这是一篇来自已证抗体库的有关小鼠 Fcgr3的综述,是根据316篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Fcgr3 抗体。
Fcgr3 同义词: CD16

BioLegend
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s3a, s3b, 5g
BioLegend Fcgr3抗体(BioLegend, 101320)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b, 5g). Cell Death Discov (2022) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Fcgr3抗体(Biolegend, 101302)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Adv Sci (Weinh) (2022) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:50; 图 4c
BioLegend Fcgr3抗体(BioLegend, 101319)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4c). J Biol Chem (2022) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(Biolegend, 101320)被用于被用于流式细胞仪在小鼠样本上. iScience (2022) ncbi
大鼠 单克隆(S17014E)
  • 流式细胞仪; 人类; 1:100; 图 4i
BioLegend Fcgr3抗体(Biolegend, 158009)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 4i). Nat Nanotechnol (2022) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100; 图 1g, 1h, 1i
BioLegend Fcgr3抗体(Biolegend, 101301)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1g, 1h, 1i). Nat Nanotechnol (2022) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(BioLegend, 101302)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Fcgr3抗体(Biolegend, 101319)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
大鼠 单克隆(93)
  • mass cytometry; 小鼠
BioLegend Fcgr3抗体(Biolegend, 101302)被用于被用于mass cytometry在小鼠样本上. Cancer Cell (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Fcgr3抗体(Biolegend, 101302)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Fcgr3抗体(BioLegend, 101305)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cell Death Discov (2021) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
BioLegend Fcgr3抗体(Biolegend, 101320)被用于被用于抑制或激活实验在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:400
BioLegend Fcgr3抗体(Biolegend, 101307)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Aging (Albany NY) (2021) ncbi
大鼠 单克隆(93)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
BioLegend Fcgr3抗体(BioLegend, 101305)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). Front Immunol (2021) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
BioLegend Fcgr3抗体(Biolegend, 101302)被用于被用于抑制或激活实验在小鼠样本上. Cell Rep (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100; 图 5e
BioLegend Fcgr3抗体(BioLegend, 101301)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5e). FASEB J (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. elife (2021) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 4k, s5e
BioLegend Fcgr3抗体(Biolegend, 101302)被用于被用于抑制或激活实验在小鼠样本上 (图 4k, s5e). Nat Commun (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1-1
BioLegend Fcgr3抗体(Bio-Legend, 101307)被用于被用于流式细胞仪在小鼠样本上 (图 s1-1). elife (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Fcgr3抗体(Biolegend, 101301)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. elife (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(Biolegend, 101319)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2e
BioLegend Fcgr3抗体(BioLegend, 101302)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Theranostics (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1a). elife (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
BioLegend Fcgr3抗体(Biolegend, 101301)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Nat Commun (2020) ncbi
大鼠 单克隆(93)
  • 其他; 小鼠
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于其他在小鼠样本上. Nat Commun (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Fcgr3抗体(BioLegend, 101319)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Oncoimmunology (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Fcgr3抗体(Biolegend, 101302)被用于被用于流式细胞仪在小鼠样本上 (图 1e). elife (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 10 ug/ml
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml. Science (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:400; 图 3, 4
BioLegend Fcgr3抗体(BioLegend;, 101337)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3, 4). Nat Commun (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Science (2020) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:500
BioLegend Fcgr3抗体(BioLegend, 101319)被用于被用于抑制或激活实验在小鼠样本上浓度为1:500. Nat Commun (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Sci Adv (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 5a, 5b
BioLegend Fcgr3抗体(Biolegend, 101320)被用于被用于流式细胞仪在小鼠样本上 (图 5a, 5b). J Clin Invest (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Fcgr3抗体(Biolegend, 101328)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2019) ncbi
大鼠 单克隆(93)
  • mass cytometry; 小鼠; 1:50; 图 3, s2
BioLegend Fcgr3抗体(Biolegend, 101302)被用于被用于mass cytometry在小鼠样本上浓度为1:50 (图 3, s2). Science (2019) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 1d
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 1d). elife (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1f
BioLegend Fcgr3抗体(Biolegend, 101307)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). Cell (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:200; 图 ex6i
BioLegend Fcgr3抗体(Biolegend, 101337)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 ex6i). Nature (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:700; 图 ex3a
BioLegend Fcgr3抗体(BioLegend, 101324)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 ex3a). Nature (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:50; 图 s9
BioLegend Fcgr3抗体(BioLegend, 101320)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s9). Nat Commun (2019) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
BioLegend Fcgr3抗体(BioLegend, 101320)被用于被用于抑制或激活实验在小鼠样本上. elife (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s7b
BioLegend Fcgr3抗体(Biolegend, 101306)被用于被用于流式细胞仪在小鼠样本上 (图 s7b). Nat Immunol (2019) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 2a, 2f, s2j
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 2a, 2f, s2j). Cell Rep (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Fcgr3抗体(BioLegend, 101318)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell Stem Cell (2018) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:500; 图 1c, 3d, 7b, 8c
BioLegend Fcgr3抗体(BioLegend, 101301)被用于被用于抑制或激活实验在小鼠样本上浓度为1:500 (图 1c, 3d, 7b, 8c). Front Immunol (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:200; 图 s4d
BioLegend Fcgr3抗体(BioLegend, 101323)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4d). Nat Commun (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s6
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Stem Cell Reports (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cell Metab (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Clin Invest (2018) ncbi
大鼠 单克隆(93)
  • 免疫细胞化学; 人类; 图 2a
BioLegend Fcgr3抗体(BioLegend, 101302)被用于被用于免疫细胞化学在人类样本上 (图 2a). Cell (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Exp Hematol (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Fcgr3抗体(Biolegend, 101326)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:200; 图 s1d
BioLegend Fcgr3抗体(BioLegend, 101302)被用于被用于抑制或激活实验在小鼠样本上浓度为1:200 (图 s1d). Leukemia (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Fcgr3抗体(Biolegend, 101319)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 s8a
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 s8a). Science (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 6a
BioLegend Fcgr3抗体(Biolegend, 101320)被用于被用于抑制或激活实验在小鼠样本上 (图 6a). Mol Ther Methods Clin Dev (2017) ncbi
大鼠 单克隆(93)
BioLegend Fcgr3抗体(Biolegend, 101320)被用于. PLoS ONE (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 2
BioLegend Fcgr3抗体(Biolegend, 101320)被用于被用于抑制或激活实验在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 2a
BioLegend Fcgr3抗体(Biolegend, 101320)被用于被用于抑制或激活实验在小鼠样本上 (图 2a). Methods Mol Biol (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:50
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上浓度为1:50. Nat Immunol (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Fcgr3抗体(BioLegend, 101320)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. elife (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100; 图 s7
BioLegend Fcgr3抗体(Biolegend, 101308)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7). Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 免疫细胞化学; 小鼠; 图 s4
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于免疫细胞化学在小鼠样本上 (图 s4). Theranostics (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上. Stem Cells Dev (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4e). J Leukoc Biol (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s3.e,g
BioLegend Fcgr3抗体(BioLegend, 101324)被用于被用于流式细胞仪在小鼠样本上 (图 s3.e,g). Nature (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Fcgr3抗体(Biolegend, 101319)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Neuroinflammation (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Fcgr3抗体(BioLegend, clone 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(BioLegend, clone 93)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 仓鼠; 图 7
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在仓鼠样本上 (图 7). J Virol (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. J Mol Med (Berl) (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 1
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 1). Toxicol Sci (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 表 s1
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Stem Cells (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(Biolegend, 93)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
BioLegend Fcgr3抗体(BioLegend, 93)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
BioLegend Fcgr3抗体(Biolegend, 101301)被用于被用于抑制或激活实验在小鼠样本上. Exp Parasitol (2014) ncbi
赛默飞世尔
大鼠 单克隆(93)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 Fcgr3抗体(ThermoFischer Scientific, 14-0161-85)被用于被用于免疫组化在小鼠样本上浓度为1:100. elife (2022) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161-86)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Oncoimmunology (2022) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2a, s1c
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a, s1c). Cell Rep (2022) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Fcgr3抗体(eBioscience, Thermo Fisher, 14-0161-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2022) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2b, s3a
赛默飞世尔 Fcgr3抗体(eBioscience, 12-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2b, s3a). Cell Rep (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cells (2021) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:100
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161)被用于被用于抑制或激活实验在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 5 ug/ml
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161-85)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml. Acta Neuropathol Commun (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(Thermo Fisher Scientific, 14-0161-82)被用于被用于流式细胞仪在小鼠样本上. Cell Host Microbe (2021) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:50; 图 2a
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2a). elife (2020) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:200; 图 e4g
赛默飞世尔 Fcgr3抗体(eBioscience, 56-0161-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e4g). Nature (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2j
赛默飞世尔 Fcgr3抗体(Thermo Fisher, 14-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Sci Adv (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Fcgr3抗体(Thermo Fisher Scientific, 17-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Rep (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 6e, 6f
赛默飞世尔 Fcgr3抗体(eBiosciences, 140161-82)被用于被用于流式细胞仪在小鼠样本上 (图 6e, 6f). Acta Neuropathol Commun (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
赛默飞世尔 Fcgr3抗体(Thermo Fisher, 14-0161-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). FASEB J (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Fcgr3抗体(eBioscience, 17-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Antioxid Redox Signal (2019) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 人类; 图 s3i
赛默飞世尔 Fcgr3抗体(eBiosciences, 25-0161)被用于被用于流式细胞仪在人类样本上 (图 s3i). Cell (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Cell Death Dis (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔 Fcgr3抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell Stem Cell (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Fcgr3抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell Discov (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Cell Biol (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Fcgr3抗体(eBioscience, 17-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Cell Death Dis (2018) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:30
赛默飞世尔 Fcgr3抗体(Thermo Fisher Scientific, 14-0161)被用于被用于抑制或激活实验在小鼠样本上浓度为1:30. Endocrinology (2018) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Fcgr3抗体(eBiosciences, 48-0161)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Cell (2018) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:50
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161)被用于被用于抑制或激活实验在小鼠样本上浓度为1:50. Science (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Fcgr3抗体(eBiosciences, 14-0161)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Fcgr3抗体(ThermoFisher Scientific, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Clin Invest (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 e3a
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 e3a). Nature (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Fcgr3抗体(eBiosciences, 46-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nature (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:1000; 图 1a
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161-85)被用于被用于抑制或激活实验在小鼠样本上浓度为1:1000 (图 1a). Nat Commun (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1g
赛默飞世尔 Fcgr3抗体(eBiosciences, 46-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1g). Nature (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Fcgr3抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 7G
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161-85)被用于被用于流式细胞仪在小鼠样本上 (图 7G). J Immunol (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Fcgr3抗体(eBioscience, 25-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1G
赛默飞世尔 Fcgr3抗体(eBioscience, 25-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 s3c
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 s3c). Oncotarget (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Fcgr3抗体(eBiosciences, 12-0161-81)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, mAb 93)被用于被用于抑制或激活实验在小鼠样本上. Am J Pathol (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161-82)被用于被用于抑制或激活实验在小鼠样本上. elife (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:250; 图 st1
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 5g
赛默飞世尔 Fcgr3抗体(eBioscience, 16-0161-81)被用于被用于抑制或激活实验在小鼠样本上 (图 5g). J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:100
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161)被用于被用于抑制或激活实验在小鼠样本上浓度为1:100. J Clin Invest (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:100; 图 s3
赛默飞世尔 Fcgr3抗体(eBioscience, 16-0161-85)被用于被用于抑制或激活实验在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Fcgr3抗体(eBioscience, 46-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Cell Biol (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2h
  • 免疫细胞化学; 小鼠; 图 2c
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161)被用于被用于流式细胞仪在小鼠样本上 (图 2h) 和 被用于免疫细胞化学在小鼠样本上 (图 2c). MBio (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:400; 图 s4
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s4). Nat Commun (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Fcgr3抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Stem Cells (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. Nat Med (2016) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 5, 6
赛默飞世尔 Fcgr3抗体(ebioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 5, 6). Nat Med (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. J Clin Invest (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 人类
赛默飞世尔 Fcgr3抗体(eBioscience, 16-0161-86)被用于被用于抑制或激活实验在人类样本上. J Immunol (2016) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 1:8000
赛默飞世尔 Fcgr3抗体(Ebioscience, 93)被用于被用于抑制或激活实验在小鼠样本上浓度为1:8000. PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Fcgr3抗体(eBioscience, 12-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 人类; 表 5
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在人类样本上 (表 5). Gastroenterology (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 5 ug/ml
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. PLoS Pathog (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠; 图 2c
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上 (图 2c). EMBO Mol Med (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Fcgr3抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 人类
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在人类样本上. Cell Res (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Hematol (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 2). Development (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Methods Mol Biol (2015) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Fcgr3抗体(eBiosciences, 93)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Exp Hematol (2015) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Fcgr3抗体(eBioscience, 46-0161-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nature (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 48-0161-82)被用于被用于流式细胞仪在小鼠样本上. J Vis Exp (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 犬; 1:100
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Fcgr3抗体(eBioscience, 14-0161-81)被用于被用于流式细胞仪在犬样本上浓度为1:100 和 被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience Inc., 93)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2013) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS ONE (2013) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 7). PLoS ONE (2013) ncbi
大鼠 单克隆(FCR4G8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Fcgr3抗体(CALTAG, FCR-4G8)被用于被用于流式细胞仪在小鼠样本上 (图 3). Allergy (2012) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 12-0161)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Haematologica (2011) ncbi
大鼠 单克隆(93)
  • 免疫细胞化学; 小鼠; 5 ug/ml; 图 5
赛默飞世尔 Fcgr3抗体(eBioscience, clone 93)被用于被用于免疫细胞化学在小鼠样本上浓度为5 ug/ml (图 5). J Immunol (2010) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1, 2, 3
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2, 3). Blood (2010) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2010) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 s5). Nat Immunol (2008) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. Mol Vis (2007) ncbi
大鼠 单克隆(93)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(93)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Fcgr3抗体(eBioscience, 93)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2006) ncbi
Bio X Cell
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
Bio X Cell Fcgr3抗体(BioXCell, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
Bio X Cell Fcgr3抗体(BioXCell, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Blood Adv (2020) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 1d
安迪生物R&D Fcgr3抗体(R&D Systems, AF1960)被用于被用于免疫组化在小鼠样本上 (图 1d). Clin Transl Med (2021) ncbi
碧迪BD
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100; 图 3a, 3d, s8a
碧迪BD Fcgr3抗体(BD Pharmingen, 553145)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a, 3d, s8a). Nat Commun (2022) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 4d, 5g, 5h, s3a
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于流式细胞仪在小鼠样本上 (图 4d, 5g, 5h, s3a). Cell Rep Med (2022) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:500; 图 5a, 5c
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 5a, 5c). Environ Health Perspect (2022) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Fcgr3抗体(BD Bioscience, 553145)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2022) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100; 图 6e
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6e). Proc Natl Acad Sci U S A (2022) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 2g
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(2.4G2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5c
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5c). Stroke Vasc Neurol (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Fcgr3抗体(BD Pharmingen, 553141)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Hypertension (2021) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. Sci Rep (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Commun Biol (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Fcgr3抗体(BD Biosciences, 560541)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Cell Rep (2021) ncbi
大鼠 单克隆(2.4G2)
  • mass cytometry; 小鼠; 1:100; 图 1a
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于mass cytometry在小鼠样本上浓度为1:100 (图 1a). Nat Commun (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100; 图 6g
碧迪BD Fcgr3抗体(BD, 553142)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6g). Cell Rep (2021) ncbi
大鼠 单克隆(2.4G2)
  • 免疫组化; 小鼠; 1:300; 图 s2
碧迪BD Fcgr3抗体(BD bioscience, 553141)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s2). Aging Dis (2021) ncbi
大鼠 单克隆(2.4G2)
  • 免疫组化; 小鼠; 图 s3a
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于免疫组化在小鼠样本上 (图 s3a). Diabetologia (2021) ncbi
大鼠 单克隆(2.4G2)
  • 免疫细胞化学; 小鼠; 图 6a
碧迪BD Fcgr3抗体(Biosciences, 553141)被用于被用于免疫细胞化学在小鼠样本上 (图 6a). Aging (Albany NY) (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:200; 图 5m
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5m). Aging Cell (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 10 ug/ml; 图 s2
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml (图 s2). Sci Rep (2021) ncbi
大鼠 单克隆(2.4G2)
  • 免疫细胞化学; 小鼠; 1:200; 图 5k
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5k). Cell Death Differ (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Aging (Albany NY) (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:500
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Immunol (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. EMBO Mol Med (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上. Diabetes (2021) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:200-1:1000
碧迪BD Fcgr3抗体(BD Pharmingen, 553141)被用于被用于流式细胞仪在小鼠样本上浓度为1:200-1:1000. elife (2020) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. elife (2020) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2020) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(2.4G2)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
碧迪BD Fcgr3抗体(BD, 553142)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Theranostics (2020) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Cell Metab (2019) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
碧迪BD Fcgr3抗体(BD Bioscience, 553142)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Science (2019) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Int Immunol (2019) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2019) ncbi
大鼠 单克隆(2.4G2)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s4c
碧迪BD Fcgr3抗体(BD Bioscience, 553142)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s4c). PLoS Biol (2019) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 s7d
碧迪BD Fcgr3抗体(BD Pharmigen, 553142)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Cancer Cell (2019) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Fcgr3抗体(Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). PLoS ONE (2019) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100; 图 3c
碧迪BD Fcgr3抗体(BD Bioscience, 553141)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3c). Nat Commun (2019) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Antioxid Redox Signal (2019) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 1:100
碧迪BD Fcgr3抗体(BD, 553142)被用于被用于抑制或激活实验在小鼠样本上浓度为1:100. Cell (2019) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 2c, 2d
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 2c, 2d). Front Immunol (2018) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 4a
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Nat Commun (2018) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 2a, 3a
碧迪BD Fcgr3抗体(BD, 553142)被用于被用于抑制或激活实验在小鼠样本上 (图 2a, 3a). Cell (2018) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 6b
碧迪BD Fcgr3抗体(BD Biosciences, 553145)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Cell Stem Cell (2018) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. Front Immunol (2018) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 s5a
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Blood (2018) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Toxicol Appl Pharmacol (2018) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD Fcgr3抗体(BD Biosciences, 563006)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Neuroinflammation (2018) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:33; 图 7a
碧迪BD Fcgr3抗体(BD Biosciences, 553144)被用于被用于流式细胞仪在小鼠样本上浓度为1:33 (图 7a). Mol Cell Biol (2018) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD Fcgr3抗体(BD Pharmigen, 553145)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Nat Genet (2018) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 s2d
碧迪BD Fcgr3抗体(BD Pharmingen, 560540)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell (2018) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 2c
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 2c). J Immunol (2018) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). J Biol Chem (2018) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. Sci Rep (2017) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. Diabetologia (2017) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 表 s1
碧迪BD Fcgr3抗体(BD Bioscience, 560540)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunology (2017) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 s1g
碧迪BD Fcgr3抗体(BD, 2.4.G2)被用于被用于流式细胞仪在小鼠样本上 (图 s1g). J Exp Med (2017) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 4a
碧迪BD Fcgr3抗体(BD Pharmingen, 553140)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). J Orthop Res (2017) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 1c,d
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 553141)被用于被用于抑制或激活实验在小鼠样本上. Front Immunol (2017) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 1
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 1). PLoS Pathog (2017) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. J Biol Chem (2017) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 553141)被用于被用于抑制或激活实验在小鼠样本上. J Virol (2017) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. Brain (2017) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Cell Mol Med (2017) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(Becton Dickinson, 553142)被用于被用于抑制或激活实验在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 s2a
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于抑制或激活实验在小鼠样本上 (图 s2a). PLoS ONE (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 1c
碧迪BD Fcgr3抗体(BD PharMingen, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 1c). Sci Rep (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 表 1
碧迪BD Fcgr3抗体(BD Biosciences, 553141)被用于被用于抑制或激活实验在小鼠样本上 (表 1). Methods (2017) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Clin Invest (2016) ncbi
大鼠 单克隆(2.4G2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s4b
碧迪BD Fcgr3抗体(BD Pharmingen, 553142)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s4b). Neurobiol Aging (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. BMC Cancer (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD, 553141)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell Death Dis (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Sci Rep (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(2.4G2)
  • 免疫细胞化学; 小鼠; 图 6a
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于免疫细胞化学在小鼠样本上 (图 6a). Cell Rep (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 s2
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 s2). J Immunol (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于抑制或激活实验在小鼠样本上. Sci Rep (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 6
碧迪BD Fcgr3抗体(BD, 553142)被用于被用于抑制或激活实验在小鼠样本上 (图 6). Oncoimmunology (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. Cell Rep (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 st1
碧迪BD Fcgr3抗体(BD Pharmigen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(2.4G2)
  • 免疫组化-自由浮动切片; 小鼠; 1:800; 图 9
碧迪BD Fcgr3抗体(BD Pharmingen, 553141)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:800 (图 9). PLoS ONE (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 s5
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 s5). Nat Commun (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:300; 图 7
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 7). PLoS ONE (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上. Hum Vaccin Immunother (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 1:100; 图 1
碧迪BD Fcgr3抗体(BD, 553142)被用于被用于抑制或激活实验在小鼠样本上浓度为1:100 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 7
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于抑制或激活实验在小鼠样本上 (图 7). Brain Behav (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD, 560539)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Aging (Albany NY) (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Crit Care Med (2016) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. Immunity (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Fcgr3抗体(BD Pharmingen, 560829)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Oncogene (2016) ncbi
大鼠 单克隆(2.4G2)
  • 免疫印迹; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 3.3 ug/ml; 图 3a
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上浓度为3.3 ug/ml (图 3a). J Exp Med (2015) ncbi
大鼠 单克隆(2.4G2)
  • 免疫沉淀; 小鼠; 图 4G
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于免疫沉淀在小鼠样本上 (图 4G). J Transl Med (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
  • 流式细胞仪; 人类
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 和 被用于流式细胞仪在人类样本上. Cancer Immunol Res (2015) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 553142)被用于被用于抑制或激活实验在小鼠样本上. Int J Obes (Lond) (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Neoplasia (2015) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 1a
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 1a). Vaccine (2015) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. J Exp Med (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD, 553144)被用于被用于流式细胞仪在小鼠样本上. MAbs (2015) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 1b
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 1b). J Immunol (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上. Skelet Muscle (2015) ncbi
大鼠 单克隆(2.4G2)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
碧迪BD Fcgr3抗体(BD Pharmingen, 553142)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Glia (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 大鼠; 图 6
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于流式细胞仪在大鼠样本上 (图 6). J Immunol (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:150; 图 1
碧迪BD Fcgr3抗体(BD Biosciences, 560541)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 1). Stem Cell Res Ther (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 3d
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Immunol (2015) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 豚鼠
碧迪BD Fcgr3抗体(BD, 553142)被用于被用于抑制或激活实验在豚鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(2.4G2)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 表 1
碧迪BD Fcgr3抗体(BD Pharmingen, 553142)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (表 1). Brain Behav Immun (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Bioscience, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. JPEN J Parenter Enteral Nutr (2016) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Fcgr3抗体(BD Pharmingen, 553142)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Pathol (2014) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, clone 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Pathobiology (2014) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD Fcgr3抗体(BD Pharmingen, 553142)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Neurobiol Aging (2014) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD, 553141)被用于被用于流式细胞仪在小鼠样本上. Cell Death Differ (2014) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 553142)被用于被用于流式细胞仪在小鼠样本上. J Neurosci (2014) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
碧迪BD Fcgr3抗体(BD Pharmingen, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上. Infect Immun (2014) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Pharmigen, 553142)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 5a
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 5a). PLoS Pathog (2014) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 人类; 图 4
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于流式细胞仪在人类样本上 (图 4). Blood (2014) ncbi
大鼠 单克隆(2.4G2)
  • 抑制或激活实验; 小鼠; 图 2b
碧迪BD Fcgr3抗体(BD Biosciences, 2.4G2)被用于被用于抑制或激活实验在小鼠样本上 (图 2b). Cytotechnology (2015) ncbi
大鼠 单克隆(2.4G2)
  • 流式细胞仪; 小鼠; 1:150
碧迪BD Fcgr3抗体(BD Bioscience, 560541)被用于被用于流式细胞仪在小鼠样本上浓度为1:150. Cell Transplant (2014) ncbi
文章列表
  1. Richards M, Nwadozi E, Pal S, Martinsson P, Kaakinen M, Gloger M, et al. Claudin5 protects the peripheral endothelial barrier in an organ and vessel-type-specific manner. elife. 2022;11: pubmed 出版商
  2. Omatsu Y, Aiba S, Maeta T, Higaki K, Aoki K, Watanabe H, et al. Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells. Nat Commun. 2022;13:2654 pubmed 出版商
  3. Li H, Liu Z, Liu L, Zhang H, Han C, Girard L, et al. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells. Cell Rep Med. 2022;3:100554 pubmed 出版商
  4. Melese E, Franks E, Cederberg R, Harbourne B, Shi R, Wadsworth B, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology. 2022;11:2010905 pubmed 出版商
  5. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  6. Yang H, Shi Y, Liu H, Lin F, Qiu B, Feng Q, et al. Pyroptosis executor gasdermin D plays a key role in scleroderma and bleomycin-induced skin fibrosis. Cell Death Discov. 2022;8:183 pubmed 出版商
  7. Chen K, Hu Q, Xie Z, Yang G. Monocyte NLRP3-IL-1β Hyperactivation Mediates Neuronal and Synaptic Dysfunction in Perioperative Neurocognitive Disorder. Adv Sci (Weinh). 2022;9:e2104106 pubmed 出版商
  8. Reed J, Spinelli P, Falcone S, He M, Goeke C, Susiarjo M. Evaluating the Effects of BPA and TBBPA Exposure on Pregnancy Loss and Maternal-Fetal Immune Cells in Mice. Environ Health Perspect. 2022;130:37010 pubmed 出版商
  9. Günes Günsel G, Conlon T, Jeridi A, Kim R, Ertuz Z, Lang N, et al. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun. 2022;13:1303 pubmed 出版商
  10. Cha J, Chan L, Wang Y, Chu Y, Wang C, Lee H, et al. Ephrin receptor A10 monoclonal antibodies and the derived chimeric antigen receptor T cells exert an antitumor response in mouse models of triple-negative breast cancer. J Biol Chem. 2022;298:101817 pubmed 出版商
  11. Liu M, Wu C, Luo S, Hua Q, Chen H, Weng Y, et al. PERK reprograms hematopoietic progenitor cells to direct tumor-promoting myelopoiesis in the spleen. J Exp Med. 2022;219: pubmed 出版商
  12. Sibilio A, Suñer C, Fernández Alfara M, Martín J, Berenguer A, Calon A, et al. Immune translational control by CPEB4 regulates intestinal inflammation resolution and colorectal cancer development. iScience. 2022;25:103790 pubmed 出版商
  13. Wolpaw A, Grossmann L, Dessau J, Dong M, Aaron B, Brafford P, et al. Epigenetic state determines inflammatory sensing in neuroblastoma. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  14. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  15. Zhang M, Pan X, Fujiwara K, Jurcak N, Muth S, Zhou J, et al. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct Target Ther. 2021;6:366 pubmed 出版商
  16. Zheng Z, Chen J, Lyu H, Lam S, Lu G, Chan W, et al. Novel role of STAT3 in microglia-dependent neuroinflammation after experimental subarachnoid haemorrhage. Stroke Vasc Neurol. 2021;: pubmed 出版商
  17. Tanaka Y, Onozato M, Mikami T, Kohwi Shigematsu T, Fukushima T, Kondo M. Increased Indoleamine 2,3-Dioxygenase Levels at the Onset of Sjögren's Syndrome in SATB1-Conditional Knockout Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  18. Kiepura A, Stachyra K, Wisniewska A, Kus K, Czepiel K, Suski M, et al. The Anti-Atherosclerotic Action of FFAR4 Agonist TUG-891 in ApoE-Knockout Mice Is Associated with Increased Macrophage Polarization towards M2 Phenotype. Int J Mol Sci. 2021;22: pubmed 出版商
  19. Carnevale D, Carnevale L, Perrotta S, Pallante F, Migliaccio A, Iodice D, et al. Chronic 3D Vascular-Immune Interface Established by Coculturing Pressurized Resistance Arteries and Immune Cells. Hypertension. 2021;78:1648-1661 pubmed 出版商
  20. Droho S, Cuda C, Perlman H, Lavine J. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep. 2021;11:18084 pubmed 出版商
  21. Neumann S, Campbell K, Woodall M, Evans M, Clarkson A, Young S. Obesity Has a Systemic Effect on Immune Cells in Naïve and Cancer-Bearing Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  22. Strait A, Woolaver R, Hall S, Young C, Karam S, Jimeno A, et al. Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFβ/PD-L1 blockade-treated squamous cell carcinoma. Commun Biol. 2021;4:1005 pubmed 出版商
  23. Zhang Y, McGrath K, Ayoub E, Kingsley P, Yu H, Fegan K, et al. Mds1CreERT2, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Rep. 2021;36:109562 pubmed 出版商
  24. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  25. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  26. Tillie R, Theelen T, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, et al. A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  27. Lopez Sanz L, Bernal S, Jimenez Castilla L, Prieto I, La Manna S, Gomez Lopez S, et al. Fcγ receptor activation mediates vascular inflammation and abdominal aortic aneurysm development. Clin Transl Med. 2021;11:e463 pubmed 出版商
  28. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  29. Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021;36:109412 pubmed 出版商
  30. James O, Vandereyken M, Marchingo J, Singh F, Bray S, Wilson J, et al. IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nat Commun. 2021;12:4290 pubmed 出版商
  31. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  32. Ho D, Tsui Y, Chan L, Sze K, Zhang X, Cheu J, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 2021;12:3684 pubmed 出版商
  33. Jungwirth U, van Weverwijk A, Evans R, Jenkins L, Vicente D, Alexander J, et al. Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis. Nat Commun. 2021;12:3516 pubmed 出版商
  34. Wu J, Wu Z, He A, Zhang T, Zhang P, Jin J, et al. Genome-Wide Screen and Validation of Microglia Pro-Inflammatory Mediators in Stroke. Aging Dis. 2021;12:786-800 pubmed 出版商
  35. Borggrewe M, Kooistra S, Wesseling E, Gierschek F, Brummer M, Nowak E, et al. VISTA regulates microglia homeostasis and myelin phagocytosis, and is associated with MS lesion pathology. Acta Neuropathol Commun. 2021;9:91 pubmed 出版商
  36. Lindfors S, Polianskyte Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, et al. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia. 2021;64:1866-1879 pubmed 出版商
  37. Hanhai Z, Bin Q, Shengjun Z, Jingbo L, Yinghan G, Lingxin C, et al. Neutrophil extracellular traps, released from neutrophil, promote microglia inflammation and contribute to poor outcome in subarachnoid hemorrhage. Aging (Albany NY). 2021;13:13108-13123 pubmed 出版商
  38. Piñeiro Hermida S, Martinez P, Blasco M. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell. 2021;20:e13352 pubmed 出版商
  39. Anania J, Westin A, Adler J, Heyman B. A Novel Image Analysis Approach Reveals a Role for Complement Receptors 1 and 2 in Follicular Dendritic Cell Organization in Germinal Centers. Front Immunol. 2021;12:655753 pubmed 出版商
  40. Kastenschmidt J, Coulis G, Farahat P, Pham P, Rios R, Cristal T, et al. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep. 2021;35:108997 pubmed 出版商
  41. Berg N, Li J, Kim B, Mills T, Pei G, Zhao Z, et al. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J. 2021;35:e21334 pubmed 出版商
  42. Okano J, Nakae Y, Nakagawa T, Katagi M, Terashima T, Nagakubo D, et al. A novel role for bone marrow-derived cells to recover damaged keratinocytes from radiation-induced injury. Sci Rep. 2021;11:5653 pubmed 出版商
  43. Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ. 2021;28:1822-1836 pubmed 出版商
  44. Zheng H, Zhang Y, Li L, Zhang R, Luo Z, Yang Z, et al. Depletion of Toll-Like Receptor-9 Attenuates Renal Tubulointerstitial Fibrosis After Ischemia-Reperfusion Injury. Front Cell Dev Biol. 2021;9:641527 pubmed 出版商
  45. Zhang Y, Liu J, Wang X, Zhang J, Xie C. Extracellular vesicle-encapsulated microRNA-23a from dorsal root ganglia neurons binds to A20 and promotes inflammatory macrophage polarization following peripheral nerve injury. Aging (Albany NY). 2021;13:6752-6764 pubmed 出版商
  46. Kurashima Y, Kigoshi T, Murasaki S, Arai F, Shimada K, Seki N, et al. Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nat Commun. 2021;12:1067 pubmed 出版商
  47. Ballet R, Brennan M, Brandl C, Feng N, Berri J, Cheng J, et al. A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Nat Immunol. 2021;22:381-390 pubmed 出版商
  48. Vavassori V, Mercuri E, Marcovecchio G, Castiello M, Schiroli G, Albano L, et al. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol Med. 2021;13:e13545 pubmed 出版商
  49. Tyagi A, Darby T, Hsu E, Yu M, Pal S, Dar H, et al. The gut microbiota is a transmissible determinant of skeletal maturation. elife. 2021;10: pubmed 出版商
  50. Guo Q, Zhao Y, Li J, Liu J, Yang X, Guo X, et al. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19. Cell Host Microbe. 2021;29:222-235.e4 pubmed 出版商
  51. Antony A, Lian Z, Perrard X, Perrard J, Liu H, Cox A, et al. Deficiency of Stat1 in CD11c+ Cells Alters Adipose Tissue Inflammation and Improves Metabolic Dysfunctions in Mice Fed a High-Fat Diet. Diabetes. 2021;70:720-732 pubmed 出版商
  52. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  53. Kalinski A, Yoon C, Huffman L, Duncker P, Kohen R, Passino R, et al. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. elife. 2020;9: pubmed 出版商
  54. Zaro B, Noh J, Mascetti V, Demeter J, George B, Zukowska M, et al. Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. elife. 2020;9: pubmed 出版商
  55. Wang Y, Luo M, Chen Y, Wang Y, Zhang B, Ren Z, et al. ZMYND8 Expression in Breast Cancer Cells Blocks T-Lymphocyte Surveillance to Promote Tumor Growth. Cancer Res. 2021;81:174-186 pubmed 出版商
  56. Xu A, Barbosa R, Calado D. Genetic timestamping of plasma cells in vivo reveals tissue-specific homeostatic population turnover. elife. 2020;9: pubmed 出版商
  57. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  58. Katano I, Ito R, Kawai K, Takahashi T. Improved Detection of in vivo Human NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity Using a Novel NOG-FcγR-Deficient Human IL-15 Transgenic Mouse. Front Immunol. 2020;11:532684 pubmed 出版商
  59. Bai L, Lyu Y, Shi G, Li K, Huang Y, Ma Y, et al. Polymerase I and transcript release factor transgenic mice show impaired function of hematopoietic stem cells. Aging (Albany NY). 2020;12:20152-20162 pubmed 出版商
  60. Alonso Herranz L, Sahún Español Á, Paredes A, Gonzalo P, Gkontra P, Núñez V, et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. elife. 2020;9: pubmed 出版商
  61. Mevel R, Steiner I, Mason S, Galbraith L, Patel R, Fadlullah M, et al. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. elife. 2020;9: pubmed 出版商
  62. Lissner M, Cumnock K, Davis N, Vilches Moure J, Basak P, Navarrete D, et al. Metabolic profiling during malaria reveals the role of the aryl hydrocarbon receptor in regulating kidney injury. elife. 2020;9: pubmed 出版商
  63. Hu J, Wang H, Li X, Liu Y, Mi Y, Kong H, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. Theranostics. 2020;10:9702-9720 pubmed 出版商
  64. Ricci B, Tycksen E, Celik H, Belle J, Fontana F, Civitelli R, et al. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. elife. 2020;9: pubmed 出版商
  65. BURNS J, Cotleur B, Walther D, Bajrami B, Rubino S, Wei R, et al. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. elife. 2020;9: pubmed 出版商
  66. Deng M, Tam J, Wang L, Liang K, Li S, Zhang L, et al. TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination. Nat Commun. 2020;11:2193 pubmed 出版商
  67. Zheng D, Gao F, Cheng Q, Bao P, Dong X, Fan J, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11:1985 pubmed 出版商
  68. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  69. Chaurasiya S, Yang A, Kang S, Lu J, Kim S, Park A, et al. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology. 2020;9:1729300 pubmed 出版商
  70. Witalis M, Chang J, Zhong M, Bouklouch Y, Panneton V, Li J, et al. Progression of AITL-like tumors in mice is driven by Tfh signature proteins and T-B cross talk. Blood Adv. 2020;4:868-879 pubmed 出版商
  71. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  72. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  73. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  74. Uckelmann H, Kim S, Wong E, Hatton C, Giovinazzo H, Gadrey J, et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science. 2020;367:586-590 pubmed 出版商
  75. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  76. Zhang L, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020;10:74-90 pubmed 出版商
  77. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  78. Nagai J, Balestrieri B, Fanning L, Kyin T, Cirka H, Lin J, et al. P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation. J Clin Invest. 2019;129:5169-5186 pubmed 出版商
  79. Yoshimi A, Lin K, Wiseman D, Rahman M, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574:273-277 pubmed 出版商
  80. Liu Z, Gu Y, Chakarov S, Blériot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178:1509-1525.e19 pubmed 出版商
  81. Choi W, Kim H, Kim M, Cinar R, Yi H, Eun H, et al. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab. 2019;30:877-889.e7 pubmed 出版商
  82. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  83. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  84. Leach S, Shinnakasu R, Adachi Y, Momota M, Makino Okamura C, Yamamoto T, et al. Requirement for memory B cell activation in protection from heterologous influenza virus reinfection. Int Immunol. 2019;: pubmed 出版商
  85. Liu D, Yin X, Olyha S, Nascimento M, Chen P, White T, et al. IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α+ Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity. 2019;: pubmed 出版商
  86. Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17:e3000330 pubmed 出版商
  87. Roberts A, Popov L, Mitchell G, Ching K, Licht D, Golovkine G, et al. Cas9+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond. elife. 2019;8: pubmed 出版商
  88. Dangaj D, Bruand M, Grimm A, Ronet C, Barras D, Duttagupta P, et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell. 2019;35:885-900.e10 pubmed 出版商
  89. Lüscher Firzlaff J, Chatain N, Kuo C, Braunschweig T, Bochynska A, Ullius A, et al. Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Sci Rep. 2019;9:8262 pubmed 出版商
  90. Merve A, Zhang X, Pomella N, Acquati S, Hoeck J, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:2 pubmed 出版商
  91. Peng L, Guo H, Ma P, Sun Y, Dennison L, Aplan P, et al. HoxA9 binds and represses the Cebpa +8 kb enhancer. PLoS ONE. 2019;14:e0217604 pubmed 出版商
  92. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  93. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  94. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  95. Halvarsson C, Rörby E, Eliasson P, Lang S, Soneji S, Jönsson J. Putative role of NF-kB but not HIF-1α in hypoxia-dependent regulation of oxidative stress in hematopoietic stem and progenitor cells. Antioxid Redox Signal. 2019;: pubmed 出版商
  96. Pijuan Sala B, Griffiths J, Guibentif C, Hiscock T, Jawaid W, Calero Nieto F, et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature. 2019;566:490-495 pubmed 出版商
  97. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  98. Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, et al. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun. 2019;10:633 pubmed 出版商
  99. Davies A, Kim H, González Cano R, Choi J, Back S, Roh S, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176:716-728.e18 pubmed 出版商
  100. Contijoch E, Britton G, Yang C, Mogno I, Li Z, Ng R, et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. elife. 2019;8: pubmed 出版商
  101. Liu M, O Connor R, Trefely S, Graham K, Snyder N, Beatty G. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated 'don't-eat-me' signal. Nat Immunol. 2019;20:265-275 pubmed 出版商
  102. Maseda D, Banerjee A, Johnson E, Washington M, Kim H, Lau K, et al. mPGES-1-Mediated Production of PGE2 and EP4 Receptor Sensing Regulate T Cell Colonic Inflammation. Front Immunol. 2018;9:2954 pubmed 出版商
  103. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  104. Cai Z, Kotzin J, Ramdas B, Chen S, Nelanuthala S, Palam L, et al. Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis. Cell Stem Cell. 2018;23:833-849.e5 pubmed 出版商
  105. Benmerzoug S, Rose S, Bounab B, Gosset D, Duneau L, Chenuet P, et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018;9:5226 pubmed 出版商
  106. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  107. Glal D, Sudhakar J, Lu H, Liu M, Chiang H, Liu Y, et al. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol. 2018;9:2522 pubmed 出版商
  108. Hsu J, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F, et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018;23:700-713.e6 pubmed 出版商
  109. Abreu Mota T, Hagen K, Cooper K, Jahrling P, Tan G, Wirblich C, et al. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun. 2018;9:4223 pubmed 出版商
  110. Chang S, Kim Y, Kim Y, Kim Y, Moon S, Lee Y, et al. Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Front Immunol. 2018;9:1984 pubmed 出版商
  111. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  112. Li H, Li D, He Z, Fan J, Li Q, Liu X, et al. The effects of Nrf2 knockout on regulation of benzene-induced mouse hematotoxicity. Toxicol Appl Pharmacol. 2018;358:56-67 pubmed 出版商
  113. Morales Hernández A, Martinat A, Chabot A, Kang G, McKinney Freeman S. Elevated Oxidative Stress Impairs Hematopoietic Progenitor Function in C57BL/6 Substrains. Stem Cell Reports. 2018;11:334-347 pubmed 出版商
  114. Pulikkan J, Hegde M, Ahmad H, Belaghzal H, Illendula A, Yu J, et al. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell. 2018;174:172-186.e21 pubmed 出版商
  115. Tomlinson J, Žygelytė E, Grenier J, Edwards M, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation. 2018;15:185 pubmed 出版商
  116. Liu T, Kong W, Tang X, Xu M, Wang Q, Zhang B, et al. The transcription factor Zfp90 regulates the self-renewal and differentiation of hematopoietic stem cells. Cell Death Dis. 2018;9:677 pubmed 出版商
  117. Ghanem L, Kromer A, Silverman I, Ji X, Gazzara M, Nguyen N, et al. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol. 2018;38: pubmed 出版商
  118. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  119. Rothberg J, Maganti H, Jrade H, Porter C, Palidwor G, Cafariello C, et al. Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov. 2018;4:21 pubmed 出版商
  120. Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M, Knights A, et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat Genet. 2018;50:883-894 pubmed 出版商
  121. Baba O, Horie T, Nakao T, Hakuno D, Nakashima Y, Nishi H, et al. MicroRNA 33 Regulates the Population of Peripheral Inflammatory Ly6Chigh Monocytes through Dual Pathways. Mol Cell Biol. 2018;38: pubmed 出版商
  122. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  123. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  124. Endo Umeda K, Nakashima H, Umeda N, Seki S, Makishima M. Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice. Endocrinology. 2018;159:1419-1432 pubmed 出版商
  125. Wheeler D, Sariol A, Meyerholz D, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128:931-943 pubmed 出版商
  126. Freeman S, Vega A, Riedl M, Collins R, Ostrowski P, Woods E, et al. Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell. 2018;172:305-317.e10 pubmed 出版商
  127. Christ A, Günther P, Lauterbach M, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell. 2018;172:162-175.e14 pubmed 出版商
  128. Mitroulis I, Ruppova K, Wang B, Chen L, Grzybek M, Grinenko T, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172:147-161.e12 pubmed 出版商
  129. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  130. Kurkewich J, Boucher A, Klopfenstein N, Baskar R, Kapur R, Dahl R. The mirn23a and mirn23b microrna clusters are necessary for proper hematopoietic progenitor cell production and differentiation. Exp Hematol. 2018;59:14-29 pubmed 出版商
  131. Mumau M, Vanderbeck A, Lynch E, Golec S, Emerson S, Punt J. Identification of a Multipotent Progenitor Population in the Spleen That Is Regulated by NR4A1. J Immunol. 2018;200:1078-1087 pubmed 出版商
  132. Matsuo K, Nagakubo D, Yamamoto S, Shigeta A, Tomida S, Fujita M, et al. CCL28-Deficient Mice Have Reduced IgA Antibody-Secreting Cells and an Altered Microbiota in the Colon. J Immunol. 2018;200:800-809 pubmed 出版商
  133. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  134. Mailer R, Gisterå A, Polyzos K, Ketelhuth D, Hansson G. Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Sci Rep. 2017;7:15655 pubmed 出版商
  135. Glasner A, Isaacson B, Viukov S, Neuman T, Friedman N, Mandelboim M, et al. Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Sci Rep. 2017;7:13090 pubmed 出版商
  136. Kumar B, Garcia M, Weng L, Jung X, Murakami J, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575-587 pubmed 出版商
  137. Hannibal T, Schmidt Christensen A, Nilsson J, Fransén Pettersson N, Hansen L, Holmberg D. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia. 2017;60:2033-2041 pubmed 出版商
  138. Gosselin D, Skola D, Coufal N, Holtman I, Schlachetzki J, Sajti E, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356: pubmed 出版商
  139. Torcellan T, Hampton H, Bailey J, Tomura M, Brink R, Chtanova T. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A. 2017;114:5677-5682 pubmed 出版商
  140. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  141. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  142. Ebner F, Sedlyarov V, Tasciyan S, Ivin M, Kratochvill F, Gratz N, et al. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection. J Clin Invest. 2017;127:2051-2065 pubmed 出版商
  143. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  144. Chen J, Zhong M, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017;544:493-497 pubmed 出版商
  145. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  146. Turner V, Mabbott N. Ageing adversely affects the migration and function of marginal zone B cells. Immunology. 2017;151:349-362 pubmed 出版商
  147. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  148. Kitada S, Kayama H, Okuzaki D, Koga R, Kobayashi M, Arima Y, et al. BATF2 inhibits immunopathological Th17 responses by suppressing Il23a expression during Trypanosoma cruzi infection. J Exp Med. 2017;214:1313-1331 pubmed 出版商
  149. Hérault A, Binnewies M, Leong S, Calero Nieto F, Zhang S, Kang Y, et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017;544:53-58 pubmed 出版商
  150. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  151. Chang K, Smith S, Sullivan T, Chen K, Zhou Q, West J, et al. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells. Mol Ther Methods Clin Dev. 2017;4:137-148 pubmed 出版商
  152. Wagner J, Jaurich H, Wallner C, Abraham S, Becerikli M, Dadras M, et al. Diminished bone regeneration after debridement of posttraumatic osteomyelitis is accompanied by altered cytokine levels, elevated B cell activity, and increased osteoclast activity. J Orthop Res. 2017;35:2425-2434 pubmed 出版商
  153. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  154. Ho T, Warr M, Adelman E, Lansinger O, Flach J, Verovskaya E, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543:205-210 pubmed 出版商
  155. Stanley R, Piszczatowski R, Bartholdy B, Mitchell K, McKimpson W, Narayanagari S, et al. A myeloid tumor suppressor role for NOL3. J Exp Med. 2017;214:753-771 pubmed 出版商
  156. Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed 出版商
  157. Munguía Fuentes R, Yam Puc J, Silva Sanchez A, Marcial Juárez E, Gallegos Hernández I, Calderon Amador J, et al. Immunization of Newborn Mice Accelerates the Architectural Maturation of Lymph Nodes, But AID-Dependent IgG Responses Are Still Delayed Compared to the Adult. Front Immunol. 2017;8:13 pubmed 出版商
  158. Bracamonte Baran W, Florentin J, Zhou Y, Jankowska Gan E, Haynes W, Zhong W, et al. Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proc Natl Acad Sci U S A. 2017;114:1099-1104 pubmed 出版商
  159. Guerra E, Lee C, Specht C, Yadav B, Huang H, Akalin A, et al. Central Role of IL-23 and IL-17 Producing Eosinophils as Immunomodulatory Effector Cells in Acute Pulmonary Aspergillosis and Allergic Asthma. PLoS Pathog. 2017;13:e1006175 pubmed 出版商
  160. Scott C, Bain C, Mowat A. Isolation and Identification of Intestinal Myeloid Cells. Methods Mol Biol. 2017;1559:223-239 pubmed 出版商
  161. Weindel C, Richey L, Mehta A, Shah M, Huber B. Autophagy in Dendritic Cells and B Cells Is Critical for the Inflammatory State of TLR7-Mediated Autoimmunity. J Immunol. 2017;198:1081-1092 pubmed 出版商
  162. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  163. Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire L, et al. Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res. 2017;45:1281-1296 pubmed 出版商
  164. Ding Q, von Schaewen M, Hrebikova G, Heller B, Sandmann L, Plaas M, et al. Mice Expressing Minimally Humanized CD81 and Occludin Genes Support Hepatitis C Virus Uptake In Vivo. J Virol. 2017;91: pubmed 出版商
  165. Moroishi T, Hayashi T, Pan W, Fujita Y, Holt M, Qin J, et al. The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell. 2016;167:1525-1539.e17 pubmed 出版商
  166. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  167. Hidaka T, Ogawa E, Kobayashi E, Suzuki T, Funayama R, Nagashima T, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017;18:64-73 pubmed 出版商
  168. Yu V, Yusuf R, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:1310-1322.e17 pubmed 出版商
  169. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  170. Wang Y, Yan X, Mi S, Li Z, Wang Y, Zhu H, et al. Naoxintong attenuates Ischaemia/reperfusion Injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med. 2017;21:4-12 pubmed 出版商
  171. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  172. Case A, Roessner C, Tian J, Zimmerman M. Mitochondrial Superoxide Signaling Contributes to Norepinephrine-Mediated T-Lymphocyte Cytokine Profiles. PLoS ONE. 2016;11:e0164609 pubmed 出版商
  173. Yashiro T, Hara M, Ogawa H, Okumura K, Nishiyama C. Critical Role of Transcription Factor PU.1 in the Function of the OX40L/TNFSF4 Promoter in Dendritic Cells. Sci Rep. 2016;6:34825 pubmed 出版商
  174. Johnston L, Hsu C, Krier Burris R, Chhiba K, Chien K, McKenzie A, et al. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J Immunol. 2016;197:3445-3453 pubmed
  175. Pelletier M, Szymczak K, Barbeau A, Prata G, O Fallon K, Gaines P. Characterization of neutrophils and macrophages from ex vivo-cultured murine bone marrow for morphologic maturation and functional responses by imaging flow cytometry. Methods. 2017;112:124-146 pubmed 出版商
  176. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  177. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  178. Zhang B, Bailey W, McVicar A, Gensel J. Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiol Aging. 2016;47:157-167 pubmed 出版商
  179. Olsson A, Venkatasubramanian M, Chaudhri V, Aronow B, Salomonis N, Singh H, et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature. 2016;537:698-702 pubmed 出版商
  180. Yue T, Zheng X, Dou Y, Zheng X, Sun R, Tian Z, et al. Interleukin 12 shows a better curative effect on lung cancer than paclitaxel and cisplatin doublet chemotherapy. BMC Cancer. 2016;16:665 pubmed 出版商
  181. Didonna A, Cekanaviciute E, Oksenberg J, Baranzini S. Immune cell-specific transcriptional profiling highlights distinct molecular pathways controlled by Tob1 upon experimental autoimmune encephalomyelitis. Sci Rep. 2016;6:31603 pubmed 出版商
  182. Ohmer M, Weber A, Sutter G, Ehrhardt K, Zimmermann A, Häcker G. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis. Cell Death Dis. 2016;7:e2340 pubmed 出版商
  183. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum R, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499 pubmed 出版商
  184. Cordova Z, Grönholm A, Kytölä V, Taverniti V, Hämäläinen S, Aittomäki S, et al. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget. 2016;7:54392-54404 pubmed 出版商
  185. Waterstrat A, Rector K, Geiger H, Liang Y. Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers. Sci Rep. 2016;6:31412 pubmed 出版商
  186. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  187. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  188. Imhof B, Jemelin S, Ballet R, Vesin C, Schapira M, Karaca M, et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A. 2016;113:E4847-56 pubmed 出版商
  189. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  190. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  191. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  192. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  193. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  194. Drake L, Iijima K, Bartemes K, Kita H. Group 2 Innate Lymphoid Cells Promote an Early Antibody Response to a Respiratory Antigen in Mice. J Immunol. 2016;197:1335-42 pubmed 出版商
  195. Ngambenjawong C, Gustafson H, Pineda J, Kacherovsky N, Cieslewicz M, Pun S. Serum Stability and Affinity Optimization of an M2 Macrophage-Targeting Peptide (M2pep). Theranostics. 2016;6:1403-14 pubmed 出版商
  196. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  197. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  198. Abramowski P, Krasemann S, Ernst T, Lange C, Ittrich H, Schweizer M, et al. Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells Dev. 2016;25:1134-48 pubmed 出版商
  199. Liu C, Richard K, Wiggins M, Zhu X, Conrad D, Song W. CD23 can negatively regulate B-cell receptor signaling. Sci Rep. 2016;6:25629 pubmed 出版商
  200. Hollmen M, Karaman S, Schwager S, Lisibach A, Christiansen A, Maksimow M, et al. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology. 2016;5:e1115177 pubmed
  201. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151-66 pubmed 出版商
  202. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  203. Harper I, Ali J, Harper S, Wlodek E, Alsughayyir J, Negus M, et al. Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant. Cell Rep. 2016;15:1214-27 pubmed 出版商
  204. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  205. Kurkewich J, Bikorimana E, Nguyen T, Klopfenstein N, Zhang H, Hallas W, et al. The mirn23a microRNA cluster antagonizes B cell development. J Leukoc Biol. 2016;100:665-677 pubmed
  206. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  207. Basrai H, Christie K, Turbic A, Bye N, Turnley A. Suppressor of Cytokine Signaling-2 (SOCS2) Regulates the Microglial Response and Improves Functional Outcome after Traumatic Brain Injury in Mice. PLoS ONE. 2016;11:e0153418 pubmed 出版商
  208. Schlam D, Canton J, Carreño M, Kopinski H, Freeman S, Grinstein S, et al. Gliotoxin Suppresses Macrophage Immune Function by Subverting Phosphatidylinositol 3,4,5-Trisphosphate Homeostasis. MBio. 2016;7:e02242 pubmed 出版商
  209. Nemeth T, Futosi K, Sitaru C, Ruland J, Mocsai A. Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo. Nat Commun. 2016;7:11004 pubmed 出版商
  210. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  211. Miller M, Rosten P, Lemieux M, Lai C, Humphries R. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion. PLoS ONE. 2016;11:e0151584 pubmed 出版商
  212. Foy S, Sennino B, dela Cruz T, Cote J, Gordon E, Kemp F, et al. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. PLoS ONE. 2016;11:e0150084 pubmed 出版商
  213. Barry M, Wang Q, Jones K, Heffernan M, Buhaya M, Beaumier C, et al. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Hum Vaccin Immunother. 2016;12:976-87 pubmed 出版商
  214. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  215. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  216. Lu K, Nakagawa M, Thummar K, RATHINAM C. Slicer Endonuclease Argonaute 2 Is a Negative Regulator of Hematopoietic Stem Cell Quiescence. Stem Cells. 2016;34:1343-53 pubmed 出版商
  217. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  218. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  219. Lutz J, Dittmann K, Bösl M, Winkler T, Wienands J, Engels N. Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production. Nat Commun. 2015;6:8575 pubmed 出版商
  220. Kim I, Mlsna L, Yoon S, Le B, Yu S, Xu D, et al. A postnatal peak in microglial development in the mouse hippocampus is correlated with heightened sensitivity to seizure triggers. Brain Behav. 2015;5:e00403 pubmed 出版商
  221. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  222. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  223. Ito T, Itakura J, Takahashi S, Sato M, Mino M, Fushimi S, et al. Sprouty-Related Ena/Vasodilator-Stimulated Phosphoprotein Homology 1-Domain-Containing Protein-2 Critically Regulates Influenza A Virus-Induced Pneumonia. Crit Care Med. 2016;44:e530-43 pubmed 出版商
  224. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med. 2016;22:183-93 pubmed 出版商
  225. Sagoo P, Garcia Z, Breart B, Lemaître F, Michonneau D, Albert M, et al. In vivo imaging of inflammasome activation reveals a subcapsular macrophage burst response that mobilizes innate and adaptive immunity. Nat Med. 2016;22:64-71 pubmed 出版商
  226. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17:250-8 pubmed 出版商
  227. Cole C, Verdoni A, Ketkar S, Leight E, Russler Germain D, Lamprecht T, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126:85-98 pubmed 出版商
  228. Clark H, Jhingran A, Sun Y, Vareechon C, de Jesus Carrion S, Skaar E, et al. Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular Aspergillus fumigatus Hyphal Growth and Corneal Infection. J Immunol. 2016;196:336-44 pubmed 出版商
  229. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  230. Hu J, Greene C, King Lyons N, Connell T. The Divergent CD8+ T Cell Adjuvant Properties of LT-IIb and LT-IIc, Two Type II Heat-Labile Enterotoxins, Are Conferred by Their Ganglioside-Binding B Subunits. PLoS ONE. 2015;10:e0142942 pubmed 出版商
  231. Lee J, Tato C, Joyce Shaikh B, Gulen M, Gulan F, Cayatte C, et al. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity. 2015;43:727-38 pubmed 出版商
  232. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  233. Fong C, Gilan O, Lam E, Rubin A, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538-42 pubmed 出版商
  234. Joly A, Deepti A, Seignez A, Goloudina A, Hebrard S, Schmitt E, et al. The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development. Oncogene. 2016;35:2842-51 pubmed 出版商
  235. Castillo V, Oñate M, Woehlbier U, Rozas P, Andreu C, Medinas D, et al. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration. PLoS ONE. 2015;10:e0136620 pubmed 出版商
  236. Peluffo H, Solari Saquieres P, Negro Demontel M, Francos Quijorna I, Navarro X, Lopez Vales R, et al. CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype. J Neuroinflammation. 2015;12:145 pubmed 出版商
  237. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  238. Charmsaz S, Beckett K, Smith F, Bruedigam C, Moore A, Al Ejeh F, et al. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia. PLoS ONE. 2015;10:e0130692 pubmed 出版商
  239. Ganz M, Bukong T, Csak T, Saha B, Park J, Ambade A, et al. Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice. J Transl Med. 2015;13:193 pubmed 出版商
  240. Holtzhausen A, Zhao F, Evans K, Tsutsui M, Orabona C, Tyler D, et al. Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunol Res. 2015;3:1082-95 pubmed 出版商
  241. Khan I, Perrard X, Brunner G, Lui H, Sparks L, Smith S, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond). 2015;39:1607-18 pubmed 出版商
  242. Suzuki H, Watari A, Hashimoto E, Yonemitsu M, Kiyono H, Yagi K, et al. C-Terminal Clostridium perfringens Enterotoxin-Mediated Antigen Delivery for Nasal Pneumococcal Vaccine. PLoS ONE. 2015;10:e0126352 pubmed 出版商
  243. Gabrusiewicz K, Hossain M, Cortes Santiago N, Fan X, Kaminska B, Marini F, et al. Macrophage Ablation Reduces M2-Like Populations and Jeopardizes Tumor Growth in a MAFIA-Based Glioma Model. Neoplasia. 2015;17:374-84 pubmed 出版商
  244. Becker P, Hervouet C, Mason G, KWON S, Klavinskis L. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine. 2015;33:4691-8 pubmed 出版商
  245. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  246. Johnson A, Costanzo A, Gareau M, Armando A, Quehenberger O, Jameson J, et al. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS ONE. 2015;10:e0122195 pubmed 出版商
  247. Shade K, Platzer B, Washburn N, Mani V, Bartsch Y, Conroy M, et al. A single glycan on IgE is indispensable for initiation of anaphylaxis. J Exp Med. 2015;212:457-67 pubmed 出版商
  248. Dal Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong C, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447-56 pubmed 出版商
  249. Watanabe S, Chan K, Wang J, Rivino L, Lok S, Vasudevan S. Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice. J Virol. 2015;89:5847-61 pubmed 出版商
  250. Richardson E, Shukla S, Sweet D, Wearsch P, Tsichlis P, Boom W, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83:2242-54 pubmed 出版商
  251. Overdijk M, Verploegen S, Bögels M, van Egmond M, Lammerts van Bueren J, Mutis T, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015;7:311-21 pubmed 出版商
  252. Ouchida R, Lu Q, Liu J, Li Y, Chu Y, Tsubata T, et al. FcμR interacts and cooperates with the B cell receptor To promote B cell survival. J Immunol. 2015;194:3096-101 pubmed 出版商
  253. Singhal N, Martin P. A role for Galgt1 in skeletal muscle regeneration. Skelet Muscle. 2015;5:3 pubmed 出版商
  254. Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff G, et al. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS ONE. 2015;10:e0118096 pubmed 出版商
  255. Villacampa N, Almolda B, Vilella A, Campbell I, González B, Castellano B. Astrocyte-targeted production of IL-10 induces changes in microglial reactivity and reduces motor neuron death after facial nerve axotomy. Glia. 2015;63:1166-84 pubmed 出版商
  256. Onishi M, Ozasa K, Kobiyama K, Ohata K, Kitano M, Taniguchi K, et al. Hydroxypropyl-β-cyclodextrin spikes local inflammation that induces Th2 cell and T follicular helper cell responses to the coadministered antigen. J Immunol. 2015;194:2673-82 pubmed 出版商
  257. Haag S, Tuncel J, Thordardottir S, Mason D, Yau A, Dobritzsch D, et al. Positional identification of RT1-B (HLA-DQ) as susceptibility locus for autoimmune arthritis. J Immunol. 2015;194:2539-50 pubmed 出版商
  258. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler T. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 2015;11:e1004481 pubmed 出版商
  259. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed 出版商
  260. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  261. Tan J, Chan S, Lo C, Deane J, McDonald C, Bernard C, et al. Amnion cell-mediated immune modulation following bleomycin challenge: controlling the regulatory T cell response. Stem Cell Res Ther. 2015;6:8 pubmed 出版商
  262. Peng H, Li C, Kadow S, Henry B, Steinmann J, Becker K, et al. Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J Mol Med (Berl). 2015;93:675-89 pubmed 出版商
  263. Briercheck E, Trotta R, Chen L, Hartlage A, Cole J, Cole T, et al. PTEN is a negative regulator of NK cell cytolytic function. J Immunol. 2015;194:1832-40 pubmed 出版商
  264. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  265. Teixeira L, Moreira J, Melo J, Bezerra F, Marques R, Ferreirinha P, et al. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology. 2015;145:242-57 pubmed 出版商
  266. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  267. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  268. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  269. Xia J, Veselenak R, Gorder S, Bourne N, Milligan G. Virus-specific immune memory at peripheral sites of herpes simplex virus type 2 (HSV-2) infection in guinea pigs. PLoS ONE. 2014;9:e114652 pubmed 出版商
  270. Almolda B, de Labra C, Barrera I, Gruart A, Delgado Garcia J, Villacampa N, et al. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun. 2015;45:80-97 pubmed 出版商
  271. Thueson L, Emmons T, Browning D, Kreitinger J, Shepherd D, Wetzel S. In vitro exposure to the herbicide atrazine inhibits T cell activation, proliferation, and cytokine production and significantly increases the frequency of Foxp3+ regulatory T cells. Toxicol Sci. 2015;143:418-29 pubmed 出版商
  272. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  273. Peschke K, Dudeck A, Rabenhorst A, Hartmann K, Roers A. Cre/loxP-based mouse models of mast cell deficiency and mast cell-specific gene inactivation. Methods Mol Biol. 2015;1220:403-21 pubmed 出版商
  274. Pai M, Liu J, Hou Y, Yeh C. Soybean and Fish Oil Mixture With Different ω-6/ω-3 Polyunsaturated Fatty Acid Ratios Modulates Dextran Sulfate Sodium-Induced Changes in Small Intestinal Intraepithelial γδT-Lymphocyte Expression in Mice. JPEN J Parenter Enteral Nutr. 2016;40:383-91 pubmed 出版商
  275. Dang V, Tanabe K, Tanaka Y, Tokumoto N, Misumi T, Saeki Y, et al. Fasting enhances TRAIL-mediated liver natural killer cell activity via HSP70 upregulation. PLoS ONE. 2014;9:e110748 pubmed 出版商
  276. Sakamoto H, Takeda N, Arai F, Hosokawa K, García P, Suda T, et al. Determining c-Myb protein levels can isolate functional hematopoietic stem cell subtypes. Stem Cells. 2015;33:479-90 pubmed 出版商
  277. Becker A, Walcheck B, Bhattacharya D. ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors. Exp Hematol. 2015;43:44-52.e1-3 pubmed 出版商
  278. Goren I, Pfeilschifter J, Frank S. Uptake of neutrophil-derived Ym1 protein distinguishes wound macrophages in the absence of interleukin-4 signaling in murine wound healing. Am J Pathol. 2014;184:3249-61 pubmed 出版商
  279. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  280. Donaldson D, Bradford B, Artis D, Mabbott N. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol. 2015;8:582-95 pubmed 出版商
  281. Bernasconi E, D Angelo F, Michetti P, Velin D. Critical role of the GM-CSF signaling pathway in macrophage pro-repair activities. Pathobiology. 2014;81:183-9 pubmed 出版商
  282. Parker K, Sinha P, Horn L, Clements V, Yang H, Li J, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74:5723-33 pubmed 出版商
  283. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  284. Flach J, Bakker S, Mohrin M, Conroy P, Pietras E, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198-202 pubmed 出版商
  285. Pisano F, Heine W, Rosenheinrich M, Schweer J, Nuss A, Dersch P. Influence of PhoP and intra-species variations on virulence of Yersinia pseudotuberculosis during the natural oral infection route. PLoS ONE. 2014;9:e103541 pubmed 出版商
  286. Chung Y, Kim E, Abdel Wahab O. Femoral bone marrow aspiration in live mice. J Vis Exp. 2014;: pubmed 出版商
  287. Orre M, Kamphuis W, Osborn L, Jansen A, Kooijman L, Bossers K, et al. Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction. Neurobiol Aging. 2014;35:2746-2760 pubmed 出版商
  288. Ehlken H, Krishna Subramanian S, Ochoa Callejero L, Kondylis V, Nadi N, Straub B, et al. Death receptor-independent FADD signalling triggers hepatitis and hepatocellular carcinoma in mice with liver parenchymal cell-specific NEMO knockout. Cell Death Differ. 2014;21:1721-32 pubmed 出版商
  289. Moreno M, Bannerman P, Ma J, Guo F, Miers L, Soulika A, et al. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J Neurosci. 2014;34:8175-85 pubmed 出版商
  290. Johnston Cox H, Eisenstein A, Koupenova M, Carroll S, Ravid K. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS ONE. 2014;9:e98775 pubmed 出版商
  291. Zhang Y, Mena P, Romanov G, Bliska J. Effector CD8+ T cells are generated in response to an immunodominant epitope in type III effector YopE during primary Yersinia pseudotuberculosis infection. Infect Immun. 2014;82:3033-44 pubmed 出版商
  292. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  293. Morganti J, Jopson T, Liu S, Gupta N, Rosi S. Cranial irradiation alters the brain's microenvironment and permits CCR2+ macrophage infiltration. PLoS ONE. 2014;9:e93650 pubmed 出版商
  294. Pilling D, Gomer R. Persistent lung inflammation and fibrosis in serum amyloid P component (APCs-/-) knockout mice. PLoS ONE. 2014;9:e93730 pubmed 出版商
  295. Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82-92 pubmed 出版商
  296. Le Saout C, Hasley R, Imamichi H, Tcheung L, Hu Z, Luckey M, et al. Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis. PLoS Pathog. 2014;10:e1003976 pubmed 出版商
  297. Hirayama T, Asano Y, Iida H, Watanabe T, Nakamura T, Goitsuka R. Meis1 is required for the maintenance of postnatal thymic epithelial cells. PLoS ONE. 2014;9:e89885 pubmed 出版商
  298. Bots M, Verbrugge I, Martin B, Salmon J, Ghisi M, Baker A, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood. 2014;123:1341-52 pubmed 出版商
  299. Kimura Y, van der Merwe M, Bering S, Penmatsa H, Conoley V, Sangild P, et al. Glucose transport by epithelia prepared from harvested enterocytes. Cytotechnology. 2015;67:39-49 pubmed 出版商
  300. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  301. Satpathy A, Briseño C, Lee J, Ng D, Manieri N, Kc W, et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol. 2013;14:937-48 pubmed 出版商
  302. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  303. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  304. Tan J, Chan S, Wallace E, Lim R. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant. 2014;23:319-28 pubmed 出版商
  305. Fang Y, Larsson L, Bruhns P, Xiang Z. Apoptosis of mouse mast cells is reciprocally regulated by the IgG receptors Fc?RIIB and Fc?RIIIA. Allergy. 2012;67:1233-40 pubmed 出版商
  306. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  307. Ripich T, Jessberger R. SWAP-70 regulates erythropoiesis by controlling ?4 integrin. Haematologica. 2011;96:1743-52 pubmed 出版商
  308. Weisel F, Appelt U, Schneider A, Horlitz J, Van Rooijen N, Korner H, et al. Unique requirements for reactivation of virus-specific memory B lymphocytes. J Immunol. 2010;185:4011-21 pubmed 出版商
  309. Böiers C, Buza Vidas N, Jensen C, Pronk C, Kharazi S, Wittmann L, et al. Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development. Blood. 2010;115:5061-8 pubmed 出版商
  310. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  311. Kim S, Prout M, Ramshaw H, Lopez A, LeGros G, Min B. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J Immunol. 2010;184:1143-7 pubmed 出版商
  312. Maillard I, Chen Y, Friedman A, Yang Y, Tubbs A, Shestova O, et al. Menin regulates the function of hematopoietic stem cells and lymphoid progenitors. Blood. 2009;113:1661-9 pubmed 出版商
  313. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商
  314. Jiang L, Yang P, He H, Li B, Lin X, Hou S, et al. Increased expression of Foxp3 in splenic CD8+ T cells from mice with anterior chamber-associated immune deviation. Mol Vis. 2007;13:968-74 pubmed
  315. Vanasek T, Nandiwada S, Jenkins M, Mueller D. CD25+Foxp3+ regulatory T cells facilitate CD4+ T cell clonal anergy induction during the recovery from lymphopenia. J Immunol. 2006;176:5880-9 pubmed
  316. Gupta R, Karpatkin S, Basch R. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood. 2006;107:1837-46 pubmed