这是一篇来自已证抗体库的有关小鼠 F4/80的综述,是根据1103篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合F4/80 抗体。
F4/80 同义词: DD7A5-7; EGF-TM7; Emr1; F4/80; Gpf480; Ly71; TM7LN3

BioLegend
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:1000; 图 2d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2d). Mol Psychiatry (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 图 s3b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在人类样本上 (图 s3b). Front Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫印迹; 小鼠; 图 5d
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于免疫印迹在小鼠样本上 (图 5d). Front Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). iScience (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendF4/80抗体(BioLegend, 123118)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Theranostics (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5c
BioLegendF4/80抗体(Biolegend, 123147)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). PLoS Pathog (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Immunother Cancer (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendF4/80抗体(BioLegend, 123126)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Int J Mol Sci (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s3a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3a). Nat Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:700; 图 s2d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 s2d). Sci Adv (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, 123106)被用于被用于流式细胞仪在小鼠样本上. Immunity (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Cells (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
BioLegendF4/80抗体(Biolegend, 123106)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). Nat Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5b, 5h
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 5b, 5h). J Immunother Cancer (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. elife (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s4a
BioLegendF4/80抗体(BioLegend, 123123)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4a). Front Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 5l
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5l). NPJ Breast Cancer (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:160; 图 4a, s3b
BioLegendF4/80抗体(Biolegend, 123115)被用于被用于流式细胞仪在小鼠样本上浓度为1:160 (图 4a, s3b). Clin Exp Metastasis (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(Biolegend, 123115)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. elife (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, 123112)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 1e
BioLegendF4/80抗体(Biolegend, 123107)被用于被用于免疫组化在小鼠样本上 (图 1e). Sci Rep (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 2d
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2d). Nat Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4c
BioLegendF4/80抗体(Biolegend, 123118)被用于被用于流式细胞仪在小鼠样本上 (图 4c). elife (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendF4/80抗体(Biolegend, 123131)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3i
BioLegendF4/80抗体(Biolegend, 123115)被用于被用于流式细胞仪在小鼠样本上 (图 3i). Mol Cancer (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 图 3e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在人类样本上 (图 3e). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(BioLegend, 123130)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mucosal Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1-1h
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1-1h). elife (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 8f
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 8f). Basic Res Cardiol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s4-1c
BioLegendF4/80抗体(Biolegend, 123110)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4-1c). elife (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 图 s14b
BioLegendF4/80抗体(BioLegend, 123141)被用于被用于流式细胞仪在人类样本上 (图 s14b). Commun Biol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendF4/80抗体(BioLegend, 123110)被用于被用于流式细胞仪在小鼠样本上 (图 2b). EMBO Mol Med (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 7c). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类
BioLegendF4/80抗体(Biolegend, 123141)被用于被用于流式细胞仪在人类样本上. J Immunother Cancer (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5e
BioLegendF4/80抗体(Biolegend, 123130)被用于被用于流式细胞仪在小鼠样本上 (图 s5e). Cell (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50
BioLegendF4/80抗体(Bioloegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Front Physiol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a, s2b, s2c
BioLegendF4/80抗体(Biolegend, 123132)被用于被用于流式细胞仪在小鼠样本上 (图 3a, s2b, s2c). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(Biolegend, 123128)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Front Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • mass cytometry; 小鼠
BioLegendF4/80抗体(BioLegend, 123102)被用于被用于mass cytometry在小鼠样本上. Br J Cancer (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100
BioLegendF4/80抗体(BioLegend, 123110)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5b, 6a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5b, 6a). JCI Insight (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 7
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300; 图 s9h
BioLegendF4/80抗体(BioLegend, 123124)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s9h). Nature (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Sci Transl Med (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c, 3a, 5e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c, 3a, 5e). Sci Rep (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 4g, s5b
BioLegendF4/80抗体(Biolegend, 123102)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4g, s5b). Nat Commun (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:250; 图 s8a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 s8a). Nat Commun (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫印迹; 小鼠; 图 1d
BioLegendF4/80抗体(BioLegend, 123101)被用于被用于免疫印迹在小鼠样本上 (图 1d). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 2e
BioLegendF4/80抗体(Biolegend, 123110)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2e). Nat Commun (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上. Cell (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s2-1a
BioLegendF4/80抗体(Biolegend, 123131)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2-1a). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1d
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Front Immunol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Invest Ophthalmol Vis Sci (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 3:100; 图 s1-1b
BioLegendF4/80抗体(BioLegend, 123110)被用于被用于流式细胞仪在小鼠样本上浓度为3:100 (图 s1-1b). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2e
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Theranostics (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3e). Aging Cell (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5g
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5g). Mucosal Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
  • 流式细胞仪; 小鼠; 图 5a
BioLegendF4/80抗体(BioLegend, 123110)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a) 和 被用于流式细胞仪在小鼠样本上 (图 5a). Front Cell Dev Biol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s6-1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6-1a). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1f
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6d
BioLegendF4/80抗体(BioLegend, 123115)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Clin Invest (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 2s1b
BioLegendF4/80抗体(BioLegend, 123152)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2s1b). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Immunother Cancer (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, 123109)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Adv Sci (Weinh) (2020) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, BM8)被用于. Nature (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 3i
BioLegendF4/80抗体(BioLegend, 123141)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3i). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 4n
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4n). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s17
BioLegendF4/80抗体(BioLegend, 123119)被用于被用于流式细胞仪在小鼠样本上 (图 s17). Nat Commun (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 s2f
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2f). Commun Biol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2c, 2d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2c, 2d). Sci Adv (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Biochem Biophys Rep (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Sci Adv (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 s7a, s7b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7a, s7b). BMC Immunol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). BMC Gastroenterol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(Biolegend, 123145)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nature (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Aging Cell (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Front Immunol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
BioLegendF4/80抗体(BioLegend, 123140)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendF4/80抗体(BioLegend, 123115)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Nat Chem Biol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, s3c, s4a
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, s3c, s4a). Cancers (Basel) (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5d
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 s10a, s10d
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s10a, s10d). Nat Commun (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:170; 图 s1g
BioLegendF4/80抗体(BioLegend, 123101)被用于被用于免疫组化在小鼠样本上浓度为1:170 (图 s1g). Front Immunol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4e, s6a
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 s4e, s6a). Nat Commun (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3e
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6s2
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6s2). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Acta Neuropathol Commun (2020) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, BM8)被用于. Science (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). Sci Adv (2019) ncbi
大鼠 单克隆(BM8)
  • mass cytometry; 小鼠; 1.5 ug/ml; 图 5d
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于mass cytometry在小鼠样本上浓度为1.5 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2i, 4c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2i, 4c). BMC Immunol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 e3e
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e3e). Nature (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegendF4/80抗体(BioLegend, 123110)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Sci Adv (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2c
BioLegendF4/80抗体(BioLegend, 123019)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2c). Sci Adv (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendF4/80抗体(Biolegend, 123128)被用于被用于流式细胞仪在小鼠样本上 (图 1c). JCI Insight (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
BioLegendF4/80抗体(BioLegend, 123149)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s6c
BioLegendF4/80抗体(Biolegend, 123122)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s6c). Nat Metab (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 e6e
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e6e). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2s2a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2s2a). elife (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3i
BioLegendF4/80抗体(BioLegend, 123117)被用于被用于流式细胞仪在小鼠样本上 (图 s3i). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 ex3d
BioLegendF4/80抗体(BioLegend, 123109)被用于被用于流式细胞仪在小鼠样本上 (图 ex3d). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendF4/80抗体(BioLegend, 123143)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 图 ex7
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在人类样本上 (图 ex7). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s23
BioLegendF4/80抗体(Biolegend, 123110)被用于被用于流式细胞仪在小鼠样本上 (图 s23). Nat Commun (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 3c
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3c). Nat Commun (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2o
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 s2o). JCI Insight (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1s2d
BioLegendF4/80抗体(Biolegend, 123131)被用于被用于流式细胞仪在小鼠样本上 (图 1s2d). elife (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Rep (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2i
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 s2i). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Aging Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s1c
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1c). Nat Commun (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1k
BioLegendF4/80抗体(Biolegend, 123107)被用于被用于流式细胞仪在小鼠样本上 (图 s1k). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 s12
BioLegendF4/80抗体(BioLegend, 123118)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 s12). Science (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegendF4/80抗体(BioLegend, 123124)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 1:200; 图 11a
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 11a). Nat Commun (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 2a). EMBO J (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫印迹; 小鼠; 1:200; 图 s17a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s17a). Science (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s7c
BioLegendF4/80抗体(BioLegend, 123127)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell Metab (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:700; 图 ex2c
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 ex2c). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 ex2a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 ex2a). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 1b
BioLegendF4/80抗体(BioLegend, 123128)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1b). Neuron (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 5c
BioLegendF4/80抗体(Biolegend, 123120)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5c). Nat Cell Biol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2d
BioLegendF4/80抗体(Biolegend, 123127)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 4a, 5c, 6b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a, 5c, 6b). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). JCI Insight (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3d
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s8
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 1d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1d). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 6a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6a). J Cell Biol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cancer Immunol Immunother (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nature (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s4d
BioLegendF4/80抗体(BioLegend, 123115)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4d). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 s4
BioLegendF4/80抗体(Biolegend, 123107)被用于被用于免疫组化在小鼠样本上 (图 s4). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 s4
BioLegendF4/80抗体(Biolegend, 123115)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 s4). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s13a
BioLegendF4/80抗体(BioLegend, 123102)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s13a). Science (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). EMBO J (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 s4n
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4n). Circulation (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendF4/80抗体(Biolegend, 123116)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cancer Res (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 图 s1a
BioLegendF4/80抗体(Biolegend, 123118)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Neurosci (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:1000; 图 4a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 4a). Circulation (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). Sci Rep (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). EBioMedicine (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3g
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Nat Med (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s9b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s9b). Science (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1s1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1s1a). elife (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncoimmunology (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Eur J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, 123110)被用于被用于流式细胞仪在小鼠样本上. Nature (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 s1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1a). Exp Mol Med (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s11
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s11). Oncoimmunology (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300; 图 s3a
BioLegendF4/80抗体(BioLegend, 123131)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3a). PLoS Biol (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4d
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4d). Oncotarget (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 2.5 mg/ml; 图 s5b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2.5 mg/ml (图 s5b). J Cell Biol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cell Metab (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 8c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 8c). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:500; 图 s4a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s4a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 4a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4a). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(bioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2j
BioLegendF4/80抗体(BioLegend, 123102)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2j). Food Chem Toxicol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 6c
BioLegendF4/80抗体(BioLegend, 123116)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6c). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Oncogene (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s5d
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5d). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendF4/80抗体(BioLegend, 123107)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 7d). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2d
BioLegendF4/80抗体(BioLegend, 123106)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
BioLegendF4/80抗体(BioLegend, 123110)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). J Biol Chem (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 其他; 小鼠; 图 5l
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于其他在小鼠样本上 (图 5l). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Ther Methods Clin Dev (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 4a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4a). FASEB J (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s6g
BioLegendF4/80抗体(BD Biosciences, 123128)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6g). Nat Cell Biol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cancer Res (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 st1
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s1
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell Mol Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 s2d
BioLegendF4/80抗体(BioLegend, 123102)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2d). Nature (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s8
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s8). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nat Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, 123108)被用于. elife (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 4h
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 4h). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2j
BioLegendF4/80抗体(Biolegend, 123119)被用于被用于流式细胞仪在小鼠样本上 (图 2j). EMBO Rep (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Biol Chem (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s6
BioLegendF4/80抗体(BioLegend, 123141)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Mol Cell (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). Immunology (2017) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123128)被用于. Oncoimmunology (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). JCI Insight (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendF4/80抗体(Biolegend, 123120)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Methods Mol Biol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d) 和 被用于流式细胞仪在小鼠样本上. Am J Physiol Renal Physiol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:80; 图 3b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 3b). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:60; 图 5c
BioLegendF4/80抗体(Biolegend, 123133)被用于被用于流式细胞仪在小鼠样本上浓度为1:60 (图 5c). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5c). EMBO Mol Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300; 图 s3c
BioLegendF4/80抗体(BioLegend, 123109)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3c). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cancer Res (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 S10E
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 S10E). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Virol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 s3b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s3b). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5d
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Mol Ther (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Inflammation (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, 123128)被用于被用于流式细胞仪在小鼠样本上. Cell (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s12b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s12b). Science (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendF4/80抗体(Biolegend, 123109)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nanomedicine (Lond) (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 1:400
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在人类样本上浓度为1:400. Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Oncogene (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 3
BioLegendF4/80抗体(Biolegend, 123118)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendF4/80抗体(biolegend, 12310)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Antimicrob Agents Chemother (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
  • 流式细胞仪; 小鼠; 图 1b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c) 和 被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Nat Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s6b
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Nat Med (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 2
BioLegendF4/80抗体(Biolegend, 123105)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
BioLegendF4/80抗体(BioLegend, 123119)被用于被用于流式细胞仪在小鼠样本上 (图 2). Am J Transl Res (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 图 8
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在人类样本上 (图 8). Cell Death Dis (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendF4/80抗体(BioLegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, 123115)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
BioLegendF4/80抗体(Biolegend/Ozyme, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123122)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100; 图 1
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4j
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4j). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s3d
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3d). Nat Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2f
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Science (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2b, 1d
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2b, 1d). Science (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5c
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Innate Immun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:50; 图 1
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). EMBO Mol Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:1000; 图 8b
BioLegendF4/80抗体(Biolegend, 123130)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 8b). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Thorac Oncol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Crit Care Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7a
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Toxicol Sci (2016) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123117)被用于. PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s6
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
BioLegendF4/80抗体(biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2
BioLegendF4/80抗体(BioLegend, 123127)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123107)被用于. Sci Rep (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Mucosal Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s11
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s11). J Clin Invest (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 2f
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2f). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123110)被用于. PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:500; 图 s1
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s1). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
BioLegendF4/80抗体(biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Immunity (2015) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, 123113)被用于. Leukemia (2016) ncbi
大鼠 单克隆(BM8)
  • 其他; 小鼠; 图 s4
BioLegendF4/80抗体(Biolegend, 123120)被用于被用于其他在小鼠样本上 (图 s4). Cell Death Differ (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(BioLegend, 123121)被用于被用于流式细胞仪在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100
BioLegendF4/80抗体(BioLegend, 123102)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Orthop Res (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s2
BioLegendF4/80抗体(Biolegend, 123137)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 8
BioLegendF4/80抗体(BioLegend, 123109)被用于被用于流式细胞仪在小鼠样本上 (图 8). Oncoimmunology (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nature (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendF4/80抗体(Biolegend, 123114)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, 123120)被用于. EMBO Mol Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:500; 图 4
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 4). MBio (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 4
BioLegendF4/80抗体(BioLegend, 123127)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s3
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s4). PLoS Pathog (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2c). EMBO Mol Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6e
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Am J Physiol Endocrinol Metab (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 2
BioLegendF4/80抗体(Biolegend, 123109)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Biol Reprod (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 流式细胞仪; 小鼠; 图 6
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于流式细胞仪在小鼠样本上 (图 6). PLoS Pathog (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Brain (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5). AAPS J (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). Mol Pharmacol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Methods Mol Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). Glia (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 3,4,s2
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3,4,s2). PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(Biolegend, 123115)被用于. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(BM8)
BioLegendF4/80抗体(BioLegend, BM8)被用于. J Exp Med (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS Negl Trop Dis (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Cancer Discov (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠
BioLegendF4/80抗体(Biolegend, 123120)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(Biolegend, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, 123108)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
BioLegendF4/80抗体(BioLegend, BM8)被用于被用于流式细胞仪在小鼠样本上. Diabetes (2014) ncbi
赛默飞世尔
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100; 图 2d
赛默飞世尔F4/80抗体(eBioscience, 14-4801-81)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2d). BMC Cancer (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3j
赛默飞世尔F4/80抗体(Thermo Fisher, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3j). Front Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫细胞化学在小鼠样本上 (图 s1b). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Acta Pharm Sin B (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔F4/80抗体(eBioscience, 17-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Cell Rep (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔F4/80抗体(eBioscience, 53-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Front Immunol (2021) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 大鼠; 1:75; 图 6
赛默飞世尔F4/80抗体(Thermo Fisher, MA5-16363)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:75 (图 6). NPJ Regen Med (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:200; 图 2a
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 14-4801-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). J Pathol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 s2
赛默飞世尔F4/80抗体(Thermo Fisher, 12480182)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2). Front Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔F4/80抗体(Ebioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3a
赛默飞世尔F4/80抗体(eBioscience, 14-480-81)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3a). Sci Adv (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔F4/80抗体(eBioscience, MF48004-3)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Aging (Albany NY) (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 ds1a
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 47-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 ds1a). Cell Rep (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠
赛默飞世尔F4/80抗体(Ebioscience, 14-4801-82)被用于被用于免疫组化在小鼠样本上. Int J Biol Sci (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 8a
赛默飞世尔F4/80抗体(eBioscience, 12-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 8a). Cell Death Dis (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s5-2b
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 48-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5-2b). elife (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔F4/80抗体(Invitrogen, MF48020)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell Death Dis (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3s1d
赛默飞世尔F4/80抗体(Invitrogen, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 3s1d). elife (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 5 ug/ml; 图 2a
赛默飞世尔F4/80抗体(Invitrogen, MA516624)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为5 ug/ml (图 2a). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 2g
赛默飞世尔F4/80抗体(eBioscience, 12480182)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2g). J Biol Chem (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 5c
赛默飞世尔F4/80抗体(eBioscience, 17-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5c). Cell Prolif (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2g
  • 免疫组化; 小鼠; 1:500; 图 2i
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2g) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 2i). Redox Biol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBioscience, 17?\4801?\82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Physiol Rep (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔F4/80抗体(eBioscience, 15-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mucosal Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 4 ug/ml; 图 4d, 4e
赛默飞世尔F4/80抗体(eBioscience, 17-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为4 ug/ml (图 4d, 4e). Basic Res Cardiol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔F4/80抗体(Invitrogen, 48?\4801?\82)被用于被用于流式细胞仪在小鼠样本上 (图 7b). Br J Pharmacol (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔F4/80抗体(ThermoFisher Scientific, 14-4801-82)被用于被用于免疫组化在小鼠样本上浓度为1:200. NPJ Regen Med (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Reprod Immunol (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Aging (Albany NY) (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s1g
赛默飞世尔F4/80抗体(eBioscience, 14-4801-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s1g). Nat Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔F4/80抗体(ThermoScientific, 11-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nat Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 6g
赛默飞世尔F4/80抗体(eBioscience, 12- 4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6g). Front Immunol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔F4/80抗体(eBiosciences, 78-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Biomedicines (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s1-1e
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1-1e). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 5f
赛默飞世尔F4/80抗体(Invitrogen, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5f). PLoS Biol (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:500-1:1000; 图 s1-2l
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, ma1-91124)被用于被用于免疫组化在小鼠样本上浓度为1:500-1:1000 (图 s1-2l). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3c, 3d
赛默飞世尔F4/80抗体(eBioscience, 17-4801)被用于被用于流式细胞仪在小鼠样本上 (图 3c, 3d). Cell Commun Signal (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Mucosal Immunol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 2s1a
赛默飞世尔F4/80抗体(eBioscience, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2s1a). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 s1a
赛默飞世尔F4/80抗体(CALTAG实验室, F4/80)被用于被用于免疫组化在小鼠样本上 (图 s1a). Front Immunol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:1000; 图 5s1c
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 5s1c). elife (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6g
赛默飞世尔F4/80抗体(Invitrogen, MF48020)被用于被用于流式细胞仪在小鼠样本上 (图 6g). Front Endocrinol (Lausanne) (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 2f
赛默飞世尔F4/80抗体(eBioscience, 4-4801-81;clone BM8)被用于被用于免疫组化在小鼠样本上 (图 2f). J Virol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔F4/80抗体(Thermo Fisher, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Adv (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:200; 图 s1a
赛默飞世尔F4/80抗体(Invitrogen, MF48000)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s1a). Sci Adv (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Front Immunol (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
  • 流式细胞仪; 小鼠; 图 s1i
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a) 和 被用于流式细胞仪在小鼠样本上 (图 s1i). Cell Rep (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4l
赛默飞世尔F4/80抗体(eBioscience, 45-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 4l). Sci Adv (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s20a
赛默飞世尔F4/80抗体(ThermoFisher, 61-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s20a). Nat Commun (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). MBio (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔F4/80抗体(Thermofisher, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell Rep (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔F4/80抗体(ThermoFisher, 45-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell Rep (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛默飞世尔F4/80抗体(eBiosciences, 14-4801-82))被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). Nat Microbiol (2020) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1g). elife (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 4a
赛默飞世尔F4/80抗体(eBioscience, MF480043)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4a). Nat Commun (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s1f
赛默飞世尔F4/80抗体(Invitrogen, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1f). Nat Commun (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔F4/80抗体(eBioscience, 47-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Metab (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, BM8)被用于被用于流式细胞仪在小鼠样本上. Cell Metab (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔F4/80抗体(Ebioscience, 47-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Oncoimmunology (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1s2d
赛默飞世尔F4/80抗体(eBioscience, 48-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 1s2d). elife (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2j
赛默飞世尔F4/80抗体(eBioscience, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Sci Adv (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔F4/80抗体(Thermo Fisher, 11-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Purinergic Signal (2019) ncbi
大鼠 单克隆(BM8)
  • 其他; 小鼠; 图 2b
赛默飞世尔F4/80抗体(eBioscience, 13-4801-85)被用于被用于其他在小鼠样本上 (图 2b). Int Immunol (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 11b
赛默飞世尔F4/80抗体(Invitrogen, 14480182)被用于被用于免疫组化在小鼠样本上 (图 11b). J Clin Invest (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Clin Invest (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 e3b
赛默飞世尔F4/80抗体(Invitrogen, 47-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3b). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:10; 图 5h
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 5h). Sci Adv (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). J Clin Invest (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300; 图 e5a, e5b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 e5a, e5b). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s6d
赛默飞世尔F4/80抗体(Invitrogen, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
赛默飞世尔F4/80抗体(生活技术, 14-4801-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). Cell Stem Cell (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. elife (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). Nature (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100; 图 6d
赛默飞世尔F4/80抗体(eBiosciences, 14-4801)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6d). Nat Commun (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Carcinogenesis (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s9
赛默飞世尔F4/80抗体(eBioscience, 48-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s9). Nat Commun (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Oncoimmunology (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b) 和 被用于流式细胞仪在小鼠样本上 (图 3a). Nat Immunol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3g
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Glia (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
赛默飞世尔F4/80抗体(eBioscience, 12-4801-80)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5r
赛默飞世尔F4/80抗体(eBioscience, 47-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 5r). Cell Rep (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s3e
赛默飞世尔F4/80抗体(eBioscience, 11-4801-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3e). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Leukoc Biol (2019) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Front Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Blood (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 ev2c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 ev2c). EMBO J (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 4c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4c). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:1000; 图 1e
赛默飞世尔F4/80抗体(eBioscience, 14-4801-82)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1e). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔F4/80抗体(eBioscience, 25-4801)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Neuroinflammation (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔F4/80抗体(ebioscience, 25-48-1)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Mol Cancer Res (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔F4/80抗体(生活技术, MF48020)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:600; 图 1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:600 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 5b
  • 流式细胞仪; 小鼠; 1:10; 图 5c
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 5b) 和 被用于流式细胞仪在小鼠样本上浓度为1:10 (图 5c). Endocrinology (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Infect Immun (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 1h
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1h). J Immunol (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 5a
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5a). Front Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 4d
赛默飞世尔F4/80抗体(Thermo Fisher, 12-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4d). Endocrinology (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 3h
赛默飞世尔F4/80抗体(eBiosciences, 14-4801-81)被用于被用于免疫组化在小鼠样本上 (图 3h). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔F4/80抗体(eBiosciences, 45-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Leukemia (2018) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔F4/80抗体(eBiosciences, 11-4801-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Diabetologia (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s4a
赛默飞世尔F4/80抗体(eBiosciences, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4a). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Front Cell Infect Microbiol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 s3a
赛默飞世尔F4/80抗体(eBiosciences, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3a). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔F4/80抗体(ThermoFisher Scientific, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Science (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Science (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 10s3a
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, 47-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 10s3a). elife (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 e3a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 e3a). Nature (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2h
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2h). J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). Sci Rep (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Exp Med (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300; 图 5f
赛默飞世尔F4/80抗体(eBioscience, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 5f). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 1b
赛默飞世尔F4/80抗体(Thermo Fisher, MF48005)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1b). J Neuroinflammation (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 5:200; 图 6a
  • 免疫细胞化学; 小鼠; 5:200; 图 8a
赛默飞世尔F4/80抗体(分子探针, MF48020)被用于被用于流式细胞仪在小鼠样本上浓度为5:200 (图 6a) 和 被用于免疫细胞化学在小鼠样本上浓度为5:200 (图 8a). J Biol Chem (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 s3c
赛默飞世尔F4/80抗体(eBioscience, 14-4801-82)被用于被用于免疫组化在小鼠样本上 (图 s3c). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). PLoS ONE (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 6d
赛默飞世尔F4/80抗体(Invitrogen, MF48000)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d). J Biol Chem (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔F4/80抗体(Affymetrix eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Front Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 5b
赛默飞世尔F4/80抗体(生活技术, MF48020)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5b). Cell Death Dis (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
赛默飞世尔F4/80抗体(eBiosciences, 12-4801-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Sci Rep (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4j
赛默飞世尔F4/80抗体(eBiosciences, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 4j). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s5b
赛默飞世尔F4/80抗体(eBioscience, 12-4801)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Nat Commun (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:150; 图 6g
赛默飞世尔F4/80抗体(eBioscience, 47-4801)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 6g). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 5c
  • 免疫组化; 小鼠; 1:100; 图 5a
赛默飞世尔F4/80抗体(Invitrogen, MF48005)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5c) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
赛默飞世尔F4/80抗体(生活技术, MF48000)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Oncoimmunology (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). JCI Insight (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Biol Chem (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4
赛默飞世尔F4/80抗体(Thermo Sci, MF48000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛默飞世尔F4/80抗体(Thermo Fischer Scientific, PA5-32399)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Oncotarget (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Development (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s10a
赛默飞世尔F4/80抗体(eBioscience, 17-4801)被用于被用于流式细胞仪在小鼠样本上 (图 s10a). J Clin Invest (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Prostate (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 1d
赛默飞世尔F4/80抗体(eBioscience, 25-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1d). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:200; 图 4a
赛默飞世尔F4/80抗体(Invitrogen, MF48020)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
赛默飞世尔F4/80抗体(eBioscience, 14-4801-81)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 1a
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:2000; 图 st1
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 st1). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 S10E
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 S10E). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
  • 流式细胞仪; 小鼠; 1:400; 图 1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b) 和 被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1a). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 47-4801-50)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 5f
赛默飞世尔F4/80抗体(ThermoFisher Scientific, MF48000)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Autophagy (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔F4/80抗体(ebioscience, 45-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Front Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4iv
赛默飞世尔F4/80抗体(CALTAG, MF48000)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4iv). Front Physiol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Diabetes Res (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1h
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1h). J Leukoc Biol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 st2
赛默飞世尔F4/80抗体(Invitrogen, MF48020)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, 17-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2c
赛默飞世尔F4/80抗体(Invitrogen, MF480)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 2d
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于免疫组化在小鼠样本上 (图 2d). Cancer Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔F4/80抗体(生活技术, MF48021)被用于被用于流式细胞仪在小鼠样本上 (表 1). Methods (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6E
赛默飞世尔F4/80抗体(eBiosciences, 45-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 6E). Oncoimmunology (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 s12b
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, MA516630)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s12b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 大鼠; 图 6d
赛默飞世尔F4/80抗体(AbCam Inc, MA5-16363)被用于被用于免疫组化在大鼠样本上 (图 6d). Br J Pharmacol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 表 1
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 3k
赛默飞世尔F4/80抗体(eBiosciences, 14-4801-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3k). J Mol Med (Berl) (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Leukoc Biol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6b
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6b). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Infect Immun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1A
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1A). Oncoimmunology (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5i
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5i). Am J Pathol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔F4/80抗体(ebioscience, 17-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS Comput Biol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 s6b
赛默飞世尔F4/80抗体(Thermo Fisher Scientific, MF48000,)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6b). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBioscience, 12-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Int J Mol Sci (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5d
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5d). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s3
赛默飞世尔F4/80抗体(eBioscience, 48-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔F4/80抗体(生活技术, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Theranostics (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:400; 图 s7a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s7a). Nat Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 5 ug/ml; 图 2b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4d
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4d). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 st2
赛默飞世尔F4/80抗体(eBioscience, 45-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Atherosclerosis (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 17-4801-80)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔F4/80抗体(eBiosciences, 11-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔F4/80抗体(生活技术, MF48020)被用于被用于免疫组化在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cancer Res (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 s1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s1a). Nat Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:20; 图 1
赛默飞世尔F4/80抗体(eBioscience, 53-4801)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 1). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔F4/80抗体(eBioscience, 13-4801)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:400; 图 3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔F4/80抗体(Thermo Scientific, MA5-16363)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). Oncogene (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 s5
赛默飞世尔F4/80抗体(ebioscience, 12-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5). J Clin Invest (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3j
赛默飞世尔F4/80抗体(eBioscience, 12-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 3j). Oncoimmunology (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔F4/80抗体(eBioscience, 12-4801)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cell Death Dis (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBiosciences, 48-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Lipid Res (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, 14-4801-82)被用于被用于免疫组化在小鼠样本上 (图 6). Oncotarget (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔F4/80抗体(eBioscence, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Acta Neuropathol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(eBioscience, 15-4801)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int J Mol Med (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b) 和 被用于流式细胞仪在小鼠样本上. Infect Immun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s21
赛默飞世尔F4/80抗体(eBioscience, 53-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s21). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Microbes Infect (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Dis Model Mech (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔F4/80抗体(Caltag, MF48020)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 5 ug/ml; 图 4
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为5 ug/ml (图 4). Endocrinology (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, 48-4801)被用于被用于流式细胞仪在小鼠样本上 (图 2). Dis Model Mech (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔F4/80抗体(eBioscience, 11-4801-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:200; 图 1d
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). PLoS ONE (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 S2d
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 S2d). Nat Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3h
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3h). Nat Med (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s11
赛默飞世尔F4/80抗体(Caltag Laboratories, RM2920)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s11). Science (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3C
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3C). J Exp Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscence, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). EMBO Mol Med (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, MF48005)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s6
赛默飞世尔F4/80抗体(eBiosciences, 17-4801-82)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:150; 图 s5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s5). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Metab (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100-1:200; 图 5
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫组化在小鼠样本上浓度为1:100-1:200 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s5). Nature (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上 (图 1). elife (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔F4/80抗体(eBioscience, 13-4801-85)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Mediators Inflamm (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nat Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(生活技术, MF48020)被用于被用于流式细胞仪在小鼠样本上 (图 4). Am J Pathol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Sci Rep (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:1000; 图 3c, 3d
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3c, 3d). Endocrinology (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1a
赛默飞世尔F4/80抗体(BD, 17-4801)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1a). Cell Physiol Biochem (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Cancer Discov (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 2
赛默飞世尔F4/80抗体(eBiosciences, clone:BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Science (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, MF48020)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔F4/80抗体(Thermo Scientific, PA5-32399)被用于. Carcinogenesis (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 7). Cell Res (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, 48-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Am J Respir Cell Mol Biol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Mol Immunol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBioscience, # 45-4801-80)被用于被用于流式细胞仪在小鼠样本上 (图 4). Front Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:50; 图 6
赛默飞世尔F4/80抗体(eBioscience, 45-4801-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔F4/80抗体(eBiosciences, 13-4801)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 s3
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, 17-4801)被用于被用于流式细胞仪在小鼠样本上 (图 5). Int J Obes (Lond) (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 11-4801)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, 17-4801)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 表 5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在人类样本上 (表 5). Gastroenterology (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. J Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:50; 图 1
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Sci Transl Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nat Immunol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:200; 图 4
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4). Am J Physiol Endocrinol Metab (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 表 s3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Infect Immun (2015) ncbi
大鼠 单克隆(BM8)
  • 其他; 小鼠; 图 6
赛默飞世尔F4/80抗体(eBioscience, 13-4801-85)被用于被用于其他在小鼠样本上 (图 6). Autophagy (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:500; 图 6c
赛默飞世尔F4/80抗体(eBioscience, 14-4801-82)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c). Am J Physiol Endocrinol Metab (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Immunother Cancer (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔F4/80抗体(ebioscince, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cancer Immunol Res (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于流式细胞仪在小鼠样本上 (图 3). Immunology (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Caltag Laboratories, MF48020)被用于被用于流式细胞仪在小鼠样本上 (图 2). Shock (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:15
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化在小鼠样本上浓度为1:15. Carcinogenesis (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Leukoc Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. EMBO J (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Am J Respir Cell Mol Biol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类; 1:200; 图 s4
赛默飞世尔F4/80抗体(eBioscience, 25-4801)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s4). Nat Cell Biol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Am Soc Nephrol (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Mol Cell Biol (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 1:100
赛默飞世尔F4/80抗体(THERMO, MA1-91124)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:66
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:66. Clin Vaccine Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:300
赛默飞世尔F4/80抗体(eBioscience, 11-4801-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, MF48005)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, 12-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔F4/80抗体(invitrogen, MF48005)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Cell (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Ebioscience, 17-4801-82)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 14-4801)被用于被用于免疫组化-石蜡切片在小鼠样本上. Kidney Int (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 流式细胞仪; 小鼠; 1:20
赛默飞世尔F4/80抗体(eBioscience, 48-4801-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于流式细胞仪在小鼠样本上浓度为1:20. Stem Cells (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上. Mucosal Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(eBioscience, B-M8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Obesity (Silver Spring) (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5b). PLoS ONE (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:50
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫组化在小鼠样本上浓度为1:50. FASEB J (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:250
赛默飞世尔F4/80抗体(Invitrogen, MF48004-3)被用于被用于免疫组化在小鼠样本上浓度为1:250. Cancer Res (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔F4/80抗体(eBioscience, clone: BM8)被用于被用于免疫组化在小鼠样本上浓度为1:100. Hepatol Res (2014) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫细胞化学在小鼠样本上. Nat Protoc (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于免疫组化-石蜡切片在小鼠样本上. Hepatology (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠; 1:50
赛默飞世尔F4/80抗体(eBioscience, 14-4801-85)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫组化在小鼠样本上浓度为1:50. J Assoc Res Otolaryngol (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, 12-4801)被用于被用于流式细胞仪在小鼠样本上. Endocrinology (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Invitrogen, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 1:100; 图 7
赛默飞世尔F4/80抗体(Invitrogen, MF48005)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7). Lab Invest (2013) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BMP)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, clone BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(Caltag, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nat Immunol (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Arthritis Res Ther (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Caltag, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2012) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Arthritis Res Ther (2012) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:25
赛默飞世尔F4/80抗体(eBioscience, 14-4801-81)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25. Biochim Biophys Acta (2012) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2011) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:50; 图 1
赛默飞世尔F4/80抗体(CALTAG, MF48020)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). PLoS ONE (2011) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, C1:A3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Invitrogen, C1:A3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 人类
赛默飞世尔F4/80抗体(Caltag, MF48005)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Ebioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2). PPAR Res (2010) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔F4/80抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上 (表 1). Free Radic Res (2010) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔F4/80抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上 (表 1). Free Radic Res (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(eBioScience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1). BMC Immunol (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2010) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上. Bone Marrow Transplant (2010) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上. Bone Marrow Transplant (2010) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2009) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Caltag, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Pathol (2009) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Caltag, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Pathol (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔F4/80抗体(Caltag, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 8). Cell Immunol (2009) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag Laboratories, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag-Invitrogen, MF48028)被用于被用于流式细胞仪在小鼠样本上. Nat Protoc (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag Laboratories, MF48005)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(CALTAG实验室, Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2008) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔F4/80抗体(eBioscience, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Nat Immunol (2008) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Caltag, C1:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Lett (2008) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(Caltag, C1:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Lett (2008) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Physiol Genomics (2007) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag Laboratories, MF48005)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上. Parasite Immunol (2007) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(eBiosciences, BM8)被用于被用于流式细胞仪在小鼠样本上. Nature (2007) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, MF48005)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔F4/80抗体(Caltag, CI, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Shock (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2007) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔F4/80抗体(Caltag, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Exp Dermatol (2006) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Cell Physiol (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2006) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:100; 图 1
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 1). J Virol (2005) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上 (图 3). Shock (2005) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 5). Infect Immun (2005) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔F4/80抗体(Caltag Laboratories, CI:A3?C1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Am J Respir Cell Mol Biol (2005) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 4 ug/ml; 图 2
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上浓度为4 ug/ml (图 2). Cytometry A (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(Caltag, CI: A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI-A3-1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). Eur J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2003) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Gen Virol (2003) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). Eur J Immunol (2003) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2002) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔F4/80抗体(Caltag Laboratories, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2001) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
赛默飞世尔F4/80抗体(Caltag, F4/80)被用于被用于流式细胞仪在小鼠样本上. J Nutr (2001) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔F4/80抗体(CalTag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 9
赛默飞世尔F4/80抗体(noco, noca)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9). Cell Tissue Res (1986) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(Cl:A3-1)
  • 其他; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(BioRAD, MCA497GA)被用于被用于其他在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1c). Nat Commun (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, MCA497G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). Nat Commun (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 6q
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化在小鼠样本上 (图 6q). iScience (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 8a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化在小鼠样本上 (图 8a). Front Pharmacol (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 7a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad Laboratories, Cl:A3-1)被用于被用于免疫组化在小鼠样本上 (图 7a). Clin Sci (Lond) (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:250; 图 5c
伯乐(Bio-Rad)公司F4/80抗体(BioRad, MCA497G)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5c). Int J Mol Sci (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s6a
伯乐(Bio-Rad)公司F4/80抗体(BioRad, MCA497A700T)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Front Immunol (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 8a
伯乐(Bio-Rad)公司F4/80抗体(BioRad, mca497ga)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 8a). Arterioscler Thromb Vasc Biol (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:80; 图 2c
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:80 (图 2c). NPJ Breast Cancer (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1s1d
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1s1d). elife (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 6b
伯乐(Bio-Rad)公司F4/80抗体(BioRad, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 6b). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:50; 图 3a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Front Pharmacol (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:1000; 图 7c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497G)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7c). Nat Commun (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3c). Oncoimmunology (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). J Nutr Biochem (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 2b, 2e
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b, 2e). Nat Commun (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 1h
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1h). JCI Insight (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200
伯乐(Bio-Rad)公司F4/80抗体(Biorad, MCA497RT)被用于被用于免疫组化在小鼠样本上浓度为1:200. Commun Biol (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 7c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7c). Cell Death Dis (2021) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Front Immunol (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 3a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3a). PLoS ONE (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). PLoS Genet (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 3c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497G)被用于被用于免疫组化在小鼠样本上 (图 3c). FEBS Open Bio (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 s1-1h
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1-1h). elife (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 2b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Clin Transl Immunology (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫组化在小鼠样本上. Cell Commun Signal (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 2c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化在小鼠样本上 (图 2c). Diabetes (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4b
伯乐(Bio-Rad)公司F4/80抗体(Biorad, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4b). elife (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad laboratories, MCA497GA)被用于被用于免疫组化在小鼠样本上 (图 1c). elife (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6b
伯乐(Bio-Rad)公司F4/80抗体(Biorad, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6b). Cancers (Basel) (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 1d
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). elife (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1d
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1d). J Am Soc Nephrol (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1d
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1d). Cell Death Dis (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 s5b, s5c
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 s5b, s5c). Nat Commun (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Nat Commun (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 20 ug/ml; 图 4a
伯乐(Bio-Rad)公司F4/80抗体(Bio-rad, CI: A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为20 ug/ml (图 4a). BMC Cancer (2020) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 2e
伯乐(Bio-Rad)公司F4/80抗体(BioRad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). elife (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500; 图 3f
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3f). Cell Stem Cell (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, Cl:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). J Immunother Cancer (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
  • 免疫组化; 小鼠; 图 1d
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e) 和 被用于免疫组化在小鼠样本上 (图 1d). Purinergic Signal (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Cell Mol Gastroenterol Hepatol (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2f
伯乐(Bio-Rad)公司F4/80抗体(BioRad, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2f). elife (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s1b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1b). Cell Death Differ (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:5000; 图 1d
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 1d). elife (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 5s1c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5s1c). elife (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4m
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad/AbD Serotec, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4m). Dev Cell (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:50; 图 3h
伯乐(Bio-Rad)公司F4/80抗体(BIORAD, A3-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3h). Front Immunol (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a, s2b
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a, s2b). J Pathol (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s2a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS ONE (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 4d
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497RT)被用于被用于免疫组化在小鼠样本上 (图 4d). Sci Rep (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3c). J Clin Invest (2019) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). PLoS ONE (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(BioRad, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5a). Acta Med Okayama (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7d
伯乐(Bio-Rad)公司F4/80抗体(Bio-rad, MCA497R)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7d). EMBO J (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:2000; 图 6a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, CI:A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:25; 图 5f
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 5f). Science (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Int J Obes (Lond) (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497RT)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). J Clin Invest (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 7
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). Sci Rep (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4d
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). Sci Rep (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 s3d
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, A3-1)被用于被用于免疫组化在小鼠样本上 (图 s3d). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, Cl:A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b). J Clin Invest (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:50; 图 1a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1a). Oncotarget (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500; 图 6h
伯乐(Bio-Rad)公司F4/80抗体(BioRad, Cl:A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6h). Nat Commun (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497B)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). PLoS ONE (2017) ncbi
大鼠 单克隆(Cl:A3-1)
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, Cl:A3-1)被用于. Cell (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5d
伯乐(Bio-Rad)公司F4/80抗体(Bio Rad, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5d). Toxicol Appl Pharmacol (2018) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3d
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3d). Sci Rep (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1d
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 1d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 s1a
  • 免疫印迹; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). Sci Rep (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:40; 图 7a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:40 (图 7a). JCI Insight (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 s1a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497A488T)被用于被用于免疫组化在小鼠样本上 (图 s1a). Neuron (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2c). J Clin Invest (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497RT)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cancer Res (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CIA31)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 5:200; 图 6a
  • 免疫细胞化学; 小鼠; 5:200; 图 8a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A488)被用于被用于流式细胞仪在小鼠样本上浓度为5:200 (图 6a) 和 被用于免疫细胞化学在小鼠样本上浓度为5:200 (图 8a). J Biol Chem (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2f
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f). EMBO Rep (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 0.5 ug/ml; 图 S5
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化在小鼠样本上浓度为0.5 ug/ml (图 S5). J Neuroinflammation (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 3j
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 3j). J Exp Med (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3b). Sci Rep (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 人类; 图 6B
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在人类样本上 (图 6B). Biomaterials (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 s1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497EL)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:100; 图 5c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497PBT)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5c). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 3f
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3f). EMBO J (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1j
伯乐(Bio-Rad)公司F4/80抗体(ABD Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上 (图 1j). Cell Mol Gastroenterol Hepatol (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 2q
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 2q). Cell Stem Cell (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, CI:A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). Cell (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 S7A
伯乐(Bio-Rad)公司F4/80抗体(Bio-rad, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 S7A). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:50; 图 s1g
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s1g). Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫印迹; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫印迹在小鼠样本上. Circ Res (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497A488)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). EMBO Mol Med (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497RT)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Dev Cell (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 6a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad AbD SeroTec, CL:A3:1)被用于被用于免疫组化在小鼠样本上 (图 6a). J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 3c
伯乐(Bio-Rad)公司F4/80抗体(ABDserotec, MCA497GA)被用于被用于免疫组化在小鼠样本上 (图 3c). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 s1a
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 s1a). J Lipid Res (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497RT)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 6j
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 6j). J Clin Invest (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8a). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 4 ug/ml; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为4 ug/ml (图 5). J Neuroinflammation (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:10; 图 2c
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497APCT)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 2c). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1
伯乐(Bio-Rad)公司F4/80抗体(BIO-RAD, MCA497G)被用于被用于免疫组化在小鼠样本上 (图 1). Nature (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). J Cell Mol Med (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 2
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497GA)被用于被用于免疫组化在小鼠样本上 (图 2). Mol Cell Endocrinol (2017) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s5e
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5e). J Clin Invest (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497A647)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 st2
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497A647)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4
伯乐(Bio-Rad)公司F4/80抗体(ABD Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3c
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, MCA497R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3c). Glia (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 8
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Biomed Res Int (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Am J Pathol (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Kidney Int (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, Cl:A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Blood (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 2c
伯乐(Bio-Rad)公司F4/80抗体(ABD Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上 (图 2c). J Biol Chem (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s3b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A647)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell Death Dis (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA4978)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. elife (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 s6
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, C1A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6). Science (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 7
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7). Biomed Res Int (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s3
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5a). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). Theranostics (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 人类; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化在人类样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:200; 图 s3
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A647)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3). Oncoimmunology (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Cardiovasc Diabetol (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 3
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 3). Oncogene (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 2i
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497DB)被用于被用于流式细胞仪在小鼠样本上 (图 2i). Oncoimmunology (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5). Breast Cancer Res (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497B)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4). J Lipid Res (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497FA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Development (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Diabetol Metab Syndr (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫细胞化学; 小鼠; 1:150
伯乐(Bio-Rad)公司F4/80抗体(AbD Secrotec, MCA497A488)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150. Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
伯乐(Bio-Rad)公司F4/80抗体(SEROTEC, CI:A3-1)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 7
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 7). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 2
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497B)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Oncogene (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:50; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497A488)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). Mol Med Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 s4
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化在小鼠样本上 (图 1). J Biol Chem (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1b
伯乐(Bio-Rad)公司F4/80抗体(Biorad, mca497GA)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Arterioscler Thromb Vasc Biol (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2). Oncotarget (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Sci Rep (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 7a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497APCT)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 7a). Acta Pharmacol Sin (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
伯乐(Bio-Rad)公司F4/80抗体(Serotec, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Mol Med Rep (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7c
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7c). PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497BB)被用于被用于免疫组化-石蜡切片在小鼠样本上. Angiogenesis (2016) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4). Mol Cancer (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD, MCA497A64)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 人类; 1:50; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD serotec, MCA497GA)被用于被用于免疫组化在人类样本上浓度为1:50 (图 5). Mol Neurodegener (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 5
  • 免疫组化; 小鼠; 1:500; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500; 图 1
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). J Neuroinflammation (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 5
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A488)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:350; 图 1g
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:350 (图 1g). PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4). Oncotarget (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, CI:A3.1)被用于被用于流式细胞仪在小鼠样本上. Immunity (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s1b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Mol Cell Cardiol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:400
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Neoplasia (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec., MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497RT)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Eur J Pharm Biopharm (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497RT)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). J Biol Chem (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497B)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4). J Neuroinflammation (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 大鼠; 图 6
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6). EMBO Mol Med (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 1:10
伯乐(Bio-Rad)公司F4/80抗体(Serotec/Biorad, MCA497FT)被用于被用于流式细胞仪在小鼠样本上浓度为1:10. PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
  • 流式细胞仪; 小鼠; 图 2d
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497RT)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b) 和 被用于流式细胞仪在小鼠样本上 (图 2d). PLoS ONE (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 人类; 1:50
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad, MCA497)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Pathol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 9e
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 9e). Nat Commun (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4). Biol Pharm Bull (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:80; 图 s3a
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotech, MCA497G)被用于被用于免疫组化在小鼠样本上浓度为1:80 (图 s3a). Nat Commun (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s8
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec,, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s8). Reprod Sci (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:30; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:30 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 表 1
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 1). Methods Mol Biol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:200. Stem Cell Res Ther (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司F4/80抗体(Serotec, Cl:A3-1)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫细胞化学; 人类; 1:100; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Abd serotec, MCA497RT)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Nat Cell Biol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 3
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上 (图 3). EMBO J (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 s3
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A647)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Bone Miner Res (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497EL)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Int J Cancer (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:5; 图 3b
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCAP497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5 (图 3b). J Cell Mol Med (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, A3-1)被用于被用于免疫组化在小鼠样本上 (图 1). Arthritis Rheumatol (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(ABD Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s7
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7). Cell Death Dis (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 7
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Gastric Cancer (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Curr Eye Res (2015) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 图 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Pathol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497A488)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Mol Pharm (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497RT)被用于被用于免疫组化在小鼠样本上浓度为1:100. Biochem Pharmacol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, clone Cl:A3-1)被用于被用于流式细胞仪在小鼠样本上. Pathobiology (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497B)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 人类; 1:500
伯乐(Bio-Rad)公司F4/80抗体(Serotec, clone Cl:A3-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. J Immunol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200
伯乐(Bio-Rad)公司F4/80抗体(Serotec, A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Physiol Rep (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-冰冻切片在小鼠样本上. Int J Clin Exp Pathol (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Blood (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:400
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. Mol Ther (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec-BioRad, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:500. Lab Invest (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫印迹; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(Serotec, mcA497R)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Bio-Rad Laboratories, MCA497PE)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497A488)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 人类
伯乐(Bio-Rad)公司F4/80抗体(Abd Serotec, MCA497A647)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Biochim Biophys Acta (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497G)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497GA)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Lab Invest (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 4
伯乐(Bio-Rad)公司F4/80抗体(AbD, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Gastroenterology (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:8000; 图 3
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:8000 (图 3). PLoS ONE (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, Cl:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Thyroid (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:100 or 1:500
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497)被用于被用于免疫组化在小鼠样本上浓度为1:100 or 1:500. J Am Heart Assoc (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1,000
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Acta Histochem Cytochem (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497GA)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 流式细胞仪; 小鼠; 表 1
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497F)被用于被用于流式细胞仪在小鼠样本上 (表 1). PLoS ONE (2013) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497R)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Cell Transplant (2014) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫细胞化学; 小鼠
伯乐(Bio-Rad)公司F4/80抗体(AbD Serotec, MCA497G)被用于被用于免疫细胞化学在小鼠样本上. J Am Heart Assoc (2012) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 10 ug/ml
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为10 ug/ml. FASEB J (2012) ncbi
大鼠 单克隆(Cl:A3-1)
  • 免疫组化; 小鼠; 1:500
伯乐(Bio-Rad)公司F4/80抗体(Serotec, MCA497R)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
艾博抗(上海)贸易有限公司
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:400; 图 5a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5a). J Neuroinflammation (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neuroinflammation (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a). Redox Biol (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:500; 图 s6d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6d). Front Endocrinol (Lausanne) (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
  • 免疫细胞化学; 小鼠; 图 1c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a) 和 被用于免疫细胞化学在小鼠样本上 (图 1c). Int J Mol Sci (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a). Cancers (Basel) (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4l
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4l). Nat Commun (2021) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 小鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). Int J Mol Med (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司F4/80抗体(abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100. Aging Cell (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Nutrients (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 6a). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2i
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2i). Mol Metab (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:500; 图 4d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a). BMC Musculoskelet Disord (2021) ncbi
大鼠 单克隆(F4/80)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab204266)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5c). BMC Musculoskelet Disord (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). J Inflamm Res (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Sci Rep (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 2a
  • 免疫组化; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a) 和 被用于免疫组化在人类样本上浓度为1:200 (图 1a). Redox Biol (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7c). Redox Biol (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司F4/80抗体(abcam, ab16911)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). PLoS ONE (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). J Biomed Sci (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Pediatr (2021) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 小鼠; 图 7j
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, 111101)被用于被用于免疫组化在小鼠样本上 (图 7j). Acta Neuropathol Commun (2021) ncbi
domestic rabbit (SP115)
  • 免疫细胞化学; 小鼠; 图 3c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab240946)被用于被用于免疫细胞化学在小鼠样本上 (图 3c). Nat Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100; 图 6a, 6b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6a, 6b). Animals (Basel) (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). elife (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). Cell Rep (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2c). Theranostics (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Int J Mol Sci (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫印迹; 小鼠; 图 2a
  • 免疫组化; 大鼠; 图 2e, 2f
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, BM8)被用于被用于免疫印迹在小鼠样本上 (图 2a) 和 被用于免疫组化在大鼠样本上 (图 2e, 2f). Oxid Med Cell Longev (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 6d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6d). Oncogene (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab6640)被用于被用于免疫组化在小鼠样本上 (图 4a). Basic Res Cardiol (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 1f
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化在小鼠样本上 (图 1f). World J Gastroenterol (2020) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s2m
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s2m). Mol Metab (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 4a). iScience (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Front Immunol (2019) ncbi
大鼠 单克隆(CI:A3-1)
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, #ab6640)被用于. Eneuro (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1b). Nat Commun (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). J Cell Mol Med (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 2c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). Nat Commun (2020) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4b). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Cell Death Dis (2019) ncbi
domestic rabbit (SP115)
  • 免疫组化; domestic rabbit; 图 8i, 8j, 8k, 8l
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab240946)被用于被用于免疫组化在domestic rabbit样本上 (图 8i, 8j, 8k, 8l). Int J Mol Sci (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 3b). Autophagy (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 人类; 图 s1a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1a). Cell (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:250; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4a). Nat Commun (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:50; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4a). Nat Commun (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
  • 流式细胞仪; 小鼠; 图 s2e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f) 和 被用于流式细胞仪在小鼠样本上 (图 s2e). Cell (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). J Cardiothorac Surg (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 10 ug/ml; 图 5s3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为10 ug/ml (图 5s3). elife (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5e). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6f
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6f). Cell Death Dis (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:100. Nature (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 1c, 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1c, 3a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s3h
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3h). Cell (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 3b, 3c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 3b, 3c). Cancer Res (2019) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). Nat Commun (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Microbiol (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 s2e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s2e). Breast Cancer Res (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫印迹在小鼠样本上 (图 1a). Dis Model Mech (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). J Clin Invest (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1d). Front Immunol (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). J Biol Chem (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 1b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, 6640)被用于被用于免疫组化在小鼠样本上 (图 1b). J Exp Med (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫细胞化学; 小鼠; 图 6k
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫细胞化学在小鼠样本上 (图 6k). Arterioscler Thromb Vasc Biol (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1d). Development (2018) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4h
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4h). Am J Pathol (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:400; 图 s6f
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s6f). Nat Cell Biol (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 图 6i
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在人类样本上 (图 6i). J Biol Chem (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 10 ug/ml; 图 4a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10 ug/ml (图 4a). Nat Med (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 7
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Mol Pain (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 st7
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 st7). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Int J Legal Med (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 5g
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5g). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab100790)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, AB111101)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s3). Parasitol Res (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 图 s5a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5e). Nat Commun (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3c). FASEB J (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 1g
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 1g). Nature (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 st2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab105156)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:50; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam,, AB60343)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 6a). J Pathol (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640-200)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3a). J Clin Invest (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 9
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 9). PLoS ONE (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab 6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Arthritis Res Ther (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Am J Pathol (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司F4/80抗体(abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6). Oncoimmunology (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司F4/80抗体(AbD Serotec, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Br J Pharmacol (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(abcam, ab6640)被用于被用于免疫组化在人类样本上 (图 3). J Hematol Oncol (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Clin Exp Nephrol (2017) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2a). Nature (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司F4/80抗体(AbCam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). J Lipid Res (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Science (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s5
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s5). Sci Rep (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, CI:A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Gastroenterology (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, 6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Cell Stem Cell (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1b). J Forensic Leg Med (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s5
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, 6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5). Cardiovasc Res (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 3.4 ug/ml; 图 4
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为3.4 ug/ml (图 4). Endocrinology (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1). Sci Rep (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). ScientificWorldJournal (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:500; 图 s6
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6). Nat Commun (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3b). Basic Res Cardiol (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 8a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(ABCAM, AB6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3f
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, AB6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3f). BMC Infect Dis (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3f
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, AB6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3f). Cancer Prev Res (Phila) (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:200; 图 s11i
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s11i). Nat Med (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 s4
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s4). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Ab16911)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 3). J Cell Mol Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, BM8)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nutrients (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 10 ug/ml
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, Clone CI: A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10 ug/ml. Clin Exp Metastasis (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上. J Virol (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 3). Cancer Biol Ther (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Chem Biol Interact (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). Biol Reprod (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Matrix Biol (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司F4/80抗体(AbD Serotec, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 6a
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 6a). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 图 7
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上 (图 7). Autophagy (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 表 1
艾博抗(上海)贸易有限公司F4/80抗体(AbCam, ab6640)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (表 1). Brain Behav Immun (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, 6640)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫细胞化学在大鼠样本上. Sci Rep (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. J Pharmacol Sci (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上. J Biol Chem (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, A3-1)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, A3-1)被用于被用于免疫组化在人类样本上浓度为1:200. Gut (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在人类样本上. Gastroenterology (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Stem Cells (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:250
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 和 被用于免疫组化在小鼠样本上浓度为1:250. Proc Natl Acad Sci U S A (2013) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, AB6640)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Mol Cell Endocrinol (2013) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫组化在小鼠样本上. J Bone Miner Res (2013) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2012) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 1:50
艾博抗(上海)贸易有限公司F4/80抗体(Abcam, ab6640)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Immunity (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-7)
  • 免疫组化; 小鼠; 200 ug/ml; 图 8a
圣克鲁斯生物技术F4/80抗体(Santa Cruz Biotechnology, sc-377009)被用于被用于免疫组化在小鼠样本上浓度为200 ug/ml (图 8a). Biomed Res Int (2021) ncbi
大鼠 单克隆(6A545)
  • 免疫组化; 小鼠; 图 5i
圣克鲁斯生物技术F4/80抗体(Santa Cruz, sc-71085)被用于被用于免疫组化在小鼠样本上 (图 5i). Front Pharmacol (2021) ncbi
小鼠 单克隆(C-7)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2e
圣克鲁斯生物技术F4/80抗体(Santa Cruz, sc-377009)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2e). Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 7a
圣克鲁斯生物技术F4/80抗体(Santa Cruz, sc-52664)被用于被用于免疫组化在小鼠样本上 (图 7a). Cell Death Dis (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 9e
圣克鲁斯生物技术F4/80抗体(Santa Cruz Biotechnolog, sc-52664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 9e). elife (2019) ncbi
小鼠 单克隆(C-7)
  • 流式细胞仪; 大鼠; 图 3j
圣克鲁斯生物技术F4/80抗体(Santa Cruz, sc-377009)被用于被用于流式细胞仪在大鼠样本上 (图 3j). J Cell Physiol (2019) ncbi
大鼠 单克隆(A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
圣克鲁斯生物技术F4/80抗体(Santa, sc-59171)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Mol Cancer Res (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
圣克鲁斯生物技术F4/80抗体(Santa Cruz, sc-52664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(A3-1)
  • 免疫组化; 人类; 图 3
圣克鲁斯生物技术F4/80抗体(Santa Cruz Biotechnology, sc-59171)被用于被用于免疫组化在人类样本上 (图 3). Sci Rep (2015) ncbi
大鼠 单克隆(6A404)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术F4/80抗体(Santa Cruz Biotechnology, SC-71087)被用于被用于免疫组化-石蜡切片在小鼠样本上. Placenta (2015) ncbi
大鼠 单克隆(A3-1)
  • 免疫组化-石蜡切片; 小鼠; 图 2
圣克鲁斯生物技术F4/80抗体(Santa Cruz, sc-59171)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Lipids Health Dis (2015) ncbi
小鼠 单克隆(C-7)
  • 免疫组化-冰冻切片; 仓鼠; 1:500; 图 4
圣克鲁斯生物技术F4/80抗体(SantaCruz, sc-377009)被用于被用于免疫组化-冰冻切片在仓鼠样本上浓度为1:500 (图 4). Biomed Res Int (2014) ncbi
大鼠 单克隆(6A545)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术F4/80抗体(Santa Cruz Biotechnology, sc-71085)被用于被用于免疫组化-冰冻切片在小鼠样本上. Cancer Sci (2014) ncbi
Bio X Cell
大鼠 单克隆(CI:A3-1)
  • 抑制或激活实验; 小鼠; 图 6j
Bio X CellF4/80抗体(BioXcell, CI:A3-1)被用于被用于抑制或激活实验在小鼠样本上 (图 6j). J Exp Med (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2S9R)
  • 免疫组化; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司F4/80抗体(Cell signaling, 70076)被用于被用于免疫组化在小鼠样本上 (图 2b). Mol Metab (2022) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2f
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, 7007)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 2f). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, D2S9R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, D2S9R)被用于被用于免疫组化在小鼠样本上 (图 1g). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司F4/80抗体(CST, 70076 T)被用于被用于免疫组化在小鼠样本上 (图 1d). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4a
赛信通(上海)生物试剂有限公司F4/80抗体(Cell signaling, 70076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, 70076)被用于被用于免疫组化在小鼠样本上 (图 s4a). Cells (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 图 3a, s3a, s4b
赛信通(上海)生物试剂有限公司F4/80抗体(Cell signaling, 70076)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a, s3a, s4b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3d
  • 免疫细胞化学; 小鼠; 1:250; 图 2g
赛信通(上海)生物试剂有限公司F4/80抗体(CST, 70076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 2g). Cancer Res (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化; 小鼠; 1:100; 图 3g
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling Technology, 70076)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3g). Diabetologia (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, 70076s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化; 小鼠; 1:200; 图 3a
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling Technology, 70076)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3a). Front Immunol (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling Technology, 70076)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). EBioMedicine (2021) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2b
赛信通(上海)生物试剂有限公司F4/80抗体(CST, 70076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2b). Theranostics (2020) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4b
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, 70076S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4b). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5c
赛信通(上海)生物试剂有限公司F4/80抗体(CST, 70076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5c). Cell Mol Gastroenterol Hepatol (2020) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 图 e8d
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, 70076)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e8d). Nature (2019) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化; 小鼠; 1:6000; 图 5c
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, 770765)被用于被用于免疫组化在小鼠样本上浓度为1:6000 (图 5c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化-石蜡切片; 小鼠; 图 e5c
  • 流式细胞仪; 小鼠; 图 e5b
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, 70076)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e5c) 和 被用于流式细胞仪在小鼠样本上 (图 e5b). Nature (2019) ncbi
domestic rabbit 单克隆(D2S9R)
  • 免疫组化; 小鼠; 图 2h1
赛信通(上海)生物试剂有限公司F4/80抗体(Cell Signaling, D2S9R)被用于被用于免疫组化在小鼠样本上 (图 2h1). J Immunol (2019) ncbi
Tonbo Biosciences
大鼠 单克隆(BM8.1)
  • 流式细胞仪; 小鼠; 1:1000; 图 1b
Tonbo BiosciencesF4/80抗体(Tonbo Biosciences, BM8.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1b). Sci Rep (2021) ncbi
大鼠 单克隆(BM8.1)
  • 流式细胞仪; 小鼠; 图 3a
Tonbo BiosciencesF4/80抗体(TONBO Biosciences, BM8.1)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Int J Mol Sci (2021) ncbi
大鼠 单克隆(BM8.1)
  • 流式细胞仪; 小鼠; 图 1d
Tonbo BiosciencesF4/80抗体(Tonbo Biosciences, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 1d). elife (2019) ncbi
小鼠 单克隆(BM8.1)
  • 流式细胞仪; 小鼠; 图 2a
Tonbo BiosciencesF4/80抗体(Tonbo, 20-4801)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS Pathog (2018) ncbi
小鼠 单克隆(BM8.1)
  • 流式细胞仪; 小鼠; 图 s1f
Tonbo BiosciencesF4/80抗体(Tonbo, 20-4801-U025)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). Cell (2018) ncbi
碧迪BD
单克隆(T45-2342)
  • 流式细胞仪; 小鼠; 1:400; 图 1j
碧迪BDF4/80抗体(BD Bioscience, 565411)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1j). Proc Natl Acad Sci U S A (2021) ncbi
单克隆(T45-2342)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
碧迪BDF4/80抗体(BD Biosciences, T45-2342)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Sci Rep (2021) ncbi
单克隆(T45-2342)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BDF4/80抗体(BD, 565410)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Infect Immun (2020) ncbi
大鼠 单克隆(T45-2342)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2a
碧迪BDF4/80抗体(BD Pharmingen, 565409)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2a). Sci Adv (2019) ncbi
大鼠 单克隆(T45-2342)
  • 流式细胞仪; 小鼠; 图 e10a
碧迪BDF4/80抗体(BD Biosciences, T45-2342)被用于被用于流式细胞仪在小鼠样本上 (图 e10a). Nature (2019) ncbi
单克隆(T45-2342)
  • 流式细胞仪; 小鼠; 1:100; 图 5s1d
碧迪BDF4/80抗体(BD, T45-2342)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5s1d). elife (2019) ncbi
单克隆(T45-2342)
  • 流式细胞仪; 小鼠; 图 1s1a
碧迪BDF4/80抗体(BD, 565614)被用于被用于流式细胞仪在小鼠样本上 (图 1s1a). elife (2019) ncbi
单克隆(T45-2342)
  • 流式细胞仪; 小鼠
碧迪BDF4/80抗体(BD, 565410)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2019) ncbi
文章列表
  1. Arinrad S, Wilke J, Seelbach A, Doeren J, Hindermann M, Butt U, et al. NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Mol Psychiatry. 2021;: pubmed 出版商
  2. Jiang L, Yang M, He S, Li Z, Li H, Niu T, et al. MMP12 knockout prevents weight and muscle loss in tumor-bearing mice. BMC Cancer. 2021;21:1297 pubmed 出版商
  3. Han H, Kim S, Kim Y, Jang S, Kwon Y, Choi D, et al. A novel role of CRTC2 in promoting nonalcoholic fatty liver disease. Mol Metab. 2022;55:101402 pubmed 出版商
  4. Bhattacharjee O, Ayyangar U, Kurbet A, Lakshmanan V, Palakodeti D, Ginhoux F, et al. Epithelial-Macrophage Crosstalk Initiates Sterile Inflammation in Embryonic Skin. Front Immunol. 2021;12:718005 pubmed 出版商
  5. Zhang M, Pan X, Fujiwara K, Jurcak N, Muth S, Zhou J, et al. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct Target Ther. 2021;6:366 pubmed 出版商
  6. Fahy N, Palomares Cabeza V, Lolli A, Witte Bouma J, Merino A, Ridwan Y, et al. Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of Endochondral Ossification in an Immunocompetent Xenogeneic Model. Front Immunol. 2021;12:715267 pubmed 出版商
  7. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  8. Xu J, Wen J, Fu L, Liao L, Zou Y, Zhang J, et al. Macrophage-specific RhoA knockout delays Wallerian degeneration after peripheral nerve injury in mice. J Neuroinflammation. 2021;18:234 pubmed 出版商
  9. Fearon A, Slabber C, Kuklin A, Bachofner M, Tortola L, Pohlmeier L, et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience. 2021;24:103143 pubmed 出版商
  10. Ni Y, Hu B, Wu G, Shao Z, Zheng Y, Zhang R, et al. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI. Theranostics. 2021;11:9431-9451 pubmed 出版商
  11. Choe D, Lee E, Beeghly Fadiel A, Wilson A, Whalen M, Adunyah S, et al. High-Fat Diet-Induced Obese Effects of Adipocyte-Specific CXCR2 Conditional Knockout in the Peritoneal Tumor Microenvironment of Ovarian Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  12. Van Maldegem F, Valand K, Cole M, Patel H, Angelova M, Rana S, et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat Commun. 2021;12:5906 pubmed 出版商
  13. Schünke H, Göbel U, Dikic I, Pasparakis M. OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice. Nat Commun. 2021;12:5912 pubmed 出版商
  14. Hoste E, Lecomte K, Annusver K, Vandamme N, Roels J, Maschalidi S, et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat Commun. 2021;12:5913 pubmed 出版商
  15. Fu H, Gui Y, Liu S, Wang Y, Bastacky S, Qiao Y, et al. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience. 2021;24:103112 pubmed 出版商
  16. Snyder L, Doherty C, Mercer H, Denkers E. Induction of IL-12p40 and type 1 immunity by Toxoplasma gondii in the absence of the TLR-MyD88 signaling cascade. PLoS Pathog. 2021;17:e1009970 pubmed 出版商
  17. Zhao Y, Sun J, Li Y, Zhou X, Zhai W, Wu Y, et al. Tryptophan 2,3-dioxygenase 2 controls M2 macrophages polarization to promote esophageal squamous cell carcinoma progression via AKT/GSK3β/IL-8 signaling pathway. Acta Pharm Sin B. 2021;11:2835-2849 pubmed 出版商
  18. Sun W, Byon C, Kim D, Choi H, Park J, Joo S, et al. Renoprotective Effects of Maslinic Acid on Experimental Renal Fibrosis in Unilateral Ureteral Obstruction Model via Targeting MyD88. Front Pharmacol. 2021;12:708575 pubmed 出版商
  19. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  20. Kiepura A, Stachyra K, Wisniewska A, Kus K, Czepiel K, Suski M, et al. The Anti-Atherosclerotic Action of FFAR4 Agonist TUG-891 in ApoE-Knockout Mice Is Associated with Increased Macrophage Polarization towards M2 Phenotype. Int J Mol Sci. 2021;22: pubmed 出版商
  21. Ye Q, Chen H, Ma H, Xiang X, Hu S, Xia C, et al. Xiaoyu Xiezhuo Drink Protects against Ischemia-Reperfusion Acute Kidney Injury in Aged Mice through Inhibiting the TGF-β1/Smad3 and HIF1 Signaling Pathways. Biomed Res Int. 2021;2021:9963732 pubmed 出版商
  22. Zhang P, Schlecht A, Wolf J, Boneva S, Laich Y, Koch J, et al. The role of interferon regulatory factor 8 for retinal tissue homeostasis and development of choroidal neovascularisation. J Neuroinflammation. 2021;18:215 pubmed 出版商
  23. Mahata T, Sengar A, Basak M, Das K, Pramanick A, Verma S, et al. Hepatic Regulator of G Protein Signaling 6 (RGS6) drives non-alcoholic fatty liver disease by promoting oxidative stress and ATM-dependent cell death. Redox Biol. 2021;46:102105 pubmed 出版商
  24. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed 出版商
  25. Yang C, Lei L, Collins J, Briones M, Ma L, Sturdevant G, et al. Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor. Nat Commun. 2021;12:5454 pubmed 出版商
  26. Rizvi Z, Dalal R, Sadhu S, Kumar Y, Kumar S, Gupta S, et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci Adv. 2021;7:eabg5016 pubmed 出版商
  27. Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, et al. A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site. Immunity. 2021;54:2385-2398.e10 pubmed 出版商
  28. Droho S, Cuda C, Perlman H, Lavine J. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep. 2021;11:18084 pubmed 出版商
  29. Guo W, Liu J, Cheng L, Liu Z, Zheng X, Liang H, et al. Metformin Alleviates Steatohepatitis in Diet-Induced Obese Mice in a SIRT1-Dependent Way. Front Pharmacol. 2021;12:704112 pubmed 出版商
  30. Huang Z, Liu S, Tang A, Al Rabadi L, Henkemeyer M, Mimche P, et al. Key role for EphB2 receptor in kidney fibrosis. Clin Sci (Lond). 2021;135:2127-2142 pubmed 出版商
  31. Bruno K, Macomb L, Morales Lara A, Mathews J, Frisancho J, Yang A, et al. Sex-Specific Effects of Plastic Caging in Murine Viral Myocarditis. Int J Mol Sci. 2021;22: pubmed 出版商
  32. Ho T, Yeh S, Chen S, Tsao Y. Integrin αv and Vitronectin Prime Macrophage-Related Inflammation and Contribute the Development of Dry Eye Disease. Int J Mol Sci. 2021;22: pubmed 出版商
  33. Gurley J, Gmyrek G, Hargis E, Bishop G, Carr D, Elliott M. The Chx10-Traf3 Knockout Mouse as a Viable Model to Study Neuronal Immune Regulation. Cells. 2021;10: pubmed 出版商
  34. Cortés A, Solas M, Pejenaute A, Abellanas M, Garcia Lacarte M, Aymerich M, et al. Expression of Endothelial NOX5 Alters the Integrity of the Blood-Brain Barrier and Causes Loss of Memory in Aging Mice. Antioxidants (Basel). 2021;10: pubmed 出版商
  35. Drzyzga A, Cichon T, Czapla J, Jarosz Biej M, Pilny E, Matuszczak S, et al. The Proper Administration Sequence of Radiotherapy and Anti-Vascular Agent-DMXAA Is Essential to Inhibit the Growth of Melanoma Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  36. Zhang Y, McGrath K, Ayoub E, Kingsley P, Yu H, Fegan K, et al. Mds1CreERT2, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Rep. 2021;36:109562 pubmed 出版商
  37. Félix I, Jokela H, Karhula J, Kotaja N, Savontaus E, Salmi M, et al. Single-Cell Proteomics Reveals the Defined Heterogeneity of Resident Macrophages in White Adipose Tissue. Front Immunol. 2021;12:719979 pubmed 出版商
  38. Petley E, Koay H, Henderson M, Sek K, Todd K, Keam S, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746 pubmed 出版商
  39. Dhawan U, Bhattacharya P, Narayanan S, Manickam V, Aggarwal A, Subramanian M. Hypercholesterolemia Impairs Clearance of Neutrophil Extracellular Traps and Promotes Inflammation and Atherosclerotic Plaque Progression. Arterioscler Thromb Vasc Biol. 2021;41:2598-2615 pubmed 出版商
  40. Zheng Z, Li C, Shao G, Li J, Xu K, Zhao Z, et al. Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI. Cell Death Dis. 2021;12:754 pubmed 出版商
  41. Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, et al. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog. 2021;17:e1009768 pubmed 出版商
  42. Han E, Qian H, Jiang B, Figetakis M, Kosyakova N, Tellides G, et al. A therapeutic vascular conduit to support in vivo cell-secreted therapy. NPJ Regen Med. 2021;6:40 pubmed 出版商
  43. Lu C, Liu Z, Klement J, Yang D, Merting A, Poschel D, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9: pubmed 出版商
  44. Hernandez Borrero L, Dicker D, Santiago J, Sanders J, Tian X, Ahsan N, et al. A subset of CB002 xanthine analogs bypass p53-signaling to restore a p53 transcriptome and target an S-phase cell cycle checkpoint in tumors with mutated-p53. elife. 2021;10: pubmed 出版商
  45. Jiao L, Eickhoff R, Egners A, Jumpertz S, Roth J, Erdem M, et al. Deletion of mTOR in liver epithelial cells enhances hepatic metastasis of colon cancer. J Pathol. 2021;255:270-284 pubmed 出版商
  46. Mathä L, Romera Hernandez M, Steer C, Yin Y, Orangi M, Shim H, et al. Migration of Lung Resident Group 2 Innate Lymphoid Cells Link Allergic Lung Inflammation and Liver Immunity. Front Immunol. 2021;12:679509 pubmed 出版商
  47. Okamura T, Hashimoto Y, Mori J, Yamaguchi M, Majima S, Senmaru T, et al. ILC2s Improve Glucose Metabolism Through the Control of Saturated Fatty Acid Absorption Within Visceral Fat. Front Immunol. 2021;12:669629 pubmed 出版商
  48. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  49. Petermann M, Orfanos Z, Sellau J, Gharaibeh M, Lotter H, Fleischer B, et al. CCR2 Deficiency Impairs Ly6Clo and Ly6Chi Monocyte Responses in Orientia tsutsugamushi Infection. Front Immunol. 2021;12:670219 pubmed 出版商
  50. Tulotta C, Lefley D, Moore C, Amariutei A, Spicer Hadlington A, Quayle L, et al. IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer. 2021;7:95 pubmed 出版商
  51. Adori C, Daraio T, Kuiper R, Barde S, Horvathova L, Yoshitake T, et al. Disorganization and degeneration of liver sympathetic innervations in nonalcoholic fatty liver disease revealed by 3D imaging. Sci Adv. 2021;7: pubmed 出版商
  52. Wang B, Li J, Jiao J, Xu M, Luo Y, Wang F, et al. Myeloid DJ-1 deficiency protects acetaminophen-induced acute liver injury through decreasing inflammatory response. Aging (Albany NY). 2021;13:18879-18893 pubmed 出版商
  53. Wutschka J, Kast B, Sator Schmitt M, Appak Baskoy S, Hess J, Sinn H, et al. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis. 2021;38:411-423 pubmed 出版商
  54. Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed 出版商
  55. Ide S, Kobayashi Y, Ide K, Strausser S, Abe K, Herbek S, et al. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. elife. 2021;10: pubmed 出版商
  56. Zhao J, Chen J, Li Y, Xia L, Wu Y. Bruton's tyrosine kinase regulates macrophage‑induced inflammation in the diabetic kidney via NLRP3 inflammasome activation. Int J Mol Med. 2021;48: pubmed 出版商
  57. Xu L, Zhang X, Xin Y, Ma J, Yang C, Zhang X, et al. Depdc5 deficiency exacerbates alcohol-induced hepatic steatosis via suppression of PPARα pathway. Cell Death Dis. 2021;12:710 pubmed 出版商
  58. Goyette M, Elkholi I, Apcher C, Kuasne H, Rothlin C, Muller W, et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  59. Ortega Molina A, Lebrero Fernández C, Sanz A, Deleyto Seldas N, Plata Gómez A, Menéndez C, et al. Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36:109372 pubmed 出版商
  60. Poudel S, Dixit M, Yildirim G, Cordoba Chacon J, Gahete M, Yuji I, et al. Sexual dimorphic impact of adult-onset somatopause on life span and age-induced osteoarthritis. Aging Cell. 2021;20:e13427 pubmed 出版商
  61. Marquez Exposito L, Tejedor Santamaria L, Santos Sánchez L, Valentijn F, Cantero Navarro E, Rayego Mateos S, et al. Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes. Front Pharmacol. 2021;12:662020 pubmed 出版商
  62. Yue Z, Jiang Z, Ruan B, Duan J, Song P, Liu J, et al. Disruption of myofibroblastic Notch signaling attenuates liver fibrosis by modulating fibrosis progression and regression. Int J Biol Sci. 2021;17:2135-2146 pubmed 出版商
  63. Jeong D, Kim H, Kim H, Kang M, Jung H, Oh Y, et al. Soluble Fas ligand drives autoantibody-induced arthritis by binding to DR5/TRAIL-R2. elife. 2021;10: pubmed 出版商
  64. Abbate J, Macri F, Arfuso F, Iaria C, Capparucci F, Anfuso C, et al. Anti-Atherogenic Effect of 10% Supplementation of Anchovy (Engraulis encrasicolus) Waste Protein Hydrolysates in ApoE-Deficient Mice. Nutrients. 2021;13: pubmed 出版商
  65. Maier J, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, et al. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  66. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  67. Cai C, Zeng D, Gao Q, Ma L, Zeng B, Zhou Y, et al. Decreased ferroportin in hepatocytes promotes macrophages polarize towards an M2-like phenotype and liver fibrosis. Sci Rep. 2021;11:13386 pubmed 出版商
  68. Nordlohne J, Hulsmann I, Schwafertz S, Zgrajek J, Grundmann M, von Vietinghoff S, et al. A flow cytometry approach reveals heterogeneity in conventional subsets of murine renal mononuclear phagocytes. Sci Rep. 2021;11:13251 pubmed 出版商
  69. Tian X, Wang Y, Lu Y, Wang W, Du J, Chen S, et al. Conditional depletion of macrophages ameliorates cholestatic liver injury and fibrosis via lncRNA-H19. Cell Death Dis. 2021;12:646 pubmed 出版商
  70. Ryu S, Shchukina I, Youm Y, Qing H, Hilliard B, Dlugos T, et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. elife. 2021;10: pubmed 出版商
  71. Tan H, Song Y, Chen J, Zhang N, Wang Q, Li Q, et al. Platelet-Like Fusogenic Liposome-Mediated Targeting Delivery of miR-21 Improves Myocardial Remodeling by Reprogramming Macrophages Post Myocardial Ischemia-Reperfusion Injury. Adv Sci (Weinh). 2021;8:e2100787 pubmed 出版商
  72. Uyanik B, Goloudina A, Akbarali A, Grigorash B, Petukhov A, Singhal S, et al. Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun. 2021;12:3622 pubmed 出版商
  73. Al Zaeed N, Budai Z, Szondy Z, Sarang Z. TAM kinase signaling is indispensable for proper skeletal muscle regeneration in mice. Cell Death Dis. 2021;12:611 pubmed 出版商
  74. Basse A, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, et al. Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Mol Metab. 2021;53:101271 pubmed 出版商
  75. Jungwirth U, van Weverwijk A, Evans R, Jenkins L, Vicente D, Alexander J, et al. Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis. Nat Commun. 2021;12:3516 pubmed 出版商
  76. Shan Z, Li L, Atkins C, Wang M, Wen Y, Jeong J, et al. Chitinase 3-like-1 contributes to acetaminophen-induced liver injury by promoting hepatic platelet recruitment. elife. 2021;10: pubmed 出版商
  77. Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong L, et al. Adipocyte Fatty Acid Binding Protein Promotes the Onset and Progression of Liver Fibrosis via Mediating the Crosstalk between Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells. Adv Sci (Weinh). 2021;8:e2003721 pubmed 出版商
  78. Ying L, Zhang M, Ma X, Si Y, Li X, Su J, et al. Macrophage LAMTOR1 Deficiency Prevents Dietary Obesity and Insulin Resistance Through Inflammation-Induced Energy Expenditure. Front Cell Dev Biol. 2021;9:672032 pubmed 出版商
  79. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  80. Hsieh Y, Lee K, Lei H, Lan K, Huo T, Lin Y, et al. (Pro)renin Receptor Knockdown Attenuates Liver Fibrosis Through Inactivation of ERK/TGF-β1/SMAD3 Pathway. Cell Mol Gastroenterol Hepatol. 2021;12:813-838 pubmed 出版商
  81. Choi E, Jeong J, Jang H, Ahn Y, Kim K, An H, et al. Skeletal Lipocalin-2 Is Associated with Iron-Related Oxidative Stress in ob/ob Mice with Sarcopenia. Antioxidants (Basel). 2021;10: pubmed 出版商
  82. Kemp S, Carpenter E, Steele N, Donahue K, Nwosu Z, Pacheco A, et al. Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB-Mediated Production of CXCL1. Cancer Res. 2021;81:4305-4318 pubmed 出版商
  83. Chen L, Cheng S, Sun K, Wang J, Liu X, Zhao Y, et al. Changes in macrophage and inflammatory cytokine expressions during fracture healing in an ovariectomized mice model. BMC Musculoskelet Disord. 2021;22:494 pubmed 出版商
  84. Kulkarni N, O Neill A, Dokoshi T, Luo E, Wong G, Gallo R. Sequence determinants in the cathelicidin LL-37 that promote inflammation via presentation of RNA to scavenger receptors. J Biol Chem. 2021;297:100828 pubmed 出版商
  85. Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba Extract 50 (GBE50) Ameliorates Insulin Resistance, Hepatic Steatosis and Liver Injury in High Fat Diet-Fed Mice. J Inflamm Res. 2021;14:1959-1971 pubmed 出版商
  86. Homer Bouthiette C, Xiao L, Hurley M. Gait disturbances and muscle dysfunction in fibroblast growth factor 2 knockout mice. Sci Rep. 2021;11:11005 pubmed 出版商
  87. Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch B, et al. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. Adv Sci (Weinh). 2021;8:2003395 pubmed 出版商
  88. Wang K, Ding Y, Xu C, Hao M, Li H, Ding L. Cldn-7 deficiency promotes experimental colitis and associated carcinogenesis by regulating intestinal epithelial integrity. Oncoimmunology. 2021;10:1923910 pubmed 出版商
  89. Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, et al. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif. 2021;54:e13056 pubmed 出版商
  90. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004 pubmed 出版商
  91. Miura I, Komine S, Okada K, Wada S, Warabi E, Uchida F, et al. Prevention of non-alcoholic steatohepatitis by long-term exercise via the induction of phenotypic changes in Kupffer cells of hyperphagic obese mice. Physiol Rep. 2021;9:e14859 pubmed 出版商
  92. Lindfors S, Polianskyte Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, et al. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia. 2021;64:1866-1879 pubmed 出版商
  93. Tan S, Liu X, Chen L, Wu X, Tao L, Pan X, et al. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 2021;12:474 pubmed 出版商
  94. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  95. McElrath C, Espinosa V, Lin J, Peng J, Sridhar R, Dutta O, et al. Critical role of interferons in gastrointestinal injury repair. Nat Commun. 2021;12:2624 pubmed 出版商
  96. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  97. Zhang G, Li R, Li W, Yang S, Sun Q, Yin H, et al. Toll-like receptor 3 ablation prevented high-fat diet-induced obesity and metabolic disorder. J Nutr Biochem. 2021;95:108761 pubmed 出版商
  98. Phong B, D Souza S, Baudier R, Wu E, Immethun V, Bauer D, et al. IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4+ T cell responses. Sci Rep. 2021;11:9686 pubmed 出版商
  99. Geng G, Liu J, Xu C, Pei Y, Chen L, Mu C, et al. Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. elife. 2021;10: pubmed 出版商
  100. Pramanick A, Chakraborti S, Mahata T, Basak M, Das K, Verma S, et al. G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol. 2021;43:101965 pubmed 出版商
  101. Frenis K, Helmstädter J, Ruan Y, Schramm E, Kalinovic S, Kröller Schön S, et al. Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Res Cardiol. 2021;116:31 pubmed 出版商
  102. Li N, Zhao S, Zhang Z, Zhu Y, Gliniak C, Vishvanath L, et al. Adiponectin preserves metabolic fitness during aging. elife. 2021;10: pubmed 出版商
  103. Mu W, Qian S, Song Y, Yang L, Song S, Yang Q, et al. BMP4-mediated browning of perivascular adipose tissue governs an anti-inflammatory program and prevents atherosclerosis. Redox Biol. 2021;43:101979 pubmed 出版商
  104. Jang S, Economides K, Moniz R, Sia C, Lewis N, McCoy C, et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun Biol. 2021;4:497 pubmed 出版商
  105. Andriessen E, Binet F, Fournier F, Hata M, Dejda A, Mawambo G, et al. Myeloid-resident neuropilin-1 promotes choroidal neovascularization while mitigating inflammation. EMBO Mol Med. 2021;13:e11754 pubmed 出版商
  106. Lin X, Twelkmeyer T, Zhu D, Zhang L, Zhao Y, Zhang C, et al. Homeostatic regulation of T follicular helper and antibody response to particle antigens by IL-1Ra of medullary sinus macrophage origin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  107. Sherafat A, Pfeiffer F, Reiss A, Wood W, Nishiyama A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat Commun. 2021;12:2265 pubmed 出版商
  108. Zhou J, Pei X, Yang Y, Wang Z, Gao W, Ye R, et al. Orphan nuclear receptor TLX promotes immunosuppression via its transcriptional activation of PD-L1 in glioma. J Immunother Cancer. 2021;9: pubmed 出版商
  109. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  110. Manrique Acevedo C, Padilla J, Naz H, Woodford M, Ghiarone T, Aroor A, et al. Mineralocorticoid Receptor in Myeloid Cells Mediates Angiotensin II-Induced Vascular Dysfunction in Female Mice. Front Physiol. 2021;12:588358 pubmed 出版商
  111. Jhala G, Selck C, Chee J, Kwong C, Pappas E, Thomas H, et al. Tolerance to Proinsulin-1 Reduces Autoimmune Diabetes in NOD Mice. Front Immunol. 2021;12:645817 pubmed 出版商
  112. Zheng W, Song H, Luo Z, Wu H, Chen L, Wang Y, et al. Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  113. Maier A, Reichhart N, Gonnermann J, Kociok N, Riechardt A, Gundlach E, et al. Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse. PLoS ONE. 2021;16:e0245143 pubmed 出版商
  114. Rosa J, Farré Alins V, Ortega M, Navarrete M, López Rodríguez A, Palomino Antolin A, et al. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol. 2021;178:3395-3413 pubmed 出版商
  115. Saunders D, Aamodt K, Richardson T, Hopkirk A, Aramandla R, Poffenberger G, et al. Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. NPJ Regen Med. 2021;6:22 pubmed 出版商
  116. Zhang Z, Zhang N, Shi J, Dai C, Wu S, Jiao M, et al. Allograft or Recipient ST2 Deficiency Oppositely Affected Cardiac Allograft Vasculopathy via Differentially Altering Immune Cells Infiltration. Front Immunol. 2021;12:657803 pubmed 出版商
  117. Lisk C, Yuen R, Kuniholm J, Antos D, Reiser M, Wetzler L. CD169+ Subcapsular Macrophage Role in Antigen Adjuvant Activity. Front Immunol. 2021;12:624197 pubmed 出版商
  118. Joseph R, Soundararajan R, Vasaikar S, Yang F, Allton K, Tian L, et al. CD8+ T cells inhibit metastasis and CXCL4 regulates its function. Br J Cancer. 2021;125:176-189 pubmed 出版商
  119. Strowitzki M, Kimmer G, Wehrmann J, Ritter A, Radhakrishnan P, Opitz V, et al. Inhibition of HIF-prolyl hydroxylases improves healing of intestinal anastomoses. JCI Insight. 2021;6: pubmed 出版商
  120. Chen J, Wu Y, Li C, Jheng H, Kao L, Yang C, et al. PPARγ activation improves the microenvironment of perivascular adipose tissue and attenuates aortic stiffening in obesity. J Biomed Sci. 2021;28:22 pubmed 出版商
  121. Cheah F, Presicce P, Tan T, Carey B, Kallapur S. Studying the Effects of Granulocyte-Macrophage Colony-Stimulating Factor on Fetal Lung Macrophages During the Perinatal Period Using the Mouse Model. Front Pediatr. 2021;9:614209 pubmed 出版商
  122. Chu A, Kok S, TSUI J, Lin M, Aguirre B, Wadehra M. Epithelial membrane protein 2 (Emp2) modulates innate immune cell population recruitment at the maternal-fetal interface. J Reprod Immunol. 2021;145:103309 pubmed 出版商
  123. Voisin M, Shrestha E, Rollet C, Nikain C, Josefs T, Mahe M, et al. Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice. Commun Biol. 2021;4:420 pubmed 出版商
  124. Sugita J, Fujiu K, Nakayama Y, Matsubara T, Matsuda J, Oshima T, et al. Cardiac macrophages prevent sudden death during heart stress. Nat Commun. 2021;12:1910 pubmed 出版商
  125. Kim D, Park J, Choi H, Kim C, Bae E, Ma S, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Dis. 2021;12:320 pubmed 出版商
  126. Bondulich M, Fan Y, Song Y, Giorgini F, Bates G. Ablation of kynurenine 3-monooxygenase rescues plasma inflammatory cytokine levels in the R6/2 mouse model of Huntington's disease. Sci Rep. 2021;11:5484 pubmed 出版商
  127. Petty A, Dai R, Lapalombella R, Baiocchi R, Benson D, Li Z, et al. Hedgehog-induced PD-L1 on tumor-associated macrophages is critical for suppression of tumor-infiltrating CD8+ T cell function. JCI Insight. 2021;6: pubmed 出版商
  128. Reyes J, Ekmark Lewén S, Perdiki M, Klingstedt T, Hoffmann A, Wiechec E, et al. Accumulation of alpha-synuclein within the liver, potential role in the clearance of brain pathology associated with Parkinson's disease. Acta Neuropathol Commun. 2021;9:46 pubmed 出版商
  129. Zhang Y, Liu J, Wang X, Zhang J, Xie C. Extracellular vesicle-encapsulated microRNA-23a from dorsal root ganglia neurons binds to A20 and promotes inflammatory macrophage polarization following peripheral nerve injury. Aging (Albany NY). 2021;13:6752-6764 pubmed 出版商
  130. Mpekris F, Panagi M, Voutouri C, Martin J, Samuel R, Takahashi S, et al. Normalizing the Microenvironment Overcomes Vessel Compression and Resistance to Nano-immunotherapy in Breast Cancer Lung Metastasis. Adv Sci (Weinh). 2021;8:2001917 pubmed 出版商
  131. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  132. Wang Y, Yang Y, Wang M, Wang S, Jeong J, Xu L, et al. Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Sci Transl Med. 2021;13: pubmed 出版商
  133. Wang H, Huang J, Sue M, Ho W, Hsu Y, Chang K, et al. Interleukin-24 protects against liver injury in mouse models. EBioMedicine. 2021;64:103213 pubmed 出版商
  134. Tyagi A, Sharma S, Wu K, Wu S, Xing F, Liu Y, et al. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun. 2021;12:474 pubmed 出版商
  135. Ogura Y, Tajiri K, Murakoshi N, Xu D, Yonebayashi S, Li S, et al. Neutrophil Elastase Deficiency Ameliorates Myocardial Injury Post Myocardial Infarction in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  136. da Silva R, Elizondo D, Brandy N, Haddock N, Boddie T, de Oliveira L, et al. Leishmania donovani infection suppresses Allograft Inflammatory Factor-1 in monocytes and macrophages to inhibit inflammatory responses. Sci Rep. 2021;11:946 pubmed 出版商
  137. Kumar A, Sundaram K, Mu J, Dryden G, Sriwastva M, Lei C, et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat Commun. 2021;12:213 pubmed 出版商
  138. Yoon S, Song S, Shin J, Kang S, Kim H, You H. Protective Effects of Korean Herbal Remedy against Airway Inflammation in an Allergic Asthma by Suppressing Eosinophil Recruitment and Infiltration in Lung. Antioxidants (Basel). 2020;10: pubmed 出版商
  139. Jin X, Morro B, Tørresen O, Moiche V, Solbakken M, Jakobsen K, et al. Innovation in Nucleotide-Binding Oligomerization-Like Receptor and Toll-Like Receptor Sensing Drives the Major Histocompatibility Complex-II Free Atlantic Cod Immune System. Front Immunol. 2020;11:609456 pubmed 出版商
  140. Ebelt N, Zuniga E, Marzagalli M, Zamloot V, Blazar B, Salgia R, et al. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy. Biomedicines. 2020;8: pubmed 出版商
  141. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  142. Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, et al. D-mannose suppresses macrophage IL-1β production. Nat Commun. 2020;11:6343 pubmed 出版商
  143. Malsy J, Alvarado A, Lamontagne J, Strittmatter K, Marneros A. Distinct effects of complement and of NLRP3- and non-NLRP3 inflammasomes for choroidal neovascularization. elife. 2020;9: pubmed 出版商
  144. Song M, YEKU O, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298 pubmed 出版商
  145. Abbate J, Macri F, Capparucci F, Iaria C, Briguglio G, Cicero L, et al. Administration of Protein Hydrolysates from Anchovy (Engraulis Encrasicolus) Waste for Twelve Weeks Decreases Metabolic Dysfunction-Associated Fatty Liver Disease Severity in ApoE-/-Mice. Animals (Basel). 2020;10: pubmed 出版商
  146. Crespo M, González Terán B, Nikolic I, Mora A, Folgueira C, Rodriguez E, et al. Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. elife. 2020;9: pubmed 出版商
  147. Karki R, Sharma B, Tuladhar S, Williams E, Zalduondo L, Samir P, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184:149-168.e17 pubmed 出版商
  148. Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, et al. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. elife. 2020;9: pubmed 出版商
  149. Mia M, Cibi D, Abdul Ghani S, Song W, Tee N, Ghosh S, et al. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol. 2020;18:e3000941 pubmed 出版商
  150. Kalinski A, Yoon C, Huffman L, Duncker P, Kohen R, Passino R, et al. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. elife. 2020;9: pubmed 出版商
  151. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  152. Hara H, Maemura S, Fujiwara T, Takeda N, Ishii S, Yagi H, et al. Inhibition of transforming growth factor-β signaling in myeloid cells ameliorates aortic aneurysmal formation in Marfan syndrome. PLoS ONE. 2020;15:e0239908 pubmed 出版商
  153. Dewhurst M, Ow J, Zafer G, Van Hul N, Wollmann H, Bisteau X, et al. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet. 2020;16:e1009084 pubmed 出版商
  154. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  155. Katano I, Ito R, Kawai K, Takahashi T. Improved Detection of in vivo Human NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity Using a Novel NOG-FcγR-Deficient Human IL-15 Transgenic Mouse. Front Immunol. 2020;11:532684 pubmed 出版商
  156. Li Z, Murakoshi M, Ichikawa S, Koshida T, Adachi E, Suzuki C, et al. The sodium-glucose cotransporter 2 inhibitor tofogliflozin prevents diabetic kidney disease progression in type 2 diabetic mice. FEBS Open Bio. 2020;10:2761-2770 pubmed 出版商
  157. Rundqvist H, Veliça P, Barbieri L, Gameiro P, Bargiela D, Gojkovic M, et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. elife. 2020;9: pubmed 出版商
  158. Gurley J, Gmyrek G, McClellan M, Hargis E, Hauck S, Dozmorov M, et al. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  159. Alonso Herranz L, Sahún Español Á, Paredes A, Gonzalo P, Gkontra P, Núñez V, et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. elife. 2020;9: pubmed 出版商
  160. Fujiwara Y, Ohnishi K, Horlad H, Saito Y, Shiraishi D, Takeya H, et al. CD163 deficiency facilitates lipopolysaccharide-induced inflammatory responses and endotoxin shock in mice. Clin Transl Immunology. 2020;9:e1162 pubmed 出版商
  161. Wang B, Li Q, Wang J, Zhao S, Nashun B, Qin L, et al. Plasmodium infection inhibits tumor angiogenesis through effects on tumor-associated macrophages in a murine implanted hepatoma model. Cell Commun Signal. 2020;18:157 pubmed 出版商
  162. Grubisic V, McClain J, Fried D, Grants I, Rajasekhar P, Csizmadia E, et al. Enteric Glia Modulate Macrophage Phenotype and Visceral Sensitivity following Inflammation. Cell Rep. 2020;32:108100 pubmed 出版商
  163. Liu C, Teo M, Pek S, Wu X, Leong M, Tay H, et al. A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes. 2020;69:2467-2480 pubmed 出版商
  164. Hu J, Wang H, Li X, Liu Y, Mi Y, Kong H, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. Theranostics. 2020;10:9702-9720 pubmed 出版商
  165. Hall B, Gleiberman A, Strom E, Krasnov P, Frescas D, Vujcic S, et al. Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. Aging Cell. 2020;19:e13219 pubmed 出版商
  166. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  167. Fernandes R, Li C, Wang G, Yang X, Savvides C, Glassman C, et al. Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. elife. 2020;9: pubmed 出版商
  168. Wang L, Zheng J, Pathak J, Chen Y, Liang D, Yang L, et al. SLIT2 Overexpression in Periodontitis Intensifies Inflammation and Alveolar Bone Loss, Possibly via the Activation of MAPK Pathway. Front Cell Dev Biol. 2020;8:593 pubmed 出版商
  169. Ricci B, Tycksen E, Celik H, Belle J, Fontana F, Civitelli R, et al. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. elife. 2020;9: pubmed 出版商
  170. Suttorp C, van Rheden R, van Dijk N, Helmich M, Kuijpers Jagtman A, Wagener F. Heme Oxygenase Protects against Placental Vascular Inflammation and Abortion by the Alarmin Heme in Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  171. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A. 2020;117:20159-20170 pubmed 出版商
  172. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  173. Yifan Z, Benxiang N, Zheng X, Luwei X, Liuhua Z, Yuzheng G, et al. Ceftriaxone Calcium Crystals Induce Acute Kidney Injury by NLRP3-Mediated Inflammation and Oxidative Stress Injury. Oxid Med Cell Longev. 2020;2020:6428498 pubmed 出版商
  174. Cabañero D, Ramírez López A, Drews E, Schmöle A, Otte D, Wawrzczak Bargiela A, et al. Protective role of neuronal and lymphoid cannabinoid CB2 receptors in neuropathic pain. elife. 2020;9: pubmed 出版商
  175. Green D, Eyre H, Singh A, Taylor J, Chu J, Jeys L, et al. Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer. Oncogene. 2020;: pubmed 出版商
  176. Danzer H, Glaesner J, Baerenwaldt A, Reitinger C, Lux A, Heger L, et al. Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. elife. 2020;9: pubmed 出版商
  177. Azcutia V, Kelm M, Luissint A, Boerner K, Flemming S, Quirós M, et al. Neutrophil expressed CD47 regulates CD11b/CD18-dependent neutrophil transepithelial migration in the intestine in vivo. Mucosal Immunol. 2020;: pubmed 出版商
  178. Ning Y, Ding J, Sun X, Xie Y, Su M, Ma C, et al. HDAC9 deficiency promotes tumor progression by decreasing the CD8+ dendritic cell infiltration of the tumor microenvironment. J Immunother Cancer. 2020;8: pubmed 出版商
  179. Lubos N, van der Gaag S, Gerçek M, Kant S, Leube R, Krusche C. Inflammation shapes pathogenesis of murine arrhythmogenic cardiomyopathy. Basic Res Cardiol. 2020;115:42 pubmed 出版商
  180. Kim E, Woodruff M, Grigoryan L, Maier B, Lee S, Mandal P, et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. elife. 2020;9: pubmed 出版商
  181. Wang Y, Chaffee T, LaRue R, Huggins D, Witschen P, Ibrahim A, et al. Tissue-resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice. elife. 2020;9: pubmed 出版商
  182. Witschen P, Chaffee T, Brady N, Huggins D, Knutson T, LaRue R, et al. Tumor Cell Associated Hyaluronan-CD44 Signaling Promotes Pro-Tumor Inflammation in Breast Cancer. Cancers (Basel). 2020;12: pubmed 出版商
  183. Bekeschus S, Clemen R, Nießner F, Sagwal S, Freund E, Schmidt A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Adv Sci (Weinh). 2020;7:1903438 pubmed 出版商
  184. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  185. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  186. Somerville T, Biffi G, Da ler Plenker J, Hur S, He X, Vance K, et al. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. elife. 2020;9: pubmed 出版商
  187. Ide S, Yahara Y, Kobayashi Y, Strausser S, Ide K, Watwe A, et al. Yolk-sac-derived macrophages progressively expand in the mouse kidney with age. elife. 2020;9: pubmed 出版商
  188. Viau A, Baaziz M, Aka A, Mazloum M, Nguyen C, Kuehn E, et al. Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol. 2020;31:1035-1049 pubmed 出版商
  189. Tashita C, Hoshi M, Hirata A, Nakamoto K, Ando T, Hattori T, et al. Kynurenine plays an immunosuppressive role in 2,4,6-trinitrobenzene sulfate-induced colitis in mice. World J Gastroenterol. 2020;26:918-932 pubmed 出版商
  190. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  191. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  192. Gibaldi D, Vilar Pereira G, Pereira I, Silva A, Barrios L, Ramos I, et al. CCL3/Macrophage Inflammatory Protein-1α Is Dually Involved in Parasite Persistence and Induction of a TNF- and IFNγ-Enriched Inflammatory Milieu in Trypanosoma cruzi-Induced Chronic Cardiomyopathy. Front Immunol. 2020;11:306 pubmed 出版商
  193. Wuggenig P, Kaya B, Melhem H, Ayata C, Hruz P, Sayan A, et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol. 2020;3:130 pubmed 出版商
  194. Chao Y, Liang C, Tao H, Du Y, Wu D, Dong Z, et al. Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Sci Adv. 2020;6:eaaz4204 pubmed 出版商
  195. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  196. Watanabe M, Kaneko Y, Ohishi Y, Kinoshita M, Sakairi T, Ikeuchi H, et al. Importance of methodology in the evaluation of renal mononuclear phagocytes and analysis of a model of experimental nephritis with Shp1 conditional knockout mice. Biochem Biophys Rep. 2020;22:100741 pubmed 出版商
  197. Satoh A, Han S, Araki M, Nakagawa Y, Ohno H, Mizunoe Y, et al. CREBH Improves Diet-Induced Obesity, Insulin Resistance, and Metabolic Disturbances by FGF21-Dependent and FGF21-Independent Mechanisms. iScience. 2020;23:100930 pubmed 出版商
  198. Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6:eaay9269 pubmed 出版商
  199. Wei J, Mattapallil M, Horai R, Jittayasothorn Y, Modi A, Sen H, et al. A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina. elife. 2020;9: pubmed 出版商
  200. Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I, et al. Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne). 2020;11:30 pubmed 出版商
  201. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  202. Takai A, Kikuchi K, Ichimura M, Tsuneyama K, Moritoki Y, Matsumoto K, et al. Fructo-oligosaccharides ameliorate steatohepatitis, visceral adiposity, and associated chronic inflammation via increased production of short-chain fatty acids in a mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020;20:46 pubmed 出版商
  203. Lu Z, Zou J, Li S, Topper M, Tao Y, Zhang H, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579:284-290 pubmed 出版商
  204. Clark D, Brazina S, Yang F, Hu D, Hsieh C, Niemi E, et al. Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell. 2020;19:e13112 pubmed 出版商
  205. Lindner P, Paul S, Eckstein M, Hampel C, Muenzner J, Erlenbach Wuensch K, et al. EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells. Cell Death Dis. 2020;11:147 pubmed 出版商
  206. Zhang Q, Xiang L, Zaman M, Dong W, He G, Deng G. Predominant Role of Immunoglobulin G in the Pathogenesis of Splenomegaly in Murine Lupus. Front Immunol. 2019;10:3020 pubmed 出版商
  207. Monzon Casanova E, Matheson L, Tabbada K, Zarnack K, Smith C, Turner M. Polypyrimidine tract-binding proteins are essential for B cell development. elife. 2020;9: pubmed 出版商
  208. Kapralov A, Yang Q, Dar H, Tyurina Y, Anthonymuthu T, Kim R, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16:278-290 pubmed 出版商
  209. Vasquez C, Mezzano V, Kessler N, Swardh F, Ernestad D, Mahoney V, et al. Connexin43 expression in bone marrow derived cells contributes to the electrophysiological properties of cardiac scar tissue. Sci Rep. 2020;10:2617 pubmed 出版商
  210. Martinez L, Garcia G, Contreras D, Gong D, Sun R, Arumugaswami V. Zika Virus Mucosal Infection Provides Protective Immunity. J Virol. 2020;94: pubmed 出版商
  211. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  212. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  213. Cohen G, Chandran P, Lorsung R, Tomlinson L, Sundby M, Burks S, et al. The Impact of Focused Ultrasound in Two Tumor Models: Temporal Alterations in the Natural History on Tumor Microenvironment and Immune Cell Response. Cancers (Basel). 2020;12: pubmed 出版商
  214. Rumfield C, Hyseni I, McBride J, Walker D, Fang R. Activation of ASC Inflammasome Driven by Toll-Like Receptor 4 Contributes to Host Immunity against Rickettsial Infection. Infect Immun. 2020;88: pubmed 出版商
  215. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  216. Ali S, Mansour A, Huang W, Queen N, Mo X, Anderson J, et al. CSF1R inhibitor PLX5622 and environmental enrichment additively improve metabolic outcomes in middle-aged female mice. Aging (Albany NY). 2020;12:2101-2122 pubmed 出版商
  217. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  218. Plemel J, Stratton J, Michaels N, Rawji K, Zhang E, Sinha S, et al. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci Adv. 2020;6:eaay6324 pubmed 出版商
  219. Bálint L, Ocskay Z, Deák B, Aradi P, Jakus Z. Lymph Flow Induces the Postnatal Formation of Mature and Functional Meningeal Lymphatic Vessels. Front Immunol. 2019;10:3043 pubmed 出版商
  220. Singh K, Leu J, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, et al. African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun. 2020;11:473 pubmed 出版商
  221. Panda S, Wigerblad G, Jiang L, Jiménez Andrade Y, Iyer V, Shen Y, et al. IL-4 controls activated neutrophil FcγR2b expression and migration into inflamed joints. Proc Natl Acad Sci U S A. 2020;117:3103-3113 pubmed 出版商
  222. Mei Y, Wang Z, Zhang Y, Wan T, Xue J, He W, et al. FA-97, a New Synthetic Caffeic Acid Phenethyl Ester Derivative, Ameliorates DSS-Induced Colitis Against Oxidative Stress by Activating Nrf2/HO-1 Pathway. Front Immunol. 2019;10:2969 pubmed 出版商
  223. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  224. Liu T, Guo Z, Song X, Liu L, Dong W, Wang S, et al. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J Cell Mol Med. 2020;24:2648-2662 pubmed 出版商
  225. Cassidy L, Young A, Young C, Soilleux E, Fielder E, Weigand B, et al. Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat Commun. 2020;11:307 pubmed 出版商
  226. Tharp M, Malki S, Bortvin A. Maximizing the ovarian reserve in mice by evading LINE-1 genotoxicity. Nat Commun. 2020;11:330 pubmed 出版商
  227. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  228. Chen M, Lu P, Ma Q, Cao Y, Chen N, Li W, et al. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Sci Adv. 2020;6:eaax9605 pubmed 出版商
  229. Gacem N, Kavo A, Zerad L, Richard L, Mathis S, Kapur R, et al. ADAR1 mediated regulation of neural crest derived melanocytes and Schwann cell development. Nat Commun. 2020;11:198 pubmed 出版商
  230. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  231. Khorooshi R, Marczynska J, Dieu R, Wais V, Hansen C, Kavan S, et al. Innate signaling within the central nervous system recruits protective neutrophils. Acta Neuropathol Commun. 2020;8:2 pubmed 出版商
  232. Campuzano A, Castro López N, Martinez A, Olszewski M, Ganguly A, Leopold Wager C, et al. CARD9 Is Required for Classical Macrophage Activation and the Induction of Protective Immunity against Pulmonary Cryptococcosis. MBio. 2020;11: pubmed 出版商
  233. Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10:218-230 pubmed 出版商
  234. Enríquez Pérez J, Kopecky J, Visse E, Darabi A, Siesjo P. Convection-enhanced delivery of temozolomide and whole cell tumor immunizations in GL261 and KR158 experimental mouse gliomas. BMC Cancer. 2020;20:7 pubmed 出版商
  235. Reinhard K, Rengstl B, Oehm P, Michel K, Billmeier A, Hayduk N, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 2020;367:446-453 pubmed 出版商
  236. Cai S, Ge M, Mennone A, Hoque R, Ouyang X, Boyer J. Inflammasome Is Activated in the Liver of Cholestatic Patients and Aggravates Hepatic Injury in Bile Duct-Ligated Mouse. Cell Mol Gastroenterol Hepatol. 2020;9:679-688 pubmed 出版商
  237. Hurrell B, Galle Treger L, Jahani P, Howard E, Helou D, Banie H, et al. TNFR2 Signaling Enhances ILC2 Survival, Function, and Induction of Airway Hyperreactivity. Cell Rep. 2019;29:4509-4524.e5 pubmed 出版商
  238. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  239. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  240. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  241. Mantani P, Dunér P, Ljungcrantz I, Nilsson J, Bjorkbacka H, Fredrikson G. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol. 2019;20:47 pubmed 出版商
  242. Rowe S, Wagner N, Li L, Beam J, Wilkinson A, Radlinski L, et al. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat Microbiol. 2020;5:282-290 pubmed 出版商
  243. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  244. Park C, Kehrl J. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. elife. 2019;8: pubmed 出版商
  245. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  246. Vagnozzi R, Maillet M, Sargent M, Khalil H, Johansen A, Schwanekamp J, et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577:405-409 pubmed 出版商
  247. Zhou Y, Lei J, Xie Q, Wu L, Jin S, Guo B, et al. Fibrinogen-like protein 2 controls sepsis catabasis by interacting with resolvin Dp5. Sci Adv. 2019;5:eaax0629 pubmed 出版商
  248. Johnston J, Angyal A, Bauer R, Hamby S, Suvarna S, Baidžajevas K, et al. Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Sci Adv. 2019;5:eaax9183 pubmed 出版商
  249. Tsao L, Crosby E, Trotter T, Agarwal P, Hwang B, Acharya C, et al. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis. JCI Insight. 2019;4: pubmed 出版商
  250. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  251. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  252. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  253. Alspach E, Lussier D, Miceli A, Kizhvatov I, DuPage M, Luoma A, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574:696-701 pubmed 出版商
  254. Chu C, Murdock M, Jing D, Won T, Chung H, Kressel A, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574:543-548 pubmed 出版商
  255. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236-250 pubmed 出版商
  256. Chen C, Chen C, Sheu C, Chen J. Ibuprofen-Loaded Hyaluronic Acid Nanofibrous Membranes for Prevention of Postoperative Tendon Adhesion through Reduction of Inflammation. Int J Mol Sci. 2019;20: pubmed 出版商
  257. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  258. Carpentier K, Davenport B, HAIST K, McCarthy M, May N, Robison A, et al. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. elife. 2019;8: pubmed 出版商
  259. Benechet A, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature. 2019;574:200-205 pubmed 出版商
  260. Ortega Molina A, Deleyto Seldas N, Carreras J, Sanz A, Lebrero Fernández C, Menéndez C, et al. Oncogenic Rag GTPase signaling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nat Metab. 2019;1:775-789 pubmed 出版商
  261. Chen M, Reed R, Lane A. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell Stem Cell. 2019;25:501-513.e5 pubmed 出版商
  262. Samir P, Kesavardhana S, Patmore D, Gingras S, Malireddi R, Karki R, et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature. 2019;573:590-594 pubmed 出版商
  263. Aghajanian H, Kimura T, Rurik J, Hancock A, Leibowitz M, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430-433 pubmed 出版商
  264. Zhang B, Chen H, Ouyang J, Xie Y, Chen L, Tan Q, et al. SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1β and contributes to LIPUS-mediated anti-inflammatory effect. Autophagy. 2019;:1-17 pubmed 出版商
  265. Zhang F, Parayath N, Ene C, Stephan S, Koehne A, Coon M, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 2019;10:3974 pubmed 出版商
  266. Choi W, Kim H, Kim M, Cinar R, Yi H, Eun H, et al. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab. 2019;30:877-889.e7 pubmed 出版商
  267. Xu M, Xu H, Lin Y, Sun X, Wang L, Fang Z, et al. LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis. Cell. 2019;178:1478-1492.e20 pubmed 出版商
  268. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  269. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  270. Barkal A, Brewer R, Markovic M, Kowarsky M, Barkal S, Zaro B, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572:392-396 pubmed 出版商
  271. Sorrentino C, Yin Z, Ciummo S, Lanuti P, Lu L, Marchisio M, et al. Targeting Interleukin(IL)-30/IL-27p28 signaling in cancer stem-like cells and host environment synergistically inhibits prostate cancer growth and improves survival. J Immunother Cancer. 2019;7:201 pubmed 出版商
  272. Tan T, Hu H, Wang H, Li J, Wang Z, Wang J, et al. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat Commun. 2019;10:3322 pubmed 出版商
  273. Wang H, Shen L, Sun X, Liu F, Feng W, Jiang C, et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat Commun. 2019;10:3254 pubmed 出版商
  274. Niemann J, Woller N, Brooks J, Fleischmann Mundt B, Martin N, Kloos A, et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun. 2019;10:3236 pubmed 出版商
  275. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  276. Lim J, Park H, Heisler J, Maculins T, Roose Girma M, Xu M, et al. Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins. elife. 2019;8: pubmed 出版商
  277. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  278. Hou X, Chen G, Bracamonte Baran W, Choi H, Diny N, Sung J, et al. The Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis. Cell Rep. 2019;28:172-189.e7 pubmed 出版商
  279. Jaitin D, Adlung L, Thaiss C, Weiner A, Li B, Descamps H, et al. Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell. 2019;178:686-698.e14 pubmed 出版商
  280. Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini C, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors. Cell. 2019;178:346-360.e24 pubmed 出版商
  281. Kojima A, Sakaue T, Okazaki M, Shikata F, Kurata M, Imai Y, et al. A simple mouse model of pericardial adhesions. J Cardiothorac Surg. 2019;14:124 pubmed 出版商
  282. Rothweiler S, Feldbrügge L, Jiang Z, Csizmadia E, Longhi M, Vaid K, et al. Selective deletion of ENTPD1/CD39 in macrophages exacerbates biliary fibrosis in a mouse model of sclerosing cholangitis. Purinergic Signal. 2019;15:375-385 pubmed 出版商
  283. Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers S, et al. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. elife. 2019;8: pubmed 出版商
  284. Leach S, Shinnakasu R, Adachi Y, Momota M, Makino Okamura C, Yamamoto T, et al. Requirement for memory B cell activation in protection from heterologous influenza virus reinfection. Int Immunol. 2019;: pubmed 出版商
  285. Ying W, Li X, Rangarajan S, Feng W, Curtis L, Sanders P. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J Clin Invest. 2019;129:2792-2806 pubmed 出版商
  286. Roberts A, Popov L, Mitchell G, Ching K, Licht D, Golovkine G, et al. Cas9+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond. elife. 2019;8: pubmed 出版商
  287. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  288. Hu X, Matsumoto K, Jung R, Weston T, Heizer P, He C, et al. GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients. elife. 2019;8: pubmed 出版商
  289. Palacio L, Goyer M, Maggiorani D, Espinosa A, Villeneuve N, Bourbonnais S, et al. Restored immune cell functions upon clearance of senescence in the irradiated splenic environment. Aging Cell. 2019;18:e12971 pubmed 出版商
  290. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  291. Merve A, Zhang X, Pomella N, Acquati S, Hoeck J, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:2 pubmed 出版商
  292. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  293. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  294. Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086 pubmed 出版商
  295. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  296. Zhang J, Supakorndej T, Krambs J, Rao M, Abou Ezzi G, Ye R, et al. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest. 2019;129:2920-2931 pubmed 出版商
  297. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta S, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129:2251-2265 pubmed 出版商
  298. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  299. Walens A, DiMarco A, Lupo R, Kroger B, Damrauer J, Alvarez J. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. elife. 2019;8: pubmed 出版商
  300. Krishna Subramanian S, Singer S, Armaka M, Banales J, Hölzer K, Schirmacher P, et al. RIPK1 and death receptor signaling drive biliary damage and early liver tumorigenesis in mice with chronic hepatobiliary injury. Cell Death Differ. 2019;: pubmed 出版商
  301. Jacome Galarza C, Percin G, Muller J, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568:541-545 pubmed 出版商
  302. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  303. Lesch B, Tothova Z, Morgan E, Liao Z, Bronson R, Ebert B, et al. Intergenerational epigenetic inheritance of cancer susceptibility in mammals. elife. 2019;8: pubmed 出版商
  304. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  305. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  306. Liu M, Yin L, Li W, Hu J, Wang H, Ye B, et al. C1q/TNF-related protein-9 promotes macrophage polarization and improves cardiac dysfunction after myocardial infarction. J Cell Physiol. 2019;234:18731-18747 pubmed 出版商
  307. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  308. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  309. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  310. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. elife. 2019;8: pubmed 出版商
  311. Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S, et al. Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis. 2019;10:275 pubmed 出版商
  312. Ganeshan K, Nikkanen J, Man K, Leong Y, Sogawa Y, Maschek J, et al. Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance. Cell. 2019;: pubmed 出版商
  313. Frank A, Ebersberger S, Fink A, Lampe S, Weigert A, Schmid T, et al. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun. 2019;10:1135 pubmed 出版商
  314. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  315. Dey A, Yang W, Gegonne A, Nishiyama A, Pan R, Yagi R, et al. BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO J. 2019;38: pubmed 出版商
  316. Grootjans J, Krupka N, Hosomi S, Matute J, Hanley T, Saveljeva S, et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science. 2019;363:993-998 pubmed 出版商
  317. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  318. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  319. Mohs A, Kuttkat N, Otto T, Youssef S, de Bruin A, Trautwein C. MyD88-dependent signaling in non-parenchymal cells promotes liver carcinogenesis. Carcinogenesis. 2019;: pubmed 出版商
  320. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  321. Munro D, Wineberg Y, Tarnick J, Vink C, Li Z, Pridans C, et al. Macrophages restrict the nephrogenic field and promote endothelial connections during kidney development. elife. 2019;8: pubmed 出版商
  322. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  323. Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, et al. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun. 2019;10:633 pubmed 出版商
  324. Kubli S, Bassi C, Roux C, Wakeham A, Göbl C, Zhou W, et al. AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc Natl Acad Sci U S A. 2019;116:3604-3613 pubmed 出版商
  325. Salerno F, Guislain A, Freen van Heeren J, Nicolet B, Young H, Wolkers M. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8:e1532762 pubmed 出版商
  326. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  327. Karnezis T, Farnsworth R, Harris N, Williams S, Caesar C, Byrne D, et al. CCL27/CCL28-CCR10 Chemokine Signaling Mediates Migration of Lymphatic Endothelial Cells. Cancer Res. 2019;79:1558-1572 pubmed 出版商
  328. He S, Kahles F, Rattik S, Nairz M, McAlpine C, Anzai A, et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature. 2019;566:115-119 pubmed 出版商
  329. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  330. Liu M, O Connor R, Trefely S, Graham K, Snyder N, Beatty G. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated 'don't-eat-me' signal. Nat Immunol. 2019;20:265-275 pubmed 出版商
  331. Naito H, Iba T, Wakabayashi T, Tai Nagara I, Suehiro J, Jia W, et al. TAK1 Prevents Endothelial Apoptosis and Maintains Vascular Integrity. Dev Cell. 2019;48:151-166.e7 pubmed 出版商
  332. Li Q, Cheng Z, Zhou L, Darmanis S, Neff N, Okamoto J, et al. Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing. Neuron. 2019;101:207-223.e10 pubmed 出版商
  333. Keklikoglou I, Cianciaruso C, Güç E, Squadrito M, Spring L, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21:190-202 pubmed 出版商
  334. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  335. Ishizuka J, Manguso R, Cheruiyot C, Bi K, Panda A, Iracheta Vellve A, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature. 2019;565:43-48 pubmed 出版商
  336. Izumi T, Imai J, Yamamoto J, Kawana Y, Endo A, Sugawara H, et al. Vagus-macrophage-hepatocyte link promotes post-injury liver regeneration and whole-body survival through hepatic FoxM1 activation. Nat Commun. 2018;9:5300 pubmed 出版商
  337. Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin G, Shurin M, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2019;116:1361-1369 pubmed 出版商
  338. Jones G, Bain C, Fenton T, Kelly A, Brown S, Ivens A, et al. Dynamics of Colon Monocyte and Macrophage Activation During Colitis. Front Immunol. 2018;9:2764 pubmed 出版商
  339. Percin G, Eitler J, Kranz A, Fu J, Pollard J, Naumann R, et al. CSF1R regulates the dendritic cell pool size in adult mice via embryo-derived tissue-resident macrophages. Nat Commun. 2018;9:5279 pubmed 出版商
  340. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  341. Benmerzoug S, Rose S, Bounab B, Gosset D, Duneau L, Chenuet P, et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018;9:5226 pubmed 出版商
  342. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  343. Sorrelle N, Ganguly D, Dominguez A, Zhang Y, Huang H, Dahal L, et al. Improved Multiplex Immunohistochemistry for Immune Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded Tissues. J Immunol. 2019;202:292-299 pubmed 出版商
  344. Mouhadeb O, Ben Shlomo S, Cohen K, Farkash I, Gruber S, Maharshak N, et al. Impaired COMMD10-Mediated Regulation of Ly6Chi Monocyte-Driven Inflammation Disrupts Gut Barrier Function. Front Immunol. 2018;9:2623 pubmed 出版商
  345. Cortés Selva D, Elvington A, Ready A, Rajwa B, Pearce E, Randolph G, et al. Schistosoma mansoni Infection-Induced Transcriptional Changes in Hepatic Macrophage Metabolism Correlate With an Athero-Protective Phenotype. Front Immunol. 2018;9:2580 pubmed 出版商
  346. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  347. Ushio A, Arakaki R, Otsuka K, Yamada A, Tsunematsu T, Kudo Y, et al. CCL22-Producing Resident Macrophages Enhance T Cell Response in Sjögren's Syndrome. Front Immunol. 2018;9:2594 pubmed 出版商
  348. Inoue T, Ito Y, Nishizawa N, Eshima K, Kojo K, Otaka F, et al. RAMP1 in Kupffer cells is a critical regulator in immune-mediated hepatitis. PLoS ONE. 2018;13:e0200432 pubmed 出版商
  349. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  350. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  351. Chinta K, Rahman M, Saini V, Glasgow J, Reddy V, Lever J, et al. Microanatomic Distribution of Myeloid Heme Oxygenase-1 Protects against Free Radical-Mediated Immunopathology in Human Tuberculosis. Cell Rep. 2018;25:1938-1952.e5 pubmed 出版商
  352. Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, et al. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep. 2018;8:16749 pubmed 出版商
  353. Wilgenburg B, Loh L, Chen Z, Pediongco T, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9:4706 pubmed 出版商
  354. Abeln M, Albers I, Peters Bernard U, Flächsig Schulz K, Kats E, Kispert A, et al. Sialic acid is a critical fetal defense against maternal complement attack. J Clin Invest. 2019;129:422-436 pubmed 出版商
  355. Zhang C, Jiang M, Zhou H, Liu W, Wang C, Kang Z, et al. TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. J Clin Invest. 2018;128:5399-5412 pubmed 出版商
  356. Jürgensen H, Nørregaard K, Sibree M, Santoni Rugiu E, Madsen D, Wassilew K, et al. Immune regulation by fibroblasts in tissue injury depends on uPARAP-mediated uptake of collectins. J Cell Biol. 2019;218:333-349 pubmed 出版商
  357. Umezu D, Okada N, Sakoda Y, Adachi K, Ojima T, Yamaue H, et al. Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunol Immunother. 2019;68:201-211 pubmed 出版商
  358. Bhagwandin C, Ashbeck E, Whalen M, Bandola Simon J, Roche P, Szajman A, et al. The E3 ubiquitin ligase MARCH1 regulates glucose-tolerance and lipid storage in a sex-specific manner. PLoS ONE. 2018;13:e0204898 pubmed 出版商
  359. Cabron A, El Azzouzi K, Boss M, Arnold P, Schwarz J, Rosas M, et al. Structural and Functional Analyses of the Shedding Protease ADAM17 in HoxB8-Immortalized Macrophages and Dendritic-like Cells. J Immunol. 2018;201:3106-3118 pubmed 出版商
  360. Zhou J, Li J, Yu Y, Liu Y, Li H, Liu Y, et al. Mannan-binding lectin deficiency exacerbates sterile liver injury in mice through enhancing hepatic neutrophil recruitment. J Leukoc Biol. 2019;105:177-186 pubmed 出版商
  361. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, et al. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun. 2018;9:4381 pubmed 出版商
  362. Farhat K, Bodart G, Charlet Renard C, Desmet C, Moutschen M, Beguin Y, et al. Growth Hormone (GH) Deficient Mice With GHRH Gene Ablation Are Severely Deficient in Vaccine and Immune Responses Against Streptococcus pneumoniae. Front Immunol. 2018;9:2175 pubmed 出版商
  363. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  364. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  365. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  366. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  367. Abreu Mota T, Hagen K, Cooper K, Jahrling P, Tan G, Wirblich C, et al. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun. 2018;9:4223 pubmed 出版商
  368. Bechelli J, Vergara L, Smalley C, Buzhdygan T, Bender S, Zhang W, et al. Atg5 Supports Rickettsia australis Infection in Macrophages In Vitro and In Vivo. Infect Immun. 2019;87: pubmed 出版商
  369. Peng Y. B cell responses to apoptotic cells in MFG-E8-/- mice. PLoS ONE. 2018;13:e0205172 pubmed 出版商
  370. Bahmani B, Uehara M, Jiang L, Ordikhani F, Banouni N, Ichimura T, et al. Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival. J Clin Invest. 2018;128:4770-4786 pubmed 出版商
  371. Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons. Front Microbiol. 2018;9:2148 pubmed 出版商
  372. Qiu T, Pei P, Yao X, Jiang L, Wei S, Wang Z, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018;9:946 pubmed 出版商
  373. Adam L, Lopez Gonzalez M, Björk A, Pålsson S, Poux C, Wahren Herlenius M, et al. Early Resistance of Non-virulent Mycobacterial Infection in C57BL/6 Mice Is Associated With Rapid Up-Regulation of Antimicrobial Cathelicidin Camp. Front Immunol. 2018;9:1939 pubmed 出版商
  374. Schrand B, Clark E, Levay A, Capote A, Martínez O, Brenneman R, et al. Hapten-mediated recruitment of polyclonal antibodies to tumors engenders antitumor immunity. Nat Commun. 2018;9:3348 pubmed 出版商
  375. Zhang F, Zarkada G, Han J, Li J, Dubrac A, Ola R, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361:599-603 pubmed 出版商
  376. Lin Y, Pecetta S, Steichen J, Kratochvil S, Melzi E, Arnold J, et al. One-step CRISPR/Cas9 method for the rapid generation of human antibody heavy chain knock-in mice. EMBO J. 2018;37: pubmed 出版商
  377. Bang S, Xie Y, Zhang Z, Wang Z, Xu Z, Ji R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Invest. 2018;128:3568-3582 pubmed 出版商
  378. Gisterå A, Klement M, Polyzos K, Mailer R, Duhlin A, Karlsson M, et al. LDL-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation. 2018;: pubmed 出版商
  379. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  380. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  381. Tan B, Shi X, Zhang J, Qin J, Zhang N, Ren H, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018;78:4929-4942 pubmed 出版商
  382. Kim Y, Lee M, Gu H, Kim J, Jeong S, Yeo S, et al. HIF-1α activation in myeloid cells accelerates dextran sodium sulfate-induced colitis progression in mice. Dis Model Mech. 2018;11: pubmed 出版商
  383. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  384. Quenum Zangbede F, Chauhan A, Sharma J, Mishra B. Galectin-3 in M2 Macrophages Plays a Protective Role in Resolution of Neuropathology in Brain Parasitic Infection by Regulating Neutrophil Turnover. J Neurosci. 2018;38:6737-6750 pubmed 出版商
  385. Asano K, Edamatsu M, Hatipoglu O, Inagaki J, Ono M, Ohtsuki T, et al. Host-produced ADAMTS4 Inhibits Early-Stage Tumor Growth. Acta Med Okayama. 2018;72:257-266 pubmed 出版商
  386. Viau A, Bienaime F, Lukas K, Todkar A, Knoll M, Yakulov T, et al. Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO J. 2018;37: pubmed 出版商
  387. Okunuki Y, Mukai R, Pearsall E, Klokman G, Husain D, Park D, et al. Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proc Natl Acad Sci U S A. 2018;115:E6264-E6273 pubmed 出版商
  388. Tomlinson J, Žygelytė E, Grenier J, Edwards M, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation. 2018;15:185 pubmed 出版商
  389. Napolitano A, van der Veen A, Bunyan M, Borg A, Frith D, Howell S, et al. Cysteine-Reactive Free ISG15 Generates IL-1β-Producing CD8α+ Dendritic Cells at the Site of Infection. J Immunol. 2018;201:604-614 pubmed 出版商
  390. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  391. Tsiantoulas D, Sage A, Göderle L, Ozsvar Kozma M, Murphy D, Porsch F, et al. BAFF Neutralization Aggravates Atherosclerosis. Circulation. 2018;: pubmed 出版商
  392. Oda A, Tezuka T, Ueno Y, Hosoda S, Amemiya Y, Notsu C, et al. Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep. 2018;8:8308 pubmed 出版商
  393. Chen Y, Qin X, An Q, Yi J, Feng F, Yin D, et al. Mesenchymal Stromal Cells Directly Promote Inflammation by Canonical NLRP3 and Non-canonical Caspase-11 Inflammasomes. EBioMedicine. 2018;32:31-42 pubmed 出版商
  394. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  395. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  396. Chakrabarti R, Celià Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018;360: pubmed 出版商
  397. Kyung D, Sung H, Kim Y, Kim K, Cho S, Choi J, et al. Global transcriptome analysis identifies weight regain-induced activation of adaptive immune responses in white adipose tissue of mice. Int J Obes (Lond). 2018;42:755-764 pubmed 出版商
  398. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  399. Thompson T, Jackson B, Li P, Wang J, Kim A, Huang K, et al. Tumor-derived CSF-1 induces the NKG2D ligand RAE-1δ on tumor-infiltrating macrophages. elife. 2018;7: pubmed 出版商
  400. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  401. Crosby E, Wei J, Yang X, Lei G, Wang T, Liu C, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology. 2018;7:e1421891 pubmed 出版商
  402. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  403. Takamori A, Nambu A, Sato K, Yamaguchi S, Matsuda K, Numata T, et al. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci Rep. 2018;8:6639 pubmed 出版商
  404. Gounder A, Yokoyama C, Jarjour N, Bricker T, Edelson B, Boon A. Interferon induced protein 35 exacerbates H5N1 influenza disease through the expression of IL-12p40 homodimer. PLoS Pathog. 2018;14:e1007001 pubmed 出版商
  405. Grist J, Marro B, Skinner D, Syage A, Worne C, Doty D, et al. Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment. Eur J Immunol. 2018;48:1199-1210 pubmed 出版商
  406. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  407. Chen W, Yang J, Wu Y, Li L, Li R, Chang Y, et al. IL-33/ST2 axis mediates hyperplasia of intrarenal urothelium in obstructive renal injury. Exp Mol Med. 2018;50:36 pubmed 出版商
  408. Miyasato Y, Yoshizawa T, Sato Y, Nakagawa T, Miyasato Y, Kakizoe Y, et al. Sirtuin 7 Deficiency Ameliorates Cisplatin-induced Acute Kidney Injury Through Regulation of the Inflammatory Response. Sci Rep. 2018;8:5927 pubmed 出版商
  409. Foerster F, Boegel S, Heck R, Pickert G, R ssel N, Rosigkeit S, et al. Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncoimmunology. 2018;7:e1409929 pubmed 出版商
  410. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115:E4041-E4050 pubmed 出版商
  411. Vogl T, Stratis A, Wixler V, Voller T, Thurainayagam S, Jorch S, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128:1852-1866 pubmed 出版商
  412. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  413. Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9:11209-11226 pubmed 出版商
  414. Sun H, Lagarrigue F, Gingras A, Fan Z, Ley K, Ginsberg M. Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development. J Cell Biol. 2018;217:1453-1465 pubmed 出版商
  415. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  416. Baranska A, Shawket A, Jouve M, Baratin M, Malosse C, Voluzan O, et al. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med. 2018;215:1115-1133 pubmed 出版商
  417. Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A. 2018;115:E2801-E2810 pubmed 出版商
  418. Clemente C, Rius C, Alonso Herranz L, Martín Alonso M, Pollán A, Camafeita E, et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun. 2018;9:910 pubmed 出版商
  419. Yeh C, Nojima T, Kuraoka M, Kelsoe G. Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat Commun. 2018;9:928 pubmed 出版商
  420. Huang L, Nazarova E, Tan S, Liu Y, Russell D. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215:1135-1152 pubmed 出版商
  421. Panduro M, Benoist C, Mathis D. Treg cells limit IFN-? production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2018;115:E2585-E2593 pubmed 出版商
  422. Zhu Y, Zhou J, Feng Y, Chen L, Zhang L, Yang F, et al. Control of Intestinal Inflammation, Colitis-Associated Tumorigenesis, and Macrophage Polarization by Fibrinogen-Like Protein 2. Front Immunol. 2018;9:87 pubmed 出版商
  423. Bogdan D, Falcone J, Kanjiya M, Park S, Carbonetti G, Studholme K, et al. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem. 2018;293:5295-5306 pubmed 出版商
  424. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  425. Maturu P, Wei Liang Y, Androutsopoulos V, Jiang W, Wang L, Tsatsakis A, et al. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD). Food Chem Toxicol. 2018;114:23-33 pubmed 出版商
  426. Soncin I, Sheng J, Chen Q, Foo S, Duan K, Lum J, et al. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat Commun. 2018;9:582 pubmed 出版商
  427. Endo Umeda K, Nakashima H, Umeda N, Seki S, Makishima M. Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice. Endocrinology. 2018;159:1419-1432 pubmed 出版商
  428. Chennupati V, Veiga D, Maslowski K, Andina N, Tardivel A, Yu E, et al. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation. J Clin Invest. 2018;128:1597-1614 pubmed 出版商
  429. Zhou X, Franklin R, Adler M, JACOX J, Bailis W, Shyer J, et al. Circuit Design Features of a Stable Two-Cell System. Cell. 2018;172:744-757.e17 pubmed 出版商
  430. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  431. Qing X, Chinenov Y, Redecha P, Madaio M, Roelofs J, FARBER G, et al. iRhom2 promotes lupus nephritis through TNF-? and EGFR signaling. J Clin Invest. 2018;128:1397-1412 pubmed 出版商
  432. Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies L, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37:2022-2036 pubmed 出版商
  433. Tang H, Liang Y, Anders R, Taube J, Qiu X, Mulgaonkar A, et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest. 2018;128:580-588 pubmed 出版商
  434. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  435. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  436. Steiner D, Furuya Y, Metzger D. Detrimental Influence of Alveolar Macrophages on Protective Humoral Immunity during Francisella tularensis SchuS4 Pulmonary Infection. Infect Immun. 2018;86: pubmed 出版商
  437. Jia Y, Li Z, Cai W, Xiao D, Han S, Han F, et al. SIRT1 regulates inflammation response of macrophages in sepsis mediated by long noncoding RNA. Biochim Biophys Acta Mol Basis Dis. 2018;1864:784-792 pubmed 出版商
  438. Thion M, Low D, Silvin A, Chen J, Grisel P, Schulte Schrepping J, et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell. 2018;172:500-516.e16 pubmed 出版商
  439. Pagan J, Kitaoka M, Anthony R. Engineered Sialylation of Pathogenic Antibodies In Vivo Attenuates Autoimmune Disease. Cell. 2018;172:564-577.e13 pubmed 出版商
  440. Campana L, Starkey Lewis P, Pellicoro A, Aucott R, Man J, O Duibhir E, et al. The STAT3-IL-10-IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. J Immunol. 2018;200:1169-1187 pubmed 出版商
  441. Bäcker V, Cheung F, Siveke J, Fandrey J, Winning S. Knockdown of myeloid cell hypoxia-inducible factor-1? ameliorates the acute pathology in DSS-induced colitis. PLoS ONE. 2017;12:e0190074 pubmed 出版商
  442. Rajbhandari P, Thomas B, Feng A, Hong C, Wang J, Vergnes L, et al. IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell. 2018;172:218-233.e17 pubmed 出版商
  443. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  444. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  445. Lingappan K, Maturu P, Liang Y, Jiang W, Wang L, Moorthy B, et al. β-Naphthoflavone treatment attenuates neonatal hyperoxic lung injury in wild type and Cyp1a2-knockout mice. Toxicol Appl Pharmacol. 2018;339:133-142 pubmed 出版商
  446. Schmok E, Abad Dar M, Behrends J, Erdmann H, Rückerl D, Endermann T, et al. Suppressor of Cytokine Signaling 3 in Macrophages Prevents Exacerbated Interleukin-6-Dependent Arginase-1 Activity and Early Permissiveness to Experimental Tuberculosis. Front Immunol. 2017;8:1537 pubmed 出版商
  447. Yu P, Xiong T, Tenedero C, Lebeau P, Ni R, Macdonald M, et al. Rosuvastatin Reduces Aortic Sinus and Coronary Artery Atherosclerosis in SR-B1 (Scavenger Receptor Class B Type 1)/ApoE (Apolipoprotein E) Double Knockout Mice Independently of Plasma Cholesterol Lowering. Arterioscler Thromb Vasc Biol. 2018;38:26-39 pubmed 出版商
  448. Gao Z, Daquinag A, Su F, Snyder B, Kolonin M. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development. 2018;145: pubmed 出版商
  449. Ring N, Herndler Brandstetter D, Weiskopf K, Shan L, Volkmer J, George B, et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci U S A. 2017;114:E10578-E10585 pubmed 出版商
  450. Tsai F, Homan P, Agrawal H, Misharin A, Abdala Valencia H, Haines G, et al. Bim suppresses the development of SLE by limiting myeloid inflammatory responses. J Exp Med. 2017;214:3753-3773 pubmed 出版商
  451. Kovtun A, Bergdolt S, Hägele Y, Matthes R, Lambris J, Huber Lang M, et al. Complement receptors C5aR1 and C5aR2 act differentially during the early immune response after bone fracture but are similarly involved in bone repair. Sci Rep. 2017;7:14061 pubmed 出版商
  452. Lee S, Kivimäe S, Szoka F. Clodronate Improves Survival of Transplanted Hoxb8 Myeloid Progenitors with Constitutively Active GMCSFR in Immunocompetent Mice. Mol Ther Methods Clin Dev. 2017;7:60-73 pubmed 出版商
  453. Kumar S, Nakashizuka H, Jones A, Lambert A, Zhao X, Shen M, et al. Proteolytic Degradation and Inflammation Play Critical Roles in Polypoidal Choroidal Vasculopathy. Am J Pathol. 2017;187:2841-2857 pubmed 出版商
  454. Burns K, Thomas S, Hamilton K, Young S, Cook D, Korach K. Early Endometriosis in Females Is Directed by Immune-Mediated Estrogen Receptor α and IL-6 Cross-Talk. Endocrinology. 2018;159:103-118 pubmed 出版商
  455. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci U S A. 2017;114:10737-10742 pubmed 出版商
  456. Gesteira T, Sun M, Coulson Thomas Y, Yamaguchi Y, Yeh L, Hascall V, et al. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Invest Ophthalmol Vis Sci. 2017;58:4407-4421 pubmed 出版商
  457. Dehn S, Thorp E. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J. 2018;32:254-264 pubmed 出版商
  458. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  459. Sogawa Y, Nagasu H, Iwase S, Ihoriya C, Itano S, Uchida A, et al. Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci Rep. 2017;7:8801 pubmed 出版商
  460. McDonough E, Barrett C, Parang B, Mittal M, Smith J, Bradley A, et al. MTG16 is a tumor suppressor in colitis-associated carcinoma. JCI Insight. 2017;2: pubmed 出版商
  461. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  462. Cho C, Smallwood P, Nathans J. Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation. Neuron. 2017;95:1056-1073.e5 pubmed 出版商
  463. Yanagihashi Y, Segawa K, Maeda R, Nabeshima Y, Nagata S. Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis. Proc Natl Acad Sci U S A. 2017;114:8800-8805 pubmed 出版商
  464. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  465. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  466. Nikolaidis N, Noel J, Pitstick L, Gardner J, Uehara Y, Wu H, et al. Mitogenic stimulation accelerates influenza-induced mortality by increasing susceptibility of alveolar type II cells to infection. Proc Natl Acad Sci U S A. 2017;114:E6613-E6622 pubmed 出版商
  467. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  468. Lee S, Park H, Suh Y, Yoon E, Kim J, Jang W, et al. Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc Natl Acad Sci U S A. 2017;114:E5881-E5890 pubmed 出版商
  469. Mingay M, Chaturvedi A, Bilenky M, Cao Q, Jackson L, Hui T, et al. Vitamin C-induced epigenomic remodelling in IDH1 mutant acute myeloid leukaemia. Leukemia. 2018;32:11-20 pubmed 出版商
  470. Alloatti A, Rookhuizen D, Joannas L, Carpier J, Iborra S, Magalhaes J, et al. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med. 2017;214:2231-2241 pubmed 出版商
  471. Hannibal T, Schmidt Christensen A, Nilsson J, Fransén Pettersson N, Hansen L, Holmberg D. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia. 2017;60:2033-2041 pubmed 出版商
  472. Li X, Thome S, Ma X, Amrute Nayak M, Finigan A, Kitt L, et al. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nat Commun. 2017;8:15986 pubmed 出版商
  473. Van T, Polykratis A, Straub B, Kondylis V, Papadopoulou N, Pasparakis M. Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis. J Clin Invest. 2017;127:2662-2677 pubmed 出版商
  474. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  475. Dunst J, Azzouz N, Liu X, Tsukita S, Seeberger P, Kamena F. Interaction between Plasmodium Glycosylphosphatidylinositol and the Host Protein Moesin Has No Implication in Malaria Pathology. Front Cell Infect Microbiol. 2017;7:183 pubmed 出版商
  476. Yang A, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest. 2017;127:2829-2841 pubmed 出版商
  477. Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495-499 pubmed 出版商
  478. Jinnohara T, Kanaya T, Hase K, Sakakibara S, Kato T, Tachibana N, et al. IL-22BP dictates characteristics of Peyer's patch follicle-associated epithelium for antigen uptake. J Exp Med. 2017;214:1607-1618 pubmed 出版商
  479. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  480. Ebner F, Sedlyarov V, Tasciyan S, Ivin M, Kratochvill F, Gratz N, et al. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection. J Clin Invest. 2017;127:2051-2065 pubmed 出版商
  481. Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, et al. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol. 2018;15:973-982 pubmed 出版商
  482. Minutti C, Jackson Jones L, Garcia Fojeda B, Knipper J, Sutherland T, Logan N, et al. Local amplifiers of IL-4R?-mediated macrophage activation promote repair in lung and liver. Science. 2017;356:1076-1080 pubmed 出版商
  483. Bosurgi L, Cao Y, Cabeza Cabrerizo M, Tucci A, Hughes L, Kong Y, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science. 2017;356:1072-1076 pubmed 出版商
  484. Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo T, Sun M, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med. 2017;214:1663-1678 pubmed 出版商
  485. Kwan B, Zhu E, Tzeng A, Sugito H, Eltahir A, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med. 2017;214:1679-1690 pubmed 出版商
  486. Ku A, Shaver T, Rao A, Howard J, Rodriguez C, Miao Q, et al. TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. elife. 2017;6: pubmed 出版商
  487. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-? resembles physiological blood vessel regression. Nature. 2017;545:98-102 pubmed 出版商
  488. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  489. A Gonzalez N, Quintana J, Garcia Silva S, Mazariegos M, González de la Aleja A, Nicolás Ávila J, et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J Exp Med. 2017;214:1281-1296 pubmed 出版商
  490. Chen J, Zhong M, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017;544:493-497 pubmed 出版商
  491. Deniset J, Surewaard B, Lee W, Kubes P. Splenic Ly6Ghigh mature and Ly6Gint immature neutrophils contribute to eradication of S. pneumoniae. J Exp Med. 2017;214:1333-1350 pubmed 出版商
  492. Lee H, Tian L, Bouladoux N, Davis J, Quinones M, Belkaid Y, et al. Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation. J Clin Invest. 2017;127:1905-1917 pubmed 出版商
  493. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  494. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  495. Cho H, Kim J, Jang H, Lee T, Jung M, Kim T, et al. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice. Sci Rep. 2017;7:46065 pubmed 出版商
  496. Cunin P, Penke L, Thon J, Monach P, Jones T, Chang M, et al. Megakaryocytes compensate for Kit insufficiency in murine arthritis. J Clin Invest. 2017;127:1714-1724 pubmed 出版商
  497. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  498. An Y, Sun K, Joffin N, Zhang F, Deng Y, Donze O, et al. Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. elife. 2017;6: pubmed 出版商
  499. Thomas D, Clare S, Sowerby J, Pardo M, Juss J, Goulding D, et al. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med. 2017;214:1111-1128 pubmed 出版商
  500. Ramirez GarciaLuna J, Chan D, Samberg R, Abou Rjeili M, Wong T, Li A, et al. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice. PLoS ONE. 2017;12:e0174396 pubmed 出版商
  501. Sindhava V, Oropallo M, Moody K, Naradikian M, Higdon L, Zhou L, et al. A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. J Clin Invest. 2017;127:1651-1663 pubmed 出版商
  502. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  503. Wang X, Chen H, Tian R, Zhang Y, Drutskaya M, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091 pubmed 出版商
  504. Nagashima H, Shinoda M, Honda K, Kamio N, Watanabe M, Suzuki T, et al. CXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in Porphyromonas gingivalis-induced periodontitis in mice. Mol Pain. 2017;13:1744806916689269 pubmed 出版商
  505. Kumar A, Stoica B, Loane D, Yang M, Abulwerdi G, Khan N, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation. 2017;14:47 pubmed 出版商
  506. Horsthemke M, Bachg A, Groll K, Moyzio S, Müther B, Hemkemeyer S, et al. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. J Biol Chem. 2017;292:7258-7273 pubmed 出版商
  507. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  508. Cockrell D, Long C, Robertson S, Shannon J, Miller H, Myers L, et al. Robust growth of avirulent phase II Coxiella burnetii in bone marrow-derived murine macrophages. PLoS ONE. 2017;12:e0173528 pubmed 出版商
  509. Hui X, Zhang M, Gu P, Li K, Gao Y, Wu D, et al. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep. 2017;18:645-657 pubmed 出版商
  510. Fonseca M, Chu S, Hernandez M, Fang M, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14:48 pubmed 出版商
  511. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  512. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  513. Baranek T, Morello E, Valayer A, Aimar R, Bréa D, Henry C, et al. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol. 2017;8:123 pubmed 出版商
  514. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  515. Schumacher M, Hedl M, Abraham C, Bernard J, Lozano P, Hsieh J, et al. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis. 2017;8:e2622 pubmed 出版商
  516. Hartwig T, Montinaro A, von Karstedt S, Sevko A, Surinova S, Chakravarthy A, et al. The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Mol Cell. 2017;65:730-742.e5 pubmed 出版商
  517. Gao S, Li C, Zhu Y, Wang Y, Sui A, Zhong Y, et al. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy. Sci Rep. 2017;7:42846 pubmed 出版商
  518. Turner V, Mabbott N. Structural and functional changes to lymph nodes in ageing mice. Immunology. 2017;151:239-247 pubmed 出版商
  519. Nicolas N, Michel V, Bhushan S, Wahle E, Hayward S, Ludlow H, et al. Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep. 2017;7:42391 pubmed 出版商
  520. Huang R, Francois A, McGray A, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561 pubmed 出版商
  521. Ying W, Wollam J, Ofrecio J, Bandyopadhyay G, El Ouarrat D, Lee Y, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127:1019-1030 pubmed 出版商
  522. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  523. Butler C, Hynds R, Crowley C, Gowers K, Partington L, Hamilton N, et al. Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials. 2017;124:95-105 pubmed 出版商
  524. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  525. Zhang H, Yue Y, Sun T, Wu X, Xiong S. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Sci Rep. 2017;7:42162 pubmed 出版商
  526. Cuccarese M, Dubach J, Pfirschke C, Engblom C, Garris C, Miller M, et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun. 2017;8:14293 pubmed 出版商
  527. Leech J, Lacey K, Mulcahy M, Medina E, McLoughlin R. IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections. J Immunol. 2017;198:2352-2365 pubmed 出版商
  528. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  529. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  530. Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel S, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495-505 pubmed 出版商
  531. Vähätupa M, Aittomaki S, Martinez Cordova Z, May U, Prince S, Uusitalo Jarvinen H, et al. T-cell-expressed proprotein convertase FURIN inhibits DMBA/TPA-induced skin cancer development. Oncoimmunology. 2016;5:e1245266 pubmed 出版商
  532. Schwarz F, Landig C, Siddiqui S, Secundino I, Olson J, Varki N, et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36:751-760 pubmed 出版商
  533. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140 pubmed 出版商
  534. Halbrook C, Wen H, Ruggeri J, Takeuchi K, Zhang Y, di Magliano M, et al. Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cell Mol Gastroenterol Hepatol. 2017;3:99-118 pubmed 出版商
  535. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  536. Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, Sagar -, et al. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas. Cell. 2016;167:1264-1280.e18 pubmed 出版商
  537. Ji X, Chen Y, Ye G, Dong M, Lin K, Han J, et al. Detection of RAGE expression and its application to diabetic wound age estimation. Int J Legal Med. 2017;131:691-698 pubmed 出版商
  538. Shiba E, Izawa K, Kaitani A, Isobe M, Maehara A, Uchida K, et al. Ceramide-CD300f Binding Inhibits Lipopolysaccharide-induced Skin Inflammation. J Biol Chem. 2017;292:2924-2932 pubmed 出版商
  539. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A. 2017;114:E540-E549 pubmed 出版商
  540. Scott C, Bain C, Mowat A. Isolation and Identification of Intestinal Myeloid Cells. Methods Mol Biol. 2017;1559:223-239 pubmed 出版商
  541. Xavier S, Sahu R, Landes S, Yu J, Taylor R, Ayyadevara S, et al. Pericytes and immune cells contribute to complement activation in tubulointerstitial fibrosis. Am J Physiol Renal Physiol. 2017;312:F516-F532 pubmed 出版商
  542. Xue N, Zhou Q, Ji M, Jin J, Lai F, Chen J, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep. 2017;7:39011 pubmed 出版商
  543. Fujikura D, Ikesue M, Endo T, Chiba S, Higashi H, Uede T. Death receptor 6 contributes to autoimmunity in lupus-prone mice. Nat Commun. 2017;8:13957 pubmed 出版商
  544. Guan X, Lapak K, Hennessey R, Yu C, Shakya R, Zhang J, et al. Stromal Senescence By Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Mol Cancer Res. 2017;15:237-249 pubmed 出版商
  545. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  546. Zhang Y, Yu J, Grachtchouk V, Qin T, Lumeng C, Sartor M, et al. Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. Oncotarget. 2017;8:5761-5773 pubmed 出版商
  547. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  548. Du M, Wang X, Tan X, Li X, Huang D, Huang K, et al. Nkx2-5 Is Expressed in Atherosclerotic Plaques and Attenuates Development of Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed
  549. Lizardo K, Almonte V, Law C, Aiyyappan J, Cui M, Nagajyothi J. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection. Parasitol Res. 2017;116:711-723 pubmed 出版商
  550. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  551. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  552. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  553. Rux D, Song J, Swinehart I, Pineault K, Schlientz A, Trulik K, et al. Regionally Restricted Hox Function in Adult Bone Marrow Multipotent Mesenchymal Stem/Stromal Cells. Dev Cell. 2016;39:653-666 pubmed 出版商
  554. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  555. Tian S, Li C, Ran R, Chen S. Surfactant protein A deficiency exacerbates renal interstitial fibrosis following obstructive injury in mice. Biochim Biophys Acta Mol Basis Dis. 2017;1863:509-517 pubmed 出版商
  556. Naeem A, Tommasi C, Cole C, Brown S, Zhu Y, Way B, et al. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic d. J Allergy Clin Immunol. 2017;139:1228-1241 pubmed 出版商
  557. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  558. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  559. Cecchinato V, Bernasconi E, Speck R, Proietti M, Sauermann U, D Agostino G, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol. 2017;198:184-195 pubmed
  560. Man A, Gicheva N, Regoli M, Rowley G, De Cunto G, Wellner N, et al. CX3CR1+ Cell-Mediated Salmonella Exclusion Protects the Intestinal Mucosa during the Initial Stage of Infection. J Immunol. 2017;198:335-343 pubmed
  561. Wilson G, Hewit K, Pallas K, Cairney C, Lee K, Hansell C, et al. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland. Development. 2017;144:74-82 pubmed 出版商
  562. Langhi C, Arias N, Rajamoorthi A, Basta J, Lee R, Baldán A. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J Lipid Res. 2017;58:81-91 pubmed 出版商
  563. Lund M, Greer J, Dixit A, Alvarado R, McCauley Winter P, To J, et al. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Sci Rep. 2016;6:37789 pubmed 出版商
  564. Monnerat G, Alarcón M, Vasconcellos L, Hochman Mendez C, Brasil G, Bassani R, et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344 pubmed 出版商
  565. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  566. Kimura Y, Inoue A, Hangai S, Saijo S, Negishi H, Nishio J, et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A. 2016;113:14097-14102 pubmed
  567. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  568. Kim W, Khan S, Gvozdenovic Jeremic J, Kim Y, Dahlman J, Kim H, et al. Hippo signaling interactions with Wnt/?-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest. 2017;127:137-152 pubmed 出版商
  569. Sulek J, Robinson S, Petrossian A, Zhou S, Goliadze E, Manjili M, et al. Role of Epigenetic Modification and Immunomodulation in a Murine Prostate Cancer Model. Prostate. 2017;77:361-373 pubmed 出版商
  570. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  571. Wu X, Wu X, Ma Y, Shao F, Tan Y, Tan T, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7:13498 pubmed 出版商
  572. Takács E, Boto P, Simo E, Csuth T, Toth B, Raveh Amit H, et al. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. J Immunol. 2017;198:239-248 pubmed
  573. Henkels K, Muppani N, Gomez Cambronero J. PLD-Specific Small-Molecule Inhibitors Decrease Tumor-Associated Macrophages and Neutrophils Infiltration in Breast Tumors and Lung and Liver Metastases. PLoS ONE. 2016;11:e0166553 pubmed 出版商
  574. Sakata K, Araki K, Nakano H, Nishina T, Komazawa Sakon S, Murai S, et al. Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Sci Rep. 2016;6:37200 pubmed 出版商
  575. Barnett F, Rosenfeld M, Wood M, Kiosses W, Usui Y, Marchetti V, et al. Macrophages form functional vascular mimicry channels in vivo. Sci Rep. 2016;6:36659 pubmed 出版商
  576. Le Blon D, Guglielmetti C, Hoornaert C, Quarta A, Daans J, Dooley D, et al. Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model. J Neuroinflammation. 2016;13:288 pubmed
  577. Cousins F, Kirkwood P, Saunders P, Gibson D. Evidence for a dynamic role for mononuclear phagocytes during endometrial repair and remodelling. Sci Rep. 2016;6:36748 pubmed 出版商
  578. Brocks T, Fedorchenko O, Schliermann N, Stein A, Moll U, Seegobin S, et al. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. FASEB J. 2017;31:526-543 pubmed 出版商
  579. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  580. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. 2016;126:4626-4639 pubmed 出版商
  581. Lin J, Kumari S, Kim C, Van T, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124-128 pubmed 出版商
  582. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  583. Kirschbaum K, Sonner J, Zeller M, Deumelandt K, Bode J, Sharma R, et al. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A. 2016;113:13227-13232 pubmed
  584. Govero J, Esakky P, Scheaffer S, Fernandez E, Drury A, Platt D, et al. Zika virus infection damages the testes in mice. Nature. 2016;540:438-442 pubmed 出版商
  585. Teng O, Chen S, Hsu T, Sia S, Cole S, Valkenburg S, et al. CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity In Vivo. J Virol. 2017;91: pubmed 出版商
  586. Wang Y, Yan X, Mi S, Li Z, Wang Y, Zhu H, et al. Naoxintong attenuates Ischaemia/reperfusion Injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med. 2017;21:4-12 pubmed 出版商
  587. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  588. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  589. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  590. Di Cataldo V, Geloen A, Langlois J, Chauveau F, Thézé B, Hubert V, et al. Exercise Does Not Protect against Peripheral and Central Effects of a High Cholesterol Diet Given Ad libitum in Old ApoE-/- Mice. Front Physiol. 2016;7:453 pubmed
  591. Zhou Z, Tang Y, Jin X, Chen C, Lu Y, Liu L, et al. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NF?B Pathway Suppression. J Diabetes Res. 2016;2016:4847812 pubmed
  592. Günther C, He G, Kremer A, Murphy J, Petrie E, Amann K, et al. The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. J Clin Invest. 2016;126:4346-4360 pubmed 出版商
  593. Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin N, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096 pubmed 出版商
  594. Wright R, Souza P, Flak M, Thedchanamoorthy P, Norling L, Cooper D. Galectin-3-null mice display defective neutrophil clearance during acute inflammation. J Leukoc Biol. 2017;101:717-726 pubmed 出版商
  595. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  596. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 2016;7:13130 pubmed 出版商
  597. Yu S, Pearson A, Lim R, Rodgers D, Li S, Parker H, et al. Targeted Delivery of an Anti-inflammatory PDE4 Inhibitor to Immune Cells via an Antibody-drug Conjugate. Mol Ther. 2016;24:2078-2089 pubmed 出版商
  598. Nalbandian A, Khan A, Srivastava R, Llewellyn K, Tan B, Shukr N, et al. Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy. Inflammation. 2017;40:21-41 pubmed 出版商
  599. Lopez Guadamillas E, Fernandez Marcos P, Pantoja C, Muñoz Martin M, Martinez D, Gomez Lopez G, et al. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPAR?. Sci Rep. 2016;6:34542 pubmed 出版商
  600. Xu X, Greenland J, Gotts J, Matthay M, Caughey G. Cathepsin L Helps to Defend Mice from Infection with Influenza A. PLoS ONE. 2016;11:e0164501 pubmed 出版商
  601. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  602. Guglielmetti C, Le Blon D, Santermans E, Salas Perdomo A, Daans J, De Vocht N, et al. Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia. 2016;64:2181-2200 pubmed 出版商
  603. Rothchild A, Sissons J, Shafiani S, Plaisier C, Min D, Mai D, et al. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113:E6172-E6181 pubmed
  604. Lamb C, Cholico G, Perkins D, Fewkes M, Oxford J, Lujan T, et al. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis. Biomed Res Int. 2016;2016:5309328 pubmed
  605. Kamei A, Gao G, Neale G, Loh L, Vogel P, Thomas P, et al. Exogenous remodeling of lung resident macrophages protects against infectious consequences of bone marrow-suppressive chemotherapy. Proc Natl Acad Sci U S A. 2016;113:E6153-E6161 pubmed
  606. Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, et al. CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med. 2016;5:2920-2933 pubmed 出版商
  607. Pelletier M, Szymczak K, Barbeau A, Prata G, O Fallon K, Gaines P. Characterization of neutrophils and macrophages from ex vivo-cultured murine bone marrow for morphologic maturation and functional responses by imaging flow cytometry. Methods. 2017;112:124-146 pubmed 出版商
  608. Wang L, Cano M, Datta S, Wei H, Ebrahimi K, Gorashi Y, et al. Pentraxin 3 recruits complement factor H to protect against oxidative stress-induced complement and inflammasome overactivation. J Pathol. 2016;240:495-506 pubmed 出版商
  609. Kaneda M, Messer K, Ralainirina N, Li H, Leem C, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437-442 pubmed 出版商
  610. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  611. Rudemiller N, Patel M, Zhang J, Jeffs A, Karlovich N, Griffiths R, et al. C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent Kidney Injury by Limiting Renal Macrophage Infiltration. Am J Pathol. 2016;186:2846-2856 pubmed 出版商
  612. Hirai Yuki A, Hensley L, McGivern D, Gonzalez Lopez O, Das A, Feng H, et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science. 2016;353:1541-1545 pubmed
  613. Foerster F, Bamberger D, Schupp J, Weilbächer M, Kaps L, Strobl S, et al. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine (Lond). 2016;11:2663-2677 pubmed
  614. Hay C, Sult E, Huang Q, Mulgrew K, Fuhrmann S, McGlinchey K, et al. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology. 2016;5:e1208875 pubmed 出版商
  615. Xie X, Tsai S, Tsai M. COUP-TFII regulates satellite cell function and muscular dystrophy. J Clin Invest. 2016;126:3929-3941 pubmed 出版商
  616. Alomar F, Singh J, Jang H, Rozanzki G, Shao C, Padanilam B, et al. Smooth muscle-generated methylglyoxal impairs endothelial cell-mediated vasodilatation of cerebral microvessels in type 1 diabetic rats. Br J Pharmacol. 2016;173:3307-3326 pubmed 出版商
  617. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  618. Vikram A, Kim Y, Kumar S, Li Q, Kassan M, JACOBS J, et al. Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nat Commun. 2016;7:12565 pubmed 出版商
  619. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  620. Vasilopoulou E, Kolatsi Joannou M, Lindenmeyer M, White K, Robson M, Cohen C, et al. Loss of endogenous thymosin β4 accelerates glomerular disease. Kidney Int. 2016;90:1056-1070 pubmed 出版商
  621. Stark K, Philippi V, Stockhausen S, Busse J, Antonelli A, Miller M, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128:2435-2449 pubmed
  622. Svinka J, Pflügler S, Mair M, Marschall H, Hengstler J, Stiedl P, et al. Epidermal growth factor signaling protects from cholestatic liver injury and fibrosis. J Mol Med (Berl). 2017;95:109-117 pubmed 出版商
  623. Greco S, Torres Hernandez A, Kalabin A, Whiteman C, Rokosh R, Ravirala S, et al. Mincle Signaling Promotes Con A Hepatitis. J Immunol. 2016;197:2816-27 pubmed 出版商
  624. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  625. Kim K, Williams J, Wang Y, Ivanov S, Gilfillan S, Colonna M, et al. MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. J Exp Med. 2016;213:1951-9 pubmed 出版商
  626. Murakami S, Shahbazian D, Surana R, Zhang W, Chen H, Graham G, et al. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene. 2017;36:1232-1244 pubmed 出版商
  627. Kim G, Das R, Goduni L, McClellan S, Hazlett L, Mahabeleshwar G. Kruppel-like Factor 6 Promotes Macrophage-mediated Inflammation by Suppressing B Cell Leukemia/Lymphoma 6 Expression. J Biol Chem. 2016;291:21271-21282 pubmed
  628. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  629. Ohmer M, Weber A, Sutter G, Ehrhardt K, Zimmermann A, Häcker G. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis. Cell Death Dis. 2016;7:e2340 pubmed 出版商
  630. Melton D, Roberts A, Wang H, Sarwar Z, Wetzel M, Wells J, et al. Absence of CCR2 results in an inflammaging environment in young mice with age-independent impairments in muscle regeneration. J Leukoc Biol. 2016;100:1011-1025 pubmed
  631. Cordova Z, Grönholm A, Kytölä V, Taverniti V, Hämäläinen S, Aittomäki S, et al. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget. 2016;7:54392-54404 pubmed 出版商
  632. Henry E, Sy C, Inclan Rico J, Espinosa V, Ghanny S, Dwyer D, et al. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 2016;213:1663-73 pubmed 出版商
  633. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  634. Moodley D, Yoshida H, Mostafavi S, Asinovski N, Ortiz Lopez A, Symanowicz P, et al. Network pharmacology of JAK inhibitors. Proc Natl Acad Sci U S A. 2016;113:9852-7 pubmed 出版商
  635. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  636. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  637. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  638. Ferreirinha P, Pérez Cabezas B, Correia A, Miyazawa B, França A, Carvalhais V, et al. Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun. 2016;84:2933-43 pubmed 出版商
  639. Yoshioka D, Kajiwara C, Ishii Y, Umeki K, Hiramatsu K, Kadota J, et al. Efficacy of ?-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob Agents Chemother. 2016;60:6146-54 pubmed 出版商
  640. Veinotte L, Gebremeskel S, Johnston B. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFN? production and tumor control. Oncoimmunology. 2016;5:e1160979 pubmed 出版商
  641. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  642. Coppo M, Chinenov Y, Sacta M, Rogatsky I. The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis. Nat Commun. 2016;7:12254 pubmed 出版商
  643. Rex J, Albrecht U, Ehlting C, Thomas M, Zanger U, Sawodny O, et al. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages. PLoS Comput Biol. 2016;12:e1005018 pubmed 出版商
  644. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  645. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  646. Liu L, Jin X, Zhou Z, Shen C. Enhancement of Anti-Hypoxic Activity and Differentiation of Cardiac Stem Cells by Supernatant Fluids from Cultured Macrophages that Phagocytized Dead Mesenchymal Stem Cells. Int J Mol Sci. 2016;17: pubmed 出版商
  647. Fransén Pettersson N, Duarte N, Nilsson J, Lundholm M, Mayans S, Larefalk A, et al. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis. PLoS ONE. 2016;11:e0159850 pubmed 出版商
  648. Gölz G, Alter T, Bereswill S, Heimesaat M. The Immunopathogenic Potential of Arcobacter butzleri - Lessons from a Meta-Analysis of Murine Infection Studies. PLoS ONE. 2016;11:e0159685 pubmed 出版商
  649. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  650. Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 2016;22:945-51 pubmed 出版商
  651. Xiao Y, Tang J, Guo H, Zhao Y, Tang R, Ouyang S, et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med. 2016;22:906-14 pubmed 出版商
  652. Wu W, Zhao L, Yang P, Zhou W, Li B, Moorhead J, et al. Inflammatory Stress Sensitizes the Liver to Atorvastatin-Induced Injury in ApoE-/- Mice. PLoS ONE. 2016;11:e0159512 pubmed 出版商
  653. Rackov G, Hernandez Jimenez E, Shokri R, Carmona Rodríguez L, Manes S, Alvarez Mon M, et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-?B and IFN-?. J Clin Invest. 2016;126:3089-103 pubmed 出版商
  654. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  655. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  656. Tsuboki J, Fujiwara Y, Horlad H, Shiraishi D, Nohara T, Tayama S, et al. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages. Sci Rep. 2016;6:29588 pubmed 出版商
  657. Kumari M, Wang X, Lantier L, Lyubetskaya A, Eguchi J, Kang S, et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J Clin Invest. 2016;126:2839-54 pubmed 出版商
  658. Ngambenjawong C, Gustafson H, Pineda J, Kacherovsky N, Cieslewicz M, Pun S. Serum Stability and Affinity Optimization of an M2 Macrophage-Targeting Peptide (M2pep). Theranostics. 2016;6:1403-14 pubmed 出版商
  659. Neves J, Zhu J, Sousa Victor P, Konjikusic M, Riley R, Chew S, et al. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 2016;353:aaf3646 pubmed 出版商
  660. Garaude J, Acin Perez R, Martínez Cano S, Enamorado M, Ugolini M, Nistal Villán E, et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol. 2016;17:1037-1045 pubmed 出版商
  661. Ni T, Liu Y, Peng Y, Li M, Fang Y, Yao M. Substance P induces inflammatory responses involving NF-?B in genetically diabetic mice skin fibroblasts co-cultured with macrophages. Am J Transl Res. 2016;8:2179-88 pubmed
  662. Al Sadoun H, Burgess M, Hentges K, Mace K. Enforced Expression of Hoxa3 Inhibits Classical and Promotes Alternative Activation of Macrophages In Vitro and In Vivo. J Immunol. 2016;197:872-84 pubmed 出版商
  663. Bereswill S, Alutis M, Grundmann U, Fischer A, Göbel U, Heimesaat M. Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice. PLoS ONE. 2016;11:e0158020 pubmed 出版商
  664. Albarrán Juárez J, Kaur H, Grimm M, Offermanns S, Wettschureck N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis. 2016;251:445-453 pubmed 出版商
  665. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  666. Lin W, Lim S, Yen T, Alison M. The Influence of Bone Marrow-Secreted IL-10 in a Mouse Model of Cerulein-Induced Pancreatic Fibrosis. Biomed Res Int. 2016;2016:4601532 pubmed 出版商
  667. Liu C, LeClair P, Monajemi M, Sly L, Reid G, Lim C. α-Integrin expression and function modulates presentation of cell surface calreticulin. Cell Death Dis. 2016;7:e2268 pubmed 出版商
  668. Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck M, et al. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget. 2016;7:51107-51123 pubmed 出版商
  669. Ruhland M, Loza A, Capietto A, Luo X, Knolhoff B, Flanagan K, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762 pubmed 出版商
  670. Chen I, Caprioli A, Ohnuki H, Kwak H, Porcher C, Tosato G. EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta. Sci Rep. 2016;6:27195 pubmed 出版商
  671. Zhang G, Liu H, Huang J, Chen S, Pan X, Huang H, et al. TREM-1low is a novel characteristic for tumor-associated macrophages in lung cancer. Oncotarget. 2016;7:40508-40517 pubmed 出版商
  672. Ding H, Zheng S, Garcia Ruiz D, Hou D, Wei Z, Liao Z, et al. Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nat Commun. 2016;7:11533 pubmed 出版商
  673. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  674. Kim C, Nakamura M, Hsieh C. Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation. 2016;13:117 pubmed 出版商
  675. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling. Cancer Res. 2016;76:4124-35 pubmed 出版商
  676. Akashi K, Saegusa J, Sendo S, Nishimura K, Okano T, Yagi K, et al. Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice. Arthritis Res Ther. 2016;18:113 pubmed 出版商
  677. Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella Branger D, Rougon G, et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 2016;6:26381 pubmed 出版商
  678. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  679. Shen Z, Liu Y, Dewidar B, Hu J, Park O, Feng T, et al. Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression. Am J Pathol. 2016;186:1874-1889 pubmed 出版商
  680. Sintusek P, Catapano F, Angkathunkayul N, Marrosu E, Parson S, Morgan J, et al. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment. PLoS ONE. 2016;11:e0155032 pubmed 出版商
  681. Rubio Navarro A, Carril M, Padro D, Guerrero Hue M, Tarin C, Samaniego R, et al. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles. Theranostics. 2016;6:896-914 pubmed 出版商
  682. Rothhammer V, Mascanfroni I, Bunse L, Takenaka M, Kenison J, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22:586-97 pubmed 出版商
  683. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  684. Hollmen M, Karaman S, Schwager S, Lisibach A, Christiansen A, Maksimow M, et al. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology. 2016;5:e1115177 pubmed
  685. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151-66 pubmed 出版商
  686. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  687. Haffner Luntzer M, Heilmann A, Rapp A, Roessler R, Schinke T, Amling M, et al. Antagonizing midkine accelerates fracture healing in mice by enhanced bone formation in the fracture callus. Br J Pharmacol. 2016;173:2237-49 pubmed 出版商
  688. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  689. Li X, Wang S, Zhu R, Li H, Han Q, Zhao R. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NF?B-TLR signaling pathway. J Hematol Oncol. 2016;9:42 pubmed 出版商
  690. Yamashita M, Yoshida T, Suzuki S, Homma K, Hayashi M. Podocyte-specific NF-?B inhibition ameliorates proteinuria in adriamycin-induced nephropathy in mice. Clin Exp Nephrol. 2017;21:16-26 pubmed 出版商
  691. Robinson E, Tate M, Lockhart S, McPeake C, O Neill K, Edgar K, et al. Metabolically-inactive glucagon-like peptide-1(9-36)amide confers selective protective actions against post-myocardial infarction remodelling. Cardiovasc Diabetol. 2016;15:65 pubmed 出版商
  692. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  693. Hobbs R, Batazzi A, Han M, Coulombe P. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. 2016;35:5653-5662 pubmed 出版商
  694. Yang Y, Huycke M, Herman T, Wang X. Glutathione S-transferase alpha 4 induction by activator protein 1 in colorectal cancer. Oncogene. 2016;35:5795-5806 pubmed 出版商
  695. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  696. Vandenberk L, Garg A, Verschuere T, Koks C, Belmans J, Beullens M, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5:e1083669 pubmed
  697. Mall C, Sckisel G, Proia D, Mirsoian A, Grossenbacher S, Pai C, et al. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology. 2016;5:e1075114 pubmed
  698. Wang T, Wang Z, Yang P, Xia L, Zhou M, Wang S, et al. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice. Cell Death Dis. 2016;7:e2176 pubmed 出版商
  699. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  700. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  701. Tao W, Moore R, Meng Y, Smith E, Xu X. Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. J Lipid Res. 2016;57:809-17 pubmed 出版商
  702. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  703. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  704. O Rourke J, Bogdanik L, Yáñez A, Lall D, Wolf A, Muhammad A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324-9 pubmed 出版商
  705. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  706. Giannogonas P, Apostolou A, Manousopoulou A, Theocharis S, Macari S, Psarras S, et al. Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep. 2016;6:23342 pubmed 出版商
  707. McFarland B, Marks M, Rowse A, Fehling S, Gerigk M, Qin H, et al. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma. Oncotarget. 2016;7:20621-35 pubmed 出版商
  708. Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman H, et al. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res. 2016;57:832-47 pubmed 出版商
  709. Tan S, Krasnow M. Developmental origin of lung macrophage diversity. Development. 2016;143:1318-27 pubmed 出版商
  710. Carevic M, Oz H, Fuchs K, Laval J, Schroth C, Frey N, et al. CXCR1 Regulates Pulmonary Anti-Pseudomonas Host Defense. J Innate Immun. 2016;8:362-73 pubmed 出版商
  711. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  712. Liu S, Wu C, Huang K, Wang C, Guan S, Chen L, et al. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget. 2016;7:21900-12 pubmed 出版商
  713. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  714. Shirakawa J, Okuyama T, Kyohara M, Yoshida E, Togashi Y, Tajima K, et al. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetol Metab Syndr. 2016;8:16 pubmed 出版商
  715. Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 2016;131:753-73 pubmed 出版商
  716. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  717. Wong H, Jin G, Cao R, Zhang S, Cao Y, Zhou Z. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun. 2016;7:10824 pubmed 出版商
  718. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay H, Yang D, et al. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell. 2016;18:797-808 pubmed 出版商
  719. Marneros A. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med. 2016;8:208-31 pubmed 出版商
  720. Leon J, Sakumi K, Castillo E, Sheng Z, Oka S, Nakabeppu Y. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions. Sci Rep. 2016;6:22086 pubmed 出版商
  721. Xu J, Zhou L, Ji L, Chen F, Fortmann K, Zhang K, et al. The REGγ-proteasome forms a regulatory circuit with IκBÉ› and NFκB in experimental colitis. Nat Commun. 2016;7:10761 pubmed 出版商
  722. Vance M, Llanga T, Bennett W, Woodard K, Murlidharan G, Chungfat N, et al. AAV Gene Therapy for MPS1-associated Corneal Blindness. Sci Rep. 2016;6:22131 pubmed 出版商
  723. Wang L, Zhao R, Liu C, Liu M, Li S, Li J, et al. A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med. 2016;39:138-46 pubmed 出版商
  724. del Río C, Navarrete C, Collado J, Bellido M, Gómez Cañas M, Pazos M, et al. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci Rep. 2016;6:21703 pubmed 出版商
  725. Tsaousi A, Hayes E, Di Gregoli K, Bond A, Bevan L, Thomas A, et al. Plaque Size Is Decreased but M1 Macrophage Polarization and Rupture Related Metalloproteinase Expression Are Maintained after Deleting T-Bet in ApoE Null Mice. PLoS ONE. 2016;11:e0148873 pubmed 出版商
  726. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  727. Gupta S, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F, et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res. 2016;110:215-26 pubmed 出版商
  728. Xiao J, Shao L, Shen J, Jiang W, Feng Y, Zheng P, et al. Effects of ketanserin on experimental colitis in mice and macrophage function. Int J Mol Med. 2016;37:659-68 pubmed 出版商
  729. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  730. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  731. Smith R, Reyes N, Khandelwal P, Schlereth S, Lee H, Masli S, et al. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease. J Leukoc Biol. 2016;100:371-80 pubmed 出版商
  732. Däbritz J, Judd L, Chalinor H, Menheniott T, Giraud A. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells. Sci Rep. 2016;6:20584 pubmed 出版商
  733. Li M, Li M, Yin T, Shi H, Wen Y, Zhang B, et al. Targeting of cancer‑associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol Med Rep. 2016;13:2476-84 pubmed 出版商
  734. Liu C, Rajapakse A, Riedo E, Fellay B, Bernhard M, Montani J, et al. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation. Sci Rep. 2016;6:20405 pubmed 出版商
  735. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  736. Hirasawa M, Takubo K, Osada H, Miyake S, Toda E, Endo M, et al. Angiopoietin-like Protein 2 Is a Multistep Regulator of Inflammatory Neovascularization in a Murine Model of Age-related Macular Degeneration. J Biol Chem. 2016;291:7373-85 pubmed 出版商
  737. Lancaster G, Kammoun H, Kraakman M, Kowalski G, Bruce C, Febbraio M. PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications. Nat Commun. 2016;7:10626 pubmed 出版商
  738. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  739. Megías J, Martínez A, Yáñez A, Goodridge H, Gozalbo D, Gil M. TLR2, TLR4 and Dectin-1 signalling in hematopoietic stem and progenitor cells determines the antifungal phenotype of the macrophages they produce. Microbes Infect. 2016;18:354-63 pubmed 出版商
  740. Atkinson S, Hoffmann U, Hamann A, Bach E, Danneskiold Samsøe N, Kristiansen K, et al. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade. Dis Model Mech. 2016;9:427-40 pubmed 出版商
  741. Foks A, Engelbertsen D, Kuperwaser F, Alberts Grill N, Gonen A, Witztum J, et al. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol. 2016;36:456-65 pubmed 出版商
  742. McCarthy R, Lu D, Alkhateeb A, Gardeck A, Lee C, Wessling Resnick M. Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta. J Neuroinflammation. 2016;13:21 pubmed 出版商
  743. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  744. Gaide Chevronnay H, Janssens V, Van Der Smissen P, Rocca C, Liao X, Refetoff S, et al. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology. 2016;157:1363-71 pubmed 出版商
  745. Duhan V, Khairnar V, Friedrich S, Zhou F, Gassa A, Honke N, et al. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8(+) T-cell priming and viral control. Sci Rep. 2016;6:19191 pubmed 出版商
  746. Chu C, Gardner P, Copland D, Liyanage S, Gonzalez Cordero A, Kleine Holthaus S, et al. Multimodal analysis of ocular inflammation using the endotoxin-induced uveitis mouse model. Dis Model Mech. 2016;9:473-81 pubmed 出版商
  747. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  748. Wu H, Shi L, Wang Q, Cheng L, Zhao X, Chen Q, et al. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells. Sci Rep. 2016;6:19507 pubmed 出版商
  749. Montufar Solis D, Klein J. Splenic Leukocytes Traffic to the Thyroid and Produce a Novel TSHβ Isoform during Acute Listeria monocytogenes Infection in Mice. PLoS ONE. 2016;11:e0146111 pubmed 出版商
  750. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  751. Chen X, Wei S, Li J, Zhang Q, Wang Y, Zhao S, et al. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction. PLoS ONE. 2016;11:e0147084 pubmed 出版商
  752. Ito T, Itakura J, Takahashi S, Sato M, Mino M, Fushimi S, et al. Sprouty-Related Ena/Vasodilator-Stimulated Phosphoprotein Homology 1-Domain-Containing Protein-2 Critically Regulates Influenza A Virus-Induced Pneumonia. Crit Care Med. 2016;44:e530-43 pubmed 出版商
  753. Mole D, Webster S, Uings I, Zheng X, Binnie M, Wilson K, et al. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis. Nat Med. 2016;22:202-9 pubmed 出版商
  754. Mangum L, CROW J, Stokes J, HOWELL G, Ross M, Pruett S, et al. Exposure to p,p'-DDE Alters Macrophage Reactivity and Increases Macrophage Numbers in Adipose Stromal Vascular Fraction. Toxicol Sci. 2016;150:169-77 pubmed 出版商
  755. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  756. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med. 2016;22:183-93 pubmed 出版商
  757. Nelson C, Hakim C, Ousterout D, Thakore P, Moreb E, Castellanos Rivera R, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351:403-7 pubmed 出版商
  758. Gallego Ortega D, Ledger A, Roden D, Law A, Magenau A, Kikhtyak Z, et al. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biol. 2015;13:e1002330 pubmed 出版商
  759. Rybalko V, Hsieh P, Merscham Banda M, Suggs L, Farrar R. The Development of Macrophage-Mediated Cell Therapy to Improve Skeletal Muscle Function after Injury. PLoS ONE. 2015;10:e0145550 pubmed 出版商
  760. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  761. Zahavi T, Lanton T, Divon M, Salmon A, Peretz T, Galun E, et al. Sorafenib treatment during partial hepatectomy reduces tumorgenesis in an inflammation-associated liver cancer model. Oncotarget. 2016;7:4860-70 pubmed 出版商
  762. Leikina E, Defour A, Melikov K, van der Meulen J, Nagaraju K, Bhuvanendran S, et al. Annexin A1 Deficiency does not Affect Myofiber Repair but Delays Regeneration of Injured Muscles. Sci Rep. 2015;5:18246 pubmed 出版商
  763. Scholz A, Harter P, Cremer S, Yalcin B, Gurnik S, Yamaji M, et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med. 2016;8:39-57 pubmed 出版商
  764. Kimmey J, Huynh J, Weiss L, Park S, Kambal A, Debnath J, et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature. 2015;528:565-9 pubmed 出版商
  765. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  766. Arnold L, Perrin H, de Chanville C, Saclier M, Hermand P, Poupel L, et al. CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production. Nat Commun. 2015;6:8972 pubmed 出版商
  767. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  768. Dinh C, Szabo A, Yu Y, Camer D, Wang H, Huang X. Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice. ScientificWorldJournal. 2015;2015:549352 pubmed 出版商
  769. Messaoudi S, He Y, Gutsol A, Wight A, Hébert R, Vilmundarson R, et al. Endothelial Gata5 transcription factor regulates blood pressure. Nat Commun. 2015;6:8835 pubmed 出版商
  770. Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 2015;5:17192 pubmed 出版商
  771. Tate M, Robinson E, Green B, McDermott B, Grieve D. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Res Cardiol. 2016;111:1 pubmed 出版商
  772. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  773. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  774. Zhang J, Tong F, Cai Q, Chen L, Dong J, Wu G, et al. Shenqi fuzheng injection attenuates irradiation-induced brain injury in mice via inhibition of the NF-κB signaling pathway and microglial activation. Acta Pharmacol Sin. 2015;36:1288-99 pubmed 出版商
  775. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  776. Freedman T, Tan Y, Skrzypczynska K, Manz B, Sjaastad F, Goodridge H, et al. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages. elife. 2015;4: pubmed 出版商
  777. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  778. Van Helden M, Goossens S, Daussy C, Mathieu A, Faure F, Marçais A, et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J Exp Med. 2015;212:2015-25 pubmed 出版商
  779. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  780. Baba I, Egi Y, Utsumi H, Kakimoto T, Suzuki K. Inhibitory effects of fasudil on renal interstitial fibrosis induced by unilateral ureteral obstruction. Mol Med Rep. 2015;12:8010-20 pubmed 出版商
  781. Gallego Colon E, Sampson R, Sattler S, Schneider M, Rosenthal N, Tonkin J. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction. Mediators Inflamm. 2015;2015:484357 pubmed 出版商
  782. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  783. Chou C, Chen S, Shun C, Tsao P, Yang Y, Yang J. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device. Sci Rep. 2015;5:15157 pubmed 出版商
  784. Hsiao H, Thatcher T, Colas R, Serhan C, Phipps R, Sime P. Resolvin D1 Reduces Emphysema and Chronic Inflammation. Am J Pathol. 2015;185:3189-201 pubmed 出版商
  785. Song I, Patel O, Himpe E, Muller C, Bouwens L. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin. PLoS ONE. 2015;10:e0140148 pubmed 出版商
  786. Janssen L, Dupont L, Bekhouche M, Noel A, Leduc C, Voz M, et al. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis. 2016;19:53-65 pubmed 出版商
  787. Abboud D, Daubeuf F, Do Q, Utard V, Villa P, Haiech J, et al. A strategy to discover decoy chemokine ligands with an anti-inflammatory activity. Sci Rep. 2015;5:14746 pubmed 出版商
  788. Phinney D, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix C, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472 pubmed 出版商
  789. Jones D, Wilmore J, Allman D. Cellular Dynamics of Memory B Cell Populations: IgM+ and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells. J Immunol. 2015;195:4753-9 pubmed 出版商
  790. Sun L, Hua Y, Vergarajauregui S, Diab H, Puertollano R. Novel Role of TRPML2 in the Regulation of the Innate Immune Response. J Immunol. 2015;195:4922-32 pubmed 出版商
  791. Arce Cerezo A, García M, Rodríguez Nuevo A, Crosa Bonell M, Enguix N, Peró A, et al. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance. Sci Rep. 2015;5:14487 pubmed 出版商
  792. Li S, Dislich B, Brakebusch C, Lichtenthaler S, Brocker T. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA. J Immunol. 2015;195:4244-56 pubmed 出版商
  793. Pearson H, McGlinn E, Phesse T, Schlüter H, Srikumar A, Gödde N, et al. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer. 2015;14:169 pubmed 出版商
  794. Hanot Mambres D, Machelart A, Vanderwinden J, De Trez C, Ryffel B, Letesson J, et al. In Situ Characterization of Splenic Brucella melitensis Reservoir Cells during the Chronic Phase of Infection in Susceptible Mice. PLoS ONE. 2015;10:e0137835 pubmed 出版商
  795. Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, et al. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy. Endocrinology. 2015;156:4281-92 pubmed 出版商
  796. Mu X, Español Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891-903 pubmed 出版商
  797. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  798. Spillane D, Wang D, Newbigging S, Wang Y, Shi C, Cho H, et al. Chromosome Condensation 1-Like (Chc1L) Is a Novel Tumor Suppressor Involved in Development of Histiocyte-Rich Neoplasms. PLoS ONE. 2015;10:e0135755 pubmed 出版商
  799. Smith K, Filbey K, Reynolds L, Hewitson J, Harcus Y, Boon L, et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 2016;9:428-43 pubmed 出版商
  800. Zhang B, Yu J, Liu L, Peng L, Chi F, Wu C, et al. Alpha7 nicotinic acetylcholine receptor is required for blood-brain barrier injury-related CNS disorders caused by Cryptococcus neoformans and HIV-1 associated comorbidity factors. BMC Infect Dis. 2015;15:352 pubmed 出版商
  801. Manieri N, Mack M, Himmelrich M, Worthley D, Hanson E, Eckmann L, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest. 2015;125:3606-18 pubmed 出版商
  802. Merches K, Khairnar V, Knuschke T, Shaabani N, Honke N, Duhan V, et al. Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection. Cell Physiol Biochem. 2015;36:2379-92 pubmed 出版商
  803. Mazzilli S, Hershberger P, Reid M, Bogner P, Atwood K, Trump D, et al. Vitamin D Repletion Reduces the Progression of Premalignant Squamous Lesions in the NTCU Lung Squamous Cell Carcinoma Mouse Model. Cancer Prev Res (Phila). 2015;8:895-904 pubmed 出版商
  804. Harney A, Arwert E, Entenberg D, Wang Y, Guo P, Qian B, et al. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA. Cancer Discov. 2015;5:932-43 pubmed 出版商
  805. Wan C, Li P, Spolski R, Oh J, Andraski A, Du N, et al. IL-21-mediated non-canonical pathway for IL-1β production in conventional dendritic cells. Nat Commun. 2015;6:7988 pubmed 出版商
  806. Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N, et al. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun. 2015;6:7847 pubmed 出版商
  807. Peluffo H, Solari Saquieres P, Negro Demontel M, Francos Quijorna I, Navarro X, Lopez Vales R, et al. CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype. J Neuroinflammation. 2015;12:145 pubmed 出版商
  808. Eichin D, Laurila J, Jalkanen S, Salmi M. CD73 Activity is Dispensable for the Polarization of M2 Macrophages. PLoS ONE. 2015;10:e0134721 pubmed 出版商
  809. Lovisa S, LeBleu V, Tampe B, Sugimoto H, Vadnagara K, Carstens J, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21:998-1009 pubmed 出版商
  810. Yoon K, Byun S, Kwon E, Hwang S, Chu K, Hiraki M, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669 pubmed 出版商
  811. Jovicic N, Jeftic I, Jovanovic I, Radosavljevic G, Arsenijevic N, Lukic M, et al. Differential Immunometabolic Phenotype in Th1 and Th2 Dominant Mouse Strains in Response to High-Fat Feeding. PLoS ONE. 2015;10:e0134089 pubmed 出版商
  812. Brown A, Simmen R, Raj V, Van T, MacLeod S, Simmen F. Krüppel-like factor 9 (KLF9) prevents colorectal cancer through inhibition of interferon-related signaling. Carcinogenesis. 2015;36:946-55 pubmed 出版商
  813. Zhang W, Zheng X, Du L, Sun J, Shen Z, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893-910 pubmed 出版商
  814. ELDREDGE L, Treuting P, MANICONE A, Ziegler S, Parks W, McGuire J. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice. Am J Respir Cell Mol Biol. 2016;54:273-83 pubmed 出版商
  815. Vettorazzi S, Bode C, Dejager L, Frappart L, Shelest E, Klaßen C, et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat Commun. 2015;6:7796 pubmed 出版商
  816. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  817. Johnson V, Xiang M, Chen Z, Junge H. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS ONE. 2015;10:e0132013 pubmed 出版商
  818. Malik I, Stange I, Martius G, Cameron S, Rave Fränk M, Hess C, et al. Role of PECAM-1 in radiation-induced liver inflammation. J Cell Mol Med. 2015;19:2441-52 pubmed 出版商
  819. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  820. Jiang Y, Gao Q, Wang L, Guo C, Zhu F, Wang B, et al. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice. Cell Mol Immunol. 2016;13:524-34 pubmed 出版商
  821. Vogel A, Brown D. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol. 2015;6:327 pubmed 出版商
  822. Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein A, et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6:22613-23 pubmed
  823. Hiemstra I, Vrijland K, Hogenboom M, Bouma G, Kraal G, den Haan J. Intestinal epithelial cell transported TLR2 ligand stimulates Ly6C⁺ monocyte differentiation in a G-CSF dependent manner. Immunobiology. 2015;220:1255-65 pubmed 出版商
  824. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  825. Kim A, Park Y, Pan X, Shin K, Kwak S, Bassas A, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6:7585 pubmed 出版商
  826. Sive J, Basilico S, Hannah R, Kinston S, Calero Nieto F, Göttgens B. Genome-scale definition of the transcriptional programme associated with compromised PU.1 activity in acute myeloid leukaemia. Leukemia. 2016;30:14-23 pubmed 出版商
  827. Jakobs C, Perner S, Hornung V. AIM2 Drives Joint Inflammation in a Self-DNA Triggered Model of Chronic Polyarthritis. PLoS ONE. 2015;10:e0131702 pubmed 出版商
  828. Singh N, Kotla S, Dyukova E, Traylor J, Orr A, Chernoff J, et al. Disruption of p21-activated kinase 1 gene diminishes atherosclerosis in apolipoprotein E-deficient mice. Nat Commun. 2015;6:7450 pubmed 出版商
  829. Chang C, Lin C, Lu C, Martel J, Ko Y, Ojcius D, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489 pubmed 出版商
  830. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  831. Dinh C, Szabo A, Yu Y, Camer D, Zhang Q, Wang H, et al. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet. Nutrients. 2015;7:4705-23 pubmed 出版商
  832. Yoshida Y, Shimizu I, Katsuumi G, Jiao S, Suda M, Hayashi Y, et al. p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload. J Mol Cell Cardiol. 2015;85:183-98 pubmed 出版商
  833. Shoemaker J, Fukuyama S, Eisfeld A, Zhao D, Kawakami E, Sakabe S, et al. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation. PLoS Pathog. 2015;11:e1004856 pubmed 出版商
  834. Schuler F, Baumgartner F, Klepsch V, Chamson M, Müller Holzner E, Watson C, et al. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ. 2016;23:41-51 pubmed 出版商
  835. Khan I, Perrard X, Brunner G, Lui H, Sparks L, Smith S, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond). 2015;39:1607-18 pubmed 出版商
  836. Almholt K, Lærum O, Nielsen B, Lund I, Lund L, Rømer J, et al. Spontaneous lung and lymph node metastasis in transgenic breast cancer is independent of the urokinase receptor uPAR. Clin Exp Metastasis. 2015;32:543-54 pubmed 出版商
  837. Williams B, Tebbutt N, Buchert M, Putoczki T, Doggett K, Bao S, et al. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease. Dis Model Mech. 2015;8:805-15 pubmed 出版商
  838. Park J, Rasch M, Qiu J, Lund I, Egeblad M. Presence of insulin-like growth factor binding proteins correlates with tumor-promoting effects of matrix metalloproteinase 9 in breast cancer. Neoplasia. 2015;17:421-33 pubmed 出版商
  839. Vinue A, Andrés Blasco I, Herrero Cervera A, Piqueras L, Andres V, Burks D, et al. Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta. 2015;1852:1729-42 pubmed 出版商
  840. Teo T, Her Z, Tan J, Lum F, Lee W, Chan Y, et al. Caribbean and La Réunion Chikungunya Virus Isolates Differ in Their Capacity To Induce Proinflammatory Th1 and NK Cell Responses and Acute Joint Pathology. J Virol. 2015;89:7955-69 pubmed 出版商
  841. Yang X, Zhang Y, Hosaka K, Andersson P, Wang J, Tholander F, et al. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci U S A. 2015;112:E2900-9 pubmed 出版商
  842. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  843. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson A, et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522:349-53 pubmed 出版商
  844. Lalley A, Dyment N, Kazemi N, Kenter K, Gooch C, Rowe D, et al. Improved biomechanical and biological outcomes in the MRL/MpJ murine strain following a full-length patellar tendon injury. J Orthop Res. 2015;33:1693-703 pubmed 出版商
  845. Xue J, Sharma V, Hsieh M, Chawla A, Murali R, Pandol S, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158 pubmed 出版商
  846. Hamilton A, Basic V, Andersson S, Abrink M, Ringvall M. Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation. PLoS ONE. 2015;10:e0126688 pubmed 出版商
  847. Yang L, Carrillo M, Wu Y, DiAngelo S, Silveyra P, Umstead T, et al. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS ONE. 2015;10:e0126576 pubmed 出版商
  848. Doni A, Musso T, Morone D, Bastone A, Zambelli V, Sironi M, et al. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J Exp Med. 2015;212:905-25 pubmed 出版商
  849. Sarr D, Bracken T, Owino S, Cooper C, Smith G, Nagy T, et al. Differential roles of inflammation and apoptosis in initiation of mid-gestational abortion in malaria-infected C57BL/6 and A/J mice. Placenta. 2015;36:738-49 pubmed 出版商
  850. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  851. van Bracht E, Raavé R, Perevyazko I, Versteeg E, Hafmans T, Schubert U, et al. Biodistribution of size-selected lyophilisomes in mice. Eur J Pharm Biopharm. 2015;94:141-51 pubmed 出版商
  852. Cha J, Burnum Johnson K, Bartos A, Li Y, Baker E, Tilton S, et al. Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus. J Biol Chem. 2015;290:15337-49 pubmed 出版商
  853. Carmi Y, Spitzer M, Linde I, Burt B, Prestwood T, Perlman N, et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature. 2015;521:99-104 pubmed 出版商
  854. Li X, Maretzky T, Weskamp G, Monette S, Qing X, Issuree P, et al. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc Natl Acad Sci U S A. 2015;112:6080-5 pubmed 出版商
  855. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  856. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  857. Opata M, Carpio V, Ibitokou S, Dillon B, Obiero J, Stephens R. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells. J Immunol. 2015;194:5346-54 pubmed 出版商
  858. Uetake Y, Ikeda H, Irie R, Tejima K, Matsui H, Ogura S, et al. High-salt in addition to high-fat diet may enhance inflammation and fibrosis in liver steatosis induced by oxidative stress and dyslipidemia in mice. Lipids Health Dis. 2015;14:6 pubmed 出版商
  859. Hamilton J, Li J, Wu Q, Yang P, Luo B, Li H, et al. General Approach for Tetramer-Based Identification of Autoantigen-Reactive B Cells: Characterization of La- and snRNP-Reactive B Cells in Autoimmune BXD2 Mice. J Immunol. 2015;194:5022-34 pubmed 出版商
  860. Klein D, Groh J, Weishaupt A, Martini R. Endogenous antibodies contribute to macrophage-mediated demyelination in a mouse model for CMT1B. J Neuroinflammation. 2015;12:49 pubmed 出版商
  861. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  862. Lee H, Jeong H, Park S, Yoo W, Choi S, Choi K, et al. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis. EMBO Mol Med. 2015;7:819-30 pubmed 出版商
  863. Johnson A, Costanzo A, Gareau M, Armando A, Quehenberger O, Jameson J, et al. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS ONE. 2015;10:e0122195 pubmed 出版商
  864. Hohsfield L, Humpel C. Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. PLoS ONE. 2015;10:e0121930 pubmed 出版商
  865. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  866. Bai J, Liu Z, Xu Z, Ke F, Zhang L, Zhu H, et al. Epigenetic downregulation of SFRP4 contributes to epidermal hyperplasia in psoriasis. J Immunol. 2015;194:4185-98 pubmed 出版商
  867. Napier R, Norris B, Swimm A, Giver C, Harris W, Laval J, et al. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog. 2015;11:e1004770 pubmed 出版商
  868. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  869. Zhang J, Chen S, Hou Z, Cai J, Dong M, Shi X. Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins. PLoS ONE. 2015;10:e0122572 pubmed 出版商
  870. Scott C, Cha K, Rao R, Liddle C, George J, Gunton J. Hepatocyte-specific deletion of ARNT (aryl hydrocarbon Receptor Nuclear Translocator) results in altered fibrotic gene expression in the thioacetamide model of liver injury. PLoS ONE. 2015;10:e0121650 pubmed 出版商
  871. Lavoz C, Alique M, Rodrígues Díez R, Pato J, Keri G, Mezzano S, et al. Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J Pathol. 2015;236:407-20 pubmed 出版商
  872. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  873. Dal Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong C, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447-56 pubmed 出版商
  874. McClintock S, Warner R, Ali S, Chekuri A, Dame M, Attili D, et al. Monoclonal antibodies specific for oncofetal antigen--immature laminin receptor protein: Effects on tumor growth and spread in two murine models. Cancer Biol Ther. 2015;16:724-32 pubmed 出版商
  875. Hu Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015;7:279ra41 pubmed 出版商
  876. Woods S, Waite A, O Dea K, Halford P, Takata M, Wilson M. Kinetic profiling of in vivo lung cellular inflammatory responses to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol. 2015;308:L912-21 pubmed 出版商
  877. Bretscher P, Egger J, Shamshiev A, Trötzmüller M, Köfeler H, Carreira E, et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol Med. 2015;7:593-607 pubmed 出版商
  878. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  879. Kitamura M, Nishino T, Obata Y, Oka S, Abe S, Muta K, et al. The kampo medicine Daikenchuto inhibits peritoneal fibrosis in mice. Biol Pharm Bull. 2015;38:193-200 pubmed 出版商
  880. Grabner B, Schramek D, Mueller K, Moll H, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285 pubmed 出版商
  881. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  882. Choi E, Park H, Sul O, Rajasekaran M, Yu R, Choi H. Carbon monoxide reverses adipose tissue inflammation and insulin resistance upon loss of ovarian function. Am J Physiol Endocrinol Metab. 2015;308:E621-30 pubmed 出版商
  883. Zhu B, Chen Y, Zhang H, Liu X, Guo S. Resveratrol Reduces Myometrial Infiltration, Uterine Hyperactivity, and Stress Levels and Alleviates Generalized Hyperalgesia in Mice With Induced Adenomyosis. Reprod Sci. 2015;22:1336-49 pubmed 出版商
  884. Pechous R, Broberg C, Stasulli N, Miller V, Goldman W. In vivo transcriptional profiling of Yersinia pestis reveals a novel bacterial mediator of pulmonary inflammation. MBio. 2015;6:e02302-14 pubmed 出版商
  885. Feuerstein R, Seidl M, Prinz M, Henneke P. MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection. J Immunol. 2015;194:2735-45 pubmed 出版商
  886. Watson N, Schneider K, Massa P. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis. J Immunol. 2015;194:2796-809 pubmed 出版商
  887. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  888. Zhan R, Han Q, Zhang C, Tian Z, Zhang J. Toll-Like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica serovar Typhimurium infection. Infect Immun. 2015;83:1641-9 pubmed 出版商
  889. Stack G, Jones E, Marsden M, Stacey M, Snelgrove R, Lacaze P, et al. CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog. 2015;11:e1004641 pubmed 出版商
  890. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271-84 pubmed 出版商
  891. Dinh C, Szabo A, Camer D, Yu Y, Wang H, Huang X. Bardoxolone methyl prevents fat deposition and inflammation in the visceral fat of mice fed a high-fat diet. Chem Biol Interact. 2015;229:1-8 pubmed 出版商
  892. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed 出版商
  893. Crncec I, Pathria P, Svinka J, Eferl R. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol Biol. 2015;1267:145-64 pubmed 出版商
  894. Tan J, Chan S, Lo C, Deane J, McDonald C, Bernard C, et al. Amnion cell-mediated immune modulation following bleomycin challenge: controlling the regulatory T cell response. Stem Cell Res Ther. 2015;6:8 pubmed 出版商
  895. Chen Z, Shen H, Sun C, Yin L, Tang F, Zheng P, et al. Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. Am J Physiol Endocrinol Metab. 2015;308:E460-9 pubmed 出版商
  896. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  897. Evans E, Jonason A, Bussler H, Torno S, Veeraraghavan J, Reilly C, et al. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res. 2015;3:689-701 pubmed 出版商
  898. Kanayama M, Inoue M, Danzaki K, Hammer G, He Y, Shinohara M. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 2015;6:5779 pubmed 出版商
  899. Sun C, Schattgen S, Pisitkun P, Jorgensen J, Hilterbrand A, Wang L, et al. Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. J Immunol. 2015;194:1819-31 pubmed 出版商
  900. Liu Z, Zhao S, Chen Q, Yan K, Liu P, Li N, et al. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice. Biol Reprod. 2015;92:63 pubmed 出版商
  901. Teixeira L, Moreira J, Melo J, Bezerra F, Marques R, Ferreirinha P, et al. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology. 2015;145:242-57 pubmed 出版商
  902. Zhou W, Ke S, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170-82 pubmed 出版商
  903. Besschetnova T, Ichimura T, Katebi N, St Croix B, Bonventre J, Olsen B. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol. 2015;42:56-73 pubmed 出版商
  904. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  905. Zhou L, Park S, Xu L, Xia X, Ye J, Su L, et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun. 2015;6:5949 pubmed 出版商
  906. Shindo Y, Unsinger J, Burnham C, Green J, Hotchkiss R. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015;43:334-43 pubmed 出版商
  907. Weston C, Shepherd E, Claridge L, Rantakari P, Curbishley S, Tomlinson J, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501-20 pubmed 出版商
  908. Haffner Luntzer M, Heilmann A, Rapp A, Beie S, Schinke T, Amling M, et al. Midkine-deficiency delays chondrogenesis during the early phase of fracture healing in mice. PLoS ONE. 2014;9:e116282 pubmed 出版商
  909. Skripuletz T, Manzel A, Gropengießer K, Schäfer N, Gudi V, Singh V, et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398-413 pubmed 出版商
  910. Karaca G, Xie G, Moylan C, Swiderska Syn M, Guy C, Krüger L, et al. Role of Fn14 in acute alcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G325-34 pubmed 出版商
  911. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  912. Evrard M, Chong S, Devi S, Chew W, Lee B, Poidinger M, et al. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol. 2015;97:611-9 pubmed 出版商
  913. Nikolaou K, Moulos P, Chalepakis G, Hatzis P, Oda H, Reinberg D, et al. Spontaneous development of hepatocellular carcinoma with cancer stem cell properties in PR-SET7-deficient livers. EMBO J. 2015;34:430-47 pubmed 出版商
  914. Hayashi N, Kataoka H, Yano S, Tanaka M, Moriwaki K, Akashi H, et al. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages. Mol Cancer Ther. 2015;14:452-60 pubmed 出版商
  915. Zhang H, Hu H, Greeley N, Jin J, Matthews A, Ohashi E, et al. STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nat Commun. 2014;5:5798 pubmed 出版商
  916. Vi L, Baht G, Whetstone H, Ng A, Wei Q, Poon R, et al. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. 2015;30:1090-102 pubmed 出版商
  917. Cicchini M, Chakrabarti R, Kongara S, Price S, Nahar R, Lozy F, et al. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy. 2014;10:2036-52 pubmed 出版商
  918. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  919. Almolda B, de Labra C, Barrera I, Gruart A, Delgado Garcia J, Villacampa N, et al. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun. 2015;45:80-97 pubmed 出版商
  920. Jannasch K, Wegwitz F, Lenfert E, Maenz C, Deppert W, Alves F. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination. Int J Cancer. 2015;137:25-36 pubmed 出版商
  921. Dabydeen S, Kang K, Díaz Cruz E, Alamri A, Axelrod M, Bouker K, et al. Comparison of tamoxifen and letrozole response in mammary preneoplasia of ER and aromatase overexpressing mice defines an immune-associated gene signature linked to tamoxifen resistance. Carcinogenesis. 2015;36:122-32 pubmed 出版商
  922. Vela Ramirez J, Goodman J, Boggiatto P, Roychoudhury R, Pohl N, Hostetter J, et al. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS J. 2015;17:256-67 pubmed 出版商
  923. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  924. Jaworska K, Ratajczak J, Huang L, Whalen K, Yang M, Stevens B, et al. Both PD-1 ligands protect the kidney from ischemia reperfusion injury. J Immunol. 2015;194:325-33 pubmed 出版商
  925. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  926. Lieber S, Scheer F, Finkernagel F, Meissner W, Giehl G, Brendel C, et al. The inverse agonist DG172 triggers a PPARβ/δ-independent myeloid lineage shift and promotes GM-CSF/IL-4-induced dendritic cell differentiation. Mol Pharmacol. 2015;87:162-73 pubmed 出版商
  927. Barnes M, McMullen M, Roychowdhury S, Madhun N, Niese K, Olman M, et al. Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. J Leukoc Biol. 2015;97:161-9 pubmed 出版商
  928. Mehta P, Nuotio Antar A, Smith C. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J Leukoc Biol. 2015;97:121-34 pubmed 出版商
  929. Yen T, Alison M, Goodlad R, Otto W, Jeffery R, Cook H, et al. Epidermal growth factor attenuates tubular necrosis following mercuric chloride damage by regeneration of indigenous, not bone marrow-derived cells. J Cell Mol Med. 2015;19:463-73 pubmed 出版商
  930. Peschke K, Dudeck A, Rabenhorst A, Hartmann K, Roers A. Cre/loxP-based mouse models of mast cell deficiency and mast cell-specific gene inactivation. Methods Mol Biol. 2015;1220:403-21 pubmed 出版商
  931. Taniguchi T, Asano Y, Akamata K, Noda S, Takahashi T, Ichimura Y, et al. Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated Fli-1-haploinsufficient mice. Arthritis Rheumatol. 2015;67:517-26 pubmed 出版商
  932. Jurkin J, Henkel T, Nielsen A, Minnich M, Popow J, Kaufmann T, et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 2014;33:2922-36 pubmed 出版商
  933. Gangadharan Komala M, Gross S, Mudaliar H, Huang C, Pegg K, Mather A, et al. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS ONE. 2014;9:e108994 pubmed 出版商
  934. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  935. Fu C, Odegaard J, Hsieh M. Macrophages are required for host survival in experimental urogenital schistosomiasis. FASEB J. 2015;29:193-207 pubmed 出版商
  936. Facci L, Barbierato M, Marinelli C, Argentini C, Skaper S, Giusti P. Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1β release. Sci Rep. 2014;4:6824 pubmed 出版商
  937. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  938. Lin H, Lin S, Chung Y, Vonderfecht S, Camden J, Flodby P, et al. Dynamic involvement of ATG5 in cellular stress responses. Cell Death Dis. 2014;5:e1478 pubmed 出版商
  939. Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer. 2015;18:774-83 pubmed 出版商
  940. Ribeiro Resende V, Araújo Gomes T, de Lima S, Nascimento Lima M, Bargas Rega M, Santiago M, et al. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration. PLoS ONE. 2014;9:e108919 pubmed 出版商
  941. Okuneva O, Körber I, Li Z, Tian L, Joensuu T, Kopra O, et al. Abnormal microglial activation in the Cstb(-/-) mouse, a model for progressive myoclonus epilepsy, EPM1. Glia. 2015;63:400-11 pubmed 出版商
  942. Liu G, Zhang W, Xiao Y, Lu P. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization. Curr Eye Res. 2015;40:891-901 pubmed 出版商
  943. Goren I, Pfeilschifter J, Frank S. Uptake of neutrophil-derived Ym1 protein distinguishes wound macrophages in the absence of interleukin-4 signaling in murine wound healing. Am J Pathol. 2014;184:3249-61 pubmed 出版商
  944. Xia H, Ren X, Bolte C, Ustiyan V, Zhang Y, Shah T, et al. Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol. 2015;52:611-21 pubmed 出版商
  945. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  946. Döring M, Lessin I, Frenz T, Spanier J, Kessler A, Tegtmeyer P, et al. M27 expressed by cytomegalovirus counteracts effective type I interferon induction of myeloid cells but not of plasmacytoid dendritic cells. J Virol. 2014;88:13638-50 pubmed 出版商
  947. ZasÅ‚ona Z, Przybranowski S, Wilke C, Van Rooijen N, Teitz Tennenbaum S, Osterholzer J, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014;193:4245-53 pubmed 出版商
  948. Meraz I, Savage D, Segura Ibarra V, Li J, Rhudy J, Gu J, et al. Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm. 2014;11:3484-91 pubmed 出版商
  949. Eberle M, Ebel P, Wegner M, Männich J, Tafferner N, Ferreirós N, et al. Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol. 2014;92:326-35 pubmed 出版商
  950. Bernasconi E, D Angelo F, Michetti P, Velin D. Critical role of the GM-CSF signaling pathway in macrophage pro-repair activities. Pathobiology. 2014;81:183-9 pubmed 出版商
  951. Parker K, Sinha P, Horn L, Clements V, Yang H, Li J, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74:5723-33 pubmed 出版商
  952. Bajwa A, Rosin D, Chrościcki P, Lee S, Dondeti K, Ye H, et al. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J Am Soc Nephrol. 2015;26:908-25 pubmed 出版商
  953. Sauter K, Pridans C, Sehgal A, Bain C, Scott C, Moffat L, et al. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS ONE. 2014;9:e105429 pubmed 出版商
  954. Lu H, Tzeng T, Liou S, Chang C, Yang C, Wu M, et al. Ruscogenin ameliorates experimental nonalcoholic steatohepatitis via suppressing lipogenesis and inflammatory pathway. Biomed Res Int. 2014;2014:652680 pubmed 出版商
  955. Al Barwani F, Young S, Baird M, Larsen D, Ward V. Mannosylation of virus-like particles enhances internalization by antigen presenting cells. PLoS ONE. 2014;9:e104523 pubmed 出版商
  956. O Sullivan D, Green L, Stone S, Zareie P, Kharkrang M, Fong D, et al. Treatment with the antipsychotic agent, risperidone, reduces disease severity in experimental autoimmune encephalomyelitis. PLoS ONE. 2014;9:e104430 pubmed 出版商
  957. Ishihara M, Seo N, Mitsui J, Muraoka D, Tanaka M, Mineno J, et al. Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS ONE. 2014;9:e104669 pubmed 出版商
  958. de Bock L, Somers K, Fraussen J, Hendriks J, van Horssen J, Rouwette M, et al. Sperm-associated antigen 16 is a novel target of the humoral autoimmune response in multiple sclerosis. J Immunol. 2014;193:2147-56 pubmed 出版商
  959. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  960. Pisano F, Heine W, Rosenheinrich M, Schweer J, Nuss A, Dersch P. Influence of PhoP and intra-species variations on virulence of Yersinia pseudotuberculosis during the natural oral infection route. PLoS ONE. 2014;9:e103541 pubmed 出版商
  961. Lo Sasso G, Menzies K, Mottis A, Piersigilli A, Perino A, Yamamoto H, et al. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS ONE. 2014;9:e103573 pubmed 出版商
  962. Kim K, Skora A, Li Z, Liu Q, Tam A, Blosser R, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111:11774-9 pubmed 出版商
  963. Tersey S, Maier B, Nishiki Y, Maganti A, Nadler J, Mirmira R. 12-lipoxygenase promotes obesity-induced oxidative stress in pancreatic islets. Mol Cell Biol. 2014;34:3735-45 pubmed 出版商
  964. Chiu Y, Lin I, Su S, Wang K, Yang S, Tsai D, et al. Transcription factor ABF-1 suppresses plasma cell differentiation but facilitates memory B cell formation. J Immunol. 2014;193:2207-17 pubmed 出版商
  965. Droguett A, Krall P, Burgos M, Valderrama G, Carpio D, Ardiles L, et al. Tubular overexpression of gremlin induces renal damage susceptibility in mice. PLoS ONE. 2014;9:e101879 pubmed 出版商
  966. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  967. Coulson Thomas V, Gesteira T, Hascall V, KAO W. Umbilical cord mesenchymal stem cells suppress host rejection: the role of the glycocalyx. J Biol Chem. 2014;289:23465-81 pubmed 出版商
  968. Majumder M, Xin X, Liu L, Girish G, Lala P. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci. 2014;105:1142-51 pubmed 出版商
  969. Watatani H, Maeshima Y, Hinamoto N, Yamasaki H, Ujike H, Tanabe K, et al. Vasohibin-1 deficiency enhances renal fibrosis and inflammation after unilateral ureteral obstruction. Physiol Rep. 2014;2: pubmed 出版商
  970. Aytekin M, Tonelli A, Farver C, Feldstein A, Dweik R. Leptin deficiency recapitulates the histological features of pulmonary arterial hypertension in mice. Int J Clin Exp Pathol. 2014;7:1935-46 pubmed
  971. Kovtunovych G, Ghosh M, Ollivierre W, Weitzel R, Eckhaus M, Tisdale J, et al. Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice. Blood. 2014;124:1522-30 pubmed 出版商
  972. Gow D, Sauter K, Pridans C, Moffat L, Sehgal A, Stutchfield B, et al. Characterisation of a novel Fc conjugate of macrophage colony-stimulating factor. Mol Ther. 2014;22:1580-92 pubmed 出版商
  973. Collins C, Wang J, Miao H, Bronstein J, Nawer H, Xu T, et al. C/EBP? is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis. Proc Natl Acad Sci U S A. 2014;111:9899-904 pubmed 出版商
  974. Lu Z, Kaliberov S, Zhang J, Muz B, Azab A, Sohn R, et al. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting. Lab Invest. 2014;94:881-92 pubmed 出版商
  975. Yan L, Zhang L, Ma H, Chiu D, Bryers J. A Single B-repeat of Staphylococcus epidermidis accumulation-associated protein induces protective immune responses in an experimental biomaterial-associated infection mouse model. Clin Vaccine Immunol. 2014;21:1206-14 pubmed 出版商
  976. Mise Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, et al. NF-?B RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol. 2014;26:607-18 pubmed 出版商
  977. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258-69 pubmed 出版商
  978. Geem D, Medina Contreras O, McBride M, Newberry R, Koni P, Denning T. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431-8 pubmed 出版商
  979. Johnston Cox H, Eisenstein A, Koupenova M, Carroll S, Ravid K. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS ONE. 2014;9:e98775 pubmed 出版商
  980. Forgèt M, Voorhees J, Cole S, Dakhlallah D, Patterson I, Gross A, et al. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS ONE. 2014;9:e98623 pubmed 出版商
  981. Nandi B, Pai C, Huang Q, Prabhala R, Munshi N, Gold J. CCR6, the sole receptor for the chemokine CCL20, promotes spontaneous intestinal tumorigenesis. PLoS ONE. 2014;9:e97566 pubmed 出版商
  982. Weber G, Chousterman B, Hilgendorf I, Robbins C, Theurl I, Gerhardt L, et al. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J Exp Med. 2014;211:1243-56 pubmed 出版商
  983. Wang J, Eguchi K, Matsumoto S, Fujiu K, Komuro I, Nagai R, et al. The ?-3 polyunsaturated fatty acid, eicosapentaenoic acid, attenuates abdominal aortic aneurysm development via suppression of tissue remodeling. PLoS ONE. 2014;9:e96286 pubmed 出版商
  984. Richardson M, Fu C, Pennington L, Honeycutt J, Odegaard J, Odegaard J, et al. A new mouse model for female genital schistosomiasis. PLoS Negl Trop Dis. 2014;8:e2825 pubmed 出版商
  985. Caswell D, Chuang C, Yang D, Chiou S, Cheemalavagu S, Kim Kiselak C, et al. Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov. 2014;4:781-9 pubmed 出版商
  986. Meraz I, Hearnden C, Liu X, Yang M, Williams L, Savage D, et al. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes. PLoS ONE. 2014;9:e94703 pubmed 出版商
  987. Inoue M, Arikawa T, Chen Y, Moriwaki Y, Price M, Brown M, et al. T cells down-regulate macrophage TNF production by IRAK1-mediated IL-10 expression and control innate hyperinflammation. Proc Natl Acad Sci U S A. 2014;111:5295-300 pubmed 出版商
  988. Morganti J, Jopson T, Liu S, Gupta N, Rosi S. Cranial irradiation alters the brain's microenvironment and permits CCR2+ macrophage infiltration. PLoS ONE. 2014;9:e93650 pubmed 出版商
  989. Karpurapu M, Ranjan R, Deng J, Chung S, Lee Y, Xiao L, et al. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation. PLoS ONE. 2014;9:e93362 pubmed 出版商
  990. König S, Nitzki F, Uhmann A, Dittmann K, Theiss Suennemann J, Herrmann M, et al. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice. PLoS ONE. 2014;9:e93555 pubmed 出版商
  991. Harland K, Day E, Apte S, Russ B, Doherty P, Turner S, et al. Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. Nat Commun. 2014;5:3547 pubmed 出版商
  992. Hayes B, Riehle K, Shimizu Albergine M, Bauer R, Hudkins K, Johansson F, et al. Activation of platelet-derived growth factor receptor alpha contributes to liver fibrosis. PLoS ONE. 2014;9:e92925 pubmed 出版商
  993. Chaves L, Bao L, Wang Y, Chang A, Haas M, Quigg R. Loss of CD11b exacerbates murine complement-mediated tubulointerstitial nephritis. PLoS ONE. 2014;9:e92051 pubmed 出版商
  994. Haldar M, Kohyama M, So A, Kc W, Wu X, Briseño C, et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell. 2014;156:1223-1234 pubmed 出版商
  995. Jha P, Knopf A, Koefeler H, Mueller M, Lackner C, Hoefler G, et al. Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta. 2014;1842:959-70 pubmed 出版商
  996. Ota M, Horiguchi M, Fang V, Shibahara K, Kadota K, Loomis C, et al. Genetic suppression of inflammation blocks the tumor-promoting effects of TGF-? in gastric tissue. Cancer Res. 2014;74:2642-51 pubmed 出版商
  997. Ballak D, van Essen P, van Diepen J, Jansen H, Hijmans A, Matsuguchi T, et al. MAP3K8 (TPL2/COT) affects obesity-induced adipose tissue inflammation without systemic effects in humans and in mice. PLoS ONE. 2014;9:e89615 pubmed 出版商
  998. Ikeda Y, Ozono I, Tajima S, Imao M, Horinouchi Y, Izawa Ishizawa Y, et al. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. PLoS ONE. 2014;9:e89355 pubmed 出版商
  999. Barbera M, Di Pietro M, Walker E, Brierley C, Macrae S, Simons B, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64:11-9 pubmed 出版商
  1000. Hung J, Horn D, Woodruff K, Prihoda T, LeSaux C, Peters J, et al. Colony-stimulating factor 1 potentiates lung cancer bone metastasis. Lab Invest. 2014;94:371-81 pubmed 出版商
  1001. Li A, Morton J, Ma Y, Karim S, Zhou Y, Faller W, et al. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology. 2014;146:1386-96.e1-17 pubmed 出版商
  1002. Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10:e1003885 pubmed 出版商
  1003. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  1004. Li J, Xu Z, Jiang L, Mao J, Zeng Z, Fang L, et al. Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney Int. 2014;86:86-102 pubmed 出版商
  1005. Suga H, Rennert R, Rodrigues M, Sorkin M, Glotzbach J, Januszyk M, et al. Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing. Stem Cells. 2014;32:1347-60 pubmed 出版商
  1006. Kim H, Lee H, Chang Y, Pichavant M, Shore S, Fitzgerald K, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54-61 pubmed 出版商
  1007. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  1008. Salem H, Trojanowski B, Fiedler K, Maier H, Schirmbeck R, Wagner M, et al. Long-term IKK2/NF-?B signaling in pancreatic ?-cells induces immune-mediated diabetes. Diabetes. 2014;63:960-75 pubmed 出版商
  1009. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  1010. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  1011. Gupta S, Utoft R, Hasseldam H, Schmidt Christensen A, Hannibal T, Hansen L, et al. Global and 3D spatial assessment of neuroinflammation in rodent models of Multiple Sclerosis. PLoS ONE. 2013;8:e76330 pubmed 出版商
  1012. DelGiorno K, Hall J, Takeuchi K, Pan F, Halbrook C, Washington M, et al. Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology. 2014;146:233-44.e5 pubmed 出版商
  1013. Müller M, Florian S, Pommer S, Osterhoff M, Esworthy R, Chu F, et al. Deletion of glutathione peroxidase-2 inhibits azoxymethane-induced colon cancer development. PLoS ONE. 2013;8:e72055 pubmed 出版商
  1014. Orim F, Bychkov A, Shimamura M, Nakashima M, Ito M, Matsuse M, et al. Thyrotropin signaling confers more aggressive features with higher genomic instability on BRAF(V600E)-induced thyroid tumors in a mouse model. Thyroid. 2014;24:502-10 pubmed 出版商
  1015. Satpathy A, Briseño C, Lee J, Ng D, Manieri N, Kc W, et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol. 2013;14:937-48 pubmed 出版商
  1016. Conine S, Cross J. MIF deficiency does not alter glucose homeostasis or adipose tissue inflammatory cell infiltrates during diet-induced obesity. Obesity (Silver Spring). 2014;22:418-25 pubmed 出版商
  1017. Tan C, Tan E, Luo B, Huang C, Loo J, Choong C, et al. SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. J Am Heart Assoc. 2013;2:e000269 pubmed 出版商
  1018. Gautron L, Rutkowski J, Burton M, Wei W, Wan Y, Elmquist J. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol. 2013;521:3741-67 pubmed 出版商
  1019. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  1020. Dalli J, Colas R, Serhan C. Novel n-3 immunoresolvents: structures and actions. Sci Rep. 2013;3:1940 pubmed 出版商
  1021. Zhang F, Dai M, Neng L, Zhang J, Zhi Z, Fridberger A, et al. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma--a salient feature of strial barrier associated hearing loss. FASEB J. 2013;27:3730-40 pubmed 出版商
  1022. Nakazawa M, Obata Y, Nishino T, Abe S, Nakazawa Y, Abe K, et al. Involvement of leptin in the progression of experimentally induced peritoneal fibrosis in mice. Acta Histochem Cytochem. 2013;46:75-84 pubmed 出版商
  1023. Ahn R, Sabourin V, Ha J, Cory S, Maric G, Im Y, et al. The ShcA PTB domain functions as a biological sensor of phosphotyrosine signaling during breast cancer progression. Cancer Res. 2013;73:4521-32 pubmed 出版商
  1024. Lu M, Varley A, Munford R. Persistently active microbial molecules prolong innate immune tolerance in vivo. PLoS Pathog. 2013;9:e1003339 pubmed 出版商
  1025. Martinod K, Demers M, Fuchs T, Wong S, Brill A, Gallant M, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110:8674-9 pubmed 出版商
  1026. Li S, Li B, Jiang H, Wang Y, Qu M, Duan H, et al. Macrophage depletion impairs corneal wound healing after autologous transplantation in mice. PLoS ONE. 2013;8:e61799 pubmed 出版商
  1027. Saito S, Hata K, Iwaisako K, Yanagida A, Takeiri M, Tanaka H, et al. Cilostazol attenuates hepatic stellate cell activation and protects mice against carbon tetrachloride-induced liver fibrosis. Hepatol Res. 2014;44:460-73 pubmed 出版商
  1028. Gerber S, Sedlacek A, Cron K, Murphy S, Frelinger J, Lord E. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol. 2013;182:2345-54 pubmed 出版商
  1029. Yan K, Zhu W, Yu L, Li N, Zhang X, Liu P, et al. Toll-like receptor 3 and RIG-I-like receptor activation induces innate antiviral responses in mouse ovarian granulosa cells. Mol Cell Endocrinol. 2013;372:73-85 pubmed 出版商
  1030. Anders C, Ashton N, Ranjzad P, Dilworth M, Woolf A. Ex vivo modeling of chemical synergy in prenatal kidney cystogenesis. PLoS ONE. 2013;8:e57797 pubmed 出版商
  1031. Wintges K, Beil F, Albers J, Jeschke A, Schweizer M, Claass B, et al. Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J Bone Miner Res. 2013;28:2070-80 pubmed 出版商
  1032. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  1033. Neng L, Zhang W, Hassan A, Zemla M, Kachelmeier A, Fridberger A, et al. Isolation and culture of endothelial cells, pericytes and perivascular resident macrophage-like melanocytes from the young mouse ear. Nat Protoc. 2013;8:709-20 pubmed 出版商
  1034. Chu P, Nakamoto N, Ebinuma H, Usui S, Saeki K, Matsumoto A, et al. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology. 2013;58:337-50 pubmed 出版商
  1035. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  1036. Tan J, Chan S, Wallace E, Lim R. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant. 2014;23:319-28 pubmed 出版商
  1037. Neng L, Zhang F, Kachelmeier A, Shi X. Endothelial cell, pericyte, and perivascular resident macrophage-type melanocyte interactions regulate cochlear intrastrial fluid-blood barrier permeability. J Assoc Res Otolaryngol. 2013;14:175-85 pubmed 出版商
  1038. Panjwani N, Mulvihill E, Longuet C, Yusta B, Campbell J, Brown T, et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE(-/-) mice. Endocrinology. 2013;154:127-39 pubmed 出版商
  1039. Chabtini L, Mfarrej B, Mounayar M, Zhu B, Batal I, Dakle P, et al. TIM-3 regulates innate immune cells to induce fetomaternal tolerance. J Immunol. 2013;190:88-96 pubmed 出版商
  1040. Ming X, Rajapakse A, Yepuri G, Xiong Y, Carvas J, Ruffieux J, et al. Arginase II Promotes Macrophage Inflammatory Responses Through Mitochondrial Reactive Oxygen Species, Contributing to Insulin Resistance and Atherogenesis. J Am Heart Assoc. 2012;1:e000992 pubmed 出版商
  1041. Xiao C, Feng R, Engevik A, Martin J, Tritschler J, Schumacher M, et al. Sonic Hedgehog contributes to gastric mucosal restitution after injury. Lab Invest. 2013;93:96-111 pubmed 出版商
  1042. Baik J, Rosania G. Macrophages sequester clofazimine in an intracellular liquid crystal-like supramolecular organization. PLoS ONE. 2012;7:e47494 pubmed 出版商
  1043. Powell N, Walker A, Stolarczyk E, Canavan J, Gökmen M, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674-84 pubmed 出版商
  1044. Pagán A, Pepper M, Chu H, Green J, Jenkins M. CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J Immunol. 2012;189:2909-17 pubmed 出版商
  1045. Wang Y, Szretter K, Vermi W, Gilfillan S, Rossini C, Cella M, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 2012;13:753-60 pubmed 出版商
  1046. Atkinson S, Usher P, Kvist P, Markholst H, Haase C, Nansen A. Establishment and characterization of a sustained delayed-type hypersensitivity model with arthritic manifestations in C57BL/6J mice. Arthritis Res Ther. 2012;14:R134 pubmed 出版商
  1047. Kaneko T, Saito Y, Kotani T, Okazawa H, Iwamura H, Sato Hashimoto M, et al. Dendritic cell-specific ablation of the protein tyrosine phosphatase Shp1 promotes Th1 cell differentiation and induces autoimmunity. J Immunol. 2012;188:5397-407 pubmed 出版商
  1048. Austenaa L, Barozzi I, Chronowska A, Termanini A, Ostuni R, Prosperini E, et al. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity. 2012;36:572-85 pubmed 出版商
  1049. Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Res Ther. 2012;14:R45 pubmed 出版商
  1050. Marquardt J, Seo D, Gómez Quiroz L, Uchida K, Gillen M, Kitade M, et al. Loss of c-Met accelerates development of liver fibrosis in response to CCl(4) exposure through deregulation of multiple molecular pathways. Biochim Biophys Acta. 2012;1822:942-51 pubmed 出版商
  1051. Nakao S, Zandi S, Faez S, Kohno R, Hafezi Moghadam A. Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots. FASEB J. 2012;26:808-17 pubmed 出版商
  1052. Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q, et al. Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS ONE. 2011;6:e19495 pubmed 出版商
  1053. Rymo S, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C. A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS ONE. 2011;6:e15846 pubmed 出版商
  1054. Hufford M, Kim T, Sun J, Braciale T. Antiviral CD8+ T cell effector activities in situ are regulated by target cell type. J Exp Med. 2011;208:167-80 pubmed 出版商
  1055. Berger S, Romero X, Ma C, Wang G, Faubion W, Liao G, et al. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol. 2010;11:920-7 pubmed 出版商
  1056. Love W, Dobbs N, Tabor L, Simecka J. Toll-like receptor 2 (TLR2) plays a major role in innate resistance in the lung against murine Mycoplasma. PLoS ONE. 2010;5:e10739 pubmed 出版商
  1057. Engstrom L, Bober L, Chen S, Fine J, Li Y, Stanton M, et al. Kinetic assessment and therapeutic modulation of metabolic and inflammatory profiles in mice on a high-fat and cholesterol diet. PPAR Res. 2010;2010:970164 pubmed 出版商
  1058. Thompson J, Chu Y, Glass J, Tapp A, Brown S. The manganese superoxide dismutase mimetic, M40403, protects adult mice from lethal total body irradiation. Free Radic Res. 2010;44:529-40 pubmed 出版商
  1059. Sadri N, Lu J, Badura M, Schneider R. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol. 2010;11:1 pubmed 出版商
  1060. Provoost S, Maes T, Willart M, Joos G, Lambrecht B, Tournoy K. Diesel exhaust particles stimulate adaptive immunity by acting on pulmonary dendritic cells. J Immunol. 2010;184:426-32 pubmed 出版商
  1061. Thompson J, Chu Y, Glass J, Brown S. Absence of IL-23p19 in donor allogeneic cells reduces mortality from acute GVHD. Bone Marrow Transplant. 2010;45:712-22 pubmed 出版商
  1062. Wu S, Rhee K, Albesiano E, RABIZADEH S, Wu X, Yen H, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016-22 pubmed 出版商
  1063. Dewals B, Hoving J, Leeto M, Marillier R, Govender U, Cutler A, et al. IL-4Ralpha responsiveness of non-CD4 T cells contributes to resistance in schistosoma mansoni infection in pan-T cell-specific IL-4Ralpha-deficient mice. Am J Pathol. 2009;175:706-16 pubmed 出版商
  1064. Shen J, Ren H, Tomiyama Miyaji C, Watanabe M, Kainuma E, Inoue M, et al. Resistance and augmentation of innate immunity in mice exposed to starvation. Cell Immunol. 2009;259:66-73 pubmed 出版商
  1065. Siegemund S, Hartl A, von Buttlar H, Dautel F, Raue R, Freudenberg M, et al. Conventional bone marrow-derived dendritic cells contribute to toll-like receptor-independent production of alpha/beta interferon in response to inactivated parapoxvirus ovis. J Virol. 2009;83:9411-22 pubmed 出版商
  1066. Moon J, Chu H, Hataye J, Pagán A, Pepper M, McLachlan J, et al. Tracking epitope-specific T cells. Nat Protoc. 2009;4:565-81 pubmed 出版商
  1067. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  1068. Leng J, Butcher B, Egan C, Abi Abdallah D, Denkers E. Toxoplasma gondii prevents chromatin remodeling initiated by TLR-triggered macrophage activation. J Immunol. 2009;182:489-97 pubmed
  1069. Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2008;105:9041-6 pubmed 出版商
  1070. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商
  1071. Culshaw S, Millington O, Brewer J, McInnes I. Murine neutrophils present Class II restricted antigen. Immunol Lett. 2008;118:49-54 pubmed 出版商
  1072. Bulloch K, Miller M, Gal Toth J, Milner T, Gottfried Blackmore A, Waters E, et al. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol. 2008;508:687-710 pubmed 出版商
  1073. Chen H, ORDOG T, Chen J, YOUNG D, Bardsley M, Redelman D, et al. Differential gene expression in functional classes of interstitial cells of Cajal in murine small intestine. Physiol Genomics. 2007;31:492-509 pubmed
  1074. Miyairi I, Tatireddigari V, Mahdi O, Rose L, Belland R, Lu L, et al. The p47 GTPases Iigp2 and Irgb10 regulate innate immunity and inflammation to murine Chlamydia psittaci infection. J Immunol. 2007;179:1814-24 pubmed
  1075. Walsh C, Smith P, Fallon P. Role for CTLA-4 but not CD25+ T cells during Schistosoma mansoni infection of mice. Parasite Immunol. 2007;29:293-308 pubmed
  1076. Reese T, Liang H, Tager A, Luster A, Van Rooijen N, Voehringer D, et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92-6 pubmed
  1077. Voehringer D, van Rooijen N, Locksley R. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J Leukoc Biol. 2007;81:1434-44 pubmed
  1078. Noel G, Guo X, Wang Q, Schwemberger S, Byrum D, Ogle C. Postburn monocytes are the major producers of TNF-alpha in the heterogeneous splenic macrophage population. Shock. 2007;27:312-9 pubmed
  1079. de Jersey J, Snelgrove S, Palmer S, Teteris S, Mullbacher A, Miller J, et al. Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2007;104:1295-300 pubmed
  1080. HogenEsch H, Dunham A, Seymour R, Renninger M, Sundberg J. Expression of chitinase-like proteins in the skin of chronic proliferative dermatitis (cpdm/cpdm) mice. Exp Dermatol. 2006;15:808-14 pubmed
  1081. Chen H, Redelman D, Ro S, Ward S, ORDOG T, Sanders K. Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol Cell Physiol. 2007;292:C497-507 pubmed
  1082. Hewitson J, Jenkins G, Hamblin P, Mountford A. CD40/CD154 interactions are required for the optimal maturation of skin-derived APCs and the induction of helminth-specific IFN-gamma but not IL-4. J Immunol. 2006;177:3209-17 pubmed
  1083. Mangan N, Van Rooijen N, McKenzie A, Fallon P. Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J Immunol. 2006;176:138-47 pubmed
  1084. Rempel J, Quina L, Blakely Gonzales P, Buchmeier M, Gruol D. Viral induction of central nervous system innate immune responses. J Virol. 2005;79:4369-81 pubmed
  1085. Noel J, Guo X, Wells Byrum D, Schwemberger S, Caldwell C, Ogle C. Effect of thermal injury on splenic myelopoiesis. Shock. 2005;23:115-22 pubmed
  1086. Reissinger A, Skinner J, Yuk M. Downregulation of mitogen-activated protein kinases by the Bordetella bronchiseptica Type III secretion system leads to attenuated nonclassical macrophage activation. Infect Immun. 2005;73:308-16 pubmed
  1087. Jennings J, Linderman D, Hu B, Sonstein J, Curtis J. Monocytes recruited to the lungs of mice during immune inflammation ingest apoptotic cells poorly. Am J Respir Cell Mol Biol. 2005;32:108-17 pubmed
  1088. Mischenko V, Kapina M, Eruslanov E, Kondratieva E, Lyadova I, Young D, et al. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J Infect Dis. 2004;190:2137-45 pubmed
  1089. ORDOG T, Redelman D, Horváth V, Miller L, Horowitz B, Sanders K. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract. Cytometry A. 2004;62:139-49 pubmed
  1090. Mangan N, Fallon R, Smith P, Van Rooijen N, McKenzie A, Fallon P. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol. 2004;173:6346-56 pubmed
  1091. Zheng S, Jiang J, Shen H, Chen Y. Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J Immunol. 2004;173:5652-8 pubmed
  1092. Smith P, Walsh C, Mangan N, Fallon R, Sayers J, McKenzie A, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages. J Immunol. 2004;173:1240-8 pubmed
  1093. Mattner J, Wandersee Steinhäuser A, Pahl A, Rollinghoff M, Majeau G, Hochman P, et al. Protection against progressive leishmaniasis by IFN-beta. J Immunol. 2004;172:7574-82 pubmed
  1094. Schleicher U, Mattner J, Blos M, Schindler H, Rollinghoff M, Karaghiosoff M, et al. Control of Leishmania major in the absence of Tyk2 kinase. Eur J Immunol. 2004;34:519-29 pubmed
  1095. Eruslanov E, Majorov K, Orlova M, Mischenko V, Kondratieva T, Apt A, et al. Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge. Clin Exp Immunol. 2004;135:19-28 pubmed
  1096. Cook A, Braine E, Hamilton J. The phenotype of inflammatory macrophages is stimulus dependent: implications for the nature of the inflammatory response. J Immunol. 2003;171:4816-23 pubmed
  1097. Reading P, Smith G. A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol. 2003;84:1973-83 pubmed
  1098. Blos M, Schleicher U, Soares Rocha F, Meissner U, Rollinghoff M, Bogdan C. Organ-specific and stage-dependent control of Leishmania major infection by inducible nitric oxide synthase and phagocyte NADPH oxidase. Eur J Immunol. 2003;33:1224-34 pubmed
  1099. Stavitsky A, Xianli J. In vitro and in vivo regulation by macrophage migration inhibitory factor (MIF) of expression of MHC-II, costimulatory, adhesion, receptor, and cytokine molecules. Cell Immunol. 2002;217:95-104 pubmed
  1100. Saio M, Radoja S, Marino M, Frey A. Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol. 2001;167:5583-93 pubmed
  1101. Sandré C, Gleizes A, Forestier F, Gorges Kergot R, Chilmonczyk S, Léonil J, et al. A peptide derived from bovine beta-casein modulates functional properties of bone marrow-derived macrophages from germfree and human flora-associated mice. J Nutr. 2001;131:2936-42 pubmed
  1102. Radoja S, Saio M, Frey A. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol. 2001;166:6074-83 pubmed
  1103. Malorny U, Michels E, Sorg C. A monoclonal antibody against an antigen present on mouse macrophages and absent from monocytes. Cell Tissue Res. 1986;243:421-8 pubmed