这是一篇来自已证抗体库的有关小鼠 Fcgr2b的综述,是根据149篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Fcgr2b 抗体。
Fcgr2b 同义词: AI528646; CD32; F630109E10Rik; Fc[g]RII; FcgRII; Fcgr2; Fcgr2a; Fcr-2; Fcr-3; Ly-17; Ly-m20; LyM-1; Lym-1; fcRII

BioLegend
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1a). elife (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Fcgr2b抗体(BioLegend, 101319)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Oncoimmunology (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Fcgr2b抗体(Biolegend, 101302)被用于被用于流式细胞仪在小鼠样本上 (图 1e). elife (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 10 ug/ml
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml. Science (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:400; 图 3, 4
BioLegend Fcgr2b抗体(BioLegend;, 101337)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3, 4). Nat Commun (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Science (2020) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:500
BioLegend Fcgr2b抗体(BioLegend, 101319)被用于被用于抑制或激活实验在小鼠样本上浓度为1:500. Nat Commun (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Sci Adv (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 5a, 5b
BioLegend Fcgr2b抗体(Biolegend, 101320)被用于被用于流式细胞仪在小鼠样本上 (图 5a, 5b). J Clin Invest (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Fcgr2b抗体(Biolegend, 101328)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2019) ncbi
大鼠 单克隆(93)
  • mass cytometry; 小鼠; 1:50; 图 3, s2
BioLegend Fcgr2b抗体(Biolegend, 101302)被用于被用于mass cytometry在小鼠样本上浓度为1:50 (图 3, s2). Science (2019) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 1d
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 1d). elife (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1f
BioLegend Fcgr2b抗体(Biolegend, 101307)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). Cell (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:700; 图 ex3a
BioLegend Fcgr2b抗体(BioLegend, 101324)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 ex3a). Nature (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:50; 图 s9
BioLegend Fcgr2b抗体(BioLegend, 101320)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s9). Nat Commun (2019) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
BioLegend Fcgr2b抗体(BioLegend, 101320)被用于被用于抑制或激活实验在小鼠样本上. elife (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s7b
BioLegend Fcgr2b抗体(Biolegend, 101306)被用于被用于流式细胞仪在小鼠样本上 (图 s7b). Nat Immunol (2019) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 2a, 2f, s2j
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 2a, 2f, s2j). Cell Rep (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Fcgr2b抗体(BioLegend, 101318)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell Stem Cell (2018) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:500; 图 1c, 3d, 7b, 8c
BioLegend Fcgr2b抗体(BioLegend, 101301)被用于被用于抑制或激活实验在小鼠样本上浓度为1:500 (图 1c, 3d, 7b, 8c). Front Immunol (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:200; 图 s4d
BioLegend Fcgr2b抗体(BioLegend, 101323)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4d). Nat Commun (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s6
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Stem Cell Reports (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cell Metab (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Clin Invest (2018) ncbi
大鼠 单克隆(93)
  • 免疫细胞化学; 人类; 图 2a
BioLegend Fcgr2b抗体(BioLegend, 101302)被用于被用于免疫细胞化学在人类样本上 (图 2a). Cell (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Exp Hematol (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Fcgr2b抗体(Biolegend, 101326)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:200; 图 s1d
BioLegend Fcgr2b抗体(BioLegend, 101302)被用于被用于抑制或激活实验在小鼠样本上浓度为1:200 (图 s1d). Leukemia (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Fcgr2b抗体(Biolegend, 101319)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 s8a
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 s8a). Science (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 6a
BioLegend Fcgr2b抗体(Biolegend, 101320)被用于被用于抑制或激活实验在小鼠样本上 (图 6a). Mol Ther Methods Clin Dev (2017) ncbi
大鼠 单克隆(93)
BioLegend Fcgr2b抗体(Biolegend, 101320)被用于. PLoS ONE (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 2
BioLegend Fcgr2b抗体(Biolegend, 101320)被用于被用于抑制或激活实验在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 2a
BioLegend Fcgr2b抗体(Biolegend, 101320)被用于被用于抑制或激活实验在小鼠样本上 (图 2a). Methods Mol Biol (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:50
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上浓度为1:50. Nat Immunol (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Fcgr2b抗体(BioLegend, 101320)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. elife (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100; 图 s7
BioLegend Fcgr2b抗体(Biolegend, 101308)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7). Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 免疫细胞化学; 小鼠; 图 s4
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于免疫细胞化学在小鼠样本上 (图 s4). Theranostics (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上. Stem Cells Dev (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4e). J Leukoc Biol (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s3.e,g
BioLegend Fcgr2b抗体(BioLegend, 101324)被用于被用于流式细胞仪在小鼠样本上 (图 s3.e,g). Nature (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Fcgr2b抗体(Biolegend, 101319)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Neuroinflammation (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Fcgr2b抗体(BioLegend, clone 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr2b抗体(BioLegend, clone 93)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 仓鼠; 图 7
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在仓鼠样本上 (图 7). J Virol (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. J Mol Med (Berl) (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 1
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 1). Toxicol Sci (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 表 s1
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Stem Cells (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr2b抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr2b抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
BioLegend Fcgr2b抗体(Biolegend, 101301)被用于被用于抑制或激活实验在小鼠样本上. Exp Parasitol (2014) ncbi
赛默飞世尔
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:50; 图 2a
赛默飞世尔 Fcgr2b抗体(eBioscience, 14-0161-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2a). elife (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:200; 图 e4g
赛默飞世尔 Fcgr2b抗体(eBioscience, 56-0161-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e4g). Nature (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2j
赛默飞世尔 Fcgr2b抗体(Thermo Fisher, 14-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Sci Adv (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Fcgr2b抗体(Thermo Fisher Scientific, 17-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Rep (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 6e, 6f
赛默飞世尔 Fcgr2b抗体(eBiosciences, 140161-82)被用于被用于流式细胞仪在小鼠样本上 (图 6e, 6f). Acta Neuropathol Commun (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
赛默飞世尔 Fcgr2b抗体(Thermo Fisher, 14-0161-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). FASEB J (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Fcgr2b抗体(eBioscience, 17-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Antioxid Redox Signal (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 人类; 图 s3i
赛默飞世尔 Fcgr2b抗体(eBiosciences, 25-0161)被用于被用于流式细胞仪在人类样本上 (图 s3i). Cell (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Cell Death Dis (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔 Fcgr2b抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell Stem Cell (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Fcgr2b抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell Discov (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Cell Biol (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Fcgr2b抗体(eBioscience, 17-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Cell Death Dis (2018) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:30
赛默飞世尔 Fcgr2b抗体(Thermo Fisher Scientific, 14-0161)被用于被用于抑制或激活实验在小鼠样本上浓度为1:30. Endocrinology (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Fcgr2b抗体(eBiosciences, 48-0161)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell (2018) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:50
赛默飞世尔 Fcgr2b抗体(eBioscience, 14-0161)被用于被用于抑制或激活实验在小鼠样本上浓度为1:50. Science (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Fcgr2b抗体(eBiosciences, 14-0161)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Fcgr2b抗体(ThermoFisher Scientific, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Clin Invest (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 e3a
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 e3a). Nature (2017) ncbi
小鼠 单克隆(AT130-2)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔 Fcgr2b抗体(eBioscience, AT130-2)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Fcgr2b抗体(eBiosciences, 46-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nature (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:1000; 图 1a
赛默飞世尔 Fcgr2b抗体(eBioscience, 14-0161-85)被用于被用于抑制或激活实验在小鼠样本上浓度为1:1000 (图 1a). Nat Commun (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1g
赛默飞世尔 Fcgr2b抗体(eBiosciences, 46-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1g). Nature (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Fcgr2b抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 7G
赛默飞世尔 Fcgr2b抗体(eBioscience, 14-0161-85)被用于被用于流式细胞仪在小鼠样本上 (图 7G). J Immunol (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Fcgr2b抗体(eBioscience, 25-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1G
赛默飞世尔 Fcgr2b抗体(eBioscience, 25-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 s3c
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 s3c). Oncotarget (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Fcgr2b抗体(eBiosciences, 12-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, mAb 93)被用于被用于抑制或激活实验在小鼠样本上. Am J Pathol (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 14-0161-82)被用于被用于抑制或激活实验在小鼠样本上. elife (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:250; 图 st1
赛默飞世尔 Fcgr2b抗体(eBioscience, 14-0161)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 5g
赛默飞世尔 Fcgr2b抗体(eBioscience, 16-0161-81)被用于被用于抑制或激活实验在小鼠样本上 (图 5g). J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:100
赛默飞世尔 Fcgr2b抗体(eBioscience, 14-0161)被用于被用于抑制或激活实验在小鼠样本上浓度为1:100. J Clin Invest (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:100; 图 s3
赛默飞世尔 Fcgr2b抗体(eBioscience, 16-0161-85)被用于被用于抑制或激活实验在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Fcgr2b抗体(eBioscience, 46-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Cell Biol (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2h
  • 免疫细胞化学; 小鼠; 图 2c
赛默飞世尔 Fcgr2b抗体(eBioscience, 14-0161)被用于被用于流式细胞仪在小鼠样本上 (图 2h) 和 被用于免疫细胞化学在小鼠样本上 (图 2c). MBio (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:400; 图 s4
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s4). Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Fcgr2b抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Stem Cells (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. Nat Med (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 5, 6
赛默飞世尔 Fcgr2b抗体(ebioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 5, 6). Nat Med (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. J Clin Invest (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 人类
赛默飞世尔 Fcgr2b抗体(eBioscience, 16-0161-86)被用于被用于抑制或激活实验在人类样本上. J Immunol (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:8000
赛默飞世尔 Fcgr2b抗体(Ebioscience, 93)被用于被用于抑制或激活实验在小鼠样本上浓度为1:8000. PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Fcgr2b抗体(eBioscience, 12-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 人类; 表 5
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在人类样本上 (表 5). Gastroenterology (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 5 ug/ml
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. PLoS Pathog (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 2c
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 2c). EMBO Mol Med (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Fcgr2b抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 人类
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在人类样本上. Cell Res (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Hematol (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 2). Development (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Methods Mol Biol (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Fcgr2b抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Exp Hematol (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Fcgr2b抗体(eBioscience, 46-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nature (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 48-0161-82)被用于被用于流式细胞仪在小鼠样本上. J Vis Exp (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 犬; 1:100
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Fcgr2b抗体(eBioscience, 14-0161-81)被用于被用于流式细胞仪在犬样本上浓度为1:100 和 被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience Inc., 93)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2013) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS ONE (2013) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 7). PLoS ONE (2013) ncbi
大鼠 单克隆(FCR4G8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Fcgr2b抗体(CALTAG, FCR-4G8)被用于被用于流式细胞仪在小鼠样本上 (图 3). Allergy (2012) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 12-0161)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Haematologica (2011) ncbi
大鼠 单克隆(93)
  • 免疫细胞化学; 小鼠; 5 ug/ml; 图 5
赛默飞世尔 Fcgr2b抗体(eBioscience, clone 93)被用于被用于免疫细胞化学在小鼠样本上浓度为5 ug/ml (图 5). J Immunol (2010) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1, 2, 3
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2, 3). Blood (2010) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2010) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 s5). Nat Immunol (2008) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. Mol Vis (2007) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Fcgr2b抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2006) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(AT10)
  • 抑制或激活实验; 人类; 图 3a
艾博抗(上海)贸易有限公司 Fcgr2b抗体(Abcam, AT10)被用于被用于抑制或激活实验在人类样本上 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(AT10)
  • 免疫沉淀; 人类
艾博抗(上海)贸易有限公司 Fcgr2b抗体(Abcam, ab41899)被用于被用于免疫沉淀在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AT10)
  • 流式细胞仪; 人类; 图 2
艾博抗(上海)贸易有限公司 Fcgr2b抗体(Abcam, clone AT10)被用于被用于流式细胞仪在人类样本上 (图 2). Leuk Lymphoma (2012) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(AT130-5)
  • 流式细胞仪; 小鼠; 图 1b
伯乐(Bio-Rad)公司 Fcgr2b抗体(Biorad, AT130-5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Leukoc Biol (2019) ncbi
文章列表
  1. BURNS J, Cotleur B, Walther D, Bajrami B, Rubino S, Wei R, et al. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. elife. 2020;9: pubmed 出版商
  2. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  3. Chaurasiya S, Yang A, Kang S, Lu J, Kim S, Park A, et al. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology. 2020;9:1729300 pubmed 出版商
  4. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  5. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  6. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  7. Uckelmann H, Kim S, Wong E, Hatton C, Giovinazzo H, Gadrey J, et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science. 2020;367:586-590 pubmed 出版商
  8. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  9. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  10. Nagai J, Balestrieri B, Fanning L, Kyin T, Cirka H, Lin J, et al. P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation. J Clin Invest. 2019;129:5169-5186 pubmed 出版商
  11. Yoshimi A, Lin K, Wiseman D, Rahman M, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574:273-277 pubmed 出版商
  12. Liu Z, Gu Y, Chakarov S, Blériot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178:1509-1525.e19 pubmed 出版商
  13. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  14. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  15. Roberts A, Popov L, Mitchell G, Ching K, Licht D, Golovkine G, et al. Cas9+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond. elife. 2019;8: pubmed 出版商
  16. Lüscher Firzlaff J, Chatain N, Kuo C, Braunschweig T, Bochynska A, Ullius A, et al. Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Sci Rep. 2019;9:8262 pubmed 出版商
  17. Merve A, Zhang X, Pomella N, Acquati S, Hoeck J, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:2 pubmed 出版商
  18. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  19. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  20. Halvarsson C, Rörby E, Eliasson P, Lang S, Soneji S, Jönsson J. Putative role of NF-kB but not HIF-1α in hypoxia-dependent regulation of oxidative stress in hematopoietic stem and progenitor cells. Antioxid Redox Signal. 2019;: pubmed 出版商
  21. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  22. Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, et al. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun. 2019;10:633 pubmed 出版商
  23. Contijoch E, Britton G, Yang C, Mogno I, Li Z, Ng R, et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. elife. 2019;8: pubmed 出版商
  24. Liu M, O Connor R, Trefely S, Graham K, Snyder N, Beatty G. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated 'don't-eat-me' signal. Nat Immunol. 2019;20:265-275 pubmed 出版商
  25. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  26. Cai Z, Kotzin J, Ramdas B, Chen S, Nelanuthala S, Palam L, et al. Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis. Cell Stem Cell. 2018;23:833-849.e5 pubmed 出版商
  27. Glal D, Sudhakar J, Lu H, Liu M, Chiang H, Liu Y, et al. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol. 2018;9:2522 pubmed 出版商
  28. Abreu Mota T, Hagen K, Cooper K, Jahrling P, Tan G, Wirblich C, et al. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun. 2018;9:4223 pubmed 出版商
  29. Chu J, Mccormick B, Mazelyte G, Michael M, Vermeren S. HoxB8 neutrophils replicate Fcγ receptor and integrin-induced neutrophil signaling and functions. J Leukoc Biol. 2019;105:93-100 pubmed 出版商
  30. Morales Hernández A, Martinat A, Chabot A, Kang G, McKinney Freeman S. Elevated Oxidative Stress Impairs Hematopoietic Progenitor Function in C57BL/6 Substrains. Stem Cell Reports. 2018;11:334-347 pubmed 出版商
  31. Pulikkan J, Hegde M, Ahmad H, Belaghzal H, Illendula A, Yu J, et al. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell. 2018;174:172-186.e21 pubmed 出版商
  32. Liu T, Kong W, Tang X, Xu M, Wang Q, Zhang B, et al. The transcription factor Zfp90 regulates the self-renewal and differentiation of hematopoietic stem cells. Cell Death Dis. 2018;9:677 pubmed 出版商
  33. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  34. Rothberg J, Maganti H, Jrade H, Porter C, Palidwor G, Cafariello C, et al. Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov. 2018;4:21 pubmed 出版商
  35. Baba O, Horie T, Nakao T, Hakuno D, Nakashima Y, Nishi H, et al. MicroRNA 33 Regulates the Population of Peripheral Inflammatory Ly6Chigh Monocytes through Dual Pathways. Mol Cell Biol. 2018;38: pubmed 出版商
  36. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  37. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  38. Endo Umeda K, Nakashima H, Umeda N, Seki S, Makishima M. Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice. Endocrinology. 2018;159:1419-1432 pubmed 出版商
  39. Wheeler D, Sariol A, Meyerholz D, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128:931-943 pubmed 出版商
  40. Freeman S, Vega A, Riedl M, Collins R, Ostrowski P, Woods E, et al. Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell. 2018;172:305-317.e10 pubmed 出版商
  41. Mitroulis I, Ruppova K, Wang B, Chen L, Grzybek M, Grinenko T, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172:147-161.e12 pubmed 出版商
  42. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  43. Kurkewich J, Boucher A, Klopfenstein N, Baskar R, Kapur R, Dahl R. The mirn23a and mirn23b microrna clusters are necessary for proper hematopoietic progenitor cell production and differentiation. Exp Hematol. 2018;59:14-29 pubmed 出版商
  44. Mumau M, Vanderbeck A, Lynch E, Golec S, Emerson S, Punt J. Identification of a Multipotent Progenitor Population in the Spleen That Is Regulated by NR4A1. J Immunol. 2018;200:1078-1087 pubmed 出版商
  45. Glasner A, Isaacson B, Viukov S, Neuman T, Friedman N, Mandelboim M, et al. Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Sci Rep. 2017;7:13090 pubmed 出版商
  46. Kumar B, Garcia M, Weng L, Jung X, Murakami J, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575-587 pubmed 出版商
  47. Gosselin D, Skola D, Coufal N, Holtman I, Schlachetzki J, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356: pubmed 出版商
  48. Torcellan T, Hampton H, Bailey J, Tomura M, Brink R, Chtanova T. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A. 2017;114:5677-5682 pubmed 出版商
  49. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  50. Ebner F, Sedlyarov V, Tasciyan S, Ivin M, Kratochvill F, Gratz N, et al. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection. J Clin Invest. 2017;127:2051-2065 pubmed 出版商
  51. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  52. Chen J, Zhong M, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017;544:493-497 pubmed 出版商
  53. Huang Y, Rajappa P, Hu W, Hoffman C, CISSE B, Kim J, et al. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma. J Clin Invest. 2017;127:1826-1838 pubmed 出版商
  54. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  55. Hérault A, Binnewies M, Leong S, Calero Nieto F, Zhang S, Kang Y, et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017;544:53-58 pubmed 出版商
  56. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  57. Chang K, Smith S, Sullivan T, Chen K, Zhou Q, West J, et al. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells. Mol Ther Methods Clin Dev. 2017;4:137-148 pubmed 出版商
  58. Ho T, Warr M, Adelman E, Lansinger O, Flach J, Verovskaya E, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543:205-210 pubmed 出版商
  59. Stanley R, Piszczatowski R, Bartholdy B, Mitchell K, McKimpson W, Narayanagari S, et al. A myeloid tumor suppressor role for NOL3. J Exp Med. 2017;214:753-771 pubmed 出版商
  60. Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed 出版商
  61. Bracamonte Baran W, Florentin J, Zhou Y, Jankowska Gan E, Haynes W, Zhong W, et al. Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proc Natl Acad Sci U S A. 2017;114:1099-1104 pubmed 出版商
  62. Scott C, Bain C, Mowat A. Isolation and Identification of Intestinal Myeloid Cells. Methods Mol Biol. 2017;1559:223-239 pubmed 出版商
  63. Weindel C, Richey L, Mehta A, Shah M, Huber B. Autophagy in Dendritic Cells and B Cells Is Critical for the Inflammatory State of TLR7-Mediated Autoimmunity. J Immunol. 2017;198:1081-1092 pubmed 出版商
  64. Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire L, et al. Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res. 2017;45:1281-1296 pubmed 出版商
  65. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  66. Hidaka T, Ogawa E, Kobayashi E, Suzuki T, Funayama R, Nagashima T, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017;18:64-73 pubmed 出版商
  67. Yu V, Yusuf R, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:1310-1322.e17 pubmed 出版商
  68. Johnston L, Hsu C, Krier Burris R, Chhiba K, Chien K, McKenzie A, et al. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J Immunol. 2016;197:3445-3453 pubmed
  69. Yeap W, Wong K, Shimasaki N, Teo E, Quek J, Yong H, et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep. 2016;6:34310 pubmed 出版商
  70. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  71. Olsson A, Venkatasubramanian M, Chaudhri V, Aronow B, Salomonis N, Singh H, et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature. 2016;537:698-702 pubmed 出版商
  72. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum R, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499 pubmed 出版商
  73. Cordova Z, Grönholm A, Kytölä V, Taverniti V, Hämäläinen S, Aittomäki S, et al. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget. 2016;7:54392-54404 pubmed 出版商
  74. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  75. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  76. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  77. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  78. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  79. Ngambenjawong C, Gustafson H, Pineda J, Kacherovsky N, Cieslewicz M, Pun S. Serum Stability and Affinity Optimization of an M2 Macrophage-Targeting Peptide (M2pep). Theranostics. 2016;6:1403-14 pubmed 出版商
  80. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  81. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  82. Abramowski P, Krasemann S, Ernst T, Lange C, Ittrich H, Schweizer M, et al. Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells Dev. 2016;25:1134-48 pubmed 出版商
  83. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151-66 pubmed 出版商
  84. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  85. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  86. Kurkewich J, Bikorimana E, Nguyen T, Klopfenstein N, Zhang H, Hallas W, et al. The mirn23a microRNA cluster antagonizes B cell development. J Leukoc Biol. 2016;100:665-677 pubmed
  87. Schlam D, Canton J, Carreño M, Kopinski H, Freeman S, Grinstein S, et al. Gliotoxin Suppresses Macrophage Immune Function by Subverting Phosphatidylinositol 3,4,5-Trisphosphate Homeostasis. MBio. 2016;7:e02242 pubmed 出版商
  88. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  89. Foy S, Sennino B, dela Cruz T, Cote J, Gordon E, Kemp F, et al. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. PLoS ONE. 2016;11:e0150084 pubmed 出版商
  90. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  91. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  92. Lu K, Nakagawa M, Thummar K, RATHINAM C. Slicer Endonuclease Argonaute 2 Is a Negative Regulator of Hematopoietic Stem Cell Quiescence. Stem Cells. 2016;34:1343-53 pubmed 出版商
  93. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  94. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med. 2016;22:183-93 pubmed 出版商
  95. Sagoo P, Garcia Z, Breart B, Lemaître F, Michonneau D, Albert M, et al. In vivo imaging of inflammasome activation reveals a subcapsular macrophage burst response that mobilizes innate and adaptive immunity. Nat Med. 2016;22:64-71 pubmed 出版商
  96. Cole C, Verdoni A, Ketkar S, Leight E, Russler Germain D, Lamprecht T, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126:85-98 pubmed 出版商
  97. Clark H, Jhingran A, Sun Y, Vareechon C, de Jesus Carrion S, Skaar E, et al. Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular Aspergillus fumigatus Hyphal Growth and Corneal Infection. J Immunol. 2016;196:336-44 pubmed 出版商
  98. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  99. Hu J, Greene C, King Lyons N, Connell T. The Divergent CD8+ T Cell Adjuvant Properties of LT-IIb and LT-IIc, Two Type II Heat-Labile Enterotoxins, Are Conferred by Their Ganglioside-Binding B Subunits. PLoS ONE. 2015;10:e0142942 pubmed 出版商
  100. Fong C, Gilan O, Lam E, Rubin A, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538-42 pubmed 出版商
  101. Peluffo H, Solari Saquieres P, Negro Demontel M, Francos Quijorna I, Navarro X, Lopez Vales R, et al. CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype. J Neuroinflammation. 2015;12:145 pubmed 出版商
  102. Charmsaz S, Beckett K, Smith F, Bruedigam C, Moore A, Al Ejeh F, et al. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia. PLoS ONE. 2015;10:e0130692 pubmed 出版商
  103. Suzuki H, Watari A, Hashimoto E, Yonemitsu M, Kiyono H, Yagi K, et al. C-Terminal Clostridium perfringens Enterotoxin-Mediated Antigen Delivery for Nasal Pneumococcal Vaccine. PLoS ONE. 2015;10:e0126352 pubmed 出版商
  104. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  105. Johnson A, Costanzo A, Gareau M, Armando A, Quehenberger O, Jameson J, et al. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS ONE. 2015;10:e0122195 pubmed 出版商
  106. Shade K, Platzer B, Washburn N, Mani V, Bartsch Y, Conroy M, et al. A single glycan on IgE is indispensable for initiation of anaphylaxis. J Exp Med. 2015;212:457-67 pubmed 出版商
  107. Watanabe S, Chan K, Wang J, Rivino L, Lok S, Vasudevan S. Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice. J Virol. 2015;89:5847-61 pubmed 出版商
  108. Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff G, et al. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS ONE. 2015;10:e0118096 pubmed 出版商
  109. Onishi M, Ozasa K, Kobiyama K, Ohata K, Kitano M, Taniguchi K, et al. Hydroxypropyl-β-cyclodextrin spikes local inflammation that induces Th2 cell and T follicular helper cell responses to the coadministered antigen. J Immunol. 2015;194:2673-82 pubmed 出版商
  110. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler T. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 2015;11:e1004481 pubmed 出版商
  111. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed 出版商
  112. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  113. Peng H, Li C, Kadow S, Henry B, Steinmann J, Becker K, et al. Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J Mol Med (Berl). 2015;93:675-89 pubmed 出版商
  114. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  115. Teixeira L, Moreira J, Melo J, Bezerra F, Marques R, Ferreirinha P, et al. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology. 2015;145:242-57 pubmed 出版商
  116. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  117. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  118. Thueson L, Emmons T, Browning D, Kreitinger J, Shepherd D, Wetzel S. In vitro exposure to the herbicide atrazine inhibits T cell activation, proliferation, and cytokine production and significantly increases the frequency of Foxp3+ regulatory T cells. Toxicol Sci. 2015;143:418-29 pubmed 出版商
  119. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  120. Peschke K, Dudeck A, Rabenhorst A, Hartmann K, Roers A. Cre/loxP-based mouse models of mast cell deficiency and mast cell-specific gene inactivation. Methods Mol Biol. 2015;1220:403-21 pubmed 出版商
  121. Sakamoto H, Takeda N, Arai F, Hosokawa K, García P, Suda T, et al. Determining c-Myb protein levels can isolate functional hematopoietic stem cell subtypes. Stem Cells. 2015;33:479-90 pubmed 出版商
  122. Becker A, Walcheck B, Bhattacharya D. ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors. Exp Hematol. 2015;43:44-52.e1-3 pubmed 出版商
  123. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  124. Parker K, Sinha P, Horn L, Clements V, Yang H, Li J, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74:5723-33 pubmed 出版商
  125. Flach J, Bakker S, Mohrin M, Conroy P, Pietras E, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198-202 pubmed 出版商
  126. Pisano F, Heine W, Rosenheinrich M, Schweer J, Nuss A, Dersch P. Influence of PhoP and intra-species variations on virulence of Yersinia pseudotuberculosis during the natural oral infection route. PLoS ONE. 2014;9:e103541 pubmed 出版商
  127. Chung Y, Kim E, Abdel Wahab O. Femoral bone marrow aspiration in live mice. J Vis Exp. 2014;: pubmed 出版商
  128. Johnston Cox H, Eisenstein A, Koupenova M, Carroll S, Ravid K. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS ONE. 2014;9:e98775 pubmed 出版商
  129. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  130. Pilling D, Gomer R. Persistent lung inflammation and fibrosis in serum amyloid P component (APCs-/-) knockout mice. PLoS ONE. 2014;9:e93730 pubmed 出版商
  131. Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82-92 pubmed 出版商
  132. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  133. Satpathy A, Briseño C, Lee J, Ng D, Manieri N, Kc W, et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol. 2013;14:937-48 pubmed 出版商
  134. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  135. Municio C, Alvarez Y, Montero O, Hugo E, Rodriguez M, Domingo E, et al. The response of human macrophages to ?-glucans depends on the inflammatory milieu. PLoS ONE. 2013;8:e62016 pubmed 出版商
  136. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  137. Fang Y, Larsson L, Bruhns P, Xiang Z. Apoptosis of mouse mast cells is reciprocally regulated by the IgG receptors Fc?RIIB and Fc?RIIIA. Allergy. 2012;67:1233-40 pubmed 出版商
  138. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  139. Nguyen T, Havari E, McLaren R, Zhang M, Jiang Y, Madden S, et al. Alemtuzumab induction of intracellular signaling and apoptosis in malignant B lymphocytes. Leuk Lymphoma. 2012;53:699-709 pubmed 出版商
  140. Ripich T, Jessberger R. SWAP-70 regulates erythropoiesis by controlling ?4 integrin. Haematologica. 2011;96:1743-52 pubmed 出版商
  141. Weisel F, Appelt U, Schneider A, Horlitz J, Van Rooijen N, Korner H, et al. Unique requirements for reactivation of virus-specific memory B lymphocytes. J Immunol. 2010;185:4011-21 pubmed 出版商
  142. Böiers C, Buza Vidas N, Jensen C, Pronk C, Kharazi S, Wittmann L, et al. Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development. Blood. 2010;115:5061-8 pubmed 出版商
  143. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  144. Kim S, Prout M, Ramshaw H, Lopez A, LeGros G, Min B. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J Immunol. 2010;184:1143-7 pubmed 出版商
  145. Maillard I, Chen Y, Friedman A, Yang Y, Tubbs A, Shestova O, et al. Menin regulates the function of hematopoietic stem cells and lymphoid progenitors. Blood. 2009;113:1661-9 pubmed 出版商
  146. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商
  147. Jiang L, Yang P, He H, Li B, Lin X, Hou S, et al. Increased expression of Foxp3 in splenic CD8+ T cells from mice with anterior chamber-associated immune deviation. Mol Vis. 2007;13:968-74 pubmed
  148. Vanasek T, Nandiwada S, Jenkins M, Mueller D. CD25+Foxp3+ regulatory T cells facilitate CD4+ T cell clonal anergy induction during the recovery from lymphopenia. J Immunol. 2006;176:5880-9 pubmed
  149. Gupta R, Karpatkin S, Basch R. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood. 2006;107:1837-46 pubmed