s1a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 s1a). J Lipid Res (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497RT)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 6j
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 6j). J Clin Invest (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8a). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 4 ug/ml; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为4 ug/ml (图 5). J Neuroinflammation (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:10; 图 2c
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497APCT)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 2c). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1
伯乐(Bio-Rad)公司F4/80抗体(BIO-RAD, MCA497G)被用于被用于免疫组化在小鼠样本上 (图 1). Nature (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). J Cell Mol Med (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 2
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化在小鼠样本上 (图 2). Mol Cell Endocrinol (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s5e
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5e). J Clin Invest (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497A647)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 st2
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497A647)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4
伯乐(Bio-Rad)公司F4/80抗体(ABD Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3c
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, MCA497R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3c). Glia (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 8
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Biomed Res Int (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Am J Pathol (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Kidney Int (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, Cl:A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Blood (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 2c
伯乐(Bio-Rad)公司F4/80抗体(ABD Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上 (图 2c). J Biol Chem (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s3b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A647)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell Death Dis (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA4978)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. elife (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 s6
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, C1A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6). Science (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 7
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7). Biomed Res Int (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s3
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5a). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). Theranostics (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 人类; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化在人类样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:200; 图 s3
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A647)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3). Oncoimmunology (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Cardiovasc Diabetol (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 3
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 3). Oncogene (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 2i
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497DB)被用于被用于流式细胞仪在小鼠样本上 (图 2i). Oncoimmunology (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5). Breast Cancer Res (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497B)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4). J Lipid Res (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497FA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Development (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Diabetol Metab Syndr (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫细胞化学; 小鼠; 1:150
伯乐(Bio-Rad)公司F4/80抗体(AbD Secrotec, MCA497A488)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150. Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
伯乐(Bio-Rad)公司F4/80抗体(SEROTEC, CI:A3-1)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 7
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 7). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 2
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497B)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Oncogene (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:50; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497A488)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). Mol Med Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 s4
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化在小鼠样本上 (图 1). J Biol Chem (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Biorad, mca497GA)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Arterioscler Thromb Vasc Biol (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2). Oncotarget (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Sci Rep (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 7a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497APCT)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 7a). Acta Pharmacol Sin (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Mol Med Rep (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7c
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7c). PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497BB)被用于被用于免疫组化-石蜡切片在小鼠样本上. Angiogenesis (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4). Mol Cancer (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD, MCA497A64)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 人类; 1:50; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, MCA497GA)被用于被用于免疫组化在人类样本上浓度为1:50 (图 5). Mol Neurodegener (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 5
  • 免疫组化; 小鼠; 1:500; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500; 图 1
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). J Neuroinflammation (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A488)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:350; 图 1g
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:350 (图 1g). PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4). Oncotarget (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, CI:A3.1)被用于被用于流式细胞仪在小鼠样本上. Immunity (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s1b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Mol Cell Cardiol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:400
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Neoplasia (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec., MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497RT)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Eur J Pharm Biopharm (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497RT)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). J Biol Chem (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497B)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4). J Neuroinflammation (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 大鼠; 图 6
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6). EMBO Mol Med (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:10
伯乐(Bio-Rad)公司F4/80抗体(Serotec/Biorad, MCA497FT)被用于被用于流式细胞仪在小鼠样本上浓度为1:10. PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
  • 流式细胞仪; 小鼠; 图 2d
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497RT)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b) 和 被用于流式细胞仪在小鼠样本上 (图 2d). PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 人类; 1:50
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Pathol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 9e
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 9e). Nat Commun (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4). Biol Pharm Bull (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:80; 图 s3a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotech, MCA497G)被用于被用于免疫组化在小鼠样本上浓度为1:80 (图 s3a). Nat Commun (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s8
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec,, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s8). Reprod Sci (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:30; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:30 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 表 1
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 1). Methods Mol Biol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:200. Stem Cell Res Ther (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司F4/80抗体(Serotec, Cl:A3-1)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫细胞化学; 人类; 1:100; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Abd serotec, MCA497RT)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Nat Cell Biol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 3
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 3). EMBO J (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s3
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A647)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Bone Miner Res (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497EL)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Int J Cancer (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:5; 图 3b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCAP497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5 (图 3b). J Cell Mol Med (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化在小鼠样本上 (图 1). Arthritis Rheumatol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(ABD Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s7
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7). Cell Death Dis (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 7
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Gastric Cancer (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Curr Eye Res (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Pathol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A488)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Mol Pharm (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497RT)被用于被用于免疫组化在小鼠样本上浓度为1:100. Biochem Pharmacol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, clone Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上. Pathobiology (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497B)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 人类; 1:500
伯乐(Bio-Rad)公司F4/80抗体(Serotec, clone Cl:A3-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. J Immunol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200
伯乐(Bio-Rad)公司F4/80抗体(Serotec, A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Physiol Rep (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-冰冻切片在小鼠样本上. Int J Clin Exp Pathol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Blood (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:400
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. Mol Ther (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec-BioRad, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:500. Lab Invest (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫印迹; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(Serotec, mcA497R)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad Laboratories, MCA497PE)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497A488)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 人类
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497A647)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Biochim Biophys Acta (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Lab Invest (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 4
伯乐(Bio-Rad)公司F4/80抗体(AbD, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Gastroenterology (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:8000; 图 3
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:8000 (图 3). PLoS ONE (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, Cl:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Thyroid (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100 or 1:500
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 or 1:500. J Am Heart Assoc (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1,000
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Acta Histochem Cytochem (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 表 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497F)被用于被用于流式细胞仪在小鼠样本上 (表 1). PLoS ONE (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Cell Transplant (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫细胞化学; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫细胞化学在小鼠样本上. J Am Heart Assoc (2012) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 10 ug/ml
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为10 ug/ml. FASEB J (2012) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s2m
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s2m). Mol Metab (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Front Immunol (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1b). Nat Commun (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4b). Theranostics (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 人类; 图 s1a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1a). Cell (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
  • 流式细胞仪; 小鼠; 图 s2e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f) 和 被用于流式细胞仪在小鼠样本上 (图 s2e). Cell (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 10 ug/ml; 图 5s3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为10 ug/ml (图 5s3). elife (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5e). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). J Clin Invest (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 1c, 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1c, 3a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s3h
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3h). Cell (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). Nat Commun (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Microbiol (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 s2e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s2e). Breast Cancer Res (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫印迹在小鼠样本上 (图 1a). Dis Model Mech (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). J Clin Invest (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1d). Front Immunol (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). J Biol Chem (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 1b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, 6640)被用于被用于免疫组化在小鼠样本上 (图 1b). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫细胞化学; 小鼠; 图 6k
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫细胞化学在小鼠样本上 (图 6k). Arterioscler Thromb Vasc Biol (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1d). Development (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4h
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4h). Am J Pathol (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:400; 图 s6f
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s6f). Nat Cell Biol (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 图 6i
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在人类样本上 (图 6i). J Biol Chem (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 10 ug/ml; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10 ug/ml (图 4a). Nat Med (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 7
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Mol Pain (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 st7
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 st7). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Int J Legal Med (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 5g
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5g). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, AB111101)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s3). Parasitol Res (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 图 s5a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5e). Nat Commun (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3c). FASEB J (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 1g
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 1g). Nature (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 st2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab105156)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:50; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam,, AB60343)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 6a). J Pathol (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640-200)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3a). J Clin Invest (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 9
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 9). PLoS ONE (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab 6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Arthritis Res Ther (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Am J Pathol (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司F4/80抗体(abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6). Oncoimmunology (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司F4/80抗体(AbD Serotec, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Br J Pharmacol (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(abcam, ab6640)被用于被用于免疫组化在人类样本上 (图 3). J Hematol Oncol (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Clin Exp Nephrol (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2a). Nature (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司F4/80抗体(AbCam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). J Lipid Res (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Science (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s5
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s5). Sci Rep (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Gastroenterology (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, 6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Cell Stem Cell (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1b). J Forensic Leg Med (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s5
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, 6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5). Cardiovasc Res (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 3.4 ug/ml; 图 4
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为3.4 ug/ml (图 4). Endocrinology (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1). Sci Rep (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). ScientificWorldJournal (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:500; 图 s6
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6). Nat Commun (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3b). Basic Res Cardiol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 8a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(ABCAM, AB6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3f
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, AB6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3f). BMC Infect Dis (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3f
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, AB6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3f). Cancer Prev Res (Phila) (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 s11i
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s11i). Nat Med (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 s4
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s4). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab16911)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 3). J Cell Mol Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, BM8)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nutrients (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 10 ug/ml
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Clone CI: A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10 ug/ml. Clin Exp Metastasis (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上. J Virol (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 3). Cancer Biol Ther (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Chem Biol Interact (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). Biol Reprod (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Matrix Biol (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司F4/80抗体(AbD Serotec, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 6a). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 7
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 7). Autophagy (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 表 1
艾博抗(上海)贸易有限公司F4/80抗体(AbCam, ab6640)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (表 1). Brain Behav Immun (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, 6640)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫细胞化学在大鼠样本上. Sci Rep (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. J Pharmacol Sci (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上. J Biol Chem (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, A3-1)被用于被用于免疫组化在人类样本上浓度为1:200. Gut (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在人类样本上. Gastroenterology (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Stem Cells (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:250
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 和 被用于免疫组化在小鼠样本上浓度为1:250. Proc Natl Acad Sci U S A (2013) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, AB6640)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Mol Cell Endocrinol (2013) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫组化在小鼠样本上. J Bone Miner Res (2013) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2012) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 1:50
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Immunity (2012) ncbi
圣克鲁斯生物技术
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 9e
圣克鲁斯生物技术F4/80抗体(Santa Cruz Biotechnolog, sc-52664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 9e). elife (2019) ncbi
大鼠 单克隆(A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
圣克鲁斯生物技术F4/80抗体(Santa, sc-59171)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Mol Cancer Res (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
圣克鲁斯生物技术F4/80抗体(Santa Cruz, sc-52664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(A3-1)
  • 免疫组化; 人类; 图 3
圣克鲁斯生物技术F4/80抗体(Santa Cruz Biotechnology, sc-59171)被用于被用于免疫组化在人类样本上 (图 3). Sci Rep (2015) ncbi
大鼠 单克隆(6A404)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术F4/80抗体(Santa Cruz Biotechnology, SC-71087)被用于被用于免疫组化-石蜡切片在小鼠样本上. Placenta (2015) ncbi
大鼠 单克隆(A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2
圣克鲁斯生物技术F4/80抗体(Santa Cruz, sc-59171)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Lipids Health Dis (2015) ncbi
小鼠 单克隆(C-7)
  • 免疫组化-冰冻切片; 仓鼠; 1:500; 图 4
圣克鲁斯生物技术F4/80抗体(SantaCruz, sc-377009)被用于被用于免疫组化-冰冻切片在仓鼠样本上浓度为1:500 (图 4). Biomed Res Int (2014) ncbi
大鼠 单克隆(6A545)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术F4/80抗体(Santa Cruz Biotechnology, sc-71085)被用于被用于免疫组化-冰冻切片在小鼠样本上. Cancer Sci (2014) ncbi
Novus Biologicals
大鼠 单克隆(CI-A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
Novus BiologicalsF4/80抗体(Novus Biologicals, CI-A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Front Oncol (2018) ncbi
大鼠 单克隆(CI-A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1a
Novus BiologicalsF4/80抗体(Novus biological, NB600-404G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1a). Cell Physiol Biochem (2015) ncbi
Bio X Cell
大鼠 单克隆(CI:A3-1)
  • 抑制或激活实验; 小鼠; 图 6j
Bio X CellF4/80抗体(BioXcell, CI:A3-1)被用于被用于抑制或激活实验在小鼠样本上 (图 6j). J Exp Med (2017) ncbi
GeneTex
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 人类; 1:100
GeneTexF4/80抗体(Genetex, A3-11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Exp Med (2015) ncbi
Tonbo Biosciences
大鼠 单克隆(BM8.1)
  • 流式细胞仪; 小鼠; 图 1d
Tonbo BiosciencesF4/80抗体(Tonbo Biosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1d). elife (2019) ncbi
小鼠 单克隆(BM8.1)
  • 流式细胞仪; 小鼠; 图 2a
Tonbo BiosciencesF4/80抗体(Tonbo, 20-4801)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS Pathog (2018) ncbi
小鼠 单克隆(BM8.1)
  • 流式细胞仪; 小鼠; 图 s1f
Tonbo BiosciencesF4/80抗体(Tonbo, 20-4801-U025)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). Cell (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4b
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, 70076S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4b). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 图 e5c
  • 流式细胞仪; 小鼠; 图 e5b
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, 70076)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e5c) 和 被用于流式细胞仪在小鼠样本上 (图 e5b). Nature (2019) ncbi
碧迪BD
大鼠 单克隆(T45-2342)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2a
碧迪BDF4/80抗体(BD Pharmingen, 565409)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2a). Sci Adv (2019) ncbi
单克隆(T45-2342)
  • 流式细胞仪; 小鼠; 1:100; 图 5s1d
碧迪BDF4/80抗体(BD, T45-2342)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5s1d). elife (2019) ncbi
单克隆(T45-2342)
  • 流式细胞仪; 小鼠; 图 1s1a
碧迪BDF4/80抗体(BD, 565614)被用于被用于流式细胞仪在小鼠样本上 (图 1s1a). elife (2019) ncbi
单克隆(T45-2342)
  • 流式细胞仪; 小鼠
碧迪BDF4/80抗体(BD, 565410)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2019) ncbi
文章列表
  1. Gibaldi D, Vilar Pereira G, Pereira I, Silva A, Barrios L, Ramos I, et al. CCL3/Macrophage Inflammatory Protein-1α Is Dually Involved in Parasite Persistence and Induction of a TNF- and IFNγ-Enriched Inflammatory Milieu in Trypanosoma cruzi-Induced Chronic Cardiomyopathy. Front Immunol. 2020;11:306 pubmed 出版商
  2. Wuggenig P, Kaya B, Melhem H, Ayata C, Hruz P, Sayan A, et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol. 2020;3:130 pubmed 出版商
  3. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  4. Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6:eaay9269 pubmed 出版商
  5. Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I, et al. Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne). 2020;11:30 pubmed 出版商
  6. Zhang Q, Xiang L, Zaman M, Dong W, He G, Deng G. Predominant Role of Immunoglobulin G in the Pathogenesis of Splenomegaly in Murine Lupus. Front Immunol. 2019;10:3020 pubmed 出版商
  7. Kapralov A, Yang Q, Dar H, Tyurina Y, Anthonymuthu T, Kim R, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16:278-290 pubmed 出版商
  8. Vasquez C, Mezzano V, Kessler N, Swardh F, Ernestad D, Mahoney V, et al. Connexin43 expression in bone marrow derived cells contributes to the electrophysiological properties of cardiac scar tissue. Sci Rep. 2020;10:2617 pubmed 出版商
  9. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  10. Plemel J, Stratton J, Michaels N, Rawji K, Zhang E, Sinha S, et al. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci Adv. 2020;6:eaay6324 pubmed 出版商
  11. Bálint L, Ocskay Z, Deák B, Aradi P, Jakus Z. Lymph Flow Induces the Postnatal Formation of Mature and Functional Meningeal Lymphatic Vessels. Front Immunol. 2019;10:3043 pubmed 出版商
  12. Singh K, Leu J, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, et al. African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun. 2020;11:473 pubmed 出版商
  13. Cassidy L, Young A, Young C, Soilleux E, Fielder E, Weigand B, et al. Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat Commun. 2020;11:307 pubmed 出版商
  14. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  15. Chen M, Lu P, Ma Q, Cao Y, Chen N, Li W, et al. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Sci Adv. 2020;6:eaax9605 pubmed 出版商
  16. Khorooshi R, Marczynska J, Dieu R, Wais V, Hansen C, Kavan S, et al. Innate signaling within the central nervous system recruits protective neutrophils. Acta Neuropathol Commun. 2020;8:2 pubmed 出版商
  17. Campuzano A, Castro López N, Martinez A, Olszewski M, Ganguly A, Leopold Wager C, et al. CARD9 Is Required for Classical Macrophage Activation and the Induction of Protective Immunity against Pulmonary Cryptococcosis. MBio. 2020;11: pubmed 出版商
  18. Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10:218-230 pubmed 出版商
  19. Reinhard K, Rengstl B, Oehm P, Michel K, Billmeier A, Hayduk N, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 2020;367:446-453 pubmed 出版商
  20. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  21. Rowe S, Wagner N, Li L, Beam J, Wilkinson A, Radlinski L, et al. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat Microbiol. 2020;5:282-290 pubmed 出版商
  22. Park C, Kehrl J. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. elife. 2019;8: pubmed 出版商
  23. Johnston J, Angyal A, Bauer R, Hamby S, Suvarna S, Baidžajevas K, et al. Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Sci Adv. 2019;5:eaax9183 pubmed 出版商
  24. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  25. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236-250 pubmed 出版商
  26. Carpentier K, Davenport B, HAIST K, McCarthy M, May N, Robison A, et al. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. elife. 2019;8: pubmed 出版商
  27. Samir P, Kesavardhana S, Patmore D, Gingras S, Malireddi R, Karki R, et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature. 2019;573:590-594 pubmed 出版商
  28. Xu M, Xu H, Lin Y, Sun X, Wang L, Fang Z, et al. LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis. Cell. 2019;178:1478-1492.e20 pubmed 出版商
  29. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  30. Sorrentino C, Yin Z, Ciummo S, Lanuti P, Lu L, Marchisio M, et al. Targeting Interleukin(IL)-30/IL-27p28 signaling in cancer stem-like cells and host environment synergistically inhibits prostate cancer growth and improves survival. J Immunother Cancer. 2019;7:201 pubmed 出版商
  31. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  32. Jaitin D, Adlung L, Thaiss C, Weiner A, Li B, Descamps H, et al. Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell. 2019;178:686-698.e14 pubmed 出版商
  33. Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini C, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors. Cell. 2019;178:346-360.e24 pubmed 出版商
  34. Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers S, et al. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. elife. 2019;8: pubmed 出版商
  35. Ying W, Li X, Rangarajan S, Feng W, Curtis L, Sanders P. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J Clin Invest. 2019;129:2792-2806 pubmed 出版商
  36. Roberts A, Popov L, Mitchell G, Ching K, Licht D, Golovkine G, et al. Cas9+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond. elife. 2019;8: pubmed 出版商
  37. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  38. Hu X, Matsumoto K, Jung R, Weston T, Heizer P, He C, et al. GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients. elife. 2019;8: pubmed 出版商
  39. Palacio L, Goyer M, Maggiorani D, Espinosa A, Villeneuve N, Bourbonnais S, et al. Restored immune cell functions upon clearance of senescence in the irradiated splenic environment. Aging Cell. 2019;18:e12971 pubmed 出版商
  40. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  41. Merve A, Zhang X, Pomella N, Acquati S, Hoeck J, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:2 pubmed 出版商
  42. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  43. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  44. Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086 pubmed 出版商
  45. Zhang J, Supakorndej T, Krambs J, Rao M, Abou Ezzi G, Ye R, et al. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest. 2019;129:2920-2931 pubmed 出版商
  46. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta S, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129:2251-2265 pubmed 出版商
  47. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  48. Walens A, DiMarco A, Lupo R, Kroger B, Damrauer J, Alvarez J. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. elife. 2019;8: pubmed 出版商
  49. Krishna Subramanian S, Singer S, Armaka M, Banales J, Hölzer K, Schirmacher P, et al. RIPK1 and death receptor signaling drive biliary damage and early liver tumorigenesis in mice with chronic hepatobiliary injury. Cell Death Differ. 2019;: pubmed 出版商
  50. Jacome Galarza C, Percin G, Muller J, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568:541-545 pubmed 出版商
  51. Lesch B, Tothova Z, Morgan E, Liao Z, Bronson R, Ebert B, et al. Intergenerational epigenetic inheritance of cancer susceptibility in mammals. elife. 2019;8: pubmed 出版商
  52. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  53. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  54. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  55. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  56. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. elife. 2019;8: pubmed 出版商
  57. Ganeshan K, Nikkanen J, Man K, Leong Y, Sogawa Y, Maschek J, et al. Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance. Cell. 2019;: pubmed 出版商
  58. Frank A, Ebersberger S, Fink A, Lampe S, Weigert A, Schmid T, et al. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun. 2019;10:1135 pubmed 出版商
  59. Dey A, Yang W, Gegonne A, Nishiyama A, Pan R, Yagi R, et al. BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO J. 2019;38: pubmed 出版商
  60. Grootjans J, Krupka N, Hosomi S, Matute J, Hanley T, Saveljeva S, et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science. 2019;363:993-998 pubmed 出版商
  61. Mohs A, Kuttkat N, Otto T, Youssef S, de Bruin A, Trautwein C. MyD88-dependent signaling in non-parenchymal cells promotes liver carcinogenesis. Carcinogenesis. 2019;: pubmed 出版商
  62. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  63. Munro D, Wineberg Y, Tarnick J, Vink C, Li Z, Pridans C, et al. Macrophages restrict the nephrogenic field and promote endothelial connections during kidney development. elife. 2019;8: pubmed 出版商
  64. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  65. Kubli S, Bassi C, Roux C, Wakeham A, Göbl C, Zhou W, et al. AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc Natl Acad Sci U S A. 2019;116:3604-3613 pubmed 出版商
  66. Salerno F, Guislain A, Freen van Heeren J, Nicolet B, Young H, Wolkers M. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8:e1532762 pubmed 出版商
  67. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  68. He S, Kahles F, Rattik S, Nairz M, McAlpine C, Anzai A, et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature. 2019;566:115-119 pubmed 出版商
  69. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  70. Keklikoglou I, Cianciaruso C, Güç E, Squadrito M, Spring L, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21:190-202 pubmed 出版商
  71. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  72. Izumi T, Imai J, Yamamoto J, Kawana Y, Endo A, Sugawara H, et al. Vagus-macrophage-hepatocyte link promotes post-injury liver regeneration and whole-body survival through hepatic FoxM1 activation. Nat Commun. 2018;9:5300 pubmed 出版商
  73. Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin G, Shurin M, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2019;116:1361-1369 pubmed 出版商
  74. Jones G, Bain C, Fenton T, Kelly A, Brown S, Ivens A, et al. Dynamics of Colon Monocyte and Macrophage Activation During Colitis. Front Immunol. 2018;9:2764 pubmed 出版商
  75. Percin G, Eitler J, Kranz A, Fu J, Pollard J, Naumann R, et al. CSF1R regulates the dendritic cell pool size in adult mice via embryo-derived tissue-resident macrophages. Nat Commun. 2018;9:5279 pubmed 出版商
  76. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  77. Benmerzoug S, Rose S, Bounab B, Gosset D, Duneau L, Chenuet P, et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018;9:5226 pubmed 出版商
  78. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  79. Mouhadeb O, Ben Shlomo S, Cohen K, Farkash I, Gruber S, Maharshak N, et al. Impaired COMMD10-Mediated Regulation of Ly6Chi Monocyte-Driven Inflammation Disrupts Gut Barrier Function. Front Immunol. 2018;9:2623 pubmed 出版商
  80. Cortés Selva D, Elvington A, Ready A, Rajwa B, Pearce E, Randolph G, et al. Schistosoma mansoni Infection-Induced Transcriptional Changes in Hepatic Macrophage Metabolism Correlate With an Athero-Protective Phenotype. Front Immunol. 2018;9:2580 pubmed 出版商
  81. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  82. Ushio A, Arakaki R, Otsuka K, Yamada A, Tsunematsu T, Kudo Y, et al. CCL22-Producing Resident Macrophages Enhance T Cell Response in Sjögren's Syndrome. Front Immunol. 2018;9:2594 pubmed 出版商
  83. Inoue T, Ito Y, Nishizawa N, Eshima K, Kojo K, Otaka F, et al. RAMP1 in Kupffer cells is a critical regulator in immune-mediated hepatitis. PLoS ONE. 2018;13:e0200432 pubmed 出版商
  84. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  85. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  86. Chinta K, Rahman M, Saini V, Glasgow J, Reddy V, Lever J, et al. Microanatomic Distribution of Myeloid Heme Oxygenase-1 Protects against Free Radical-Mediated Immunopathology in Human Tuberculosis. Cell Rep. 2018;25:1938-1952.e5 pubmed 出版商
  87. Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, et al. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep. 2018;8:16749 pubmed 出版商
  88. Wilgenburg B, Loh L, Chen Z, Pediongco T, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9:4706 pubmed 出版商
  89. Abeln M, Albers I, Peters Bernard U, Flächsig Schulz K, Kats E, Kispert A, et al. Sialic acid is a critical fetal defense against maternal complement attack. J Clin Invest. 2019;129:422-436 pubmed 出版商
  90. Zhang C, Jiang M, Zhou H, Liu W, Wang C, Kang Z, et al. TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. J Clin Invest. 2018;128:5399-5412 pubmed 出版商
  91. Jürgensen H, Nørregaard K, Sibree M, Santoni Rugiu E, Madsen D, Wassilew K, et al. Immune regulation by fibroblasts in tissue injury depends on uPARAP-mediated uptake of collectins. J Cell Biol. 2019;218:333-349 pubmed 出版商
  92. Umezu D, Okada N, Sakoda Y, Adachi K, Ojima T, Yamaue H, et al. Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunol Immunother. 2019;68:201-211 pubmed 出版商
  93. Bhagwandin C, Ashbeck E, Whalen M, Bandola Simon J, Roche P, Szajman A, et al. The E3 ubiquitin ligase MARCH1 regulates glucose-tolerance and lipid storage in a sex-specific manner. PLoS ONE. 2018;13:e0204898 pubmed 出版商
  94. Cabron A, El Azzouzi K, Boss M, Arnold P, Schwarz J, Rosas M, et al. Structural and Functional Analyses of the Shedding Protease ADAM17 in HoxB8-Immortalized Macrophages and Dendritic-like Cells. J Immunol. 2018;201:3106-3118 pubmed 出版商
  95. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, et al. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun. 2018;9:4381 pubmed 出版商
  96. Farhat K, Bodart G, Charlet Renard C, Desmet C, Moutschen M, Beguin Y, et al. Growth Hormone (GH) Deficient Mice With GHRH Gene Ablation Are Severely Deficient in Vaccine and Immune Responses Against Streptococcus pneumoniae. Front Immunol. 2018;9:2175 pubmed 出版商
  97. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  98. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  99. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  100. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  101. Abreu Mota T, Hagen K, Cooper K, Jahrling P, Tan G, Wirblich C, et al. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun. 2018;9:4223 pubmed 出版商
  102. Bechelli J, Vergara L, Smalley C, Buzhdygan T, Bender S, Zhang W, et al. Atg5 Supports Rickettsia australis Infection in Macrophages In Vitro and In Vivo. Infect Immun. 2019;87: pubmed 出版商
  103. Peng Y. B cell responses to apoptotic cells in MFG-E8-/- mice. PLoS ONE. 2018;13:e0205172 pubmed 出版商
  104. Bahmani B, Uehara M, Jiang L, Ordikhani F, Banouni N, Ichimura T, et al. Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival. J Clin Invest. 2018;128:4770-4786 pubmed 出版商
  105. Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons. Front Microbiol. 2018;9:2148 pubmed 出版商
  106. Qiu T, Pei P, Yao X, Jiang L, Wei S, Wang Z, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018;9:946 pubmed 出版商
  107. Adam L, Lopez Gonzalez M, Björk A, Pålsson S, Poux C, Wahren Herlenius M, et al. Early Resistance of Non-virulent Mycobacterial Infection in C57BL/6 Mice Is Associated With Rapid Up-Regulation of Antimicrobial Cathelicidin Camp. Front Immunol. 2018;9:1939 pubmed 出版商
  108. Bisetto S, Whitaker Menezes D, Wilski N, Tuluc M, Curry J, Zhan T, et al. Monocarboxylate Transporter 4 (MCT4) Knockout Mice Have Attenuated 4NQO Induced Carcinogenesis; A Role for MCT4 in Driving Oral Squamous Cell Cancer. Front Oncol. 2018;8:324 pubmed 出版商
  109. Schrand B, Clark E, Levay A, Capote A, Martínez O, Brenneman R, et al. Hapten-mediated recruitment of polyclonal antibodies to tumors engenders antitumor immunity. Nat Commun. 2018;9:3348 pubmed 出版商
  110. Zhang F, Zarkada G, Han J, Li J, Dubrac A, Ola R, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361:599-603 pubmed 出版商
  111. Lin Y, Pecetta S, Steichen J, Kratochvil S, Melzi E, Arnold J, et al. One-step CRISPR/Cas9 method for the rapid generation of human antibody heavy chain knock-in mice. EMBO J. 2018;37: pubmed 出版商
  112. Bang S, Xie Y, Zhang Z, Wang Z, Xu Z, Ji R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Invest. 2018;128:3568-3582 pubmed 出版商
  113. Gisterå A, Klement M, Polyzos K, Mailer R, Duhlin A, Karlsson M, et al. LDL-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation. 2018;: pubmed 出版商
  114. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  115. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  116. Tan B, Shi X, Zhang J, Qin J, Zhang N, Ren H, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018;78:4929-4942 pubmed 出版商
  117. Kim Y, Lee M, Gu H, Kim J, Jeong S, Yeo S, et al. HIF-1α activation in myeloid cells accelerates dextran sodium sulfate-induced colitis progression in mice. Dis Model Mech. 2018;11: pubmed 出版商
  118. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  119. Quenum Zangbede F, Chauhan A, Sharma J, Mishra B. Galectin-3 in M2 Macrophages Plays a Protective Role in Resolution of Neuropathology in Brain Parasitic Infection by Regulating Neutrophil Turnover. J Neurosci. 2018;38:6737-6750 pubmed 出版商
  120. Asano K, Edamatsu M, Hatipoglu O, Inagaki J, Ono M, Ohtsuki T, et al. Host-produced ADAMTS4 Inhibits Early-Stage Tumor Growth. Acta Med Okayama. 2018;72:257-266 pubmed 出版商
  121. Viau A, Bienaime F, Lukas K, Todkar A, Knoll M, Yakulov T, et al. Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO J. 2018;37: pubmed 出版商
  122. Okunuki Y, Mukai R, Pearsall E, Klokman G, Husain D, Park D, et al. Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proc Natl Acad Sci U S A. 2018;115:E6264-E6273 pubmed 出版商
  123. Tomlinson J, Žygelytė E, Grenier J, Edwards M, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation. 2018;15:185 pubmed 出版商
  124. Napolitano A, van der Veen A, Bunyan M, Borg A, Frith D, Howell S, et al. Cysteine-Reactive Free ISG15 Generates IL-1β-Producing CD8α+ Dendritic Cells at the Site of Infection. J Immunol. 2018;201:604-614 pubmed 出版商
  125. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  126. Tsiantoulas D, Sage A, Göderle L, Ozsvar Kozma M, Murphy D, Porsch F, et al. BAFF Neutralization Aggravates Atherosclerosis. Circulation. 2018;: pubmed 出版商
  127. Oda A, Tezuka T, Ueno Y, Hosoda S, Amemiya Y, Notsu C, et al. Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep. 2018;8:8308 pubmed 出版商
  128. Chen Y, Qin X, An Q, Yi J, Feng F, Yin D, et al. Mesenchymal Stromal Cells Directly Promote Inflammation by Canonical NLRP3 and Non-canonical Caspase-11 Inflammasomes. EBioMedicine. 2018;32:31-42 pubmed 出版商
  129. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  130. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  131. Chakrabarti R, Celià Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018;360: pubmed 出版商
  132. Kyung D, Sung H, Kim Y, Kim K, Cho S, Choi J, et al. Global transcriptome analysis identifies weight regain-induced activation of adaptive immune responses in white adipose tissue of mice. Int J Obes (Lond). 2018;42:755-764 pubmed 出版商
  133. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  134. Thompson T, Jackson B, Li P, Wang J, Kim A, Huang K, et al. Tumor-derived CSF-1 induces the NKG2D ligand RAE-1δ on tumor-infiltrating macrophages. elife. 2018;7: pubmed 出版商
  135. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  136. Crosby E, Wei J, Yang X, Lei G, Wang T, Liu C, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology. 2018;7:e1421891 pubmed 出版商
  137. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  138. Takamori A, Nambu A, Sato K, Yamaguchi S, Matsuda K, Numata T, et al. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci Rep. 2018;8:6639 pubmed 出版商
  139. Gounder A, Yokoyama C, Jarjour N, Bricker T, Edelson B, Boon A. Interferon induced protein 35 exacerbates H5N1 influenza disease through the expression of IL-12p40 homodimer. PLoS Pathog. 2018;14:e1007001 pubmed 出版商
  140. Grist J, Marro B, Skinner D, Syage A, Worne C, Doty D, et al. Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment. Eur J Immunol. 2018;48:1199-1210 pubmed 出版商
  141. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  142. Chen W, Yang J, Wu Y, Li L, Li R, Chang Y, et al. IL-33/ST2 axis mediates hyperplasia of intrarenal urothelium in obstructive renal injury. Exp Mol Med. 2018;50:36 pubmed 出版商
  143. Miyasato Y, Yoshizawa T, Sato Y, Nakagawa T, Miyasato Y, Kakizoe Y, et al. Sirtuin 7 Deficiency Ameliorates Cisplatin-induced Acute Kidney Injury Through Regulation of the Inflammatory Response. Sci Rep. 2018;8:5927 pubmed 出版商
  144. Foerster F, Boegel S, Heck R, Pickert G, R ssel N, Rosigkeit S, et al. Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncoimmunology. 2018;7:e1409929 pubmed 出版商
  145. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115:E4041-E4050 pubmed 出版商
  146. Vogl T, Stratis A, Wixler V, Voller T, Thurainayagam S, Jorch S, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128:1852-1866 pubmed 出版商
  147. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  148. Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9:11209-11226 pubmed 出版商
  149. Sun H, Lagarrigue F, Gingras A, Fan Z, Ley K, Ginsberg M. Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development. J Cell Biol. 2018;217:1453-1465 pubmed 出版商
  150. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  151. Baranska A, Shawket A, Jouve M, Baratin M, Malosse C, Voluzan O, et al. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med. 2018;215:1115-1133 pubmed 出版商
  152. Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A. 2018;115:E2801-E2810 pubmed 出版商
  153. Clemente C, Rius C, Alonso Herranz L, Martín Alonso M, Pollán A, Camafeita E, et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun. 2018;9:910 pubmed 出版商
  154. Yeh C, Nojima T, Kuraoka M, Kelsoe G. Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat Commun. 2018;9:928 pubmed 出版商
  155. Huang L, Nazarova E, Tan S, Liu Y, Russell D. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215:1135-1152 pubmed 出版商
  156. Panduro M, Benoist C, Mathis D. Treg cells limit IFN-? production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2018;115:E2585-E2593 pubmed 出版商
  157. Zhu Y, Zhou J, Feng Y, Chen L, Zhang L, Yang F, et al. Control of Intestinal Inflammation, Colitis-Associated Tumorigenesis, and Macrophage Polarization by Fibrinogen-Like Protein 2. Front Immunol. 2018;9:87 pubmed 出版商
  158. Bogdan D, Falcone J, Kanjiya M, Park S, Carbonetti G, Studholme K, et al. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem. 2018;293:5295-5306 pubmed 出版商
  159. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  160. Maturu P, Wei Liang Y, Androutsopoulos V, Jiang W, Wang L, Tsatsakis A, et al. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD). Food Chem Toxicol. 2018;114:23-33 pubmed 出版商
  161. Soncin I, Sheng J, Chen Q, Foo S, Duan K, Lum J, et al. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat Commun. 2018;9:582 pubmed 出版商
  162. Endo Umeda K, Nakashima H, Umeda N, Seki S, Makishima M. Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice. Endocrinology. 2018;159:1419-1432 pubmed 出版商
  163. Chennupati V, Veiga D, Maslowski K, Andina N, Tardivel A, Yu E, et al. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation. J Clin Invest. 2018;128:1597-1614 pubmed 出版商
  164. Zhou X, Franklin R, Adler M, JACOX J, Bailis W, Shyer J, et al. Circuit Design Features of a Stable Two-Cell System. Cell. 2018;172:744-757.e17 pubmed 出版商
  165. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  166. Qing X, Chinenov Y, Redecha P, Madaio M, Roelofs J, FARBER G, et al. iRhom2 promotes lupus nephritis through TNF-? and EGFR signaling. J Clin Invest. 2018;128:1397-1412 pubmed 出版商
  167. Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies L, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37:2022-2036 pubmed 出版商
  168. Tang H, Liang Y, Anders R, Taube J, Qiu X, Mulgaonkar A, et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest. 2018;128:580-588 pubmed 出版商
  169. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  170. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  171. Steiner D, Furuya Y, Metzger D. Detrimental Influence of Alveolar Macrophages on Protective Humoral Immunity during Francisella tularensis SchuS4 Pulmonary Infection. Infect Immun. 2018;86: pubmed 出版商
  172. Jia Y, Li Z, Cai W, Xiao D, Han S, Han F, et al. SIRT1 regulates inflammation response of macrophages in sepsis mediated by long noncoding RNA. Biochim Biophys Acta Mol Basis Dis. 2018;1864:784-792 pubmed 出版商
  173. Thion M, Low D, Silvin A, Chen J, Grisel P, Schulte Schrepping J, et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell. 2018;172:500-516.e16 pubmed 出版商
  174. Pagan J, Kitaoka M, Anthony R. Engineered Sialylation of Pathogenic Antibodies In Vivo Attenuates Autoimmune Disease. Cell. 2018;172:564-577.e13 pubmed 出版商
  175. Campana L, Starkey Lewis P, Pellicoro A, Aucott R, Man J, O Duibhir E, et al. The STAT3-IL-10-IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. J Immunol. 2018;200:1169-1187 pubmed 出版商
  176. Bäcker V, Cheung F, Siveke J, Fandrey J, Winning S. Knockdown of myeloid cell hypoxia-inducible factor-1? ameliorates the acute pathology in DSS-induced colitis. PLoS ONE. 2017;12:e0190074 pubmed 出版商
  177. Rajbhandari P, Thomas B, Feng A, Hong C, Wang J, Vergnes L, et al. IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell. 2018;172:218-233.e17 pubmed 出版商
  178. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  179. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  180. Lingappan K, Maturu P, Liang Y, Jiang W, Wang L, Moorthy B, et al. β-Naphthoflavone treatment attenuates neonatal hyperoxic lung injury in wild type and Cyp1a2-knockout mice. Toxicol Appl Pharmacol. 2018;339:133-142 pubmed 出版商
  181. Schmok E, Abad Dar M, Behrends J, Erdmann H, Rückerl D, Endermann T, et al. Suppressor of Cytokine Signaling 3 in Macrophages Prevents Exacerbated Interleukin-6-Dependent Arginase-1 Activity and Early Permissiveness to Experimental Tuberculosis. Front Immunol. 2017;8:1537 pubmed 出版商
  182. Yu P, Xiong T, Tenedero C, Lebeau P, Ni R, Macdonald M, et al. Rosuvastatin Reduces Aortic Sinus and Coronary Artery Atherosclerosis in SR-B1 (Scavenger Receptor Class B Type 1)/ApoE (Apolipoprotein E) Double Knockout Mice Independently of Plasma Cholesterol Lowering. Arterioscler Thromb Vasc Biol. 2018;38:26-39 pubmed 出版商
  183. Gao Z, Daquinag A, Su F, Snyder B, Kolonin M. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development. 2018;145: pubmed 出版商
  184. Ring N, Herndler Brandstetter D, Weiskopf K, Shan L, Volkmer J, George B, et al. Anti-SIRP? antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci U S A. 2017;114:E10578-E10585 pubmed 出版商
  185. Tsai F, Homan P, Agrawal H, Misharin A, Abdala Valencia H, Haines G, et al. Bim suppresses the development of SLE by limiting myeloid inflammatory responses. J Exp Med. 2017;214:3753-3773 pubmed 出版商
  186. Kovtun A, Bergdolt S, Hägele Y, Matthes R, Lambris J, Huber Lang M, et al. Complement receptors C5aR1 and C5aR2 act differentially during the early immune response after bone fracture but are similarly involved in bone repair. Sci Rep. 2017;7:14061 pubmed 出版商
  187. Lee S, Kivimäe S, Szoka F. Clodronate Improves Survival of Transplanted Hoxb8 Myeloid Progenitors with Constitutively Active GMCSFR in Immunocompetent Mice. Mol Ther Methods Clin Dev. 2017;7:60-73 pubmed 出版商
  188. Kumar S, Nakashizuka H, Jones A, Lambert A, Zhao X, Shen M, et al. Proteolytic Degradation and Inflammation Play Critical Roles in Polypoidal Choroidal Vasculopathy. Am J Pathol. 2017;187:2841-2857 pubmed 出版商
  189. Burns K, Thomas S, Hamilton K, Young S, Cook D, Korach K. Early Endometriosis in Females Is Directed by Immune-Mediated Estrogen Receptor α and IL-6 Cross-Talk. Endocrinology. 2018;159:103-118 pubmed 出版商
  190. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci U S A. 2017;114:10737-10742 pubmed 出版商
  191. Gesteira T, Sun M, Coulson Thomas Y, Yamaguchi Y, Yeh L, Hascall V, et al. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Invest Ophthalmol Vis Sci. 2017;58:4407-4421 pubmed 出版商
  192. Dehn S, Thorp E. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J. 2018;32:254-264 pubmed 出版商
  193. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  194. Sogawa Y, Nagasu H, Iwase S, Ihoriya C, Itano S, Uchida A, et al. Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci Rep. 2017;7:8801 pubmed 出版商
  195. McDonough E, Barrett C, Parang B, Mittal M, Smith J, Bradley A, et al. MTG16 is a tumor suppressor in colitis-associated carcinoma. JCI Insight. 2017;2: pubmed 出版商
  196. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  197. Cho C, Smallwood P, Nathans J. Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation. Neuron. 2017;95:1056-1073.e5 pubmed 出版商
  198. Yanagihashi Y, Segawa K, Maeda R, Nabeshima Y, Nagata S. Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis. Proc Natl Acad Sci U S A. 2017;114:8800-8805 pubmed 出版商
  199. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  200. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  201. Nikolaidis N, Noel J, Pitstick L, Gardner J, Uehara Y, Wu H, et al. Mitogenic stimulation accelerates influenza-induced mortality by increasing susceptibility of alveolar type II cells to infection. Proc Natl Acad Sci U S A. 2017;114:E6613-E6622 pubmed 出版商
  202. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  203. Lee S, Park H, Suh Y, Yoon E, Kim J, Jang W, et al. Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc Natl Acad Sci U S A. 2017;114:E5881-E5890 pubmed 出版商
  204. Mingay M, Chaturvedi A, Bilenky M, Cao Q, Jackson L, Hui T, et al. Vitamin C-induced epigenomic remodelling in IDH1 mutant acute myeloid leukaemia. Leukemia. 2018;32:11-20 pubmed 出版商
  205. Alloatti A, Rookhuizen D, Joannas L, Carpier J, Iborra S, Magalhaes J, et al. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med. 2017;214:2231-2241 pubmed 出版商
  206. Hannibal T, Schmidt Christensen A, Nilsson J, Fransén Pettersson N, Hansen L, Holmberg D. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia. 2017;60:2033-2041 pubmed 出版商
  207. Li X, Thome S, Ma X, Amrute Nayak M, Finigan A, Kitt L, et al. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nat Commun. 2017;8:15986 pubmed 出版商
  208. Van T, Polykratis A, Straub B, Kondylis V, Papadopoulou N, Pasparakis M. Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis. J Clin Invest. 2017;127:2662-2677 pubmed 出版商
  209. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  210. Dunst J, Azzouz N, Liu X, Tsukita S, Seeberger P, Kamena F. Interaction between Plasmodium Glycosylphosphatidylinositol and the Host Protein Moesin Has No Implication in Malaria Pathology. Front Cell Infect Microbiol. 2017;7:183 pubmed 出版商
  211. Yang A, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest. 2017;127:2829-2841 pubmed 出版商
  212. Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495-499 pubmed 出版商
  213. Jinnohara T, Kanaya T, Hase K, Sakakibara S, Kato T, Tachibana N, et al. IL-22BP dictates characteristics of Peyer's patch follicle-associated epithelium for antigen uptake. J Exp Med. 2017;214:1607-1618 pubmed 出版商
  214. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  215. Ebner F, Sedlyarov V, Tasciyan S, Ivin M, Kratochvill F, Gratz N, et al. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection. J Clin Invest. 2017;127:2051-2065 pubmed 出版商
  216. Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, et al. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol. 2018;15:973-982 pubmed 出版商
  217. Minutti C, Jackson Jones L, Garcia Fojeda B, Knipper J, Sutherland T, Logan N, et al. Local amplifiers of IL-4R?-mediated macrophage activation promote repair in lung and liver. Science. 2017;356:1076-1080 pubmed 出版商
  218. Bosurgi L, Cao Y, Cabeza Cabrerizo M, Tucci A, Hughes L, Kong Y, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science. 2017;356:1072-1076 pubmed 出版商
  219. Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo T, Sun M, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med. 2017;214:1663-1678 pubmed 出版商
  220. Kwan B, Zhu E, Tzeng A, Sugito H, Eltahir A, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med. 2017;214:1679-1690 pubmed 出版商
  221. Ku A, Shaver T, Rao A, Howard J, Rodriguez C, Miao Q, et al. TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. elife. 2017;6: pubmed 出版商
  222. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-? resembles physiological blood vessel regression. Nature. 2017;545:98-102 pubmed 出版商
  223. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  224. A Gonzalez N, Quintana J, Garcia Silva S, Mazariegos M, González de la Aleja A, Nicolás Ávila J, et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J Exp Med. 2017;214:1281-1296 pubmed 出版商
  225. Chen J, Zhong M, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017;544:493-497 pubmed 出版商
  226. Deniset J, Surewaard B, Lee W, Kubes P. Splenic Ly6Ghigh mature and Ly6Gint immature neutrophils contribute to eradication of S. pneumoniae. J Exp Med. 2017;214:1333-1350 pubmed 出版商
  227. Lee H, Tian L, Bouladoux N, Davis J, Quinones M, Belkaid Y, et al. Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation. J Clin Invest. 2017;127:1905-1917 pubmed 出版商
  228. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  229. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  230. Cho H, Kim J, Jang H, Lee T, Jung M, Kim T, et al. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice. Sci Rep. 2017;7:46065 pubmed 出版商
  231. Cunin P, Penke L, Thon J, Monach P, Jones T, Chang M, et al. Megakaryocytes compensate for Kit insufficiency in murine arthritis. J Clin Invest. 2017;127:1714-1724 pubmed 出版商
  232. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  233. Thomas D, Clare S, Sowerby J, Pardo M, Juss J, Goulding D, et al. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med. 2017;214:1111-1128 pubmed 出版商
  234. Ramirez GarciaLuna J, Chan D, Samberg R, Abou Rjeili M, Wong T, Li A, et al. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice. PLoS ONE. 2017;12:e0174396 pubmed 出版商
  235. Sindhava V, Oropallo M, Moody K, Naradikian M, Higdon L, Zhou L, et al. A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. J Clin Invest. 2017;127:1651-1663 pubmed 出版商
  236. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  237. Wang X, Chen H, Tian R, Zhang Y, Drutskaya M, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091 pubmed 出版商
  238. Nagashima H, Shinoda M, Honda K, Kamio N, Watanabe M, Suzuki T, et al. CXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in Porphyromonas gingivalis-induced periodontitis in mice. Mol Pain. 2017;13:1744806916689269 pubmed 出版商
  239. Kumar A, Stoica B, Loane D, Yang M, Abulwerdi G, Khan N, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation. 2017;14:47 pubmed 出版商
  240. Horsthemke M, Bachg A, Groll K, Moyzio S, Müther B, Hemkemeyer S, et al. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. J Biol Chem. 2017;292:7258-7273 pubmed 出版商
  241. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  242. Cockrell D, Long C, Robertson S, Shannon J, Miller H, Myers L, et al. Robust growth of avirulent phase II Coxiella burnetii in bone marrow-derived murine macrophages. PLoS ONE. 2017;12:e0173528 pubmed 出版商
  243. Hui X, Zhang M, Gu P, Li K, Gao Y, Wu D, et al. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep. 2017;18:645-657 pubmed 出版商
  244. Fonseca M, Chu S, Hernandez M, Fang M, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14:48 pubmed 出版商
  245. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  246. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  247. Baranek T, Morello E, Valayer A, Aimar R, Bréa D, Henry C, et al. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol. 2017;8:123 pubmed 出版商
  248. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  249. Schumacher M, Hedl M, Abraham C, Bernard J, Lozano P, Hsieh J, et al. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis. 2017;8:e2622 pubmed 出版商
  250. Hartwig T, Montinaro A, von Karstedt S, Sevko A, Surinova S, Chakravarthy A, et al. The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Mol Cell. 2017;65:730-742.e5 pubmed 出版商
  251. Gao S, Li C, Zhu Y, Wang Y, Sui A, Zhong Y, et al. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy. Sci Rep. 2017;7:42846 pubmed 出版商
  252. Turner V, Mabbott N. Structural and functional changes to lymph nodes in ageing mice. Immunology. 2017;151:239-247 pubmed 出版商
  253. Nicolas N, Michel V, Bhushan S, Wahle E, Hayward S, Ludlow H, et al. Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep. 2017;7:42391 pubmed 出版商
  254. Huang R, Francois A, McGray A, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561 pubmed 出版商
  255. Ying W, Wollam J, Ofrecio J, Bandyopadhyay G, El Ouarrat D, Lee Y, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127:1019-1030 pubmed 出版商
  256. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  257. Butler C, Hynds R, Crowley C, Gowers K, Partington L, Hamilton N, et al. Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials. 2017;124:95-105 pubmed 出版商
  258. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  259. Zhang H, Yue Y, Sun T, Wu X, Xiong S. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Sci Rep. 2017;7:42162 pubmed 出版商
  260. Cuccarese M, Dubach J, Pfirschke C, Engblom C, Garris C, Miller M, et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun. 2017;8:14293 pubmed 出版商
  261. Leech J, Lacey K, Mulcahy M, Medina E, McLoughlin R. IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections. J Immunol. 2017;198:2352-2365 pubmed 出版商
  262. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  263. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  264. Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel S, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495-505 pubmed 出版商
  265. Vähätupa M, Aittomaki S, Martinez Cordova Z, May U, Prince S, Uusitalo Jarvinen H, et al. T-cell-expressed proprotein convertase FURIN inhibits DMBA/TPA-induced skin cancer development. Oncoimmunology. 2016;5:e1245266 pubmed 出版商
  266. Schwarz F, Landig C, Siddiqui S, Secundino I, Olson J, Varki N, et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36:751-760 pubmed 出版商
  267. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140 pubmed 出版商
  268. Halbrook C, Wen H, Ruggeri J, Takeuchi K, Zhang Y, di Magliano M, et al. Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cell Mol Gastroenterol Hepatol. 2017;3:99-118 pubmed 出版商
  269. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  270. Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, Sagar -, et al. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas. Cell. 2016;167:1264-1280.e18 pubmed 出版商
  271. Ji X, Chen Y, Ye G, Dong M, Lin K, Han J, et al. Detection of RAGE expression and its application to diabetic wound age estimation. Int J Legal Med. 2017;131:691-698 pubmed 出版商
  272. Shiba E, Izawa K, Kaitani A, Isobe M, Maehara A, Uchida K, et al. Ceramide-CD300f Binding Inhibits Lipopolysaccharide-induced Skin Inflammation. J Biol Chem. 2017;292:2924-2932 pubmed 出版商
  273. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A. 2017;114:E540-E549 pubmed 出版商
  274. Scott C, Bain C, Mowat A. Isolation and Identification of Intestinal Myeloid Cells. Methods Mol Biol. 2017;1559:223-239 pubmed 出版商
  275. Xavier S, Sahu R, Landes S, Yu J, Taylor R, Ayyadevara S, et al. Pericytes and immune cells contribute to complement activation in tubulointerstitial fibrosis. Am J Physiol Renal Physiol. 2017;312:F516-F532 pubmed 出版商
  276. Xue N, Zhou Q, Ji M, Jin J, Lai F, Chen J, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep. 2017;7:39011 pubmed 出版商
  277. Fujikura D, Ikesue M, Endo T, Chiba S, Higashi H, Uede T. Death receptor 6 contributes to autoimmunity in lupus-prone mice. Nat Commun. 2017;8:13957 pubmed 出版商
  278. Guan X, Lapak K, Hennessey R, Yu C, Shakya R, Zhang J, et al. Stromal Senescence By Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Mol Cancer Res. 2017;15:237-249 pubmed 出版商
  279. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  280. Zhang Y, Yu J, Grachtchouk V, Qin T, Lumeng C, Sartor M, et al. Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. Oncotarget. 2017;8:5761-5773 pubmed 出版商
  281. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  282. Du M, Wang X, Tan X, Li X, Huang D, Huang K, et al. Nkx2-5 Is Expressed in Atherosclerotic Plaques and Attenuates Development of Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed
  283. Lizardo K, Almonte V, Law C, Aiyyappan J, Cui M, Nagajyothi J. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection. Parasitol Res. 2017;116:711-723 pubmed 出版商
  284. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  285. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  286. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  287. Rux D, Song J, Swinehart I, Pineault K, Schlientz A, Trulik K, et al. Regionally Restricted Hox Function in Adult Bone Marrow Multipotent Mesenchymal Stem/Stromal Cells. Dev Cell. 2016;39:653-666 pubmed 出版商
  288. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  289. Tian S, Li C, Ran R, Chen S. Surfactant protein A deficiency exacerbates renal interstitial fibrosis following obstructive injury in mice. Biochim Biophys Acta Mol Basis Dis. 2017;1863:509-517 pubmed 出版商
  290. Naeem A, Tommasi C, Cole C, Brown S, Zhu Y, Way B, et al. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic d. J Allergy Clin Immunol. 2017;139:1228-1241 pubmed 出版商
  291. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  292. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  293. Cecchinato V, Bernasconi E, Speck R, Proietti M, Sauermann U, D Agostino G, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol. 2017;198:184-195 pubmed
  294. Man A, Gicheva N, Regoli M, Rowley G, De Cunto G, Wellner N, et al. CX3CR1+ Cell-Mediated Salmonella Exclusion Protects the Intestinal Mucosa during the Initial Stage of Infection. J Immunol. 2017;198:335-343 pubmed
  295. Wilson G, Hewit K, Pallas K, Cairney C, Lee K, Hansell C, et al. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland. Development. 2017;144:74-82 pubmed 出版商
  296. Langhi C, Arias N, Rajamoorthi A, Basta J, Lee R, Baldán A. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J Lipid Res. 2017;58:81-91 pubmed 出版商
  297. Lund M, Greer J, Dixit A, Alvarado R, McCauley Winter P, To J, et al. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Sci Rep. 2016;6:37789 pubmed 出版商
  298. Monnerat G, Alarcón M, Vasconcellos L, Hochman Mendez C, Brasil G, Bassani R, et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344 pubmed 出版商
  299. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  300. Kimura Y, Inoue A, Hangai S, Saijo S, Negishi H, Nishio J, et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A. 2016;113:14097-14102 pubmed
  301. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  302. Kim W, Khan S, Gvozdenovic Jeremic J, Kim Y, Dahlman J, Kim H, et al. Hippo signaling interactions with Wnt/?-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest. 2017;127:137-152 pubmed 出版商
  303. Sulek J, Robinson S, Petrossian A, Zhou S, Goliadze E, Manjili M, et al. Role of Epigenetic Modification and Immunomodulation in a Murine Prostate Cancer Model. Prostate. 2017;77:361-373 pubmed 出版商
  304. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  305. Wu X, Wu X, Ma Y, Shao F, Tan Y, Tan T, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7:13498 pubmed 出版商
  306. Takács E, Boto P, Simo E, Csuth T, Toth B, Raveh Amit H, et al. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. J Immunol. 2017;198:239-248 pubmed
  307. Henkels K, Muppani N, Gomez Cambronero J. PLD-Specific Small-Molecule Inhibitors Decrease Tumor-Associated Macrophages and Neutrophils Infiltration in Breast Tumors and Lung and Liver Metastases. PLoS ONE. 2016;11:e0166553 pubmed 出版商
  308. Sakata K, Araki K, Nakano H, Nishina T, Komazawa Sakon S, Murai S, et al. Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Sci Rep. 2016;6:37200 pubmed 出版商
  309. Barnett F, Rosenfeld M, Wood M, Kiosses W, Usui Y, Marchetti V, et al. Macrophages form functional vascular mimicry channels in vivo. Sci Rep. 2016;6:36659 pubmed 出版商
  310. Le Blon D, Guglielmetti C, Hoornaert C, Quarta A, Daans J, Dooley D, et al. Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model. J Neuroinflammation. 2016;13:288 pubmed
  311. Cousins F, Kirkwood P, Saunders P, Gibson D. Evidence for a dynamic role for mononuclear phagocytes during endometrial repair and remodelling. Sci Rep. 2016;6:36748 pubmed 出版商
  312. Brocks T, Fedorchenko O, Schliermann N, Stein A, Moll U, Seegobin S, et al. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. FASEB J. 2017;31:526-543 pubmed 出版商
  313. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  314. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. 2016;126:4626-4639 pubmed 出版商
  315. Lin J, Kumari S, Kim C, Van T, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124-128 pubmed 出版商
  316. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  317. Kirschbaum K, Sonner J, Zeller M, Deumelandt K, Bode J, Sharma R, et al. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A. 2016;113:13227-13232 pubmed
  318. Govero J, Esakky P, Scheaffer S, Fernandez E, Drury A, Platt D, et al. Zika virus infection damages the testes in mice. Nature. 2016;540:438-442 pubmed 出版商
  319. Teng O, Chen S, Hsu T, Sia S, Cole S, Valkenburg S, et al. CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity In Vivo. J Virol. 2017;91: pubmed 出版商
  320. Wang Y, Yan X, Mi S, Li Z, Wang Y, Zhu H, et al. Naoxintong attenuates Ischaemia/reperfusion Injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med. 2017;21:4-12 pubmed 出版商
  321. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  322. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  323. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  324. Di Cataldo V, Geloen A, Langlois J, Chauveau F, Thézé B, Hubert V, et al. Exercise Does Not Protect against Peripheral and Central Effects of a High Cholesterol Diet Given Ad libitum in Old ApoE-/- Mice. Front Physiol. 2016;7:453 pubmed
  325. Zhou Z, Tang Y, Jin X, Chen C, Lu Y, Liu L, et al. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NF?B Pathway Suppression. J Diabetes Res. 2016;2016:4847812 pubmed
  326. Günther C, He G, Kremer A, Murphy J, Petrie E, Amann K, et al. The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. J Clin Invest. 2016;126:4346-4360 pubmed 出版商
  327. Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin N, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096 pubmed 出版商
  328. Wright R, Souza P, Flak M, Thedchanamoorthy P, Norling L, Cooper D. Galectin-3-null mice display defective neutrophil clearance during acute inflammation. J Leukoc Biol. 2017;101:717-726 pubmed 出版商
  329. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  330. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 2016;7:13130 pubmed 出版商
  331. Yu S, Pearson A, Lim R, Rodgers D, Li S, Parker H, et al. Targeted Delivery of an Anti-inflammatory PDE4 Inhibitor to Immune Cells via an Antibody-drug Conjugate. Mol Ther. 2016;24:2078-2089 pubmed 出版商
  332. Nalbandian A, Khan A, Srivastava R, Llewellyn K, Tan B, Shukr N, et al. Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy. Inflammation. 2017;40:21-41 pubmed 出版商
  333. Lopez Guadamillas E, Fernandez Marcos P, Pantoja C, Muñoz Martin M, Martinez D, Gomez Lopez G, et al. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPAR?. Sci Rep. 2016;6:34542 pubmed 出版商
  334. Xu X, Greenland J, Gotts J, Matthay M, Caughey G. Cathepsin L Helps to Defend Mice from Infection with Influenza A. PLoS ONE. 2016;11:e0164501 pubmed 出版商
  335. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  336. Guglielmetti C, Le Blon D, Santermans E, Salas Perdomo A, Daans J, De Vocht N, et al. Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia. 2016;64:2181-2200 pubmed 出版商
  337. Rothchild A, Sissons J, Shafiani S, Plaisier C, Min D, Mai D, et al. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113:E6172-E6181 pubmed
  338. Lamb C, Cholico G, Perkins D, Fewkes M, Oxford J, Lujan T, et al. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis. Biomed Res Int. 2016;2016:5309328 pubmed
  339. Kamei A, Gao G, Neale G, Loh L, Vogel P, Thomas P, et al. Exogenous remodeling of lung resident macrophages protects against infectious consequences of bone marrow-suppressive chemotherapy. Proc Natl Acad Sci U S A. 2016;113:E6153-E6161 pubmed
  340. Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, et al. CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med. 2016;5:2920-2933 pubmed 出版商
  341. Pelletier M, Szymczak K, Barbeau A, Prata G, O Fallon K, Gaines P. Characterization of neutrophils and macrophages from ex vivo-cultured murine bone marrow for morphologic maturation and functional responses by imaging flow cytometry. Methods. 2017;112:124-146 pubmed 出版商
  342. Wang L, Cano M, Datta S, Wei H, Ebrahimi K, Gorashi Y, et al. Pentraxin 3 recruits complement factor H to protect against oxidative stress-induced complement and inflammasome overactivation. J Pathol. 2016;240:495-506 pubmed 出版商
  343. Kaneda M, Messer K, Ralainirina N, Li H, Leem C, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437-442 pubmed 出版商
  344. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  345. Rudemiller N, Patel M, Zhang J, Jeffs A, Karlovich N, Griffiths R, et al. C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent Kidney Injury by Limiting Renal Macrophage Infiltration. Am J Pathol. 2016;186:2846-2856 pubmed 出版商
  346. Hirai Yuki A, Hensley L, McGivern D, Gonzalez Lopez O, Das A, Feng H, et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science. 2016;353:1541-1545 pubmed
  347. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  348. Hay C, Sult E, Huang Q, Mulgrew K, Fuhrmann S, McGlinchey K, et al. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology. 2016;5:e1208875 pubmed 出版商
  349. Xie X, Tsai S, Tsai M. COUP-TFII regulates satellite cell function and muscular dystrophy. J Clin Invest. 2016;126:3929-3941 pubmed 出版商
  350. Alomar F, Singh J, Jang H, Rozanzki G, Shao C, Padanilam B, et al. Smooth muscle-generated methylglyoxal impairs endothelial cell-mediated vasodilatation of cerebral microvessels in type 1 diabetic rats. Br J Pharmacol. 2016;173:3307-3326 pubmed 出版商
  351. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  352. Vikram A, Kim Y, Kumar S, Li Q, Kassan M, JACOBS J, et al. Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nat Commun. 2016;7:12565 pubmed 出版商
  353. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  354. Vasilopoulou E, Kolatsi Joannou M, Lindenmeyer M, White K, Robson M, Cohen C, et al. Loss of endogenous thymosin β4 accelerates glomerular disease. Kidney Int. 2016;90:1056-1070 pubmed 出版商
  355. Stark K, Philippi V, Stockhausen S, Busse J, Antonelli A, Miller M, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128:2435-2449 pubmed
  356. Svinka J, Pflügler S, Mair M, Marschall H, Hengstler J, Stiedl P, et al. Epidermal growth factor signaling protects from cholestatic liver injury and fibrosis. J Mol Med (Berl). 2017;95:109-117 pubmed 出版商
  357. Greco S, Torres Hernandez A, Kalabin A, Whiteman C, Rokosh R, Ravirala S, et al. Mincle Signaling Promotes Con A Hepatitis. J Immunol. 2016;197:2816-27 pubmed 出版商
  358. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  359. Kim K, Williams J, Wang Y, Ivanov S, Gilfillan S, Colonna M, et al. MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. J Exp Med. 2016;213:1951-9 pubmed 出版商
  360. Murakami S, Shahbazian D, Surana R, Zhang W, Chen H, Graham G, et al. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene. 2017;36:1232-1244 pubmed 出版商
  361. Kim G, Das R, Goduni L, McClellan S, Hazlett L, Mahabeleshwar G. Kruppel-like Factor 6 Promotes Macrophage-mediated Inflammation by Suppressing B Cell Leukemia/Lymphoma 6 Expression. J Biol Chem. 2016;291:21271-21282 pubmed
  362. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  363. Ohmer M, Weber A, Sutter G, Ehrhardt K, Zimmermann A, Häcker G. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis. Cell Death Dis. 2016;7:e2340 pubmed 出版商
  364. Melton D, Roberts A, Wang H, Sarwar Z, Wetzel M, Wells J, et al. Absence of CCR2 results in an inflammaging environment in young mice with age-independent impairments in muscle regeneration. J Leukoc Biol. 2016;100:1011-1025 pubmed
  365. Cordova Z, Grönholm A, Kytölä V, Taverniti V, Hämäläinen S, Aittomäki S, et al. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget. 2016;7:54392-54404 pubmed 出版商
  366. Henry E, Sy C, Inclan Rico J, Espinosa V, Ghanny S, Dwyer D, et al. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 2016;213:1663-73 pubmed 出版商
  367. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  368. Moodley D, Yoshida H, Mostafavi S, Asinovski N, Ortiz Lopez A, Symanowicz P, et al. Network pharmacology of JAK inhibitors. Proc Natl Acad Sci U S A. 2016;113:9852-7 pubmed 出版商
  369. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  370. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  371. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  372. Ferreirinha P, Pérez Cabezas B, Correia A, Miyazawa B, França A, Carvalhais V, et al. Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun. 2016;84:2933-43 pubmed 出版商
  373. Yoshioka D, Kajiwara C, Ishii Y, Umeki K, Hiramatsu K, Kadota J, et al. Efficacy of ?-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob Agents Chemother. 2016;60:6146-54 pubmed 出版商
  374. Veinotte L, Gebremeskel S, Johnston B. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFN? production and tumor control. Oncoimmunology. 2016;5:e1160979 pubmed 出版商
  375. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  376. Coppo M, Chinenov Y, Sacta M, Rogatsky I. The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis. Nat Commun. 2016;7:12254 pubmed 出版商
  377. Rex J, Albrecht U, Ehlting C, Thomas M, Zanger U, Sawodny O, et al. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages. PLoS Comput Biol. 2016;12:e1005018 pubmed 出版商
  378. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  379. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  380. Liu L, Jin X, Zhou Z, Shen C. Enhancement of Anti-Hypoxic Activity and Differentiation of Cardiac Stem Cells by Supernatant Fluids from Cultured Macrophages that Phagocytized Dead Mesenchymal Stem Cells. Int J Mol Sci. 2016;17: pubmed 出版商
  381. Fransén Pettersson N, Duarte N, Nilsson J, Lundholm M, Mayans S, Larefalk A, et al. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis. PLoS ONE. 2016;11:e0159850 pubmed 出版商
  382. Gölz G, Alter T, Bereswill S, Heimesaat M. The Immunopathogenic Potential of Arcobacter butzleri - Lessons from a Meta-Analysis of Murine Infection Studies. PLoS ONE. 2016;11:e0159685 pubmed 出版商
  383. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  384. Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 2016;22:945-51 pubmed 出版商
  385. Xiao Y, Tang J, Guo H, Zhao Y, Tang R, Ouyang S, et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med. 2016;22:906-14 pubmed 出版商
  386. Wu W, Zhao L, Yang P, Zhou W, Li B, Moorhead J, et al. Inflammatory Stress Sensitizes the Liver to Atorvastatin-Induced Injury in ApoE-/- Mice. PLoS ONE. 2016;11:e0159512 pubmed 出版商
  387. Rackov G, Hernandez Jimenez E, Shokri R, Carmona Rodríguez L, Manes S, Alvarez Mon M, et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-?B and IFN-?. J Clin Invest. 2016;126:3089-103 pubmed 出版商
  388. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  389. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  390. Tsuboki J, Fujiwara Y, Horlad H, Shiraishi D, Nohara T, Tayama S, et al. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages. Sci Rep. 2016;6:29588 pubmed 出版商
  391. Kumari M, Wang X, Lantier L, Lyubetskaya A, Eguchi J, Kang S, et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J Clin Invest. 2016;126:2839-54 pubmed 出版商
  392. Ngambenjawong C, Gustafson H, Pineda J, Kacherovsky N, Cieslewicz M, Pun S. Serum Stability and Affinity Optimization of an M2 Macrophage-Targeting Peptide (M2pep). Theranostics. 2016;6:1403-14 pubmed 出版商
  393. Neves J, Zhu J, Sousa Victor P, Konjikusic M, Riley R, Chew S, et al. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 2016;353:aaf3646 pubmed 出版商
  394. Garaude J, Acin Perez R, Martínez Cano S, Enamorado M, Ugolini M, Nistal Villán E, et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol. 2016;17:1037-1045 pubmed 出版商
  395. Ni T, Liu Y, Peng Y, Li M, Fang Y, Yao M. Substance P induces inflammatory responses involving NF-?B in genetically diabetic mice skin fibroblasts co-cultured with macrophages. Am J Transl Res. 2016;8:2179-88 pubmed
  396. Al Sadoun H, Burgess M, Hentges K, Mace K. Enforced Expression of Hoxa3 Inhibits Classical and Promotes Alternative Activation of Macrophages In Vitro and In Vivo. J Immunol. 2016;197:872-84 pubmed 出版商
  397. Bereswill S, Alutis M, Grundmann U, Fischer A, Göbel U, Heimesaat M. Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice. PLoS ONE. 2016;11:e0158020 pubmed 出版商
  398. Albarrán Juárez J, Kaur H, Grimm M, Offermanns S, Wettschureck N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis. 2016;251:445-453 pubmed 出版商
  399. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  400. Lin W, Lim S, Yen T, Alison M. The Influence of Bone Marrow-Secreted IL-10 in a Mouse Model of Cerulein-Induced Pancreatic Fibrosis. Biomed Res Int. 2016;2016:4601532 pubmed 出版商
  401. Liu C, LeClair P, Monajemi M, Sly L, Reid G, Lim C. α-Integrin expression and function modulates presentation of cell surface calreticulin. Cell Death Dis. 2016;7:e2268 pubmed 出版商
  402. Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck M, et al. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget. 2016;7:51107-51123 pubmed 出版商
  403. Ruhland M, Loza A, Capietto A, Luo X, Knolhoff B, Flanagan K, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762 pubmed 出版商
  404. Chen I, Caprioli A, Ohnuki H, Kwak H, Porcher C, Tosato G. EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta. Sci Rep. 2016;6:27195 pubmed 出版商
  405. Zhang G, Liu H, Huang J, Chen S, Pan X, Huang H, et al. TREM-1low is a novel characteristic for tumor-associated macrophages in lung cancer. Oncotarget. 2016;7:40508-40517 pubmed 出版商
  406. Ding H, Zheng S, Garcia Ruiz D, Hou D, Wei Z, Liao Z, et al. Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nat Commun. 2016;7:11533 pubmed 出版商
  407. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  408. Kim C, Nakamura M, Hsieh C. Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation. 2016;13:117 pubmed 出版商
  409. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling. Cancer Res. 2016;76:4124-35 pubmed 出版商
  410. Akashi K, Saegusa J, Sendo S, Nishimura K, Okano T, Yagi K, et al. Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice. Arthritis Res Ther. 2016;18:113 pubmed 出版商
  411. Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella Branger D, Rougon G, et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 2016;6:26381 pubmed 出版商
  412. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  413. Shen Z, Liu Y, Dewidar B, Hu J, Park O, Feng T, et al. Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression. Am J Pathol. 2016;186:1874-1889 pubmed 出版商
  414. Sintusek P, Catapano F, Angkathunkayul N, Marrosu E, Parson S, Morgan J, et al. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment. PLoS ONE. 2016;11:e0155032 pubmed 出版商
  415. Rubio Navarro A, Carril M, Padro D, Guerrero Hue M, Tarin C, Samaniego R, et al. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles. Theranostics. 2016;6:896-914 pubmed 出版商
  416. Rothhammer V, Mascanfroni I, Bunse L, Takenaka M, Kenison J, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22:586-97 pubmed 出版商
  417. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  418. Hollmen M, Karaman S, Schwager S, Lisibach A, Christiansen A, Maksimow M, et al. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology. 2016;5:e1115177 pubmed
  419. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151-66 pubmed 出版商
  420. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  421. Haffner Luntzer M, Heilmann A, Rapp A, Roessler R, Schinke T, Amling M, et al. Antagonizing midkine accelerates fracture healing in mice by enhanced bone formation in the fracture callus. Br J Pharmacol. 2016;173:2237-49 pubmed 出版商
  422. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  423. Li X, Wang S, Zhu R, Li H, Han Q, Zhao R. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NF?B-TLR signaling pathway. J Hematol Oncol. 2016;9:42 pubmed 出版商
  424. Yamashita M, Yoshida T, Suzuki S, Homma K, Hayashi M. Podocyte-specific NF-?B inhibition ameliorates proteinuria in adriamycin-induced nephropathy in mice. Clin Exp Nephrol. 2017;21:16-26 pubmed 出版商
  425. Robinson E, Tate M, Lockhart S, McPeake C, O Neill K, Edgar K, et al. Metabolically-inactive glucagon-like peptide-1(9-36)amide confers selective protective actions against post-myocardial infarction remodelling. Cardiovasc Diabetol. 2016;15:65 pubmed 出版商
  426. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  427. Hobbs R, Batazzi A, Han M, Coulombe P. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. 2016;35:5653-5662 pubmed 出版商
  428. Yang Y, Huycke M, Herman T, Wang X. Glutathione S-transferase alpha 4 induction by activator protein 1 in colorectal cancer. Oncogene. 2016;35:5795-5806 pubmed 出版商
  429. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  430. Vandenberk L, Garg A, Verschuere T, Koks C, Belmans J, Beullens M, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5:e1083669 pubmed
  431. Mall C, Sckisel G, Proia D, Mirsoian A, Grossenbacher S, Pai C, et al. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology. 2016;5:e1075114 pubmed
  432. Wang T, Wang Z, Yang P, Xia L, Zhou M, Wang S, et al. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice. Cell Death Dis. 2016;7:e2176 pubmed 出版商
  433. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  434. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  435. Tao W, Moore R, Meng Y, Smith E, Xu X. Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. J Lipid Res. 2016;57:809-17 pubmed 出版商
  436. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  437. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  438. O Rourke J, Bogdanik L, Yáñez A, Lall D, Wolf A, Muhammad A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324-9 pubmed 出版商
  439. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  440. Giannogonas P, Apostolou A, Manousopoulou A, Theocharis S, Macari S, Psarras S, et al. Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep. 2016;6:23342 pubmed 出版商
  441. McFarland B, Marks M, Rowse A, Fehling S, Gerigk M, Qin H, et al. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma. Oncotarget. 2016;7:20621-35 pubmed 出版商
  442. Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman H, et al. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res. 2016;57:832-47 pubmed 出版商
  443. Tan S, Krasnow M. Developmental origin of lung macrophage diversity. Development. 2016;143:1318-27 pubmed 出版商
  444. Carevic M, Oz H, Fuchs K, Laval J, Schroth C, Frey N, et al. CXCR1 Regulates Pulmonary Anti-Pseudomonas Host Defense. J Innate Immun. 2016;8:362-73 pubmed 出版商
  445. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  446. Liu S, Wu C, Huang K, Wang C, Guan S, Chen L, et al. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget. 2016;7:21900-12 pubmed 出版商
  447. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  448. Shirakawa J, Okuyama T, Kyohara M, Yoshida E, Togashi Y, Tajima K, et al. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetol Metab Syndr. 2016;8:16 pubmed 出版商
  449. Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 2016;131:753-73 pubmed 出版商
  450. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  451. Wong H, Jin G, Cao R, Zhang S, Cao Y, Zhou Z. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun. 2016;7:10824 pubmed 出版商
  452. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay H, Yang D, et al. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell. 2016;18:797-808 pubmed 出版商
  453. Marneros A. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med. 2016;8:208-31 pubmed 出版商
  454. Leon J, Sakumi K, Castillo E, Sheng Z, Oka S, Nakabeppu Y. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions. Sci Rep. 2016;6:22086 pubmed 出版商
  455. Xu J, Zhou L, Ji L, Chen F, Fortmann K, Zhang K, et al. The REGγ-proteasome forms a regulatory circuit with IκBÉ› and NFκB in experimental colitis. Nat Commun. 2016;7:10761 pubmed 出版商
  456. Vance M, Llanga T, Bennett W, Woodard K, Murlidharan G, Chungfat N, et al. AAV Gene Therapy for MPS1-associated Corneal Blindness. Sci Rep. 2016;6:22131 pubmed 出版商
  457. Wang L, Zhao R, Liu C, Liu M, Li S, Li J, et al. A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med. 2016;39:138-46 pubmed 出版商
  458. del Río C, Navarrete C, Collado J, Bellido M, Gómez Cañas M, Pazos M, et al. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci Rep. 2016;6:21703 pubmed 出版商
  459. Tsaousi A, Hayes E, Di Gregoli K, Bond A, Bevan L, Thomas A, et al. Plaque Size Is Decreased but M1 Macrophage Polarization and Rupture Related Metalloproteinase Expression Are Maintained after Deleting T-Bet in ApoE Null Mice. PLoS ONE. 2016;11:e0148873 pubmed 出版商
  460. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  461. Gupta S, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F, et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res. 2016;110:215-26 pubmed 出版商
  462. Xiao J, Shao L, Shen J, Jiang W, Feng Y, Zheng P, et al. Effects of ketanserin on experimental colitis in mice and macrophage function. Int J Mol Med. 2016;37:659-68 pubmed 出版商
  463. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  464. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  465. Smith R, Reyes N, Khandelwal P, Schlereth S, Lee H, Masli S, et al. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease. J Leukoc Biol. 2016;100:371-80 pubmed 出版商
  466. Däbritz J, Judd L, Chalinor H, Menheniott T, Giraud A. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells. Sci Rep. 2016;6:20584 pubmed 出版商
  467. Li M, Li M, Yin T, Shi H, Wen Y, Zhang B, et al. Targeting of cancer‑associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol Med Rep. 2016;13:2476-84 pubmed 出版商
  468. Liu C, Rajapakse A, Riedo E, Fellay B, Bernhard M, Montani J, et al. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation. Sci Rep. 2016;6:20405 pubmed 出版商
  469. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  470. Hirasawa M, Takubo K, Osada H, Miyake S, Toda E, Endo M, et al. Angiopoietin-like Protein 2 Is a Multistep Regulator of Inflammatory Neovascularization in a Murine Model of Age-related Macular Degeneration. J Biol Chem. 2016;291:7373-85 pubmed 出版商
  471. Lancaster G, Kammoun H, Kraakman M, Kowalski G, Bruce C, Febbraio M. PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications. Nat Commun. 2016;7:10626 pubmed 出版商
  472. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  473. Megías J, Martínez A, Yáñez A, Goodridge H, Gozalbo D, Gil M. TLR2, TLR4 and Dectin-1 signalling in hematopoietic stem and progenitor cells determines the antifungal phenotype of the macrophages they produce. Microbes Infect. 2016;18:354-63 pubmed 出版商
  474. Atkinson S, Hoffmann U, Hamann A, Bach E, Danneskiold Samsøe N, Kristiansen K, et al. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade. Dis Model Mech. 2016;9:427-40 pubmed 出版商
  475. Foks A, Engelbertsen D, Kuperwaser F, Alberts Grill N, Gonen A, Witztum J, et al. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol. 2016;36:456-65 pubmed 出版商
  476. McCarthy R, Lu D, Alkhateeb A, Gardeck A, Lee C, Wessling Resnick M. Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta. J Neuroinflammation. 2016;13:21 pubmed 出版商
  477. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  478. Gaide Chevronnay H, Janssens V, Van Der Smissen P, Rocca C, Liao X, Refetoff S, et al. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology. 2016;157:1363-71 pubmed 出版商
  479. Duhan V, Khairnar V, Friedrich S, Zhou F, Gassa A, Honke N, et al. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8(+) T-cell priming and viral control. Sci Rep. 2016;6:19191 pubmed 出版商
  480. Chu C, Gardner P, Copland D, Liyanage S, Gonzalez Cordero A, Kleine Holthaus S, et al. Multimodal analysis of ocular inflammation using the endotoxin-induced uveitis mouse model. Dis Model Mech. 2016;9:473-81 pubmed 出版商
  481. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  482. Wu H, Shi L, Wang Q, Cheng L, Zhao X, Chen Q, et al. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells. Sci Rep. 2016;6:19507 pubmed 出版商
  483. Montufar Solis D, Klein J. Splenic Leukocytes Traffic to the Thyroid and Produce a Novel TSHβ Isoform during Acute Listeria monocytogenes Infection in Mice. PLoS ONE. 2016;11:e0146111 pubmed 出版商
  484. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  485. Chen X, Wei S, Li J, Zhang Q, Wang Y, Zhao S, et al. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction. PLoS ONE. 2016;11:e0147084 pubmed 出版商
  486. Ito T, Itakura J, Takahashi S, Sato M, Mino M, Fushimi S, et al. Sprouty-Related Ena/Vasodilator-Stimulated Phosphoprotein Homology 1-Domain-Containing Protein-2 Critically Regulates Influenza A Virus-Induced Pneumonia. Crit Care Med. 2016;44:e530-43 pubmed 出版商
  487. Mole D, Webster S, Uings I, Zheng X, Binnie M, Wilson K, et al. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis. Nat Med. 2016;22:202-9 pubmed 出版商
  488. Mangum L, CROW J, Stokes J, HOWELL G, Ross M, Pruett S, et al. Exposure to p,p'-DDE Alters Macrophage Reactivity and Increases Macrophage Numbers in Adipose Stromal Vascular Fraction. Toxicol Sci. 2016;150:169-77 pubmed 出版商
  489. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  490. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med. 2016;22:183-93 pubmed 出版商
  491. Nelson C, Hakim C, Ousterout D, Thakore P, Moreb E, Castellanos Rivera R, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351:403-7 pubmed 出版商
  492. Gallego Ortega D, Ledger A, Roden D, Law A, Magenau A, Kikhtyak Z, et al. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biol. 2015;13:e1002330 pubmed 出版商
  493. Rybalko V, Hsieh P, Merscham Banda M, Suggs L, Farrar R. The Development of Macrophage-Mediated Cell Therapy to Improve Skeletal Muscle Function after Injury. PLoS ONE. 2015;10:e0145550 pubmed 出版商
  494. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  495. Zahavi T, Lanton T, Divon M, Salmon A, Peretz T, Galun E, et al. Sorafenib treatment during partial hepatectomy reduces tumorgenesis in an inflammation-associated liver cancer model. Oncotarget. 2016;7:4860-70 pubmed 出版商
  496. Leikina E, Defour A, Melikov K, van der Meulen J, Nagaraju K, Bhuvanendran S, et al. Annexin A1 Deficiency does not Affect Myofiber Repair but Delays Regeneration of Injured Muscles. Sci Rep. 2015;5:18246 pubmed 出版商
  497. Scholz A, Harter P, Cremer S, Yalcin B, Gurnik S, Yamaji M, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med. 2016;8:39-57 pubmed 出版商
  498. Kimmey J, Huynh J, Weiss L, Park S, Kambal A, Debnath J, et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature. 2015;528:565-9 pubmed 出版商
  499. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  500. Arnold L, Perrin H, de Chanville C, Saclier M, Hermand P, Poupel L, et al. CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production. Nat Commun. 2015;6:8972 pubmed 出版商
  501. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  502. Dinh C, Szabo A, Yu Y, Camer D, Wang H, Huang X. Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice. ScientificWorldJournal. 2015;2015:549352 pubmed 出版商
  503. Messaoudi S, He Y, Gutsol A, Wight A, Hébert R, Vilmundarson R, et al. Endothelial Gata5 transcription factor regulates blood pressure. Nat Commun. 2015;6:8835 pubmed 出版商
  504. Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 2015;5:17192 pubmed 出版商
  505. Tate M, Robinson E, Green B, McDermott B, Grieve D. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Res Cardiol. 2016;111:1 pubmed 出版商
  506. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  507. Trikha P, Sharma N, Pena C, Reyes A, Pécot T, Khurshid S, et al. E2f3 in tumor macrophages promotes lung metastasis. Oncogene. 2016;35:3636-46 pubmed 出版商
  508. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  509. Zhang J, Tong F, Cai Q, Chen L, Dong J, Wu G, et al. Shenqi fuzheng injection attenuates irradiation-induced brain injury in mice via inhibition of the NF-κB signaling pathway and microglial activation. Acta Pharmacol Sin. 2015;36:1288-99 pubmed 出版商
  510. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  511. Freedman T, Tan Y, Skrzypczynska K, Manz B, Sjaastad F, Goodridge H, et al. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages. elife. 2015;4: pubmed 出版商
  512. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  513. Van Helden M, Goossens S, Daussy C, Mathieu A, Faure F, Marçais A, et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J Exp Med. 2015;212:2015-25 pubmed 出版商
  514. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  515. Baba I, Egi Y, Utsumi H, Kakimoto T, Suzuki K. Inhibitory effects of fasudil on renal interstitial fibrosis induced by unilateral ureteral obstruction. Mol Med Rep. 2015;12:8010-20 pubmed 出版商
  516. Gallego Colon E, Sampson R, Sattler S, Schneider M, Rosenthal N, Tonkin J. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction. Mediators Inflamm. 2015;2015:484357 pubmed 出版商
  517. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  518. Chou C, Chen S, Shun C, Tsao P, Yang Y, Yang J. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device. Sci Rep. 2015;5:15157 pubmed 出版商
  519. Hsiao H, Thatcher T, Colas R, Serhan C, Phipps R, Sime P. Resolvin D1 Reduces Emphysema and Chronic Inflammation. Am J Pathol. 2015;185:3189-201 pubmed 出版商
  520. Song I, Patel O, Himpe E, Muller C, Bouwens L. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin. PLoS ONE. 2015;10:e0140148 pubmed 出版商
  521. Janssen L, Dupont L, Bekhouche M, Noel A, Leduc C, Voz M, et al. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis. 2016;19:53-65 pubmed 出版商
  522. Abboud D, Daubeuf F, Do Q, Utard V, Villa P, Haiech J, et al. A strategy to discover decoy chemokine ligands with an anti-inflammatory activity. Sci Rep. 2015;5:14746 pubmed 出版商
  523. Phinney D, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix C, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472 pubmed 出版商
  524. Jones D, Wilmore J, Allman D. Cellular Dynamics of Memory B Cell Populations: IgM+ and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells. J Immunol. 2015;195:4753-9 pubmed 出版商
  525. Sun L, Hua Y, Vergarajauregui S, Diab H, Puertollano R. Novel Role of TRPML2 in the Regulation of the Innate Immune Response. J Immunol. 2015;195:4922-32 pubmed 出版商
  526. Arce Cerezo A, García M, Rodríguez Nuevo A, Crosa Bonell M, Enguix N, Peró A, et al. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance. Sci Rep. 2015;5:14487 pubmed 出版商
  527. Li S, Dislich B, Brakebusch C, Lichtenthaler S, Brocker T. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA. J Immunol. 2015;195:4244-56 pubmed 出版商
  528. Pearson H, McGlinn E, Phesse T, Schlüter H, Srikumar A, Gödde N, et al. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer. 2015;14:169 pubmed 出版商
  529. Hanot Mambres D, Machelart A, Vanderwinden J, De Trez C, Ryffel B, Letesson J, et al. In Situ Characterization of Splenic Brucella melitensis Reservoir Cells during the Chronic Phase of Infection in Susceptible Mice. PLoS ONE. 2015;10:e0137835 pubmed 出版商
  530. Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, et al. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy. Endocrinology. 2015;156:4281-92 pubmed 出版商
  531. Mu X, Español Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891-903 pubmed 出版商
  532. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  533. Spillane D, Wang D, Newbigging S, Wang Y, Shi C, Cho H, et al. Chromosome Condensation 1-Like (Chc1L) Is a Novel Tumor Suppressor Involved in Development of Histiocyte-Rich Neoplasms. PLoS ONE. 2015;10:e0135755 pubmed 出版商
  534. Smith K, Filbey K, Reynolds L, Hewitson J, Harcus Y, Boon L, et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 2016;9:428-43 pubmed 出版商
  535. Zhang B, Yu J, Liu L, Peng L, Chi F, Wu C, et al. Alpha7 nicotinic acetylcholine receptor is required for blood-brain barrier injury-related CNS disorders caused by Cryptococcus neoformans and HIV-1 associated comorbidity factors. BMC Infect Dis. 2015;15:352 pubmed 出版商
  536. Manieri N, Mack M, Himmelrich M, Worthley D, Hanson E, Eckmann L, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest. 2015;125:3606-18 pubmed 出版商
  537. Merches K, Khairnar V, Knuschke T, Shaabani N, Honke N, Duhan V, et al. Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection. Cell Physiol Biochem. 2015;36:2379-92 pubmed 出版商
  538. Mazzilli S, Hershberger P, Reid M, Bogner P, Atwood K, Trump D, et al. Vitamin D Repletion Reduces the Progression of Premalignant Squamous Lesions in the NTCU Lung Squamous Cell Carcinoma Mouse Model. Cancer Prev Res (Phila). 2015;8:895-904 pubmed 出版商
  539. Harney A, Arwert E, Entenberg D, Wang Y, Guo P, Qian B, et al. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA. Cancer Discov. 2015;5:932-43 pubmed 出版商
  540. Wan C, Li P, Spolski R, Oh J, Andraski A, Du N, et al. IL-21-mediated non-canonical pathway for IL-1β production in conventional dendritic cells. Nat Commun. 2015;6:7988 pubmed 出版商
  541. Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N, et al. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun. 2015;6:7847 pubmed 出版商
  542. Peluffo H, Solari Saquieres P, Negro Demontel M, Francos Quijorna I, Navarro X, Lopez Vales R, et al. CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype. J Neuroinflammation. 2015;12:145 pubmed 出版商
  543. Eichin D, Laurila J, Jalkanen S, Salmi M. CD73 Activity is Dispensable for the Polarization of M2 Macrophages. PLoS ONE. 2015;10:e0134721 pubmed 出版商
  544. Lovisa S, LeBleu V, Tampe B, Sugimoto H, Vadnagara K, Carstens J, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21:998-1009 pubmed 出版商
  545. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  546. Jovicic N, Jeftic I, Jovanovic I, Radosavljevic G, Arsenijevic N, Lukic M, et al. Differential Immunometabolic Phenotype in Th1 and Th2 Dominant Mouse Strains in Response to High-Fat Feeding. PLoS ONE. 2015;10:e0134089 pubmed 出版商
  547. Zhang W, Zheng X, Du L, Sun J, Shen Z, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893-910 pubmed 出版商
  548. ELDREDGE L, Treuting P, MANICONE A, Ziegler S, Parks W, McGuire J. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice. Am J Respir Cell Mol Biol. 2016;54:273-83 pubmed 出版商
  549. Vettorazzi S, Bode C, Dejager L, Frappart L, Shelest E, Klaßen C, et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat Commun. 2015;6:7796 pubmed 出版商
  550. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  551. Johnson V, Xiang M, Chen Z, Junge H. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS ONE. 2015;10:e0132013 pubmed 出版商
  552. Malik I, Stange I, Martius G, Cameron S, Rave Fränk M, Hess C, et al. Role of PECAM-1 in radiation-induced liver inflammation. J Cell Mol Med. 2015;19:2441-52 pubmed 出版商
  553. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  554. Jiang Y, Gao Q, Wang L, Guo C, Zhu F, Wang B, et al. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice. Cell Mol Immunol. 2016;13:524-34 pubmed 出版商
  555. Vogel A, Brown D. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol. 2015;6:327 pubmed 出版商
  556. Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein A, et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6:22613-23 pubmed
  557. Hiemstra I, Vrijland K, Hogenboom M, Bouma G, Kraal G, den Haan J. Intestinal epithelial cell transported TLR2 ligand stimulates Ly6C⁺ monocyte differentiation in a G-CSF dependent manner. Immunobiology. 2015;220:1255-65 pubmed 出版商
  558. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  559. Kim A, Park Y, Pan X, Shin K, Kwak S, Bassas A, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6:7585 pubmed 出版商
  560. Sive J, Basilico S, Hannah R, Kinston S, Calero Nieto F, Göttgens B. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia. Leukemia. 2016;30:14-23 pubmed 出版商
  561. Jakobs C, Perner S, Hornung V. AIM2 Drives Joint Inflammation in a Self-DNA Triggered Model of Chronic Polyarthritis. PLoS ONE. 2015;10:e0131702 pubmed 出版商
  562. Singh N, Kotla S, Dyukova E, Traylor J, Orr A, Chernoff J, et al. Disruption of p21-activated kinase 1 gene diminishes atherosclerosis in apolipoprotein E-deficient mice. Nat Commun. 2015;6:7450 pubmed 出版商
  563. Chang C, Lin C, Lu C, Martel J, Ko Y, Ojcius D, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489 pubmed 出版商
  564. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  565. Dinh C, Szabo A, Yu Y, Camer D, Zhang Q, Wang H, et al. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet. Nutrients. 2015;7:4705-23 pubmed 出版商
  566. Yoshida Y, Shimizu I, Katsuumi G, Jiao S, Suda M, Hayashi Y, et al. p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload. J Mol Cell Cardiol. 2015;85:183-98 pubmed 出版商
  567. Shoemaker J, Fukuyama S, Eisfeld A, Zhao D, Kawakami E, Sakabe S, et al. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation. PLoS Pathog. 2015;11:e1004856 pubmed 出版商
  568. Schuler F, Baumgartner F, Klepsch V, Chamson M, Müller Holzner E, Watson C, et al. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ. 2016;23:41-51 pubmed 出版商
  569. Khan I, Perrard X, Brunner G, Lui H, Sparks L, Smith S, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond). 2015;39:1607-18 pubmed 出版商
  570. Almholt K, Lærum O, Nielsen B, Lund I, Lund L, Rømer J, et al. Spontaneous lung and lymph node metastasis in transgenic breast cancer is independent of the urokinase receptor uPAR. Clin Exp Metastasis. 2015;32:543-54 pubmed 出版商
  571. Williams B, Tebbutt N, Buchert M, Putoczki T, Doggett K, Bao S, et al. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease. Dis Model Mech. 2015;8:805-15 pubmed 出版商
  572. Park J, Rasch M, Qiu J, Lund I, Egeblad M. Presence of insulin-like growth factor binding proteins correlates with tumor-promoting effects of matrix metalloproteinase 9 in breast cancer. Neoplasia. 2015;17:421-33 pubmed 出版商
  573. Vinue A, Andrés Blasco I, Herrero Cervera A, Piqueras L, Andres V, Burks D, et al. Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta. 2015;1852:1729-42 pubmed 出版商
  574. Teo T, Her Z, Tan J, Lum F, Lee W, Chan Y, et al. Caribbean and La Réunion Chikungunya Virus Isolates Differ in Their Capacity To Induce Proinflammatory Th1 and NK Cell Responses and Acute Joint Pathology. J Virol. 2015;89:7955-69 pubmed 出版商
  575. Yang X, Zhang Y, Hosaka K, Andersson P, Wang J, Tholander F, et al. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci U S A. 2015;112:E2900-9 pubmed 出版商
  576. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  577. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson A, et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522:349-53 pubmed 出版商
  578. Lalley A, Dyment N, Kazemi N, Kenter K, Gooch C, Rowe D, et al. Improved biomechanical and biological outcomes in the MRL/MpJ murine strain following a full-length patellar tendon injury. J Orthop Res. 2015;33:1693-703 pubmed 出版商
  579. Xue J, Sharma V, Hsieh M, Chawla A, Murali R, Pandol S, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158 pubmed 出版商
  580. Hamilton A, Basic V, Andersson S, Abrink M, Ringvall M. Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation. PLoS ONE. 2015;10:e0126688 pubmed 出版商
  581. Yang L, Carrillo M, Wu Y, DiAngelo S, Silveyra P, Umstead T, et al. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS ONE. 2015;10:e0126576 pubmed 出版商
  582. Doni A, Musso T, Morone D, Bastone A, Zambelli V, Sironi M, et al. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J Exp Med. 2015;212:905-25 pubmed 出版商
  583. Sarr D, Bracken T, Owino S, Cooper C, Smith G, Nagy T, et al. Differential roles of inflammation and apoptosis in initiation of mid-gestational abortion in malaria-infected C57BL/6 and A/J mice. Placenta. 2015;36:738-49 pubmed 出版商
  584. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  585. van Bracht E, Raavé R, Perevyazko I, Versteeg E, Hafmans T, Schubert U, et al. Biodistribution of size-selected lyophilisomes in mice. Eur J Pharm Biopharm. 2015;94:141-51 pubmed 出版商
  586. Cha J, Burnum Johnson K, Bartos A, Li Y, Baker E, Tilton S, et al. Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus. J Biol Chem. 2015;290:15337-49 pubmed 出版商
  587. Carmi Y, Spitzer M, Linde I, Burt B, Prestwood T, Perlman N, et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature. 2015;521:99-104 pubmed 出版商
  588. Li X, Maretzky T, Weskamp G, Monette S, Qing X, Issuree P, et al. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc Natl Acad Sci U S A. 2015;112:6080-5 pubmed 出版商
  589. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  590. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  591. Opata M, Carpio V, Ibitokou S, Dillon B, Obiero J, Stephens R. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells. J Immunol. 2015;194:5346-54 pubmed 出版商
  592. Uetake Y, Ikeda H, Irie R, Tejima K, Matsui H, Ogura S, et al. High-salt in addition to high-fat diet may enhance inflammation and fibrosis in liver steatosis induced by oxidative stress and dyslipidemia in mice. Lipids Health Dis. 2015;14:6 pubmed 出版商
  593. Hamilton J, Li J, Wu Q, Yang P, Luo B, Li H, et al. General Approach for Tetramer-Based Identification of Autoantigen-Reactive B Cells: Characterization of La- and snRNP-Reactive B Cells in Autoimmune BXD2 Mice. J Immunol. 2015;194:5022-34 pubmed 出版商
  594. Klein D, Groh J, Weishaupt A, Martini R. Endogenous antibodies contribute to macrophage-mediated demyelination in a mouse model for CMT1B. J Neuroinflammation. 2015;12:49 pubmed 出版商
  595. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  596. Lee H, Jeong H, Park S, Yoo W, Choi S, Choi K, et al. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis. EMBO Mol Med. 2015;7:819-30 pubmed 出版商
  597. Johnson A, Costanzo A, Gareau M, Armando A, Quehenberger O, Jameson J, et al. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS ONE. 2015;10:e0122195 pubmed 出版商
  598. Hohsfield L, Humpel C. Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. PLoS ONE. 2015;10:e0121930 pubmed 出版商
  599. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  600. Bai J, Liu Z, Xu Z, Ke F, Zhang L, Zhu H, et al. Epigenetic downregulation of SFRP4 contributes to epidermal hyperplasia in psoriasis. J Immunol. 2015;194:4185-98 pubmed 出版商
  601. Napier R, Norris B, Swimm A, Giver C, Harris W, Laval J, et al. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog. 2015;11:e1004770 pubmed 出版商
  602. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  603. Zhang J, Chen S, Hou Z, Cai J, Dong M, Shi X. Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins. PLoS ONE. 2015;10:e0122572 pubmed 出版商
  604. Scott C, Cha K, Rao R, Liddle C, George J, Gunton J. Hepatocyte-specific deletion of ARNT (aryl hydrocarbon Receptor Nuclear Translocator) results in altered fibrotic gene expression in the thioacetamide model of liver injury. PLoS ONE. 2015;10:e0121650 pubmed 出版商
  605. Lavoz C, Alique M, Rodrígues Díez R, Pato J, Keri G, Mezzano S, et al. Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J Pathol. 2015;236:407-20 pubmed 出版商
  606. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  607. Dal Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong C, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447-56 pubmed 出版商
  608. McClintock S, Warner R, Ali S, Chekuri A, Dame M, Attili D, et al. Monoclonal antibodies specific for oncofetal antigen--immature laminin receptor protein: Effects on tumor growth and spread in two murine models. Cancer Biol Ther. 2015;16:724-32 pubmed 出版商
  609. Hu Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015;7:279ra41 pubmed 出版商
  610. Woods S, Waite A, O Dea K, Halford P, Takata M, Wilson M. Kinetic profiling of in vivo lung cellular inflammatory responses to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol. 2015;308:L912-21 pubmed 出版商
  611. Bretscher P, Egger J, Shamshiev A, Trötzmüller M, Köfeler H, Carreira E, et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol Med. 2015;7:593-607 pubmed 出版商
  612. Overdijk M, Verploegen S, Bögels M, van Egmond M, Lammerts van Bueren J, Mutis T, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015;7:311-21 pubmed 出版商
  613. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  614. Kitamura M, Nishino T, Obata Y, Oka S, Abe S, Muta K, et al. The kampo medicine Daikenchuto inhibits peritoneal fibrosis in mice. Biol Pharm Bull. 2015;38:193-200 pubmed 出版商
  615. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  616. Wu H, Hwang Verslues W, Lee W, Huang C, Wei P, Chen C, et al. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exp Med. 2015;212:333-49 pubmed 出版商
  617. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  618. Choi E, Park H, Sul O, Rajasekaran M, Yu R, Choi H. Carbon monoxide reverses adipose tissue inflammation and insulin resistance upon loss of ovarian function. Am J Physiol Endocrinol Metab. 2015;308:E621-30 pubmed 出版商
  619. Zhu B, Chen Y, Zhang H, Liu X, Guo S. Resveratrol Reduces Myometrial Infiltration, Uterine Hyperactivity, and Stress Levels and Alleviates Generalized Hyperalgesia in Mice With Induced Adenomyosis. Reprod Sci. 2015;22:1336-49 pubmed 出版商
  620. Pechous R, Broberg C, Stasulli N, Miller V, Goldman W. In vivo transcriptional profiling of Yersinia pestis reveals a novel bacterial mediator of pulmonary inflammation. MBio. 2015;6:e02302-14 pubmed 出版商
  621. Feuerstein R, Seidl M, Prinz M, Henneke P. MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection. J Immunol. 2015;194:2735-45 pubmed 出版商
  622. Watson N, Schneider K, Massa P. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis. J Immunol. 2015;194:2796-809 pubmed 出版商
  623. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  624. Zhan R, Han Q, Zhang C, Tian Z, Zhang J. Toll-Like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica serovar Typhimurium infection. Infect Immun. 2015;83:1641-9 pubmed 出版商
  625. Stack G, Jones E, Marsden M, Stacey M, Snelgrove R, Lacaze P, et al. CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog. 2015;11:e1004641 pubmed 出版商
  626. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271-84 pubmed 出版商
  627. Dinh C, Szabo A, Camer D, Yu Y, Wang H, Huang X. Bardoxolone methyl prevents fat deposition and inflammation in the visceral fat of mice fed a high-fat diet. Chem Biol Interact. 2015;229:1-8 pubmed 出版商
  628. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed 出版商
  629. Crncec I, Pathria P, Svinka J, Eferl R. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol Biol. 2015;1267:145-64 pubmed 出版商
  630. Tan J, Chan S, Lo C, Deane J, McDonald C, Bernard C, et al. Amnion cell-mediated immune modulation following bleomycin challenge: controlling the regulatory T cell response. Stem Cell Res Ther. 2015;6:8 pubmed 出版商
  631. Chen Z, Shen H, Sun C, Yin L, Tang F, Zheng P, et al. Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. Am J Physiol Endocrinol Metab. 2015;308:E460-9 pubmed 出版商
  632. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  633. Evans E, Jonason A, Bussler H, Torno S, Veeraraghavan J, Reilly C, et al. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res. 2015;3:689-701 pubmed 出版商
  634. Kanayama M, Inoue M, Danzaki K, Hammer G, He Y, Shinohara M. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 2015;6:5779 pubmed 出版商
  635. Sun C, Schattgen S, Pisitkun P, Jorgensen J, Hilterbrand A, Wang L, et al. Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. J Immunol. 2015;194:1819-31 pubmed 出版商
  636. Liu Z, Zhao S, Chen Q, Yan K, Liu P, Li N, et al. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice. Biol Reprod. 2015;92:63 pubmed 出版商
  637. Teixeira L, Moreira J, Melo J, Bezerra F, Marques R, Ferreirinha P, et al. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology. 2015;145:242-57 pubmed 出版商
  638. Zhou W, Ke S, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170-82 pubmed 出版商
  639. Besschetnova T, Ichimura T, Katebi N, St Croix B, Bonventre J, Olsen B. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol. 2015;42:56-73 pubmed 出版商
  640. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  641. Zhou L, Park S, Xu L, Xia X, Ye J, Su L, et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun. 2015;6:5949 pubmed 出版商
  642. Shindo Y, Unsinger J, Burnham C, Green J, Hotchkiss R. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015;43:334-43 pubmed 出版商
  643. Weston C, Shepherd E, Claridge L, Rantakari P, Curbishley S, Tomlinson J, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501-20 pubmed 出版商
  644. Haffner Luntzer M, Heilmann A, Rapp A, Beie S, Schinke T, Amling M, et al. Midkine-deficiency delays chondrogenesis during the early phase of fracture healing in mice. PLoS ONE. 2014;9:e116282 pubmed 出版商
  645. Skripuletz T, Manzel A, Gropengießer K, Schäfer N, Gudi V, Singh V, et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398-413 pubmed 出版商
  646. Karaca G, Xie G, Moylan C, Swiderska Syn M, Guy C, Krüger L, et al. Role of Fn14 in acute alcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G325-34 pubmed 出版商
  647. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  648. Evrard M, Chong S, Devi S, Chew W, Lee B, Poidinger M, et al. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol. 2015;97:611-9 pubmed 出版商
  649. Nikolaou K, Moulos P, Chalepakis G, Hatzis P, Oda H, Reinberg D, et al. Spontaneous development of hepatocellular carcinoma with cancer stem cell properties in PR-SET7-deficient livers. EMBO J. 2015;34:430-47 pubmed 出版商
  650. Hayashi N, Kataoka H, Yano S, Tanaka M, Moriwaki K, Akashi H, et al. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages. Mol Cancer Ther. 2015;14:452-60 pubmed 出版商
  651. Zhang H, Hu H, Greeley N, Jin J, Matthews A, Ohashi E, et al. STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nat Commun. 2014;5:5798 pubmed 出版商
  652. Vi L, Baht G, Whetstone H, Ng A, Wei Q, Poon R, et al. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. 2015;30:1090-102 pubmed 出版商
  653. Cicchini M, Chakrabarti R, Kongara S, Price S, Nahar R, Lozy F, et al. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy. 2014;10:2036-52 pubmed 出版商
  654. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  655. Almolda B, de Labra C, Barrera I, Gruart A, Delgado Garcia J, Villacampa N, et al. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun. 2015;45:80-97 pubmed 出版商
  656. Jannasch K, Wegwitz F, Lenfert E, Maenz C, Deppert W, Alves F. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination. Int J Cancer. 2015;137:25-36 pubmed 出版商
  657. Dabydeen S, Kang K, Díaz Cruz E, Alamri A, Axelrod M, Bouker K, et al. Comparison of tamoxifen and letrozole response in mammary preneoplasia of ER and aromatase overexpressing mice defines an immune-associated gene signature linked to tamoxifen resistance. Carcinogenesis. 2015;36:122-32 pubmed 出版商
  658. Vela Ramirez J, Goodman J, Boggiatto P, Roychoudhury R, Pohl N, Hostetter J, et al. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS J. 2015;17:256-67 pubmed 出版商
  659. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  660. Jaworska K, Ratajczak J, Huang L, Whalen K, Yang M, Stevens B, et al. Both PD-1 ligands protect the kidney from ischemia reperfusion injury. J Immunol. 2015;194:325-33 pubmed 出版商
  661. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  662. Lieber S, Scheer F, Finkernagel F, Meissner W, Giehl G, Brendel C, et al. The inverse agonist DG172 triggers a PPARβ/δ-independent myeloid lineage shift and promotes GM-CSF/IL-4-induced dendritic cell differentiation. Mol Pharmacol. 2015;87:162-73 pubmed 出版商
  663. Barnes M, McMullen M, Roychowdhury S, Madhun N, Niese K, Olman M, et al. Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. J Leukoc Biol. 2015;97:161-9 pubmed 出版商
  664. Mehta P, Nuotio Antar A, Smith C. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J Leukoc Biol. 2015;97:121-34 pubmed 出版商
  665. Yen T, Alison M, Goodlad R, Otto W, Jeffery R, Cook H, et al. Epidermal growth factor attenuates tubular necrosis following mercuric chloride damage by regeneration of indigenous, not bone marrow-derived cells. J Cell Mol Med. 2015;19:463-73 pubmed 出版商
  666. Peschke K, Dudeck A, Rabenhorst A, Hartmann K, Roers A. Cre/loxP-based mouse models of mast cell deficiency and mast cell-specific gene inactivation. Methods Mol Biol. 2015;1220:403-21 pubmed 出版商
  667. Taniguchi T, Asano Y, Akamata K, Noda S, Takahashi T, Ichimura Y, et al. Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated Fli-1-haploinsufficient mice. Arthritis Rheumatol. 2015;67:517-26 pubmed 出版商
  668. Jurkin J, Henkel T, Nielsen A, Minnich M, Popow J, Kaufmann T, et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 2014;33:2922-36 pubmed 出版商
  669. Gangadharan Komala M, Gross S, Mudaliar H, Huang C, Pegg K, Mather A, et al. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS ONE. 2014;9:e108994 pubmed 出版商
  670. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  671. Fu C, Odegaard J, Hsieh M. Macrophages are required for host survival in experimental urogenital schistosomiasis. FASEB J. 2015;29:193-207 pubmed 出版商
  672. Facci L, Barbierato M, Marinelli C, Argentini C, Skaper S, Giusti P. Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1β release. Sci Rep. 2014;4:6824 pubmed 出版商
  673. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  674. Lin H, Lin S, Chung Y, Vonderfecht S, Camden J, Flodby P, et al. Dynamic involvement of ATG5 in cellular stress responses. Cell Death Dis. 2014;5:e1478 pubmed 出版商
  675. Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer. 2015;18:774-83 pubmed 出版商
  676. Ribeiro Resende V, Araújo Gomes T, de Lima S, Nascimento Lima M, Bargas Rega M, Santiago M, et al. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration. PLoS ONE. 2014;9:e108919 pubmed 出版商
  677. Okuneva O, Körber I, Li Z, Tian L, Joensuu T, Kopra O, et al. Abnormal microglial activation in the Cstb(-/-) mouse, a model for progressive myoclonus epilepsy, EPM1. Glia. 2015;63:400-11 pubmed 出版商
  678. Liu G, Zhang W, Xiao Y, Lu P. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization. Curr Eye Res. 2015;40:891-901 pubmed 出版商
  679. Goren I, Pfeilschifter J, Frank S. Uptake of neutrophil-derived Ym1 protein distinguishes wound macrophages in the absence of interleukin-4 signaling in murine wound healing. Am J Pathol. 2014;184:3249-61 pubmed 出版商
  680. Xia H, Ren X, Bolte C, Ustiyan V, Zhang Y, Shah T, et al. Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol. 2015;52:611-21 pubmed 出版商
  681. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  682. Döring M, Lessin I, Frenz T, Spanier J, Kessler A, Tegtmeyer P, et al. M27 expressed by cytomegalovirus counteracts effective type I interferon induction of myeloid cells but not of plasmacytoid dendritic cells. J Virol. 2014;88:13638-50 pubmed 出版商
  683. ZasÅ‚ona Z, Przybranowski S, Wilke C, Van Rooijen N, Teitz Tennenbaum S, Osterholzer J, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014;193:4245-53 pubmed 出版商
  684. Meraz I, Savage D, Segura Ibarra V, Li J, Rhudy J, Gu J, et al. Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm. 2014;11:3484-91 pubmed 出版商
  685. Eberle M, Ebel P, Wegner M, Männich J, Tafferner N, Ferreirós N, et al. Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol. 2014;92:326-35 pubmed 出版商
  686. Bernasconi E, D Angelo F, Michetti P, Velin D. Critical role of the GM-CSF signaling pathway in macrophage pro-repair activities. Pathobiology. 2014;81:183-9 pubmed 出版商
  687. Parker K, Sinha P, Horn L, Clements V, Yang H, Li J, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74:5723-33 pubmed 出版商
  688. Bajwa A, Rosin D, Chrościcki P, Lee S, Dondeti K, Ye H, et al. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J Am Soc Nephrol. 2015;26:908-25 pubmed 出版商
  689. Sauter K, Pridans C, Sehgal A, Bain C, Scott C, Moffat L, et al. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS ONE. 2014;9:e105429 pubmed 出版商
  690. Lu H, Tzeng T, Liou S, Chang C, Yang C, Wu M, et al. Ruscogenin ameliorates experimental nonalcoholic steatohepatitis via suppressing lipogenesis and inflammatory pathway. Biomed Res Int. 2014;2014:652680 pubmed 出版商
  691. Al Barwani F, Young S, Baird M, Larsen D, Ward V. Mannosylation of virus-like particles enhances internalization by antigen presenting cells. PLoS ONE. 2014;9:e104523 pubmed 出版商
  692. O Sullivan D, Green L, Stone S, Zareie P, Kharkrang M, Fong D, et al. Treatment with the antipsychotic agent, risperidone, reduces disease severity in experimental autoimmune encephalomyelitis. PLoS ONE. 2014;9:e104430 pubmed 出版商
  693. Ishihara M, Seo N, Mitsui J, Muraoka D, Tanaka M, Mineno J, et al. Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS ONE. 2014;9:e104669 pubmed 出版商
  694. de Bock L, Somers K, Fraussen J, Hendriks J, van Horssen J, Rouwette M, et al. Sperm-associated antigen 16 is a novel target of the humoral autoimmune response in multiple sclerosis. J Immunol. 2014;193:2147-56 pubmed 出版商
  695. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  696. Pisano F, Heine W, Rosenheinrich M, Schweer J, Nuss A, Dersch P. Influence of PhoP and intra-species variations on virulence of Yersinia pseudotuberculosis during the natural oral infection route. PLoS ONE. 2014;9:e103541 pubmed 出版商
  697. Lo Sasso G, Menzies K, Mottis A, Piersigilli A, Perino A, Yamamoto H, et al. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS ONE. 2014;9:e103573 pubmed 出版商
  698. Kim K, Skora A, Li Z, Liu Q, Tam A, Blosser R, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111:11774-9 pubmed 出版商
  699. Tersey S, Maier B, Nishiki Y, Maganti A, Nadler J, Mirmira R. 12-lipoxygenase promotes obesity-induced oxidative stress in pancreatic islets. Mol Cell Biol. 2014;34:3735-45 pubmed 出版商
  700. Chiu Y, Lin I, Su S, Wang K, Yang S, Tsai D, et al. Transcription factor ABF-1 suppresses plasma cell differentiation but facilitates memory B cell formation. J Immunol. 2014;193:2207-17 pubmed 出版商
  701. Droguett A, Krall P, Burgos M, Valderrama G, Carpio D, Ardiles L, et al. Tubular overexpression of gremlin induces renal damage susceptibility in mice. PLoS ONE. 2014;9:e101879 pubmed 出版商
  702. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  703. Coulson Thomas V, Gesteira T, Hascall V, KAO W. Umbilical cord mesenchymal stem cells suppress host rejection: the role of the glycocalyx. J Biol Chem. 2014;289:23465-81 pubmed 出版商
  704. Majumder M, Xin X, Liu L, Girish G, Lala P. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci. 2014;105:1142-51 pubmed 出版商
  705. Watatani H, Maeshima Y, Hinamoto N, Yamasaki H, Ujike H, Tanabe K, et al. Vasohibin-1 deficiency enhances renal fibrosis and inflammation after unilateral ureteral obstruction. Physiol Rep. 2014;2: pubmed 出版商
  706. Aytekin M, Tonelli A, Farver C, Feldstein A, Dweik R. Leptin deficiency recapitulates the histological features of pulmonary arterial hypertension in mice. Int J Clin Exp Pathol. 2014;7:1935-46 pubmed
  707. Kovtunovych G, Ghosh M, Ollivierre W, Weitzel R, Eckhaus M, Tisdale J, et al. Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice. Blood. 2014;124:1522-30 pubmed 出版商
  708. Gow D, Sauter K, Pridans C, Moffat L, Sehgal A, Stutchfield B, et al. Characterisation of a novel Fc conjugate of macrophage colony-stimulating factor. Mol Ther. 2014;22:1580-92 pubmed 出版商
  709. Collins C, Wang J, Miao H, Bronstein J, Nawer H, Xu T, et al. C/EBP? is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis. Proc Natl Acad Sci U S A. 2014;111:9899-904 pubmed 出版商
  710. Lu Z, Kaliberov S, Zhang J, Muz B, Azab A, Sohn R, et al. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting. Lab Invest. 2014;94:881-92 pubmed 出版商
  711. Yan L, Zhang L, Ma H, Chiu D, Bryers J. A Single B-repeat of Staphylococcus epidermidis accumulation-associated protein induces protective immune responses in an experimental biomaterial-associated infection mouse model. Clin Vaccine Immunol. 2014;21:1206-14 pubmed 出版商
  712. Mise Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, et al. NF-?B RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol. 2014;26:607-18 pubmed 出版商
  713. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258-69 pubmed 出版商
  714. Geem D, Medina Contreras O, McBride M, Newberry R, Koni P, Denning T. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431-8 pubmed 出版商
  715. Johnston Cox H, Eisenstein A, Koupenova M, Carroll S, Ravid K. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS ONE. 2014;9:e98775 pubmed 出版商
  716. Forgèt M, Voorhees J, Cole S, Dakhlallah D, Patterson I, Gross A, et al. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS ONE. 2014;9:e98623 pubmed 出版商
  717. Nandi B, Pai C, Huang Q, Prabhala R, Munshi N, Gold J. CCR6, the sole receptor for the chemokine CCL20, promotes spontaneous intestinal tumorigenesis. PLoS ONE. 2014;9:e97566 pubmed 出版商
  718. Weber G, Chousterman B, Hilgendorf I, Robbins C, Theurl I, Gerhardt L, et al. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J Exp Med. 2014;211:1243-56 pubmed 出版商
  719. Wang J, Eguchi K, Matsumoto S, Fujiu K, Komuro I, Nagai R, et al. The ?-3 polyunsaturated fatty acid, eicosapentaenoic acid, attenuates abdominal aortic aneurysm development via suppression of tissue remodeling. PLoS ONE. 2014;9:e96286 pubmed 出版商
  720. Richardson M, Fu C, Pennington L, Honeycutt J, Odegaard J, Odegaard J, et al. A new mouse model for female genital schistosomiasis. PLoS Negl Trop Dis. 2014;8:e2825 pubmed 出版商
  721. Caswell D, Chuang C, Yang D, Chiou S, Cheemalavagu S, Kim Kiselak C, et al. Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov. 2014;4:781-9 pubmed 出版商
  722. Meraz I, Hearnden C, Liu X, Yang M, Williams L, Savage D, et al. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes. PLoS ONE. 2014;9:e94703 pubmed 出版商
  723. Inoue M, Arikawa T, Chen Y, Moriwaki Y, Price M, Brown M, et al. T cells down-regulate macrophage TNF production by IRAK1-mediated IL-10 expression and control innate hyperinflammation. Proc Natl Acad Sci U S A. 2014;111:5295-300 pubmed 出版商
  724. Morganti J, Jopson T, Liu S, Gupta N, Rosi S. Cranial irradiation alters the brain's microenvironment and permits CCR2+ macrophage infiltration. PLoS ONE. 2014;9:e93650 pubmed 出版商
  725. Karpurapu M, Ranjan R, Deng J, Chung S, Lee Y, Xiao L, et al. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation. PLoS ONE. 2014;9:e93362 pubmed 出版商
  726. König S, Nitzki F, Uhmann A, Dittmann K, Theiss Suennemann J, Herrmann M, et al. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice. PLoS ONE. 2014;9:e93555 pubmed 出版商
  727. Harland K, Day E, Apte S, Russ B, Doherty P, Turner S, et al. Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. Nat Commun. 2014;5:3547 pubmed 出版商
  728. Hayes B, Riehle K, Shimizu Albergine M, Bauer R, Hudkins K, Johansson F, et al. Activation of platelet-derived growth factor receptor alpha contributes to liver fibrosis. PLoS ONE. 2014;9:e92925 pubmed 出版商
  729. Chaves L, Bao L, Wang Y, Chang A, Haas M, Quigg R. Loss of CD11b exacerbates murine complement-mediated tubulointerstitial nephritis. PLoS ONE. 2014;9:e92051 pubmed 出版商
  730. Haldar M, Kohyama M, So A, Kc W, Wu X, Briseño C, et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell. 2014;156:1223-1234 pubmed 出版商
  731. Jha P, Knopf A, Koefeler H, Mueller M, Lackner C, Hoefler G, et al. Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta. 2014;1842:959-70 pubmed 出版商
  732. Ota M, Horiguchi M, Fang V, Shibahara K, Kadota K, Loomis C, et al. Genetic suppression of inflammation blocks the tumor-promoting effects of TGF-? in gastric tissue. Cancer Res. 2014;74:2642-51 pubmed 出版商
  733. Ballak D, van Essen P, van Diepen J, Jansen H, Hijmans A, Matsuguchi T, et al. MAP3K8 (TPL2/COT) affects obesity-induced adipose tissue inflammation without systemic effects in humans and in mice. PLoS ONE. 2014;9:e89615 pubmed 出版商
  734. Ikeda Y, Ozono I, Tajima S, Imao M, Horinouchi Y, Izawa Ishizawa Y, et al. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. PLoS ONE. 2014;9:e89355 pubmed 出版商
  735. Barbera M, Di Pietro M, Walker E, Brierley C, Macrae S, Simons B, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64:11-9 pubmed 出版商
  736. Hung J, Horn D, Woodruff K, Prihoda T, LeSaux C, Peters J, et al. Colony-stimulating factor 1 potentiates lung cancer bone metastasis. Lab Invest. 2014;94:371-81 pubmed 出版商
  737. Li A, Morton J, Ma Y, Karim S, Zhou Y, Faller W, et al. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology. 2014;146:1386-96.e1-17 pubmed 出版商
  738. Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10:e1003885 pubmed 出版商
  739. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  740. Li J, Xu Z, Jiang L, Mao J, Zeng Z, Fang L, et al. Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney Int. 2014;86:86-102 pubmed 出版商
  741. Suga H, Rennert R, Rodrigues M, Sorkin M, Glotzbach J, Januszyk M, et al. Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing. Stem Cells. 2014;32:1347-60 pubmed 出版商
  742. Kim H, Lee H, Chang Y, Pichavant M, Shore S, Fitzgerald K, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54-61 pubmed 出版商
  743. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  744. Salem H, Trojanowski B, Fiedler K, Maier H, Schirmbeck R, Wagner M, et al. Long-term IKK2/NF-?B signaling in pancreatic ?-cells induces immune-mediated diabetes. Diabetes. 2014;63:960-75 pubmed 出版商
  745. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  746. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  747. Gupta S, Utoft R, Hasseldam H, Schmidt Christensen A, Hannibal T, Hansen L, et al. Global and 3D spatial assessment of neuroinflammation in rodent models of Multiple Sclerosis. PLoS ONE. 2013;8:e76330 pubmed 出版商
  748. DelGiorno K, Hall J, Takeuchi K, Pan F, Halbrook C, Washington M, et al. Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology. 2014;146:233-44.e5 pubmed 出版商
  749. Müller M, Florian S, Pommer S, Osterhoff M, Esworthy R, Chu F, et al. Deletion of glutathione peroxidase-2 inhibits azoxymethane-induced colon cancer development. PLoS ONE. 2013;8:e72055 pubmed 出版商
  750. Orim F, Bychkov A, Shimamura M, Nakashima M, Ito M, Matsuse M, et al. Thyrotropin signaling confers more aggressive features with higher genomic instability on BRAF(V600E)-induced thyroid tumors in a mouse model. Thyroid. 2014;24:502-10 pubmed 出版商
  751. Satpathy A, Briseño C, Lee J, Ng D, Manieri N, Kc W, et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol. 2013;14:937-48 pubmed 出版商
  752. Conine S, Cross J. MIF deficiency does not alter glucose homeostasis or adipose tissue inflammatory cell infiltrates during diet-induced obesity. Obesity (Silver Spring). 2014;22:418-25 pubmed 出版商
  753. Tan C, Tan E, Luo B, Huang C, Loo J, Choong C, et al. SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. J Am Heart Assoc. 2013;2:e000269 pubmed 出版商
  754. Gautron L, Rutkowski J, Burton M, Wei W, Wan Y, Elmquist J. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol. 2013;521:3741-67 pubmed 出版商
  755. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  756. Dalli J, Colas R, Serhan C. Novel n-3 immunoresolvents: structures and actions. Sci Rep. 2013;3:1940 pubmed 出版商
  757. Zhang F, Dai M, Neng L, Zhang J, Zhi Z, Fridberger A, et al. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma--a salient feature of strial barrier associated hearing loss. FASEB J. 2013;27:3730-40 pubmed 出版商
  758. Nakazawa M, Obata Y, Nishino T, Abe S, Nakazawa Y, Abe K, et al. Involvement of leptin in the progression of experimentally induced peritoneal fibrosis in mice. Acta Histochem Cytochem. 2013;46:75-84 pubmed 出版商
  759. Ahn R, Sabourin V, Ha J, Cory S, Maric G, Im Y, et al. The ShcA PTB domain functions as a biological sensor of phosphotyrosine signaling during breast cancer progression. Cancer Res. 2013;73:4521-32 pubmed 出版商
  760. Lu M, Varley A, Munford R. Persistently active microbial molecules prolong innate immune tolerance in vivo. PLoS Pathog. 2013;9:e1003339 pubmed 出版商
  761. Martinod K, Demers M, Fuchs T, Wong S, Brill A, Gallant M, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110:8674-9 pubmed 出版商
  762. Li S, Li B, Jiang H, Wang Y, Qu M, Duan H, et al. Macrophage depletion impairs corneal wound healing after autologous transplantation in mice. PLoS ONE. 2013;8:e61799 pubmed 出版商
  763. Saito S, Hata K, Iwaisako K, Yanagida A, Takeiri M, Tanaka H, et al. Cilostazol attenuates hepatic stellate cell activation and protects mice against carbon tetrachloride-induced liver fibrosis. Hepatol Res. 2014;44:460-73 pubmed 出版商
  764. Gerber S, Sedlacek A, Cron K, Murphy S, Frelinger J, Lord E. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol. 2013;182:2345-54 pubmed 出版商
  765. Yan K, Zhu W, Yu L, Li N, Zhang X, Liu P, et al. Toll-like receptor 3 and RIG-I-like receptor activation induces innate antiviral responses in mouse ovarian granulosa cells. Mol Cell Endocrinol. 2013;372:73-85 pubmed 出版商
  766. Anders C, Ashton N, Ranjzad P, Dilworth M, Woolf A. Ex vivo modeling of chemical synergy in prenatal kidney cystogenesis. PLoS ONE. 2013;8:e57797 pubmed 出版商
  767. Wintges K, Beil F, Albers J, Jeschke A, Schweizer M, Claass B, et al. Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J Bone Miner Res. 2013;28:2070-80 pubmed 出版商
  768. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  769. Neng L, Zhang W, Hassan A, Zemla M, Kachelmeier A, Fridberger A, et al. Isolation and culture of endothelial cells, pericytes and perivascular resident macrophage-like melanocytes from the young mouse ear. Nat Protoc. 2013;8:709-20 pubmed 出版商
  770. Chu P, Nakamoto N, Ebinuma H, Usui S, Saeki K, Matsumoto A, et al. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology. 2013;58:337-50 pubmed 出版商
  771. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  772. Tan J, Chan S, Wallace E, Lim R. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant. 2014;23:319-28 pubmed 出版商
  773. Neng L, Zhang F, Kachelmeier A, Shi X. Endothelial cell, pericyte, and perivascular resident macrophage-type melanocyte interactions regulate cochlear intrastrial fluid-blood barrier permeability. J Assoc Res Otolaryngol. 2013;14:175-85 pubmed 出版商
  774. Panjwani N, Mulvihill E, Longuet C, Yusta B, Campbell J, Brown T, et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE(-/-) mice. Endocrinology. 2013;154:127-39 pubmed 出版商
  775. Chabtini L, Mfarrej B, Mounayar M, Zhu B, Batal I, Dakle P, et al. TIM-3 regulates innate immune cells to induce fetomaternal tolerance. J Immunol. 2013;190:88-96 pubmed 出版商
  776. Ming X, Rajapakse A, Yepuri G, Xiong Y, Carvas J, Ruffieux J, et al. Arginase II Promotes Macrophage Inflammatory Responses Through Mitochondrial Reactive Oxygen Species, Contributing to Insulin Resistance and Atherogenesis. J Am Heart Assoc. 2012;1:e000992 pubmed 出版商
  777. Xiao C, Feng R, Engevik A, Martin J, Tritschler J, Schumacher M, et al. Sonic Hedgehog contributes to gastric mucosal restitution after injury. Lab Invest. 2013;93:96-111 pubmed 出版商
  778. Baik J, Rosania G. Macrophages sequester clofazimine in an intracellular liquid crystal-like supramolecular organization. PLoS ONE. 2012;7:e47494 pubmed 出版商
  779. Powell N, Walker A, Stolarczyk E, Canavan J, Gökmen M, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674-84 pubmed 出版商
  780. Pagán A, Pepper M, Chu H, Green J, Jenkins M. CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J Immunol. 2012;189:2909-17 pubmed 出版商
  781. Wang Y, Szretter K, Vermi W, Gilfillan S, Rossini C, Cella M, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 2012;13:753-60 pubmed 出版商
  782. Atkinson S, Usher P, Kvist P, Markholst H, Haase C, Nansen A. Establishment and characterization of a sustained delayed-type hypersensitivity model with arthritic manifestations in C57BL/6J mice. Arthritis Res Ther. 2012;14:R134 pubmed 出版商
  783. Kaneko T, Saito Y, Kotani T, Okazawa H, Iwamura H, Sato Hashimoto M, et al. Dendritic cell-specific ablation of the protein tyrosine phosphatase Shp1 promotes Th1 cell differentiation and induces autoimmunity. J Immunol. 2012;188:5397-407 pubmed 出版商
  784. Austenaa L, Barozzi I, Chronowska A, Termanini A, Ostuni R, Prosperini E, et al. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity. 2012;36:572-85 pubmed 出版商
  785. Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Res Ther. 2012;14:R45 pubmed 出版商
  786. Marquardt J, Seo D, Gómez Quiroz L, Uchida K, Gillen M, Kitade M, et al. Loss of c-Met accelerates development of liver fibrosis in response to CCl(4) exposure through deregulation of multiple molecular pathways. Biochim Biophys Acta. 2012;1822:942-51 pubmed 出版商
  787. Nakao S, Zandi S, Faez S, Kohno R, Hafezi Moghadam A. Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots. FASEB J. 2012;26:808-17 pubmed 出版商
  788. Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q, et al. Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS ONE. 2011;6:e19495 pubmed 出版商
  789. Bhullar J, Sollars V. YBX1 expression and function in early hematopoiesis and leukemic cells. Immunogenetics. 2011;63:337-50 pubmed 出版商
  790. Rymo S, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C. A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS ONE. 2011;6:e15846 pubmed 出版商
  791. Hufford M, Kim T, Sun J, Braciale T. Antiviral CD8+ T cell effector activities in situ are regulated by target cell type. J Exp Med. 2011;208:167-80 pubmed 出版商
  792. Varney M, Buchanan J, Dementieva Y, Hardman W, Sollars V. A high omega-3 fatty acid diet has different effects on early and late stage myeloid progenitors. Lipids. 2011;46:47-57 pubmed 出版商
  793. Berger S, Romero X, Ma C, Wang G, Faubion W, Liao G, et al. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol. 2010;11:920-7 pubmed 出版商
  794. Love W, Dobbs N, Tabor L, Simecka J. Toll-like receptor 2 (TLR2) plays a major role in innate resistance in the lung against murine Mycoplasma. PLoS ONE. 2010;5:e10739 pubmed 出版商
  795. Engstrom L, Bober L, Chen S, Fine J, Li Y, Stanton M, et al. Kinetic assessment and therapeutic modulation of metabolic and inflammatory profiles in mice on a high-fat and cholesterol diet. PPAR Res. 2010;2010:970164 pubmed 出版商
  796. Thompson J, Chu Y, Glass J, Tapp A, Brown S. The manganese superoxide dismutase mimetic, M40403, protects adult mice from lethal total body irradiation. Free Radic Res. 2010;44:529-40 pubmed 出版商
  797. Sadri N, Lu J, Badura M, Schneider R. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol. 2010;11:1 pubmed 出版商
  798. Piesta A, Maj T, Chełmońska Soyta A. The influence of mating on estrogen receptor alpha protein level in spleen and uterine macrophages in female mice. Reprod Biol. 2009;9:225-40 pubmed
  799. Provoost S, Maes T, Willart M, Joos G, Lambrecht B, Tournoy K. Diesel exhaust particles stimulate adaptive immunity by acting on pulmonary dendritic cells. J Immunol. 2010;184:426-32 pubmed 出版商
  800. Thompson J, Chu Y, Glass J, Brown S. Absence of IL-23p19 in donor allogeneic cells reduces mortality from acute GVHD. Bone Marrow Transplant. 2010;45:712-22 pubmed 出版商
  801. Wu S, Rhee K, Albesiano E, RABIZADEH S, Wu X, Yen H, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016-22 pubmed 出版商
  802. Dewals B, Hoving J, Leeto M, Marillier R, Govender U, Cutler A, et al. IL-4Ralpha responsiveness of non-CD4 T cells contributes to resistance in schistosoma mansoni infection in pan-T cell-specific IL-4Ralpha-deficient mice. Am J Pathol. 2009;175:706-16 pubmed 出版商
  803. Shen J, Ren H, Tomiyama Miyaji C, Watanabe M, Kainuma E, Inoue M, et al. Resistance and augmentation of innate immunity in mice exposed to starvation. Cell Immunol. 2009;259:66-73 pubmed 出版商
  804. Siegemund S, Hartl A, von Buttlar H, Dautel F, Raue R, Freudenberg M, et al. Conventional bone marrow-derived dendritic cells contribute to toll-like receptor-independent production of alpha/beta interferon in response to inactivated parapoxvirus ovis. J Virol. 2009;83:9411-22 pubmed 出版商
  805. Carlow D, Gold M, Ziltener H. Lymphocytes in the peritoneum home to the omentum and are activated by resident dendritic cells. J Immunol. 2009;183:1155-65 pubmed 出版商
  806. Moon J, Chu H, Hataye J, Pagán A, Pepper M, McLachlan J, et al. Tracking epitope-specific T cells. Nat Protoc. 2009;4:565-81 pubmed 出版商
  807. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  808. Leng J, Butcher B, Egan C, Abi Abdallah D, Denkers E. Toxoplasma gondii prevents chromatin remodeling initiated by TLR-triggered macrophage activation. J Immunol. 2009;182:489-97 pubmed
  809. Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2008;105:9041-6 pubmed 出版商
  810. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商
  811. Culshaw S, Millington O, Brewer J, McInnes I. Murine neutrophils present Class II restricted antigen. Immunol Lett. 2008;118:49-54 pubmed 出版商
  812. Bulloch K, Miller M, Gal Toth J, Milner T, Gottfried Blackmore A, Waters E, et al. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol. 2008;508:687-710 pubmed 出版商
  813. Chen H, ORDOG T, Chen J, YOUNG D, Bardsley M, Redelman D, et al. Differential gene expression in functional classes of interstitial cells of Cajal in murine small intestine. Physiol Genomics. 2007;31:492-509 pubmed
  814. Miyairi I, Tatireddigari V, Mahdi O, Rose L, Belland R, Lu L, et al. The p47 GTPases Iigp2 and Irgb10 regulate innate immunity and inflammation to murine Chlamydia psittaci infection. J Immunol. 2007;179:1814-24 pubmed
  815. Walsh C, Smith P, Fallon P. Role for CTLA-4 but not CD25+ T cells during Schistosoma mansoni infection of mice. Parasite Immunol. 2007;29:293-308 pubmed
  816. Reese T, Liang H, Tager A, Luster A, Van Rooijen N, Voehringer D, et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92-6 pubmed
  817. Voehringer D, van Rooijen N, Locksley R. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J Leukoc Biol. 2007;81:1434-44 pubmed
  818. Noel G, Guo X, Wang Q, Schwemberger S, Byrum D, Ogle C. Postburn monocytes are the major producers of TNF-alpha in the heterogeneous splenic macrophage population. Shock. 2007;27:312-9 pubmed
  819. de Jersey J, Snelgrove S, Palmer S, Teteris S, Mullbacher A, Miller J, et al. Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2007;104:1295-300 pubmed
  820. HogenEsch H, Dunham A, Seymour R, Renninger M, Sundberg J. Expression of chitinase-like proteins in the skin of chronic proliferative dermatitis (cpdm/cpdm) mice. Exp Dermatol. 2006;15:808-14 pubmed
  821. Chen H, Redelman D, Ro S, Ward S, ORDOG T, Sanders K. Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol Cell Physiol. 2007;292:C497-507 pubmed
  822. Hewitson J, Jenkins G, Hamblin P, Mountford A. CD40/CD154 interactions are required for the optimal maturation of skin-derived APCs and the induction of helminth-specific IFN-gamma but not IL-4. J Immunol. 2006;177:3209-17 pubmed
  823. Mangan N, Van Rooijen N, McKenzie A, Fallon P. Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J Immunol. 2006;176:138-47 pubmed
  824. Rempel J, Quina L, Blakely Gonzales P, Buchmeier M, Gruol D. Viral induction of central nervous system innate immune responses. J Virol. 2005;79:4369-81 pubmed
  825. Noel J, Guo X, Wells Byrum D, Schwemberger S, Caldwell C, Ogle C. Effect of thermal injury on splenic myelopoiesis. Shock. 2005;23:115-22 pubmed
  826. Reissinger A, Skinner J, Yuk M. Downregulation of mitogen-activated protein kinases by the Bordetella bronchiseptica Type III secretion system leads to attenuated nonclassical macrophage activation. Infect Immun. 2005;73:308-16 pubmed
  827. Jennings J, Linderman D, Hu B, Sonstein J, Curtis J. Monocytes recruited to the lungs of mice during immune inflammation ingest apoptotic cells poorly. Am J Respir Cell Mol Biol. 2005;32:108-17 pubmed
  828. Mischenko V, Kapina M, Eruslanov E, Kondratieva E, Lyadova I, Young D, et al. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J Infect Dis. 2004;190:2137-45 pubmed
  829. ORDOG T, Redelman D, Horváth V, Miller L, Horowitz B, Sanders K. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract. Cytometry A. 2004;62:139-49 pubmed
  830. Mangan N, Fallon R, Smith P, Van Rooijen N, McKenzie A, Fallon P. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol. 2004;173:6346-56 pubmed
  831. Zheng S, Jiang J, Shen H, Chen Y. Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J Immunol. 2004;173:5652-8 pubmed
  832. Smith P, Walsh C, Mangan N, Fallon R, Sayers J, McKenzie A, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages. J Immunol. 2004;173:1240-8 pubmed
  833. Mattner J, Wandersee Steinhäuser A, Pahl A, Rollinghoff M, Majeau G, Hochman P, et al. Protection against progressive leishmaniasis by IFN-beta. J Immunol. 2004;172:7574-82 pubmed
  834. Schleicher U, Mattner J, Blos M, Schindler H, Rollinghoff M, Karaghiosoff M, et al. Control of Leishmania major in the absence of Tyk2 kinase. Eur J Immunol. 2004;34:519-29 pubmed
  835. Eruslanov E, Majorov K, Orlova M, Mischenko V, Kondratieva T, Apt A, et al. Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge. Clin Exp Immunol. 2004;135:19-28 pubmed
  836. Cook A, Braine E, Hamilton J. The phenotype of inflammatory macrophages is stimulus dependent: implications for the nature of the inflammatory response. J Immunol. 2003;171:4816-23 pubmed
  837. Reading P, Smith G. A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol. 2003;84:1973-83 pubmed
  838. Blos M, Schleicher U, Soares Rocha F, Meissner U, Rollinghoff M, Bogdan C. Organ-specific and stage-dependent control of Leishmania major infection by inducible nitric oxide synthase and phagocyte NADPH oxidase. Eur J Immunol. 2003;33:1224-34 pubmed
  839. Stavitsky A, Xianli J. In vitro and in vivo regulation by macrophage migration inhibitory factor (MIF) of expression of MHC-II, costimulatory, adhesion, receptor, and cytokine molecules. Cell Immunol. 2002;217:95-104 pubmed
  840. Saio M, Radoja S, Marino M, Frey A. Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol. 2001;167:5583-93 pubmed
  841. Sandré C, Gleizes A, Forestier F, Gorges Kergot R, Chilmonczyk S, Léonil J, et al. A peptide derived from bovine beta-casein modulates functional properties of bone marrow-derived macrophages from germfree and human flora-associated mice. J Nutr. 2001;131:2936-42 pubmed
  842. Radoja S, Saio M, Frey A. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol. 2001;166:6074-83 pubmed
  843. Malorny U, Michels E, Sorg C. A monoclonal antibody against an antigen present on mouse macrophages and absent from monocytes. Cell Tissue Res. 1986;243:421-8 pubmed