这是一篇来自已证抗体库的有关小鼠 Foxp3的综述,是根据560篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Foxp3 抗体。
Foxp3 同义词: JM2; scurfin; sf

赛默飞世尔
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:30; 图 4c
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:30 (图 4c). Nat Commun (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Foxp3抗体(Invitrogen, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Foxp3抗体(eBioscience, 11-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Adv (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:50; 图 6j
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6j). Nat Commun (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:400; 图 4b
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4b). Heliyon (2022) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠; 图 s1i
赛默飞世尔 Foxp3抗体(eBioscience, 12-4774-42)被用于被用于流式细胞仪在小鼠样本上 (图 s1i). Front Immunol (2022) ncbi
大鼠 单克隆(NRRF-30)
  • 流式细胞仪; 小鼠; 图 5a, 5c
赛默飞世尔 Foxp3抗体(eBioscience, 12-4771-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a, 5c). PLoS Pathog (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5a, 5c
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a, 5c). PLoS Pathog (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4g
赛默飞世尔 Foxp3抗体(Invitrogen, 14577380)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4g). Front Pharmacol (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Foxp3抗体(eBioscience, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Oncoimmunology (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Foxp3抗体(Invitrogen (eBioscience), FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nature (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 Foxp3抗体(Thermo Fisher, FJK-16s)被用于被用于免疫组化在小鼠样本上 (图 7a). Nat Commun (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 图 7a
赛默飞世尔 Foxp3抗体(eBioscience, 11-5773-82)被用于被用于流式细胞仪在人类样本上 (图 7a). Cell Rep (2022) ncbi
大鼠 单克隆(NRRF-30)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
  • 流式细胞仪; 小鼠; 图 s1i
赛默飞世尔 Foxp3抗体(eBioscience, 14-4771-80)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f) 和 被用于流式细胞仪在小鼠样本上 (图 s1i). Cell Rep (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 1:1000; 图 s6a
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773-82)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s6a). Nat Commun (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a, s4a
赛默飞世尔 Foxp3抗体(Invitrogen, 56-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 3a, s4a). Environ Health Perspect (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Int J Mol Sci (2022) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 5a
赛默飞世尔 Foxp3抗体(Thermo Fisher, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 5a). Sci Rep (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Foxp3抗体(Invitrogen, 45-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). iScience (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nat Commun (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Immunother Cancer (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Theranostics (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(Thermo Fischer, 35-5773-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 1j
赛默飞世尔 Foxp3抗体(eBioscience, 48-5773-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1j). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5g
赛默飞世尔 Foxp3抗体(eBiosciences, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 5g). J Immunother Cancer (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 1:50; 图 3d
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773-82)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3d). Int J Mol Sci (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:40; 图 3f
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16S)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 3f). Nat Commun (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4l
赛默飞世尔 Foxp3抗体(Invitrogen, 45-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 4l). Mol Cancer (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s3b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3b). Cancer Res (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 2e
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2e). elife (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 2c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2c). Front Immunol (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Foxp3抗体(eBiosciences, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16S)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:50; 图 7a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7a). Front Immunol (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6e
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠
赛默飞世尔 Foxp3抗体(Thermo, 14-5773-37)被用于被用于免疫组化在小鼠样本上. Cell Rep (2021) ncbi
小鼠 单克隆(3G3)
  • 流式细胞仪; 小鼠; 图 s1a, s4f
赛默飞世尔 Foxp3抗体(eBioscience, 3G3)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, s4f). J Immunother Cancer (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 45-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s1e
赛默飞世尔 Foxp3抗体(eBioscience, 14577382)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s1e). J Neuroinflammation (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s7c
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Sci Adv (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Commun (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 5e
赛默飞世尔 Foxp3抗体(eBiosciences, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5e). Cancer Res (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:50; 图 s17b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s17b). Science (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(eBiosciences, 11-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(Invitrogen, 53-5773-82)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Foxp3抗体(eBiosciences, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Biomedicines (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 马; 1:10; 图 1
赛默飞世尔 Foxp3抗体(生活技术, FJK-16s)被用于被用于流式细胞仪在马样本上浓度为1:10 (图 1). Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 马; 1:10; 图 1
赛默飞世尔 Foxp3抗体(生活技术, FJK-16s)被用于被用于流式细胞仪在马样本上浓度为1:10 (图 1). Animals (Basel) (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 马; 1:10; 图 1
赛默飞世尔 Foxp3抗体(生活技术, FJK-16s)被用于被用于流式细胞仪在马样本上浓度为1:10 (图 1). BMC Cancer (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 马; 1:10; 图 1
赛默飞世尔 Foxp3抗体(生活技术, FJK-16s)被用于被用于流式细胞仪在马样本上浓度为1:10 (图 1). Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s6-2
赛默飞世尔 Foxp3抗体(Invitrogen, FJK-16S)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6-2). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(Thermo Fisher, FJK-16S)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Mucosal Immunol (2021) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(ThermoFisher, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(FJK-16s)
赛默飞世尔 Foxp3抗体(eBiosciences, 12-5773-82)被用于. Aging Cell (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫细胞化学; 小鼠; 图 s1l
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于免疫细胞化学在小鼠样本上 (图 s1l). Cell (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Foxp3抗体(eBioscience/Thermo Fisher Scientific, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Sci Adv (2020) ncbi
大鼠 单克隆(NRRF-30)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Foxp3抗体(eBioscience, NRRF-30)被用于被用于流式细胞仪在小鼠样本上 (图 3b). BMC Immunol (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 9b
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 9b). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于. Nature (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2d
  • 流式细胞仪; 小鼠; 1:100; 图 2j
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2d) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2j). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5c, 5d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5c, 5d). BMC Biol (2020) ncbi
大鼠 单克隆(NRRF-30)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Foxp3抗体(eBioscience, NRRF-30)被用于被用于流式细胞仪在小鼠样本上 (图 1b). BMC Infect Dis (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:300; 图 s7c
赛默飞世尔 Foxp3抗体(Invitrogen, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s7c). Cell Res (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Nat Commun (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 2s1
赛默飞世尔 Foxp3抗体(ThermoFisher, 58-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2s1). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 1s2a
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1s2a). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Foxp3抗体(ThermoFisher Scientific, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7). Am J Physiol Endocrinol Metab (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6s1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6s1). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s15e
赛默飞世尔 Foxp3抗体(Thermo Fisher, 53-5773-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s15e). Nat Commun (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Foxp3抗体(Thermo Fisher, 53-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Cell (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1, 2, 3d
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2, 3d). JCI Insight (2019) ncbi
大鼠 单克隆(NRRF-30)
  • mass cytometry; 小鼠; 6 ug/ml; 图 5d
赛默飞世尔 Foxp3抗体(eBioscience, NRRF-30)被用于被用于mass cytometry在小鼠样本上浓度为6 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7j
赛默飞世尔 Foxp3抗体(ThermoFisher, 17-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 7j). Cell Rep (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 4b
赛默飞世尔 Foxp3抗体(Thermo Fisher, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4b). Cell Rep (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 5b
赛默飞世尔 Foxp3抗体(eBioscience, 12577382)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1g
赛默飞世尔 Foxp3抗体(Thermo Fisher, PA1-46126)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1g). Cancer Med (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, 25577382)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Rep (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 e8b
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 e8b). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s3j
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s3j). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Aging (Albany NY) (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 4h
赛默飞世尔 Foxp3抗体(Thermo Fisher, 14-5773-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4h). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔 Foxp3抗体(eBioscience, 45-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Science (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). J Immunother Cancer (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 3c
赛默飞世尔 Foxp3抗体(Thermo Fischer, 25-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3c). Nat Commun (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:250; 图 3e, 3f, s6c, s6d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 3e, 3f, s6c, s6d). Science (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:300; 图 2f
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 2f). Nat Commun (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s7a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s7a). Sci Adv (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 Foxp3抗体(eBioscience, 11-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2d, e5m
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 2d, e5m). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔 Foxp3抗体(Thermo Fisher, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
大鼠 单克隆(NRRF-30)
  • 免疫组化-石蜡切片; 小鼠; 图 e5c
  • 流式细胞仪; 小鼠; 图 e5b
赛默飞世尔 Foxp3抗体(eBioscience, 14-4771-80)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e5c) 和 被用于流式细胞仪在小鼠样本上 (图 e5b). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Exp Med (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 56-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 2e
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2e). elife (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s3d
赛默飞世尔 Foxp3抗体(eBioscience, 45-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3d). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunity (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 e1b, e1c, e1d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 e1b, e1c, e1d). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4c, 4d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4c, 4d). Front Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell Rep (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Foxp3抗体(eBioscience, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Foxp3抗体(eBioScience, 17577382)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Cyst Fibros (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 s3g
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3g). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3b, s5b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3b, s5b). JCI Insight (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cell Mol Gastroenterol Hepatol (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a, 2c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 2c). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1b). J Pathol (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s8a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). J Clin Invest (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5a, s5b
赛默飞世尔 Foxp3抗体(Thermo Fisher, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 s5a, s5b). J Clin Invest (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s4c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4c). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s7d
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Blood (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2e
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2e). Immunity (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 s10a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-163)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s10a). J Clin Invest (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 s10a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-163)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s10a). J Exp Med (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1f
  • 免疫印迹; 小鼠; 图 s4e
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1f) 和 被用于免疫印迹在小鼠样本上 (图 s4e). Immunity (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Eur J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:300; 图 s12c
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 53-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s12c). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6e
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Clin Invest (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Int J Obes (Lond) (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). J Clin Invest (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4d
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 4d) 和 被用于免疫组化在小鼠样本上 (图 7a). J Clin Invest (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Front Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16 s)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Cell Rep (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5a
赛默飞世尔 Foxp3抗体(eBioscience, FJK16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Front Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Science (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Nat Commun (2018) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Foxp3抗体(eBioscience, 150D/E4)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell Metab (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Science (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 9c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 9c). J Exp Med (2018) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 Foxp3抗体(eBioscience, 14-7979)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Int J Cancer (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5f). J Exp Med (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 1:100; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4e
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). J Clin Invest (2018) ncbi
domestic rabbit 重组(5H10L18)
  • 免疫印迹; 人类; 1:1000; 图 4b
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 Foxp3抗体(Thermo Scientific, 700914)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Br J Pharmacol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Foxp3抗体(eBioscience, 115773)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Br J Pharmacol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 2a). EMBO J (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 5b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5b). Infect Immun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBiosciences, 14-5773-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
大鼠 单克隆(NRRF-30)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, NRRF-30)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 Foxp3抗体(eBioscience, eBio7979)被用于被用于免疫印迹在小鼠样本上 (图 1d). Sci Rep (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cancer Res (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4b
  • 免疫组化; 小鼠; 图 4f
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4b) 和 被用于免疫组化在小鼠样本上 (图 4f). Nature (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Commun (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 大鼠; 图 s7
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在大鼠样本上 (图 s7). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Science (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Cell Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Eur J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 图 2d
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在人类样本上 (图 2d) 和 被用于流式细胞仪在小鼠样本上 (图 2d). Stem Cells (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Foxp3抗体(eBioscience, 50-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Allergy Clin Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7b). J Exp Med (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c) 和 被用于流式细胞仪在小鼠样本上 (图 2d). Immunology (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunology (2017) ncbi
小鼠 单克隆(150D/E4)
  • 染色质免疫沉淀 ; 小鼠; 图 2b
赛默飞世尔 Foxp3抗体(eBioscience, 14-4774-82)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2b). Cell Metab (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 5i
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5i). Cell Metab (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s7d
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Oncotarget (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(150D/E4)
  • 免疫印迹; 人类; 图 2g
赛默飞世尔 Foxp3抗体(eBioscience, 150D/E4)被用于被用于免疫印迹在人类样本上 (图 2g). J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1h
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Science (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5d
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 6i
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6i). Nat Commun (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Foxp3抗体(ebioscience, 11?\5773?\82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immun Inflamm Dis (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6e
赛默飞世尔 Foxp3抗体(eBioscience, 45-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 6e). PLoS ONE (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1,3
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1,3). Oncoimmunology (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 3g
赛默飞世尔 Foxp3抗体(eBioscience, 56-5773)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3g). Nat Commun (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔 Foxp3抗体(eBiosciences, 11-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 st7
  • 免疫组化-石蜡切片; 大鼠; 1:800; 图 st7
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 st7) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800 (图 st7). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6a
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(Ebioscience, 14-5773-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6a) 和 被用于流式细胞仪在小鼠样本上. J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Blood (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Foxp3抗体(eBioscience, 56-5773)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 4f
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4f). J Dermatol Sci (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1k
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 1k). J Exp Med (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 大鼠; 图 1f
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在大鼠样本上 (图 1f). Eur J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫印迹; 小鼠; 图 5d
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫印迹在小鼠样本上 (图 5d). J Biol Chem (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 5l
赛默飞世尔 Foxp3抗体(eBiosciences, 61-5773)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5l). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Mucosal Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Sci Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Nature (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, 150D/E4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5a
赛默飞世尔 Foxp3抗体(eBioscience, FJK 16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Immunology (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔 Foxp3抗体(eBioscience, FKJ.16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(eBiosciences, 17-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Circ Res (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 11C
  • 流式细胞仪; 小鼠; 图 12
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 11C) 和 被用于流式细胞仪在小鼠样本上 (图 12). PLoS ONE (2016) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, eBio7979)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 1
  • 流式细胞仪; 人类; 1:100; 图 1
赛默飞世尔 Foxp3抗体(eBiosciences, 58-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1) 和 被用于流式细胞仪在人类样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s7
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Infect Immun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Foxp3抗体(eBiosciences, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Immunol Cell Biol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5). Clin Cancer Res (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s4c
赛默飞世尔 Foxp3抗体(eBioscience, 13-5773)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s4c). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 st1
赛默飞世尔 Foxp3抗体(eBioscience, 25-5773)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s6
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-80A)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16-s)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Sci Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Foxp3抗体(eBioscience, FJK- 16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(NRRF-30)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, 12477182)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunother Cancer (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔 Foxp3抗体(eBioscience, FJK16s)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Sci Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 犬; 1:20; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 12?C5773)被用于被用于流式细胞仪在犬样本上浓度为1:20 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Eur J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Foxp3抗体(eBiosciences, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:50; 图 4b
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4b). Mol Med Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4h
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4h). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). Science (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(e-Bioscience, 35-5773)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(150D/E4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 Foxp3抗体(Ebioscience, 150D/E4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 大鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, 11-5773)被用于被用于流式细胞仪在大鼠样本上 (图 5). Exp Ther Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4g
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4g). J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16 s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 1:150
赛默飞世尔 Foxp3抗体(eBiocience, FJK-16 s)被用于被用于流式细胞仪在小鼠样本上 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:150. Nature (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, FJK.16a)被用于被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4, 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). PLoS Pathog (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Foxp3抗体(eBioscience, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Eur J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Sci Rep (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Theranostics (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nat Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, 25-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 4). Aging Cell (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, 56-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncotarget (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
  • 免疫组化; 小鼠; 图 6c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16a)被用于被用于流式细胞仪在小鼠样本上 (图 3) 和 被用于免疫组化在小鼠样本上 (图 6c). J Inflamm (Lond) (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 牛; 1:100; 图 1h
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16)被用于被用于免疫组化-石蜡切片在牛样本上浓度为1:100 (图 1h). Transbound Emerg Dis (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 1:20; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 13-5773-80)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cancer Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, JFK 16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773)被用于被用于流式细胞仪在小鼠样本上 (图 2). Int J Obes (Lond) (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 人类; 图 s8
赛默飞世尔 Foxp3抗体(ebiosciences, fjk-16s)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s8). Nat Biotechnol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 1:250; 图 4d
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4d). J Immunother Cancer (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 人类; 1:200
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在人类样本上浓度为1:200. Cancer Immunol Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773)被用于被用于流式细胞仪在小鼠样本上 (图 5). EMBO Mol Med (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6b
  • 免疫组化; 小鼠; 图 3b
赛默飞世尔 Foxp3抗体(eBioscience, FKJ-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6b) 和 被用于免疫组化在小鼠样本上 (图 3b). Transplantation (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, 150D/E4)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4). PLoS Pathog (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:400; 图 s7
赛默飞世尔 Foxp3抗体(eBioscience, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s7). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫印迹; 小鼠; 1:100; 图 5,6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5,6). Nat Commun (2015) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 小鼠; 1:500; 图 5,6
赛默飞世尔 Foxp3抗体(eBioscience, eBio7979)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Bone Miner Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 s5
赛默飞世尔 Foxp3抗体(ebioscince, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5). Cancer Immunol Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Clin Invest (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK -16s)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在人类样本上 (图 5). Cell Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Neuroinflammation (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Immunol (2015) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 大鼠; 图 1
赛默飞世尔 Foxp3抗体(eBiosciences, 150D/E4)被用于被用于流式细胞仪在大鼠样本上 (图 1). Mol Vis (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫细胞化学; 人类
  • 流式细胞仪; pigs
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫细胞化学在人类样本上 和 被用于流式细胞仪在pigs 样本上. Dev Comp Immunol (2015) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 小鼠
赛默飞世尔 Foxp3抗体(eBiosciences, eBio7979)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; pigs
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在pigs 样本上. Mol Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 1:25
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在小鼠样本上浓度为1:25. Cytokine (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Heart Lung Transplant (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). Transpl Int (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫细胞化学在小鼠样本上. Immunol Cell Biol (2015) ncbi
大鼠 单克隆(NRRF-30)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 流式细胞仪; 小鼠; 1:40
赛默飞世尔 Foxp3抗体(eBioscience, NRRF-30)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于流式细胞仪在小鼠样本上浓度为1:40. PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7
  • 免疫组化; 小鼠; 图 7
赛默飞世尔 Foxp3抗体(Ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7) 和 被用于免疫组化在小鼠样本上 (图 7). Mucosal Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 3
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3) 和 被用于流式细胞仪在小鼠样本上 (图 5). Am J Pathol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫印迹; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, 85-17-5773-80)被用于被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK- 16s)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16 s)被用于被用于流式细胞仪在小鼠样本上. Nanomedicine (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJL-16s)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(Ebioscience, 11-5773-82)被用于被用于流式细胞仪在小鼠样本上. Kidney Int (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上. Ann Neurol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S9)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 犬; 1:400
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在犬样本上浓度为1:400. PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫组化-石蜡切片; 家羊; 1:250
赛默飞世尔 Foxp3抗体(eBioscience, 14-7979-82)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:250. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Immunology (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Invest Dermatol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Invest Dermatol (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6). Eur J Immunol (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Eur J Immunol (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在小鼠样本上 (图 6). J Exp Med (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Exp Med (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Evid Based Complement Alternat Med (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Cardiothorac Surg (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔 Foxp3抗体(eBioscience, eBio7979)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Breast Cancer (Auckl) (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Nature (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). PLoS ONE (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(Ebioscience, FJK-16S)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). PLoS ONE (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5, 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5, 6). J Exp Med (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, clone FJK16s)被用于被用于流式细胞仪在小鼠样本上. Brain Behav Immun (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16a)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2009) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫印迹; 小鼠; 2 ug/ml; 图 7
赛默飞世尔 Foxp3抗体(eBioscience, eBio7979)被用于被用于免疫印迹在小鼠样本上浓度为2 ug/ml (图 7). J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6) 和 被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在小鼠样本上 (图 4). J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
小鼠 单克隆(eBio7979 (221D/D3))
  • 免疫组化; 人类; 1:50; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 14-7979)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). PLoS ONE (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Clin Immunol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int J Parasitol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Blood (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Mol Vis (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Parasite Immunol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FKJ-16S)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4B
赛默飞世尔 Foxp3抗体(eBioscience, FJK16)被用于被用于流式细胞仪在小鼠样本上 (图 4B). J Leukoc Biol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
  • 免疫印迹; 小鼠; 图 1B
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 1B). J Biol Chem (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6C
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6C). Hepatology (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-IGS)被用于被用于流式细胞仪在小鼠样本上. Int Immunopharmacol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 S1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 S1). J Exp Med (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Clin Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于流式细胞仪在小鼠样本上 (图 6). Am J Pathol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2006) ncbi
BioLegend
小鼠 单克隆(150D)
  • 流式细胞仪; 大鼠; 图 10a
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在大鼠样本上 (图 10a). PLoS ONE (2022) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 6i
BioLegend Foxp3抗体(Biolegend, 126403)被用于被用于流式细胞仪在小鼠样本上 (图 6i). Adv Sci (Weinh) (2022) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 s5e
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 s5e). Leukemia (2022) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Theranostics (2022) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 1c
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在人类样本上 (图 1c). Oncoimmunology (2022) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 7b
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 7b). Nat Commun (2022) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 2i, 6d, 6e
BioLegend Foxp3抗体(BioLegend, 320008)被用于被用于流式细胞仪在小鼠样本上 (图 2i, 6d, 6e). Mol Ther Nucleic Acids (2022) ncbi
大鼠 单克隆(MF-14)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s7i
  • 流式细胞仪; 小鼠; 1:100; 图 s6c, s7g, s21g, s21j
BioLegend Foxp3抗体(Biolegend, 126407)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s7i) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6c, s7g, s21g, s21j). Nat Nanotechnol (2022) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 5g
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 5g). Sci Adv (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 1:100; 图 s2b, s3b, s4d
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2b, s3b, s4d). Nat Commun (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Foxp3抗体(Biolegend, 126419)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 1:50; 图 3f
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3f). Cancer Res (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 s1a, s2b
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, s2b). Int J Mol Sci (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 3c, 4a
BioLegend Foxp3抗体(BioLegend, 126403)被用于被用于流式细胞仪在小鼠样本上 (图 3c, 4a). Cell Death Discov (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠
BioLegend Foxp3抗体(BioLegend, 126410)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 1:100; 图 6e
BioLegend Foxp3抗体(Biolegend, 126403)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6e). Front Immunol (2021) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Nat Commun (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Front Immunol (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 s4c
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 s2a, s2b, s2c
BioLegend Foxp3抗体(Biolegend, 126406)被用于被用于流式细胞仪在小鼠样本上 (图 s2a, s2b, s2c). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 1s1a
BioLegend Foxp3抗体(Biolegend, 126406)被用于被用于流式细胞仪在小鼠样本上 (图 1s1a). elife (2020) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于流式细胞仪在小鼠样本上. J Immunother Cancer (2020) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 s17
BioLegend Foxp3抗体(BioLegend, 126401)被用于被用于流式细胞仪在小鼠样本上 (图 s17). Nat Commun (2020) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Sci Adv (2020) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 4d). BMC Immunol (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 1:100; 图 7a
BioLegend Foxp3抗体(Biolegend, 320012)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7a). elife (2019) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 1a, 2d, s3e
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 2d, s3e). Sci Adv (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 4f
BioLegend Foxp3抗体(Biolegend, 320014)被用于被用于流式细胞仪在人类样本上 (图 4f). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:500; 图 e2f
BioLegend Foxp3抗体(Biolegend, 320008)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 e2f). Nature (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:40; 图 6s1
BioLegend Foxp3抗体(Biolegend, 320007)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 6s1). elife (2019) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Nature (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int J Cancer (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 猕猴; 图 2g
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在猕猴样本上 (图 2g). J Virol (2019) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 s4
BioLegend Foxp3抗体(Biolegend, 126403)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 s4). Nat Commun (2018) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 3c
BioLegend Foxp3抗体(Biolegend, 320013)被用于被用于流式细胞仪在人类样本上 (图 3c). Biosci Rep (2018) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2018) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 9f
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 9f). J Exp Med (2018) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:50; 图 5b
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5b). Nat Commun (2017) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 s5i
BioLegend Foxp3抗体(Biolegend, MF14)被用于被用于流式细胞仪在小鼠样本上 (图 s5i). Nature (2017) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 4c). JCI Insight (2017) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Oncotarget (2017) ncbi
大鼠 单克隆(MF-14)
  • 免疫组化-冰冻切片; 人类; 图 2b
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2b). Cancer Res (2016) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Foxp3抗体(biolegend, 126408)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 1:300; 图 4g
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4g). Nat Immunol (2016) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(150D)
  • 染色质免疫沉淀 ; 小鼠; 图 4
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4). Nat Immunol (2016) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 7e
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 7e). Oncotarget (2016) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Gastroenterology (2016) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Transl Med (2016) ncbi
大鼠 单克隆(MF-14)
  • 免疫印迹; 小鼠; 图 1
BioLegend Foxp3抗体(Biolegend, MF-14)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(150D)
  • 免疫印迹; 小鼠; 1:500; 图 4
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类
BioLegend Foxp3抗体(Biolegend, 320014)被用于被用于流式细胞仪在人类样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Foxp3抗体(BioLegend, 320014)被用于被用于流式细胞仪在小鼠样本上 (图 2). Oncoimmunology (2014) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 5
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在人类样本上 (图 5). J Cell Mol Med (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 大鼠; 图 7
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在大鼠样本上 (图 7). Eur J Immunol (2015) ncbi
大鼠 单克隆(MF-14)
BioLegend Foxp3抗体(Biolegend, MF-14)被用于. J Virol (2014) ncbi
小鼠 单克隆(150D)
BioLegend Foxp3抗体(BioLegend, 150D)被用于. Nat Commun (2014) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠
BioLegend Foxp3抗体(Biolegend, 320013)被用于被用于流式细胞仪在小鼠样本上. Exp Parasitol (2014) ncbi
小鼠 单克隆(150D)
  • 免疫细胞化学; 人类; 1:50
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Nephrology (Carlton) (2014) ncbi
大鼠 单克隆(MF-14)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Foxp3抗体(BioLegend, MF-14)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Leukoc Biol (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1g
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 22510)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1g). Front Med (Lausanne) (2022) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化在小鼠样本上 (图 3d). Oncoimmunology (2022) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s10a
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s10a). Oncoimmunology (2022) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4e
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4e). EBioMedicine (2022) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:100; 图 4b
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4b). Cancers (Basel) (2022) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 3
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, Ab20034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 3). J Cell Mol Med (2022) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1d, 1e
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1d, 1e). Onco Targets Ther (2021) ncbi
domestic rabbit 单克隆(EPR22102-37)
  • 免疫印迹; 人类; 1:50; 图 4h
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab215206)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 4h). J Cell Mol Med (2021) ncbi
小鼠 单克隆(3G3)
  • 流式细胞仪; 小鼠; 图 s3d
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab210232)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(EPR22102-37)
  • 免疫组化; 小鼠; 1:500; 图 5b
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab215206)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5b). Vaccines (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR22102-37)
  • 免疫组化; 小鼠; 1:200; 图 2f
  • 免疫印迹; 小鼠; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab215206)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2e
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab75763)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2e). Allergy Asthma Clin Immunol (2021) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 图 s4
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上 (图 s4). Sci Rep (2021) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:200; 图 s2z
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s2z). Neuropathol Appl Neurobiol (2021) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236/E7)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Mol Clin Oncol (2021) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:50; 图 1f
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1f). BMC Cancer (2021) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化; 人类; 1:50
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 22510)被用于被用于免疫组化在人类样本上浓度为1:50. Ann Hematol (2021) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7a
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, mAbcam22510)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7a). Arthritis Res Ther (2020) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). Breast Cancer Res (2020) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3c
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab2034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3c). Front Immunol (2019) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3a
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3a). Cancer Sci (2020) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1f
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1f). J Invest Dermatol (2019) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2k
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2k). Arch Dermatol Res (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 小鼠; 图 s3b
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化在小鼠样本上 (图 s3b). FASEB J (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 表 1
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab22510)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Cell (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:50; 图 2c
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2c). Cell Res (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫印迹; 人类; 图 3D
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫印迹在人类样本上 (图 3D). Int J Mol Sci (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-冰冻切片; 人类; 图 4b
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4b). Am J Transplant (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 图 1c
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上 (图 1c). Genome Biol (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c). Cancer Immunol Immunother (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 20 ug/ml; 图 3a
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为20 ug/ml (图 3a). J Immunol Res (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Cancer Sci (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 表 3
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). J Eur Acad Dermatol Venereol (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 2b
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化在小鼠样本上 (图 6b). Clin Cancer Res (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司 Foxp3抗体(abcam, ab20034)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 图 1F
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab22510)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1F). PLoS ONE (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Mod Pathol (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, Ab20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Head Neck (2016) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:50; 表 2
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上浓度为1:50 (表 2). Hematol Oncol (2017) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, AB20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Immunother Cancer (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上. Laryngoscope (2016) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 20 ug/ml; 图 3b
  • 免疫印迹; 人类; 图 3f
艾博抗(上海)贸易有限公司 Foxp3抗体(abcam, ab22510)被用于被用于免疫组化-石蜡切片在人类样本上浓度为20 ug/ml (图 3b) 和 被用于免疫印迹在人类样本上 (图 3f). PLoS ONE (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 图 5
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上 (图 5). Oncoimmunology (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:800
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. J Dermatol Sci (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 St1A
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上 (图 St1A). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化在人类样本上. Dis Markers (2014) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:60
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:60. World J Gastroenterol (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:180; 图 4
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:180 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Cancer Discov (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 图 1c
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab20034)被用于被用于免疫组化在人类样本上 (图 1c). Liver Int (2015) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab22510)被用于被用于免疫印迹在人类样本上 (图 1a). Liver Int (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236 A/E7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Br J Dermatol (2015) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS Pathog (2014) ncbi
小鼠 单克隆(236a/E7)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, 236A/E7)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2A11G9)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 Foxp3抗体(Santa Cruz, SC-53876)被用于被用于免疫印迹在人类样本上 (图 5f). J Immunother Cancer (2022) ncbi
小鼠 单克隆(2A11G9)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s6c
圣克鲁斯生物技术 Foxp3抗体(Santa, sc-53876)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s6c). Theranostics (2021) ncbi
小鼠 单克隆(2A11G9)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 1:500; 图 6a, 6b
圣克鲁斯生物技术 Foxp3抗体(Santa Cruz, sc-53,876)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a, 6b). BMC Nephrol (2019) ncbi
小鼠 单克隆(F-9)
  • 免疫组化-石蜡切片; 小鼠; 表 1
圣克鲁斯生物技术 Foxp3抗体(Santa Cruz, sc166212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 1). Methods Mol Biol (2015) ncbi
安迪生物R&D
domestic rabbit 单克隆(1054C)
  • 免疫组化; 人类; 1:100; 图 s2d
安迪生物R&D Foxp3抗体(R&D System, MAB8214)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s2d). Adv Sci (Weinh) (2021) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3f
Novus Biologicals Foxp3抗体(Novus, NB100-39002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3f). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
Novus Biologicals Foxp3抗体(Novus Biologicals, NB100-39002)被用于. Nature (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D6O8R)
  • 免疫组化-石蜡切片; 小鼠; 1:750; 图 s2
赛信通(上海)生物试剂有限公司 Foxp3抗体(Cell Signaling, 12653)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:750 (图 s2). Development (2022) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司 Foxp3抗体(CST, 12653S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫组化-石蜡切片; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Foxp3抗体(Cell Signaling, D6O8R)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5c). Oncoimmunology (2022) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫组化; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 Foxp3抗体(Cell Signaling, 12653)被用于被用于免疫组化在小鼠样本上 (图 s4a). Cells (2021) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 Foxp3抗体(CST, 12653S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). iScience (2021) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Foxp3抗体(CST, 12653)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4d
赛信通(上海)生物试剂有限公司 Foxp3抗体(CST, 12653)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4d). Cancer Res (2021) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6f
赛信通(上海)生物试剂有限公司 Foxp3抗体(CST, 12653)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6f). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5f
赛信通(上海)生物试剂有限公司 Foxp3抗体(Cell Signaling, 12653)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5f). Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫组化; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 Foxp3抗体(Cell Signaling, D6OR)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D6O8R)
  • 免疫细胞化学; 小鼠; 图 s3i
赛信通(上海)生物试剂有限公司 Foxp3抗体(Cell Signaling Technology, 12653)被用于被用于免疫细胞化学在小鼠样本上 (图 s3i). Immunity (2018) ncbi
Tonbo Biosciences
小鼠 单克隆(3G3)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
Tonbo Biosciences Foxp3抗体(Tonbo, 3G3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). J Immunol Res (2021) ncbi
小鼠 单克隆(3G3)
  • 流式细胞仪; 小鼠; 图 4b
Tonbo Biosciences Foxp3抗体(Tonbo, 3G3)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nutrients (2018) ncbi
小鼠 单克隆(3G3)
  • 流式细胞仪; 小鼠; 图 2e
Tonbo Biosciences Foxp3抗体(TONBO Bioscience, 3G3)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Exp Med (2016) ncbi
碧迪BD
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Foxp3抗体(BD, 560401)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunother Cancer (2022) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 2k
碧迪BD Foxp3抗体(BD, 560401)被用于被用于流式细胞仪在小鼠样本上 (图 2k). Cell Rep (2022) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 1:50; 图 3e
碧迪BD Foxp3抗体(BD Biosciences, 560408)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3e). Proc Natl Acad Sci U S A (2022) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 1:100; 图 5o
碧迪BD Foxp3抗体(BD Biosciences, 560408)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5o). Nat Commun (2022) ncbi
大鼠 单克隆(R16-715)
  • 免疫组化-石蜡切片; 小鼠; 图 s3a
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Foxp3抗体(BD, R16-715)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3a) 和 被用于流式细胞仪在小鼠样本上 (图 2a). JCI Insight (2022) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Foxp3抗体(BD Biosciences, MF23)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD Foxp3抗体(BD Bioscience, MF23)被用于被用于流式细胞仪在小鼠样本上 (图 7). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 2i, s1b
碧迪BD Foxp3抗体(BD, 560408)被用于被用于流式细胞仪在小鼠样本上 (图 2i, s1b). J Clin Invest (2020) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 6c, s6b
碧迪BD Foxp3抗体(BD, 560414)被用于被用于流式细胞仪在小鼠样本上 (图 6c, s6b). Nat Commun (2020) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 3h
碧迪BD Foxp3抗体(BD Biosciences, MF23)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Sci Adv (2019) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 s6e
碧迪BD Foxp3抗体(BD Bioscience, 562466)被用于被用于流式细胞仪在小鼠样本上 (图 s6e). Science (2019) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 5e
碧迪BD Foxp3抗体(BD, 560401)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Oncoimmunology (2018) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 s3f
碧迪BD Foxp3抗体(BD, 561293)被用于被用于流式细胞仪在小鼠样本上 (图 s3f). Cell (2018) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 人类; 图 3b
碧迪BD Foxp3抗体(BD, 562996)被用于被用于流式细胞仪在人类样本上 (图 3b). J Clin Invest (2018) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD Foxp3抗体(BD Bioscience, 560408)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(R16-715)
  • 流式细胞仪; 小鼠; 1:100; 图 5a
碧迪BD Foxp3抗体(BD Biosciences, 563486)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5a). Nat Commun (2018) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 8b
碧迪BD Foxp3抗体(BD Bioscience, MF23)被用于被用于流式细胞仪在小鼠样本上 (图 8b). Nat Commun (2018) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 9c
碧迪BD Foxp3抗体(BD Biosciences, MF23)被用于被用于流式细胞仪在小鼠样本上 (图 9c). J Immunol (2017) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD Foxp3抗体(BD Pharmingen, MF23)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Immunol (2017) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Foxp3抗体(BD Pharmingen, 560408)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2016) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Foxp3抗体(BD, MF23)被用于被用于流式细胞仪在小鼠样本上 (图 2b). PLoS ONE (2016) ncbi
大鼠 单克隆(R16-715)
  • 流式细胞仪; 小鼠; 1:1000; 图 1
碧迪BD Foxp3抗体(BD Bioscience, R16-715)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1). J Endod (2016) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Foxp3抗体(BD Biosciences, MF23)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD Foxp3抗体(BD, MF23)被用于被用于流式细胞仪在小鼠样本上 (图 6). Leukemia (2016) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠; 1:100; 图 s3
碧迪BD Foxp3抗体(BD Pharmingen, 560403)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2015) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 人类
  • 流式细胞仪; 小鼠
碧迪BD Foxp3抗体(BD Pharmingen, MF23)被用于被用于流式细胞仪在人类样本上 和 被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2015) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠
碧迪BD Foxp3抗体(BD, MF23)被用于被用于流式细胞仪在小鼠样本上. Neurotherapeutics (2015) ncbi
大鼠 单克隆(MF23)
  • 流式细胞仪; 小鼠
碧迪BD Foxp3抗体(BD Biosciences, MF23)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
文章列表
  1. Ravindranathan S, Passang T, Li J, Wang S, Dhamsania R, Ware M, et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun. 2022;13:6418 pubmed 出版商
  2. Bath N, Verhoven B, Wilson N, Zeng W, Zhong W, Coons L, et al. APRIL/BLyS deficient rats prevent donor specific antibody (DSA) production and cell proliferation in rodent kidney transplant model. PLoS ONE. 2022;17:e0275564 pubmed 出版商
  3. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  4. Lin J, Lv J, Yu S, Chen Y, Wang H, Chen J. Transcript Engineered Extracellular Vesicles Alleviate Alloreactive Dynamics in Renal Transplantation. Adv Sci (Weinh). 2022;9:e2202633 pubmed 出版商
  5. Amaral E, Foreman T, Namasivayam S, Hilligan K, Kauffman K, Barbosa Bomfim C, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med. 2022;219: pubmed 出版商
  6. Lee A, Pingali S, Pinilla Ibarz J, Atchison M, Koumenis C, Argon Y, et al. Loss of AID exacerbates the malignant progression of CLL. Leukemia. 2022;36:2430-2442 pubmed 出版商
  7. Costain A, Phythian Adams A, Colombo S, Marley A, Owusu C, Cook P, et al. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front Immunol. 2022;13:906338 pubmed 出版商
  8. Que W, Ma K, Hu X, Guo W, Li X. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. Sci Adv. 2022;8:eabo4413 pubmed 出版商
  9. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  10. Kasahara K, Sasaki N, Amin H, Tanaka T, Horibe S, Yamashita T, et al. Depletion of Foxp3+ regulatory T cells augments CD4+ T cell immune responses in atherosclerosis-prone hypercholesterolemic mice. Heliyon. 2022;8:e09981 pubmed 出版商
  11. Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, et al. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Theranostics. 2022;12:5086-5102 pubmed 出版商
  12. Pi xf1 eros A, Kulkarni A, Gao H, Orr K, Glenn L, Huang F, et al. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep. 2022;39:111011 pubmed 出版商
  13. Son M, Park I, Kim S, Ma H, Kim J, Kim T, et al. Novel Potassium-Competitive Acid Blocker, Tegoprazan, Protects Against Colitis by Improving Gut Barrier Function. Front Immunol. 2022;13:870817 pubmed 出版商
  14. Lu L, Li T, Feng X, Liu Z, Liu Y, Chao T, et al. Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog. 2022;18:e1010596 pubmed 出版商
  15. Wang Y, Feng R, Cheng G, Huang B, Tian J, Gan Y, et al. Low Dose Interleukin-2 Ameliorates Sjögren's Syndrome in a Murine Model. Front Med (Lausanne). 2022;9:887354 pubmed 出版商
  16. Zhang R, Wang Y, Liu D, Luo Q, Du P, Zhang H, et al. Sodium Tanshinone IIA Sulfonate as a Potent IDO1/TDO2 Dual Inhibitor Enhances Anti-PD1 Therapy for Colorectal Cancer in Mice. Front Pharmacol. 2022;13:870848 pubmed 出版商
  17. Pan C, Wu Q, Wang S, Mei Z, Zhang L, Gao X, et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology. 2022;11:2073010 pubmed 出版商
  18. Melese E, Franks E, Cederberg R, Harbourne B, Shi R, Wadsworth B, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology. 2022;11:2010905 pubmed 出版商
  19. Brown G, Ca xf1 ete P, Wang H, Medhavy A, Bones J, Roco J, et al. TLR7 gain-of-function genetic variation causes human lupus. Nature. 2022;605:349-356 pubmed 出版商
  20. Ozmadenci D, Shankara Narayanan J, Andrew J, Ojalill M, Barrie A, Jiang S, et al. Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis. Proc Natl Acad Sci U S A. 2022;119:e2117065119 pubmed 出版商
  21. Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176 pubmed 出版商
  22. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  23. Meléndez E, Chondronasiou D, Mosteiro L, Mart xed nez de Villarreal J, Fern xe1 ndez Alfara M, Lynch C, et al. Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development. 2022;149: pubmed 出版商
  24. Wedge M, Jennings V, Crupi M, Poutou J, Jamieson T, Pelin A, et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat Commun. 2022;13:1898 pubmed 出版商
  25. Reed J, Spinelli P, Falcone S, He M, Goeke C, Susiarjo M. Evaluating the Effects of BPA and TBBPA Exposure on Pregnancy Loss and Maternal-Fetal Immune Cells in Mice. Environ Health Perspect. 2022;130:37010 pubmed 出版商
  26. Tu J, Han D, Fang Y, Jiang H, Tan X, Xu Z, et al. MicroRNA-10b promotes arthritis development by disrupting CD4+ T cell subtypes. Mol Ther Nucleic Acids. 2022;27:733-750 pubmed 出版商
  27. Yang J, Zhang Q, Wang J, Lou Y, Hong Z, Wei S, et al. Dynamic profiling of immune microenvironment during pancreatic cancer development suggests early intervention and combination strategy of immunotherapy. EBioMedicine. 2022;78:103958 pubmed 出版商
  28. Sun D, Wang W, Guo F, Pitter M, Du W, Wei S, et al. DOT1L affects colorectal carcinogenesis via altering T cell subsets and oncogenic pathway. Oncoimmunology. 2022;11:2052640 pubmed 出版商
  29. Ploeger C, Schreck J, Huth T, Fraas A, Albrecht T, Charbel A, et al. STAT1 and STAT3 Exhibit a Crosstalk and Are Associated with Increased Inflammation in Hepatocellular Carcinoma. Cancers (Basel). 2022;14: pubmed 出版商
  30. D Addio F, Maestroni A, Assi E, Ben Nasr M, Amabile G, Usuelli V, et al. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat Commun. 2022;13:684 pubmed 出版商
  31. Quách T, Huang W, Sahu R, Diadhiou C, Raparia C, Johnson R, et al. Context-dependent induction of autoimmunity by TNF signaling deficiency. JCI Insight. 2022;7: pubmed 出版商
  32. Keller E, Dvorina N, Jørgensen T. Spontaneous CD4+ T Cell Activation and Differentiation in Lupus-Prone B6.Nba2 Mice Is IFNAR-Independent. Int J Mol Sci. 2022;23: pubmed 出版商
  33. Pulkka O, Viisanen L, Tynninen O, Laaksonen M, Reichardt P, Reichardt A, et al. Fibrinogen-like protein 2 in gastrointestinal stromal tumour. J Cell Mol Med. 2022;26:1083-1094 pubmed 出版商
  34. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  35. Ma X, Gao Y, Chen Y, Liu J, Yang C, Bao C, et al. M2-Type Macrophages Induce Tregs Generation by Activating the TGF-β/Smad Signalling Pathway to Promote Colorectal Cancer Development. Onco Targets Ther. 2021;14:5391-5402 pubmed 出版商
  36. Stoff M, Ebbecke T, Ciurkiewicz M, Pavasutthipaisit S, Mayer Lambertz S, St xf6 rk T, et al. C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep. 2021;11:23819 pubmed 出版商
  37. Zhu Y, Elsheikha H, Wang J, Fang S, He J, Zhu X, et al. Synergy between Toxoplasma gondii type I ΔGRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer. 2021;9: pubmed 出版商
  38. Fearon A, Slabber C, Kuklin A, Bachofner M, Tortola L, Pohlmeier L, et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience. 2021;24:103143 pubmed 出版商
  39. Ni Y, Hu B, Wu G, Shao Z, Zheng Y, Zhang R, et al. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI. Theranostics. 2021;11:9431-9451 pubmed 出版商
  40. Horiuchi S, Wu H, Liu W, Schmitt N, Provot J, Liu Y, et al. Tox2 is required for the maintenance of GC TFH cells and the generation of memory TFH cells. Sci Adv. 2021;7:eabj1249 pubmed 出版商
  41. Kim M, Borcherding N, Ahmed K, Voigt A, Vishwakarma A, Kolb R, et al. CD177 modulates the function and homeostasis of tumor-infiltrating regulatory T cells. Nat Commun. 2021;12:5764 pubmed 出版商
  42. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  43. Zou J, Pei X, Xing D, Wu X, Chen S. LINC00261 elevation inhibits angiogenesis and cell cycle progression of pancreatic cancer cells by upregulating SCP2 via targeting FOXP3. J Cell Mol Med. 2021;25:9826-9836 pubmed 出版商
  44. Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 2021;11:9162-9176 pubmed 出版商
  45. Malenica I, Adam J, Corgnac S, Mezquita L, Auclin E, Damei I, et al. Integrin-αV-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat Commun. 2021;12:5209 pubmed 出版商
  46. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105 pubmed 出版商
  47. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  48. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  49. Guo L, Xie H, Zhang Z, Wang Z, Peng S, Niu Y, et al. Fusion Protein Vaccine Based on Ag85B and STEAP1 Induces a Protective Immune Response against Prostate Cancer. Vaccines (Basel). 2021;9: pubmed 出版商
  50. Kim G, Kim W, Lim S, Lee H, Koo J, Nam K, et al. In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. Adv Sci (Weinh). 2021;8:2004973 pubmed 出版商
  51. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  52. Toyama S, Moniaga C, Nakae S, Kurosawa M, Ogawa H, Tominaga M, et al. Regulatory T Cells Exhibit Interleukin-33-Dependent Migratory Behavior during Skin Barrier Disruption. Int J Mol Sci. 2021;22: pubmed 出版商
  53. Goyette M, Elkholi I, Apcher C, Kuasne H, Rothlin C, Muller W, et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  54. Lauret Marie Joseph E, Kirilovsky A, Lecoester B, El Sissy C, Boullerot L, Rangan L, et al. Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy. J Immunother Cancer. 2021;9: pubmed 出版商
  55. Lu J, Wang W, Li P, Wang X, Gao C, Zhang B, et al. MiR-146a regulates regulatory T cells to suppress heart transplant rejection in mice. Cell Death Discov. 2021;7:165 pubmed 出版商
  56. Pavasutthipaisit S, Stoff M, Ebbecke T, Ciurkiewicz M, Mayer Lambertz S, Stork T, et al. CARD9 Deficiency Increases Hippocampal Injury Following Acute Neurotropic Picornavirus Infection but Does Not Affect Pathogen Elimination. Int J Mol Sci. 2021;22: pubmed 出版商
  57. Maier J, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, et al. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  58. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  59. Zhou J, Lu Y, Wu W, Feng Y. Taurine promotes the production of CD4+CD25+FOXP3+ Treg cells through regulating IL-35/STAT1 pathway in a mouse allergic rhinitis model. Allergy Asthma Clin Immunol. 2021;17:59 pubmed 出版商
  60. Lacy M, Burger C, Shami A, Ahmadsei M, Winkels H, Nitz K, et al. Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun. 2021;12:3754 pubmed 出版商
  61. Steele L, Mannion A, Shaw G, MacLennan K, Cook G, Rudd C, et al. Non-redundant activity of GSK-3α and GSK-3β in T cell-mediated tumor rejection. iScience. 2021;24:102555 pubmed 出版商
  62. Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, et al. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol. 2021;9:667645 pubmed 出版商
  63. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  64. Parodi B, Sanna A, Cedola A, Uccelli A, Kerlero de Rosbo N. Hydroxycarboxylic Acid Receptor 2, a Pleiotropically Linked Receptor for the Multiple Sclerosis Drug, Monomethyl Fumarate. Possible Implications for the Inflammatory Response. Front Immunol. 2021;12:655212 pubmed 出版商
  65. Lomphithak T, Akara Amornthum P, Murakami K, Hashimoto M, Usubuchi H, Iwabuchi E, et al. Tumor necroptosis is correlated with a favorable immune cell signature and programmed death-ligand 1 expression in cholangiocarcinoma. Sci Rep. 2021;11:11743 pubmed 出版商
  66. Kemp S, Carpenter E, Steele N, Donahue K, Nwosu Z, Pacheco A, et al. Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB-Mediated Production of CXCL1. Cancer Res. 2021;81:4305-4318 pubmed 出版商
  67. Zimmer T, Broekaart D, Luinenburg M, Mijnsbergen C, Anink J, Sim N, et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol. 2021;47:826-839 pubmed 出版商
  68. Glassman C, Su L, Majri Morrison S, Winkelmann H, Mo F, Li P, et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. elife. 2021;10: pubmed 出版商
  69. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  70. Reis M, Willis G, Fernandez Gonzalez A, Yeung V, Taglauer E, Magaletta M, et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol. 2021;12:640595 pubmed 出版商
  71. Zhang S, Li L, Xie D, Reddy S, Sleasman J, Ma L, et al. Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Front Immunol. 2021;12:620437 pubmed 出版商
  72. Go D, Lee S, Lee S, Woo S, Kim K, Kim K, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol. 2021;12:715-739 pubmed 出版商
  73. Lin X, Twelkmeyer T, Zhu D, Zhang L, Zhao Y, Zhang C, et al. Homeostatic regulation of T follicular helper and antibody response to particle antigens by IL-1Ra of medullary sinus macrophage origin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  74. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  75. Jhala G, Selck C, Chee J, Kwong C, Pappas E, Thomas H, et al. Tolerance to Proinsulin-1 Reduces Autoimmune Diabetes in NOD Mice. Front Immunol. 2021;12:645817 pubmed 出版商
  76. Zheng W, Song H, Luo Z, Wu H, Chen L, Wang Y, et al. Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  77. Borges P, Waclawiak I, Georgii J, Fraga Junior V, Barros J, Lemos F, et al. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Front Immunol. 2021;12:651740 pubmed 出版商
  78. Roux C, Mucciolo G, Kopecka J, Novelli F, Riganti C, Cappello P. IL17A Depletion Affects the Metabolism of Macrophages Treated with Gemcitabine. Antioxidants (Basel). 2021;10: pubmed 出版商
  79. Harada Y, Kazama S, Morikawa T, Sonoda H, Ishi H, Emoto S, et al. Clinical significance of CD8+ and FoxP3+ tumor-infiltrating lymphocytes and MFG-E8 expression in lower rectal cancer with preoperative chemoradiotherapy. Mol Clin Oncol. 2021;14:87 pubmed 出版商
  80. Goncalves S, Yin K, Ito Y, Chan A, Olan I, Gough S, et al. COX2 regulates senescence secretome composition and senescence surveillance through PGE2. Cell Rep. 2021;34:108860 pubmed 出版商
  81. Kuroda H, Jamiyan T, Yamaguchi R, Kakumoto A, Abe A, Harada O, et al. Tumor-infiltrating B cells and T cells correlate with postoperative prognosis in triple-negative carcinoma of the breast. BMC Cancer. 2021;21:286 pubmed 出版商
  82. Brune M, Stussi G, Lundberg P, Vela V, Heim D, Manz M, et al. Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 2021;100:1169-1179 pubmed 出版商
  83. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394 pubmed 出版商
  84. Choi Y, Kim Y, Oh S, Suh K, Kim Y, Lee G, et al. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. Adv Sci (Weinh). 2021;8:2002497 pubmed 出版商
  85. Can xe8 S, Van Snick J, Uyttenhove C, Pilotte L, van den Eynde B. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J Immunother Cancer. 2021;9: pubmed 出版商
  86. Zhang Y, Xiong D, Li Y, Xu G, Zhang B, Liu Y, et al. Schistosoma japonicum Infection in Treg-Specific USP21 Knockout Mice. J Immunol Res. 2021;2021:6613162 pubmed 出版商
  87. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  88. Mpekris F, Panagi M, Voutouri C, Martin J, Samuel R, Takahashi S, et al. Normalizing the Microenvironment Overcomes Vessel Compression and Resistance to Nano-immunotherapy in Breast Cancer Lung Metastasis. Adv Sci (Weinh). 2021;8:2001917 pubmed 出版商
  89. Malone K, Diaz Diaz A, Shearer J, Moore A, Waeber C. The effect of fingolimod on regulatory T cells in a mouse model of brain ischaemia. J Neuroinflammation. 2021;18:37 pubmed 出版商
  90. Phan T, Schink L, Mann J, Merk V, Zwicky P, Mundt S, et al. Keratinocytes control skin immune homeostasis through de novo-synthesized glucocorticoids. Sci Adv. 2021;7: pubmed 出版商
  91. Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, et al. Targeting age-specific changes in CD4+ T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell. 2021;20:e13299 pubmed 出版商
  92. Steele N, Biffi G, Kemp S, Zhang Y, Drouillard D, Syu L, et al. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res. 2021;: pubmed 出版商
  93. Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne Steele M, et al. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun. 2021;12:525 pubmed 出版商
  94. Kharkwal S, Johndrow C, Veerapen N, Kharkwal H, Saavedra Avila N, Carreño L, et al. Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Res. 2021;81:1788-1801 pubmed 出版商
  95. Brownlie D, Doughty Shenton D, Yh Soong D, Nixon C, O Carragher N, M Carlin L, et al. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β. J Immunother Cancer. 2021;9: pubmed 出版商
  96. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  97. Sanmarco L, Wheeler M, Gutiérrez Vázquez C, Polonio C, Linnerbauer M, Pinho Ribeiro F, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature. 2021;: pubmed 出版商
  98. Suah A, Tran D, Khiew S, Andrade M, Pollard J, Jain D, et al. Pregnancy-induced humoral sensitization overrides T cell tolerance to fetus-matched allografts in mice. J Clin Invest. 2021;131: pubmed 出版商
  99. Ebelt N, Zuniga E, Marzagalli M, Zamloot V, Blazar B, Salgia R, et al. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy. Biomedicines. 2020;8: pubmed 出版商
  100. Piszczatowska K, Przybylska D, Sikora E, Mosieniak G. Inhibition of NADPH Oxidases Activity by Diphenyleneiodonium Chloride as a Mechanism of Senescence Induction in Human Cancer Cells. Antioxidants (Basel). 2020;9: pubmed 出版商
  101. Yasuoka M, Monteiro B, Fantinato Neto P, Paiano R, Fantoni D, Otsuki D, et al. Transient Pulmonary Artery Hypertension in Holstein Neonate Calves. Animals (Basel). 2020;10: pubmed 出版商
  102. Zhang Z, Zheng Q, Liu Y, Sun L, Han P, Wang R, et al. Human CD133-positive hematopoietic progenitor cells enhance the malignancy of breast cancer cells. BMC Cancer. 2020;20:1158 pubmed 出版商
  103. Witkowska Piłaszewicz O, Pingwara R, Winnicka A. The Effect of Physical Training on Peripheral Blood Mononuclear Cell Ex Vivo Proliferation, Differentiation, Activity, and Reactive Oxygen Species Production in Racehorses. Antioxidants (Basel). 2020;9: pubmed 出版商
  104. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  105. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  106. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  107. Fernandes R, Li C, Wang G, Yang X, Savvides C, Glassman C, et al. Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. elife. 2020;9: pubmed 出版商
  108. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A. 2020;117:20159-20170 pubmed 出版商
  109. Runyan C, Welch L, Lecuona E, Shigemura M, Amarelle L, Abdala Valencia H, et al. Impaired phagocytic function in CX3CR1+ tissue-resident skeletal muscle macrophages prevents muscle recovery after influenza A virus-induced pneumonia in old mice. Aging Cell. 2020;: pubmed 出版商
  110. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  111. Peligero Cruz C, Givony T, Sebé Pedrós A, Dobes J, Kadouri N, Nevo S, et al. IL18 signaling promotes homing of mature Tregs into the thymus. elife. 2020;9: pubmed 出版商
  112. Svensson M, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody K, et al. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Sci Adv. 2020;6:eaba4353 pubmed 出版商
  113. Seitz V, Kleo K, Dröge A, Schaper S, Elezkurtaj S, Bedjaoui N, et al. Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL. Sci Rep. 2020;10:10024 pubmed 出版商
  114. Ning Y, Ding J, Sun X, Xie Y, Su M, Ma C, et al. HDAC9 deficiency promotes tumor progression by decreasing the CD8+ dendritic cell infiltration of the tumor microenvironment. J Immunother Cancer. 2020;8: pubmed 出版商
  115. Zhou S, Wu W, Wang Z, Wang Z, Su Q, Li X, et al. RelB regulates the homeostatic proliferation but not the function of Tregs. BMC Immunol. 2020;21:37 pubmed 出版商
  116. Domingo Gonzalez R, Zanini F, Che X, Liu M, Jones R, Swift M, et al. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. elife. 2020;9: pubmed 出版商
  117. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  118. Hanaoka H, Nishimoto T, Okazaki Y, Takeuchi T, Kuwana M. A unique thymus-derived regulatory T cell subset associated with systemic lupus erythematosus. Arthritis Res Ther. 2020;22:88 pubmed 出版商
  119. Kim M, Chung Y, Kim H, Woo J, Ahn S, Park S. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res. 2020;22:32 pubmed 出版商
  120. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  121. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  122. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  123. Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6:eaay9269 pubmed 出版商
  124. Bergmann B, Fei Y, Jirholt P, Hu Z, Bergquist M, Ali A, et al. Pre-treatment with IL2 gene therapy alleviates Staphylococcus aureus arthritis in mice. BMC Infect Dis. 2020;20:185 pubmed 出版商
  125. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  126. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  127. Ferrer Font L, Mehta P, Harmos P, Schmidt A, Chappell S, Price K, et al. High-dimensional analysis of intestinal immune cells during helminth infection. elife. 2020;9: pubmed 出版商
  128. Theivanthiran B, Evans K, Devito N, Plebanek M, Sturdivant M, Wachsmuth L, et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 2020;130:2570-2586 pubmed 出版商
  129. Lee J, Zhang J, Chung Y, Kim J, Kook C, Gonzalez Navajas J, et al. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. elife. 2020;9: pubmed 出版商
  130. Bell L, Lenhart A, Rosenwald A, Monoranu C, Berberich Siebelt F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol. 2019;10:3090 pubmed 出版商
  131. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  132. Singh K, Leu J, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, et al. African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun. 2020;11:473 pubmed 出版商
  133. Lawenius L, Scheffler J, Gustafsson K, Henning P, Nilsson K, Colldén H, et al. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss. Am J Physiol Endocrinol Metab. 2020;318:E480-E491 pubmed 出版商
  134. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  135. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  136. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  137. Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed 出版商
  138. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  139. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  140. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  141. Mantani P, Dunér P, Ljungcrantz I, Nilsson J, Bjorkbacka H, Fredrikson G. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol. 2019;20:47 pubmed 出版商
  142. Shima T, Shimoda M, Shigenobu T, Ohtsuka T, Nishimura T, Emoto K, et al. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma. Cancer Sci. 2020;111:727-738 pubmed 出版商
  143. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  144. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  145. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  146. Martínez Fábregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, et al. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. elife. 2019;8: pubmed 出版商
  147. Li Z, Wang H, Zeng Q, Yan J, Hu Y, Li H, et al. p65/miR-23a/CCL22 axis regulated regulatory T cells recruitment in hepatitis B virus positive hepatocellular carcinoma. Cancer Med. 2020;9:711-723 pubmed 出版商
  148. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  149. Alspach E, Lussier D, Miceli A, Kizhvatov I, DuPage M, Luoma A, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574:696-701 pubmed 出版商
  150. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  151. Benechet A, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature. 2019;574:200-205 pubmed 出版商
  152. Wang P, Qi X, Xu G, Liu J, Guo J, Li X, et al. CCL28 promotes locomotor recovery after spinal cord injury via recruiting regulatory T cells. Aging (Albany NY). 2019;11:7402-7415 pubmed 出版商
  153. Wolf Y, Bartok O, Patkar S, Eli G, Cohen S, Litchfield K, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell. 2019;179:219-235.e21 pubmed 出版商
  154. Fu D, Senouthai S, Wang J, You Y. Vasoactive intestinal peptide ameliorates renal injury in a pristane-induced lupus mouse model by modulating Th17/Treg balance. BMC Nephrol. 2019;20:350 pubmed 出版商
  155. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  156. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  157. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  158. Sorrentino C, Yin Z, Ciummo S, Lanuti P, Lu L, Marchisio M, et al. Targeting Interleukin(IL)-30/IL-27p28 signaling in cancer stem-like cells and host environment synergistically inhibits prostate cancer growth and improves survival. J Immunother Cancer. 2019;7:201 pubmed 出版商
  159. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  160. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  161. Rosenbaum M, Gewies A, Pechloff K, Heuser C, Engleitner T, Gehring T, et al. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat Commun. 2019;10:2352 pubmed 出版商
  162. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  163. Sharma N, Vacher J, Allison J. TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proc Natl Acad Sci U S A. 2019;116:10453-10462 pubmed 出版商
  164. Del Duca E, Pavel A, Dubin C, Song T, Wallace E, Peng X, et al. Major Differences in Expression of Inflammatory Pathways in Skin from Different Body Sites of Healthy Individuals. J Invest Dermatol. 2019;139:2228-2232.e10 pubmed 出版商
  165. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  166. Kawalkowska J, Ogbechi J, Venables P, Williams R. cIAP1/2 inhibition synergizes with TNF inhibition in autoimmunity by down-regulating IL-17A and inducing Tregs. Sci Adv. 2019;5:eaaw5422 pubmed 出版商
  167. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  168. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  169. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  170. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  171. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  172. Chakarov S, Lim H, Tan L, Lim S, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363: pubmed 出版商
  173. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  174. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  175. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019;566:270-274 pubmed 出版商
  176. Lavoie S, Conway K, Lassen K, Jijon H, Pan H, Chun E, et al. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. elife. 2019;8: pubmed 出版商
  177. Contijoch E, Britton G, Yang C, Mogno I, Li Z, Ng R, et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. elife. 2019;8: pubmed 出版商
  178. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  179. Britton G, Contijoch E, Mogno I, Vennaro O, Llewellyn S, Ng R, et al. Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt+ Regulatory T Cells and Exacerbate Colitis in Mice. Immunity. 2019;50:212-224.e4 pubmed 出版商
  180. Silva D, Yu S, Ulge U, Spangler J, Jude K, Labao Almeida C, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565:186-191 pubmed 出版商
  181. Maseda D, Banerjee A, Johnson E, Washington M, Kim H, Lau K, et al. mPGES-1-Mediated Production of PGE2 and EP4 Receptor Sensing Regulate T Cell Colonic Inflammation. Front Immunol. 2018;9:2954 pubmed 出版商
  182. Cornelissen L, Blanas A, van der Horst J, Kruijssen L, Zaal A, O Toole T, et al. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer. 2019;144:2290-2302 pubmed 出版商
  183. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  184. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  185. Garić D, Tao S, Ahmed E, Youssef M, Kanagaratham C, Shah J, et al. Depletion of BAFF cytokine exacerbates infection in Pseudomonas aeruginosa infected mice. J Cyst Fibros. 2019;18:349-356 pubmed 出版商
  186. Quandt J, Schlude C, Bartoschek M, Will R, Cid Arregui A, Schölch S, et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 2018;7:e1500671 pubmed 出版商
  187. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  188. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  189. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai M, Nomura E, et al. Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol. 2019;7:135-156 pubmed 出版商
  190. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  191. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  192. Dong S, Harrington B, Hu E, Greene J, Lehman A, Tran M, et al. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest. 2019;129:122-136 pubmed 出版商
  193. Sharma D, Malik A, Guy C, Vogel P, Kanneganti T. TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy. J Clin Invest. 2019;129:150-162 pubmed 出版商
  194. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  195. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  196. Singh A, Khare P, Obaid A, Conlon K, Basrur V, Depinho R, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun. 2018;9:4515 pubmed 出版商
  197. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  198. Mollaoglu G, Jones A, Wait S, Mukhopadhyay A, Jeong S, Arya R, et al. The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity. 2018;49:764-779.e9 pubmed 出版商
  199. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  200. Masuda J, Umemura C, Yokozawa M, Yamauchi K, Seko T, Yamashita M, et al. Dietary Supplementation of Selenoneine-Containing Tuna Dark Muscle Extract Effectively Reduces Pathology of Experimental Colorectal Cancers in Mice. Nutrients. 2018;10: pubmed 出版商
  201. Schrand B, Clark E, Levay A, Capote A, Martínez O, Brenneman R, et al. Hapten-mediated recruitment of polyclonal antibodies to tumors engenders antitumor immunity. Nat Commun. 2018;9:3348 pubmed 出版商
  202. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  203. Deason K, Troutman T, Jain A, Challa D, Mandraju R, Brewer T, et al. BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation. J Exp Med. 2018;215:2413-2428 pubmed 出版商
  204. Burton A, Pallett L, McCoy L, Suveizdyte K, Amin O, Swadling L, et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J Clin Invest. 2018;128:4588-4603 pubmed 出版商
  205. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  206. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  207. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  208. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  209. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  210. Zhao S, Ding J, Wang S, Li C, Guo P, Zhang M, et al. Decreased expression of circulating Aire and increased Tfh/Tfr cells in myasthenia gravis patients. Biosci Rep. 2018;38: pubmed 出版商
  211. Kyung D, Sung H, Kim Y, Kim K, Cho S, Choi J, et al. Global transcriptome analysis identifies weight regain-induced activation of adaptive immune responses in white adipose tissue of mice. Int J Obes (Lond). 2018;42:755-764 pubmed 出版商
  212. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  213. Emmerson A, Trevelin S, Mongue Din H, Becker P, Ortiz C, Smyth L, et al. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J Clin Invest. 2018;128:3088-3101 pubmed 出版商
  214. Georgiev H, Ravens I, Papadogianni G, Halle S, Malissen B, Loots G, et al. Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Front Immunol. 2018;9:714 pubmed 出版商
  215. Tanaka S, Pfleger C, Lai J, Roan F, Sun S, Ziegler S. KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Rep. 2018;23:796-807 pubmed 出版商
  216. Silva M, Davoli Ferreira M, Medina T, Sesti Costa R, Silva G, Lopes C, et al. Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis. Nat Commun. 2018;9:1513 pubmed 出版商
  217. Varelias A, Bunting M, Ormerod K, Koyama M, Olver S, Straube J, et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J Clin Invest. 2018;128:1919-1936 pubmed 出版商
  218. Prado C, Gaiazzi M, Gonzalez H, Ugalde V, Figueroa A, Osorio Barrios F, et al. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:571 pubmed 出版商
  219. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  220. Mencarelli A, Khameneh H, Fric J, Vacca M, El Daker S, Janela B, et al. Calcineurin-mediated IL-2 production by CD11chighMHCII+ myeloid cells is crucial for intestinal immune homeostasis. Nat Commun. 2018;9:1102 pubmed 出版商
  221. Gaddis D, Padgett L, Wu R, McSkimming C, Romines V, Taylor A, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9:1095 pubmed 出版商
  222. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  223. Sockolosky J, Trotta E, Parisi G, Picton L, Su L, Le A, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359:1037-1042 pubmed 出版商
  224. Kornete M, Marone R, Jeker L. Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. J Immunol. 2018;200:2489-2501 pubmed 出版商
  225. Kim I, Kim K, Lee E, Oh D, Park C, Park S, et al. Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality. J Exp Med. 2018;215:963-983 pubmed 出版商
  226. Qu S, Xue H, Dong X, Lin D, Wu R, Nabavi N, et al. Aneustat (OMN54) has aerobic glycolysis-inhibitory activity and also immunomodulatory activity as indicated by a first-generation PDX prostate cancer model. Int J Cancer. 2018;143:419-429 pubmed 出版商
  227. Kotov D, Kotov J, Goldberg M, Jenkins M. Many Th Cell Subsets Have Fas Ligand-Dependent Cytotoxic Potential. J Immunol. 2018;200:2004-2012 pubmed 出版商
  228. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  229. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  230. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  231. Wheeler D, Sariol A, Meyerholz D, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128:931-943 pubmed 出版商
  232. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  233. Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, et al. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med. 2018;215:481-500 pubmed 出版商
  234. Ferdinand J, Richard A, Meylan F, Al Shamkhani A, Siegel R. Cleavage of TL1A Differentially Regulates Its Effects on Innate and Adaptive Immune Cells. J Immunol. 2018;200:1360-1369 pubmed 出版商
  235. Fontaine M, Vogel I, Van Eycke Y, Galuppo A, Ajouaou Y, Decaestecker C, et al. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J. 2018;37:398-412 pubmed 出版商
  236. Guimarães G, Gomes M, Campos P, Marinho F, de Assis N, Silveira T, et al. Immunoproteasome Subunits Are Required for CD8+ T Cell Function and Host Resistance to Brucella abortus Infection in Mice. Infect Immun. 2018;86: pubmed 出版商
  237. Bäcker V, Cheung F, Siveke J, Fandrey J, Winning S. Knockdown of myeloid cell hypoxia-inducible factor-1? ameliorates the acute pathology in DSS-induced colitis. PLoS ONE. 2017;12:e0190074 pubmed 出版商
  238. Burrack A, Malhotra D, Dileepan T, Osum K, Swanson L, Fife B, et al. Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol. 2018;200:477-482 pubmed 出版商
  239. Maseda D, Johnson E, Nyhoff L, Baron B, Kojima F, Wilhelm A, et al. mPGES1-Dependent Prostaglandin E2 (PGE2) Controls Antigen-Specific Th17 and Th1 Responses by Regulating T Autocrine and Paracrine PGE2 Production. J Immunol. 2018;200:725-736 pubmed 出版商
  240. Mailer R, Gisterå A, Polyzos K, Ketelhuth D, Hansson G. Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Sci Rep. 2017;7:15655 pubmed 出版商
  241. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  242. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  243. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  244. Matsuyama K, Mizutani Y, Takahashi T, Shu E, Kanoh H, Miyazaki T, et al. Enhanced dendritic cells and regulatory T cells in the dermis of porokeratosis. Arch Dermatol Res. 2017;309:749-756 pubmed 出版商
  245. Li B, Wang X, Choi I, Wang Y, Liu S, Pham A, et al. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest. 2017;127:3702-3716 pubmed 出版商
  246. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  247. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  248. Funken D, Ishikawa Ankerhold H, Uhl B, Lerchenberger M, Rentsch M, Mayr D, et al. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver. FASEB J. 2017;31:4796-4808 pubmed 出版商
  249. Kyratsous N, Bauer I, Zhang G, Pesic M, Bartholomäus I, Mues M, et al. Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proc Natl Acad Sci U S A. 2017;114:E6381-E6389 pubmed 出版商
  250. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  251. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  252. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  253. Zheng C, Zheng L, Yoo J, Guo H, Zhang Y, Guo X, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169:1342-1356.e16 pubmed 出版商
  254. Seifert H, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark A, et al. Sex differences in regulatory cells in experimental stroke. Cell Immunol. 2017;318:49-54 pubmed 出版商
  255. Xie M, Koh B, Hollister K, Wu H, Sun J, Kaplan M, et al. Bcl6 promotes follicular helper T-cell differentiation and PD-1 expression in a Blimp1-independent manner in mice. Eur J Immunol. 2017;47:1136-1141 pubmed 出版商
  256. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  257. Li C, Leng Y, Zhao B, Gao C, Du F, Jin N, et al. Human iPSC-MSC-Derived Xenografts Modulate Immune Responses by Inhibiting the Cleavage of Caspases. Stem Cells. 2017;35:1719-1732 pubmed 出版商
  258. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  259. Burton O, Tamayo J, Stranks A, Koleoglou K, Oettgen H. Allergen-specific IgG antibody signaling through FcγRIIb promotes food tolerance. J Allergy Clin Immunol. 2018;141:189-201.e3 pubmed 出版商
  260. Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody D, et al. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest. 2017;127:2339-2352 pubmed 出版商
  261. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  262. Meinicke H, Bremser A, Brack M, Schrenk K, Pircher H, Izcue A. KLRG1 impairs regulatory T-cell competitive fitness in the gut. Immunology. 2017;152:65-73 pubmed 出版商
  263. Meinicke H, Bremser A, Brack M, Akeus P, Pearson C, Bullers S, et al. Tumour-associated changes in intestinal epithelial cells cause local accumulation of KLRG1+ GATA3+ regulatory T cells in mice. Immunology. 2017;152:74-88 pubmed 出版商
  264. Angelin A, Gil de Gómez L, Dahiya S, Jiao J, Guo L, Levine M, et al. Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab. 2017;25:1282-1293.e7 pubmed 出版商
  265. Garg G, Nikolouli E, Hardtke Wolenski M, Toker A, Ohkura N, Beckstette M, et al. Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells. Oncotarget. 2017;8:35542-35557 pubmed 出版商
  266. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  267. Zemmour D, Pratama A, Loughhead S, Mathis D, Benoist C. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc Natl Acad Sci U S A. 2017;114:E3472-E3480 pubmed 出版商
  268. Melis D, Carbone F, Minopoli G, La Rocca C, Perna F, De Rosa V, et al. Cutting Edge: Increased Autoimmunity Risk in Glycogen Storage Disease Type 1b Is Associated with a Reduced Engagement of Glycolysis in T Cells and an Impaired Regulatory T Cell Function. J Immunol. 2017;198:3803-3808 pubmed 出版商
  269. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  270. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  271. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  272. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  273. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  274. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  275. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  276. Fisher S, Aston W, Chee J, Khong A, Cleaver A, Solin J, et al. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun Inflamm Dis. 2017;5:16-28 pubmed 出版商
  277. Komegae E, Souza T, Grund L, Lima C, Lopes Ferreira M. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS ONE. 2017;12:e0171796 pubmed 出版商
  278. Huang R, Francois A, McGray A, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561 pubmed 出版商
  279. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  280. Ying W, Wollam J, Ofrecio J, Bandyopadhyay G, El Ouarrat D, Lee Y, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127:1019-1030 pubmed 出版商
  281. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  282. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  283. Ramjee V, Li D, Manderfield L, Liu F, Engleka K, Aghajanian H, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017;127:899-911 pubmed 出版商
  284. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  285. Kempińska Podhorodecka A, Milkiewicz M, Wasik U, Ligocka J, Zawadzki M, Krawczyk M, et al. Decreased Expression of Vitamin D Receptor Affects an Immune Response in Primary Biliary Cholangitis via the VDR-miRNA155-SOCS1 Pathway. Int J Mol Sci. 2017;18: pubmed 出版商
  286. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  287. Goverse G, Molenaar R, Macia L, Tan J, Erkelens M, Konijn T, et al. Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. J Immunol. 2017;198:2172-2181 pubmed 出版商
  288. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140 pubmed 出版商
  289. Rowe A, Yun H, Treat B, Kinchington P, Hendricks R. Subclinical Herpes Simplex Virus Type 1 Infections Provide Site-Specific Resistance to an Unrelated Pathogen. J Immunol. 2017;198:1706-1717 pubmed 出版商
  290. Mizutani H, Tamagawa Mineoka R, Minami Y, Yagita K, Katoh N. Constant light exposure impairs immune tolerance development in mice. J Dermatol Sci. 2017;86:63-70 pubmed 出版商
  291. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214:209-226 pubmed 出版商
  292. Boardman D, Philippeos C, Fruhwirth G, Ibrahim M, Hannen R, Cooper D, et al. Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection. Am J Transplant. 2017;17:931-943 pubmed 出版商
  293. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  294. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  295. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  296. Hashimoto Hill S, Friesen L, Kim M, Kim C. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunol. 2017;10:912-923 pubmed 出版商
  297. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  298. Yokota Nakatsuma A, Ohoka Y, Takeuchi H, Song S, Iwata M. Beta 1-integrin ligation and TLR ligation enhance GM-CSF-induced ALDH1A2 expression in dendritic cells, but differentially regulate their anti-inflammatory properties. Sci Rep. 2016;6:37914 pubmed 出版商
  299. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  300. Senbabaoglu Y, Gejman R, Winer A, Liu M, Van Allen E, de Velasco G, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17:231 pubmed
  301. Sundara Y, Kostine M, Cleven A, Bovee J, Schilham M, Cleton Jansen A. Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy. Cancer Immunol Immunother. 2017;66:119-128 pubmed 出版商
  302. Escalante N, Lemire P, Cruz Tleugabulova M, Prescott D, Mortha A, Streutker C, et al. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. J Exp Med. 2016;213:2841-2850 pubmed
  303. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  304. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. 2016;126:4626-4639 pubmed 出版商
  305. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  306. Shifrin N, Kissiov D, Ardolino M, Joncker N, Raulet D. Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. J Immunol. 2016;197:4127-4136 pubmed 出版商
  307. Kwong Chung C, Ronchi F, Geuking M. Detrimental effect of systemic antimicrobial CD4+ T-cell reactivity on gut epithelial integrity. Immunology. 2017;150:221-235 pubmed 出版商
  308. Kaewkangsadan V, Verma C, Eremin J, Cowley G, Ilyas M, Eremin O. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J Immunol Res. 2016;2016:4757405 pubmed
  309. Massaad M, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest. 2016;126:4219-4236 pubmed 出版商
  310. Ogiya R, Niikura N, Kumaki N, Bianchini G, Kitano S, Iwamoto T, et al. Comparison of tumor-infiltrating lymphocytes between primary and metastatic tumors in breast cancer patients. Cancer Sci. 2016;107:1730-1735 pubmed 出版商
  311. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  312. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  313. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  314. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  315. Butcher M, Filipowicz A, Waseem T, McGary C, Crow K, Magilnick N, et al. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFN?+ Th1/Tregs. Circ Res. 2016;119:1190-1203 pubmed 出版商
  316. Klarquist J, Tobin K, Farhangi Oskuei P, Henning S, Fernandez M, Dellacecca E, et al. Ccl22 Diverts T Regulatory Cells and Controls the Growth of Melanoma. Cancer Res. 2016;76:6230-6240 pubmed
  317. Uhde A, Herder V, Akram Khan M, Ciurkiewicz M, Schaudien D, Teich R, et al. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS ONE. 2016;11:e0161883 pubmed 出版商
  318. Jou Y, Tsai Y, Lin C, Tung C, Shen C, Tsai H, et al. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation. Oncotarget. 2016;7:65403-65417 pubmed 出版商
  319. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  320. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  321. Moodley D, Yoshida H, Mostafavi S, Asinovski N, Ortiz Lopez A, Symanowicz P, et al. Network pharmacology of JAK inhibitors. Proc Natl Acad Sci U S A. 2016;113:9852-7 pubmed 出版商
  322. Torrelo A, Noguera Morel L, Hernandez Martin A, Clemente D, Barja J, Buzon L, et al. Recurrent lipoatrophic panniculitis of children. J Eur Acad Dermatol Venereol. 2017;31:536-543 pubmed 出版商
  323. Liu H, Jain R, Guan J, Vuong V, Ishido S, La Gruta N, et al. Ubiquitin ligase MARCH 8 cooperates with CD83 to control surface MHC II expression in thymic epithelium and CD4 T cell selection. J Exp Med. 2016;213:1695-703 pubmed 出版商
  324. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  325. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  326. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  327. Ferreirinha P, Pérez Cabezas B, Correia A, Miyazawa B, França A, Carvalhais V, et al. Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun. 2016;84:2933-43 pubmed 出版商
  328. Alberdi M, Iglesias M, Tejedor S, Merino R, Lopez Rodriguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFN? expression by the transcription factor NFAT5. Immunol Cell Biol. 2017;95:56-67 pubmed 出版商
  329. Chen H, Händel N, Ngeow J, Muller J, Huhn M, Yang H, et al. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol. 2017;139:607-620.e15 pubmed 出版商
  330. Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Hervé R, et al. In Vivo Expansion of Activated Foxp3+ Regulatory T Cells and Establishment of a Type 2 Immune Response upon IL-33 Treatment Protect against Experimental Arthritis. J Immunol. 2016;197:1708-19 pubmed 出版商
  331. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  332. Ashizawa T, Iizuka A, Nonomura C, Kondou R, Maeda C, Miyata H, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017;23:149-158 pubmed 出版商
  333. Stifter K, Schuster C, Schlosser M, Boehm B, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep. 2016;6:29419 pubmed 出版商
  334. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  335. Orta Mascaró M, Consuegra Fernández M, Carreras E, Roncagalli R, Carreras Sureda A, Alvarez P, et al. CD6 modulates thymocyte selection and peripheral T cell homeostasis. J Exp Med. 2016;213:1387-97 pubmed 出版商
  336. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  337. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  338. Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-?t ubiquitination. Nat Immunol. 2016;17:997-1004 pubmed 出版商
  339. Gu L, Deng W, Sun X, Zhou H, Xu Q. Rapamycin ameliorates CCl4-induced liver fibrosis in mice through reciprocal regulation of the Th17/Treg cell balance. Mol Med Rep. 2016;14:1153-61 pubmed 出版商
  340. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  341. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  342. Lim J, Im K, Lee E, Kim N, Nam Y, Jeon Y, et al. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Sci Rep. 2016;6:26851 pubmed 出版商
  343. Chu H, Khosravi A, Kusumawardhani I, Kwon A, Vasconcelos A, Cunha L, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352:1116-20 pubmed 出版商
  344. Patel M, Kim J, Theodros D, Tam A, Velarde E, Kochel C, et al. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer. 2016;4:28 pubmed 出版商
  345. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  346. Guzera M, Szulc Dąbrowska L, Cywinska A, Archer J, Winnicka A. In Vitro Influence of Mycophenolic Acid on Selected Parameters of Stimulated Peripheral Canine Lymphocytes. PLoS ONE. 2016;11:e0154429 pubmed 出版商
  347. Li Y, Nishikawa T, Kaneda Y. Platelet-cytokine Complex Suppresses Tumour Growth by Exploiting Intratumoural Thrombin-dependent Platelet Aggregation. Sci Rep. 2016;6:25077 pubmed 出版商
  348. Ameratunga M, Asadi K, Lin X, Walkiewicz M, Murone C, Knight S, et al. PD-L1 and Tumor Infiltrating Lymphocytes as Prognostic Markers in Resected NSCLC. PLoS ONE. 2016;11:e0153954 pubmed 出版商
  349. Goldstein J, Burlion A, Zaragoza B, Sendeyo K, Polansky J, Huehn J, et al. Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE. 2016;11:e0153682 pubmed 出版商
  350. Holmkvist P, Pool L, Hägerbrand K, Agace W, Rivollier A. IL-18R?-deficient CD4(+) T cells induce intestinal inflammation in the CD45RB(hi) transfer model of colitis despite impaired innate responsiveness. Eur J Immunol. 2016;46:1371-82 pubmed 出版商
  351. Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss D, Frappart L, et al. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget. 2016;7:23006-18 pubmed 出版商
  352. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  353. Yue Y, Li P, Song N, Li B, Li Z, Guo Y, et al. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model. Mol Med Rep. 2016;13:4183-90 pubmed 出版商
  354. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  355. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  356. Mathewson N, Jenq R, Mathew A, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17:505-513 pubmed 出版商
  357. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  358. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  359. McFarland B, Marks M, Rowse A, Fehling S, Gerigk M, Qin H, et al. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma. Oncotarget. 2016;7:20621-35 pubmed 出版商
  360. Friedman K, Brodsky A, Lu S, Wood S, Gill A, Lombardo K, et al. Medullary carcinoma of the colon: a distinct morphology reveals a distinctive immunoregulatory microenvironment. Mod Pathol. 2016;29:528-41 pubmed 出版商
  361. Tosiek M, Fiette L, El Daker S, Eberl G, Freitas A. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun. 2016;7:10888 pubmed 出版商
  362. Vermeulen J, Van Hecke W, Spliet W, Villacorta Hidalgo J, Fisch P, Broekhuizen R, et al. Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors. PLoS ONE. 2016;11:e0151465 pubmed 出版商
  363. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  364. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, et al. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58 pubmed 出版商
  365. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  366. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  367. Hu G, Yang S, Hu W, Wen Z, He D, Zeng L, et al. Effect of cold stress on immunity in rats. Exp Ther Med. 2016;11:33-42 pubmed
  368. Xiong Y, Ahmad S, Iwami D, Brinkman C, Bromberg J. T-bet Regulates Natural Regulatory T Cell Afferent Lymphatic Migration and Suppressive Function. J Immunol. 2016;196:2526-40 pubmed 出版商
  369. Nguyen N, Bellile E, Thomas D, McHugh J, Rozek L, Virani S, et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck. 2016;38:1074-84 pubmed 出版商
  370. Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, et al. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 2016;6:20588 pubmed 出版商
  371. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  372. Aloulou M, Carr E, Gador M, Bignon A, Liblau R, Fazilleau N, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun. 2016;7:10579 pubmed 出版商
  373. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  374. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  375. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  376. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  377. Kim K, Wen X, Yang H, Kim W, Kang G. Prognostic Implication of M2 Macrophages Are Determined by the Proportional Balance of Tumor Associated Macrophages and Tumor Infiltrating Lymphocytes in Microsatellite-Unstable Gastric Carcinoma. PLoS ONE. 2015;10:e0144192 pubmed 出版商
  378. Carrascal J, Carrillo J, Arpa B, Egia Mendikute L, Rosell Mases E, Pujol Autonell I, et al. B-cell anergy induces a Th17 shift in a novel B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse. Eur J Immunol. 2016;46:593-608 pubmed 出版商
  379. Francisconi C, Vieira A, Biguetti C, Glowacki A, Trombone A, Letra A, et al. Characterization of the Protective Role of Regulatory T Cells in Experimental Periapical Lesion Development and Their Chemoattraction Manipulation as a Therapeutic Tool. J Endod. 2016;42:120-6 pubmed 出版商
  380. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  381. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  382. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  383. Feng Z, Puri S, Moudgil T, Wood W, Hoyt C, Wang C, et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer. 2015;3:47 pubmed 出版商
  384. Arriola Apelo S, Neuman J, Baar E, Syed F, Cummings N, Brar H, et al. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell. 2016;15:28-38 pubmed 出版商
  385. Zhao L, Li C, Jin P, Ng C, Lin Z, Li Y, et al. Histopathological features of sinonasal inverted papillomas in chinese patients. Laryngoscope. 2016;126:E141-7 pubmed 出版商
  386. Patel M, Jacobson B, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165-77 pubmed 出版商
  387. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  388. Zanvit P, Konkel J, Jiao X, Kasagi S, Zhang D, Wu R, et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun. 2015;6:8424 pubmed 出版商
  389. Min S, Yan M, Kim S, Ravikumar S, Kwon S, Vanarsa K, et al. Green Tea Epigallocatechin-3-Gallate Suppresses Autoimmune Arthritis Through Indoleamine-2,3-Dioxygenase Expressing Dendritic Cells and the Nuclear Factor, Erythroid 2-Like 2 Antioxidant Pathway. J Inflamm (Lond). 2015;12:53 pubmed 出版商
  390. Gao Y, Zhang M, Li J, Yang M, Liu Y, Guo X, et al. Circulating FoxP3+ Regulatory T and Interleukin17-Producing Th17 Cells Actively Influence HBV Clearance in De Novo Hepatitis B Virus Infected Patients after Orthotopic Liver Transplantation. PLoS ONE. 2015;10:e0137881 pubmed 出版商
  391. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  392. Poncini C, Ilarregui J, Batalla E, Engels S, Cerliani J, Cucher M, et al. Trypanosoma cruzi Infection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1-Dependent Mechanisms. J Immunol. 2015;195:3311-24 pubmed 出版商
  393. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  394. Romero Palomo F, Risalde M, Gómez Villamandos J. Immunopathologic Changes in the Thymus of Calves Pre-infected with BVDV and Challenged with BHV-1. Transbound Emerg Dis. 2017;64:574-584 pubmed 出版商
  395. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  396. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  397. Redpath S, Van Der Werf N, MacDonald A, Maizels R, Taylor M. Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase. Infect Immun. 2015;83:3881-9 pubmed 出版商
  398. Jasinski Bergner S, Stoehr C, Bukur J, Massa C, Braun J, Hüttelmaier S, et al. Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology. 2015;4:e1008805 pubmed
  399. Saulep Easton D, Vincent F, Quah P, Wei A, Ting S, Croce C, et al. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia. 2016;30:163-72 pubmed 出版商
  400. Chang C, Lin C, Lu C, Martel J, Ko Y, Ojcius D, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489 pubmed 出版商
  401. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  402. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  403. Holtzhausen A, Zhao F, Evans K, Tsutsui M, Orabona C, Tyler D, et al. Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunol Res. 2015;3:1082-95 pubmed 出版商
  404. Khan I, Perrard X, Brunner G, Lui H, Sparks L, Smith S, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond). 2015;39:1607-18 pubmed 出版商
  405. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS ONE. 2015;10:e0128094 pubmed 出版商
  406. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  407. Liao J, Ovenell K, Curtis E, Cecil D, Koehnlein M, Rastetter L, et al. Preservation of tumor-host immune interactions with luciferase-tagged imaging in a murine model of ovarian cancer. J Immunother Cancer. 2015;3:16 pubmed 出版商
  408. Wang Z, Wei M, Zhang H, Chen H, Germana S, Huang C, et al. Diphtheria-toxin based anti-human CCR4 immunotoxin for targeting human CCR4(+) cells in vivo. Mol Oncol. 2015;9:1458-70 pubmed 出版商
  409. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  410. Holm J, Sorobetea D, Kiilerich P, Ramayo Caldas Y, Estellé J, Ma T, et al. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli. PLoS ONE. 2015;10:e0125495 pubmed 出版商
  411. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-6 pubmed 出版商
  412. Dennis K, Saadalla A, Blatner N, Wang S, Venkateswaran V, Gounari F, et al. T-cell Expression of IL10 Is Essential for Tumor Immune Surveillance in the Small Intestine. Cancer Immunol Res. 2015;3:806-14 pubmed 出版商
  413. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  414. Lal G, Nakayama Y, Sethi A, Singh A, Burrell B, Kulkarni N, et al. Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation. 2015;99:1817-28 pubmed 出版商
  415. Punt S, van Vliet M, Spaans V, de Kroon C, Fleuren G, Gorter A, et al. FoxP3(+) and IL-17(+) cells are correlated with improved prognosis in cervical adenocarcinoma. Cancer Immunol Immunother. 2015;64:745-53 pubmed 出版商
  416. Romani R, Pirisinu I, Calvitti M, Pallotta M, Gargaro M, Bistoni G, et al. Stem cells from human amniotic fluid exert immunoregulatory function via secreted indoleamine 2,3-dioxygenase1. J Cell Mol Med. 2015;19:1593-605 pubmed 出版商
  417. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  418. Kim Y, Lim H, Jung H, Wetsel R, Chung Y. Regulation of autoimmune germinal center reactions in lupus-prone BXD2 mice by follicular helper T cells. PLoS ONE. 2015;10:e0120294 pubmed 出版商
  419. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  420. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  421. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  422. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  423. Torres Cabala C, Curry J, Li Ning Tapia E, Ramos C, Tetzlaff M, Prieto V, et al. HTLV-1-associated infective dermatitis demonstrates low frequency of FOXP3-positive T-regulatory lymphocytes. J Dermatol Sci. 2015;77:150-5 pubmed 出版商
  424. Buchwald Z, Yang C, Nellore S, Shashkova E, Davis J, Cline A, et al. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res. 2015;30:1508-22 pubmed 出版商
  425. Valle A, Barbagiovanni G, Jofra T, Stabilini A, Pérol L, Baeyens A, et al. Heterogeneous CD3 expression levels in differing T cell subsets correlate with the in vivo anti-CD3-mediated T cell modulation. J Immunol. 2015;194:2117-27 pubmed 出版商
  426. Crncec I, Pathria P, Svinka J, Eferl R. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol Biol. 2015;1267:145-64 pubmed 出版商
  427. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  428. Triplett T, Tucker C, Triplett K, Alderman Z, Sun L, Ling L, et al. STAT3 Signaling Is Required for Optimal Regression of Large Established Tumors in Mice Treated with Anti-OX40 and TGFβ Receptor Blockade. Cancer Immunol Res. 2015;3:526-35 pubmed 出版商
  429. Engels C, Charehbili A, van de Velde C, Bastiaannet E, Sajet A, Putter H, et al. The prognostic and predictive value of Tregs and tumor immune subtypes in postmenopausal, hormone receptor-positive breast cancer patients treated with adjuvant endocrine therapy: a Dutch TEAM study analysis. Breast Cancer Res Treat. 2015;149:587-96 pubmed 出版商
  430. Evans E, Jonason A, Bussler H, Torno S, Veeraraghavan J, Reilly C, et al. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res. 2015;3:689-701 pubmed 出版商
  431. Däster S, Eppenberger Castori S, Hirt C, Zlobec I, Delko T, Nebiker C, et al. High frequency of CD8 positive lymphocyte infiltration correlates with lack of lymph node involvement in early rectal cancer. Dis Markers. 2014;2014:792183 pubmed 出版商
  432. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  433. Vorobjova T, Uibo O, Heilman K, Uibo R. Increased density of tolerogenic dendritic cells in the small bowel mucosa of celiac patients. World J Gastroenterol. 2015;21:439-52 pubmed 出版商
  434. Clouthier D, Zhou A, Wortzman M, Luft O, Levy G, Watts T. GITR intrinsically sustains early type 1 and late follicular helper CD4 T cell accumulation to control a chronic viral infection. PLoS Pathog. 2015;11:e1004517 pubmed 出版商
  435. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  436. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  437. Teixeira L, Moreira J, Melo J, Bezerra F, Marques R, Ferreirinha P, et al. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology. 2015;145:242-57 pubmed 出版商
  438. Djukic M, Sostmann N, Bertsch T, Mecke M, Nessler S, Manig A, et al. Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice. J Neuroinflammation. 2015;12:208 pubmed 出版商
  439. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  440. Hildebrand A, Jarsch C, Kern Y, Böhringer D, Reinhard T, Schwartzkopff J. Subconjunctivally applied naïve Tregs support corneal graft survival in baby rats. Mol Vis. 2014;20:1749-57 pubmed
  441. Krishnamoorthy N, Burkett P, Dalli J, Abdulnour R, Colas R, Ramon S, et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol. 2015;194:863-7 pubmed 出版商
  442. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  443. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  444. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  445. Käser T, Mair K, Hammer S, Gerner W, Saalmüller A. Natural and inducible Tregs in swine: Helios expression and functional properties. Dev Comp Immunol. 2015;49:323-31 pubmed 出版商
  446. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  447. Gerner W, Talker S, Koinig H, Sedlak C, Mair K, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol. 2015;66:3-13 pubmed 出版商
  448. Lees J, Duffy S, Perera C, Moalem Taylor G. Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury. Cytokine. 2015;71:207-14 pubmed 出版商
  449. Hou J, Zhang Q, Fujino M, Cai S, Ito H, Takahashi K, et al. 5-Aminolevulinic acid with ferrous iron induces permanent cardiac allograft acceptance in mice via induction of regulatory cells. J Heart Lung Transplant. 2015;34:254-63 pubmed 出版商
  450. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  451. Uchiyama M, Jin X, Yin E, Shimokawa T, Niimi M. Treadmill exercise induces murine cardiac allograft survival and generates regulatory T cell. Transpl Int. 2015;28:352-62 pubmed 出版商
  452. Patel P, Julien J, Kriz J. Early-stage treatment with Withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12:217-33 pubmed 出版商
  453. Hermans C, Anz D, Engel J, Kirchner T, Endres S, Mayr D. Analysis of FoxP3+ T-regulatory cells and CD8+ T-cells in ovarian carcinoma: location and tumor infiltration patterns are key prognostic markers. PLoS ONE. 2014;9:e111757 pubmed 出版商
  454. Llosa N, Cruise M, Tam A, Wicks E, Hechenbleikner E, Taube J, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43-51 pubmed 出版商
  455. Thauland T, Koguchi Y, Dustin M, Parker D. CD28-CD80 interactions control regulatory T cell motility and immunological synapse formation. J Immunol. 2014;193:5894-903 pubmed 出版商
  456. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  457. Lin W, Fan Z, Suo Y, Deng Y, Zhang M, Wang J, et al. The bullseye synapse formed between CD4+ T-cell and staphylococcal enterotoxin B-pulsed dendritic cell is a suppressive synapse in T-cell response. Immunol Cell Biol. 2015;93:99-110 pubmed 出版商
  458. Maneva Radicheva L, Amatya C, Parker C, Ellefson J, Radichev I, Raghavan A, et al. Autoimmune diabetes is suppressed by treatment with recombinant human tissue Kallikrein-1. PLoS ONE. 2014;9:e107213 pubmed 出版商
  459. Donaldson D, Bradford B, Artis D, Mabbott N. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol. 2015;8:582-95 pubmed 出版商
  460. ZasÅ‚ona Z, Przybranowski S, Wilke C, Van Rooijen N, Teitz Tennenbaum S, Osterholzer J, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014;193:4245-53 pubmed 出版商
  461. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  462. Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K, Matsushita T. B cells promote tumor immunity against B16F10 melanoma. Am J Pathol. 2014;184:3120-9 pubmed 出版商
  463. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  464. Wu C, He S, Peng Y, Kushwaha K, Lin J, Dong J, et al. TSLPR deficiency attenuates atherosclerotic lesion development associated with the inhibition of TH17 cells and the promotion of regulator T cells in ApoE-deficient mice. J Mol Cell Cardiol. 2014;76:33-45 pubmed 出版商
  465. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  466. Ishihara M, Seo N, Mitsui J, Muraoka D, Tanaka M, Mineno J, et al. Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS ONE. 2014;9:e104669 pubmed 出版商
  467. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  468. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  469. Kim K, Skora A, Li Z, Liu Q, Tam A, Blosser R, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111:11774-9 pubmed 出版商
  470. Zhang X, Gao L, Liang X, Guo M, Wang R, Pan Y, et al. HBV preS2 transactivates FOXP3 expression in malignant hepatocytes. Liver Int. 2015;35:1087-94 pubmed 出版商
  471. Knuschke T, Bayer W, Rotan O, Sokolova V, Wadwa M, Kirschning C, et al. Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. Nanomedicine. 2014;10:1787-98 pubmed 出版商
  472. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  473. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  474. Azzimonti B, Zavattaro E, Provasi M, Vidali M, Conca A, Catalano E, et al. Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio. Br J Dermatol. 2015;172:64-73 pubmed 出版商
  475. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258-69 pubmed 出版商
  476. Chen Z, Ozbun L, Chong N, Wallecha A, Berzofsky J, Khleif S. Episomal expression of truncated listeriolysin O in LmddA-LLO-E7 vaccine enhances antitumor efficacy by preferentially inducing expansions of CD4+FoxP3- and CD8+ T cells. Cancer Immunol Res. 2014;2:911-22 pubmed 出版商
  477. Nandi B, Pai C, Huang Q, Prabhala R, Munshi N, Gold J. CCR6, the sole receptor for the chemokine CCL20, promotes spontaneous intestinal tumorigenesis. PLoS ONE. 2014;9:e97566 pubmed 出版商
  478. Sreedharan R, Chen S, Miller M, Haribhai D, Williams C, Van Why S. Mice with an absent stress response are protected against ischemic renal injury. Kidney Int. 2014;86:515-24 pubmed 出版商
  479. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  480. Breuer J, Schwab N, Schneider Hohendorf T, Marziniak M, Mohan H, Bhatia U, et al. Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity. Ann Neurol. 2014;75:739-58 pubmed 出版商
  481. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  482. Rossi G, Pengo G, Caldin M, Palumbo Piccionello A, Steiner J, Cohen N, et al. Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL#3 strains in dogs with idiopathic inflammatory bowel disease. PLoS ONE. 2014;9:e94699 pubmed 出版商
  483. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  484. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  485. Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82-92 pubmed 出版商
  486. Samuelson E, Laird R, Papillion A, Tatum A, Princiotta M, Hayes S. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS ONE. 2014;9:e92054 pubmed 出版商
  487. Berney Meyer L, Hung N, Slatter T, Schollum J, Kitching A, Walker R. Omeprazole-induced acute interstitial nephritis: a possible Th1-Th17-mediated injury?. Nephrology (Carlton). 2014;19:359-65 pubmed 出版商
  488. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  489. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  490. Wolfs T, Kramer B, Thuijls G, Kemp M, Saito M, Willems M, et al. Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation. Am J Physiol Gastrointest Liver Physiol. 2014;306:G382-93 pubmed 出版商
  491. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  492. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  493. Xia S, Wei J, Wang J, Sun H, Zheng W, Li Y, et al. A requirement of dendritic cell-derived interleukin-27 for the tumor infiltration of regulatory T cells. J Leukoc Biol. 2014;95:733-742 pubmed
  494. Hu Y, Xiao H, Shi T, Oppenheim J, Chen X. Progranulin promotes tumour necrosis factor-induced proliferation of suppressive mouse CD4? Foxp3? regulatory T cells. Immunology. 2014;142:193-201 pubmed 出版商
  495. Chatterjee S, Eby J, Al Khami A, Soloshchenko M, Kang H, Kaur N, et al. A quantitative increase in regulatory T cells controls development of vitiligo. J Invest Dermatol. 2014;134:1285-1294 pubmed 出版商
  496. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  497. Murphy K, Erickson J, Johnson C, Seiler C, Bedi J, Hu P, et al. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol. 2014;192:224-33 pubmed 出版商
  498. Lee P, Puppi M, Schluns K, Yu Lee L, Dong C, Lacorazza H. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. J Immunol. 2014;192:178-88 pubmed 出版商
  499. Chopra M, Lang I, Salzmann S, Pachel C, Kraus S, Bäuerlein C, et al. Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1. PLoS ONE. 2013;8:e75737 pubmed 出版商
  500. Yockey L, Demehri S, Turkoz M, Turkoz A, Ahern P, Jassim O, et al. The absence of a microbiota enhances TSLP expression in mice with defective skin barrier but does not affect the severity of their allergic inflammation. J Invest Dermatol. 2013;133:2714-2721 pubmed 出版商
  501. Barron L, Smith A, El Kasmi K, Qualls J, Huang X, Cheever A, et al. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS ONE. 2013;8:e61961 pubmed 出版商
  502. Billich A, Baumruker T, Beerli C, Bigaud M, Bruns C, Calzascia T, et al. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis. PLoS ONE. 2013;8:e59630 pubmed 出版商
  503. Redpath S, Van Der Werf N, Cervera A, MacDonald A, Gray D, Maizels R, et al. ICOS controls Foxp3(+) regulatory T-cell expansion, maintenance and IL-10 production during helminth infection. Eur J Immunol. 2013;43:705-15 pubmed 出版商
  504. Khan A, Fu H, Tan L, Harper J, Beutelspacher S, Larkin D, et al. Dendritic cell modification as a route to inhibiting corneal graft rejection by the indirect pathway of allorecognition. Eur J Immunol. 2013;43:734-46 pubmed 出版商
  505. Weiss J, Bilate A, Gobert M, Ding Y, Curotto de Lafaille M, Parkhurst C, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012;209:1723-42, S1 pubmed
  506. Hwang S, Song K, Lesourne R, Lee J, Pinkhasov J, Li L, et al. Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease. J Exp Med. 2012;209:1781-95 pubmed
  507. Jin X, Uchiyama M, Zhang Q, Hirai T, Niimi M. Inchingorei-san (TJ-117) and Artemisiae Capillaris Herba Induced Prolonged Survival of Fully Mismatched Cardiac Allografts and Generated Regulatory Cells in Mice. Evid Based Complement Alternat Med. 2012;2012:689810 pubmed 出版商
  508. Golias J, Schwarzer M, Wallner M, Kverka M, Kozakova H, Srůtková D, et al. Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS ONE. 2012;7:e37156 pubmed 出版商
  509. Feng T, Cong Y, Alexander K, Elson C. Regulation of Toll-like receptor 5 gene expression and function on mucosal dendritic cells. PLoS ONE. 2012;7:e35918 pubmed 出版商
  510. Uchiyama M, Jin X, Zhang Q, Hirai T, Amano A, Bashuda H, et al. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells. J Cardiothorac Surg. 2012;7:26 pubmed 出版商
  511. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney N, Schuijs M, et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7:e32371 pubmed 出版商
  512. Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster K, Sprent J, et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 2012;5:161-72 pubmed 出版商
  513. Wollenberg I, Agua Doce A, Hernandez A, Almeida C, Oliveira V, Faro J, et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J Immunol. 2011;187:4553-60 pubmed 出版商
  514. West N, Panet Raymond V, Truong P, Alexander C, Babinszky S, Milne K, et al. Intratumoral Immune Responses Can Distinguish New Primary and True Recurrence Types of Ipsilateral Breast Tumor Recurrences (IBTR). Breast Cancer (Auckl). 2011;5:105-15 pubmed 出版商
  515. Qian B, Li J, Zhang H, Kitamura T, Zhang J, Campion L, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222-5 pubmed 出版商
  516. Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q, et al. Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS ONE. 2011;6:e19495 pubmed 出版商
  517. Goldstein J, Balderas R, Marodon G. Continuous activation of the CD122/STAT-5 signaling pathway during selection of antigen-specific regulatory T cells in the murine thymus. PLoS ONE. 2011;6:e19038 pubmed 出版商
  518. Gadiot J, Hooijkaas A, Kaiser A, Van Tinteren H, van Boven H, Blank C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer. 2011;117:2192-201 pubmed 出版商
  519. Wainwright D, Sengupta S, Han Y, Ulasov I, Lesniak M. The presence of IL-17A and T helper 17 cells in experimental mouse brain tumors and human glioma. PLoS ONE. 2010;5:e15390 pubmed 出版商
  520. Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J Exp Med. 2010;207:2561-8 pubmed 出版商
  521. Mandal M, Marzouk A, Donnelly R, Ponzio N. Maternal immune stimulation during pregnancy affects adaptive immunity in offspring to promote development of TH17 cells. Brain Behav Immun. 2011;25:863-71 pubmed 出版商
  522. Lin P, Sun L, Thibodeaux S, Ludwig S, Vadlamudi R, Hurez V, et al. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol. 2010;185:2747-53 pubmed 出版商
  523. Tanaka S, Maeda S, Hashimoto M, Fujimori C, Ito Y, Teradaira S, et al. Graded attenuation of TCR signaling elicits distinct autoimmune diseases by altering thymic T cell selection and regulatory T cell function. J Immunol. 2010;185:2295-305 pubmed 出版商
  524. Cai S, Cao X, Hassan A, Fehniger T, Ley T. Granzyme B is not required for regulatory T cell-mediated suppression of graft-versus-host disease. Blood. 2010;115:1669-77 pubmed 出版商
  525. Blache C, Adriouch S, Calbo S, Drouot L, Dulauroy S, Arnoult C, et al. Cutting edge: CD4-independent development of functional FoxP3+ regulatory T cells. J Immunol. 2009;183:4182-6 pubmed 出版商
  526. Zelinskyy G, Dietze K, Hüsecken Y, Schimmer S, Nair S, Werner T, et al. The regulatory T-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic T-cell response. Blood. 2009;114:3199-207 pubmed 出版商
  527. Houot R, Goldstein M, Kohrt H, Myklebust J, Alizadeh A, Lin J, et al. Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by Treg depletion. Blood. 2009;114:3431-8 pubmed 出版商
  528. Ellestad K, Tsutsui S, Noorbakhsh F, Warren K, Yong V, Pittman Q, et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol. 2009;183:298-309 pubmed 出版商
  529. Abboud G, Staumont Sallé D, Kanda A, Roumier T, Deruytter N, Lavogiez C, et al. Fc(epsilon)RI and FcgammaRIII/CD16 differentially regulate atopic dermatitis in mice. J Immunol. 2009;182:6517-26 pubmed 出版商
  530. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  531. Sato K, Eizumi K, Fukaya T, Fujita S, Sato Y, Takagi H, et al. Naturally occurring regulatory dendritic cells regulate murine cutaneous chronic graft-versus-host disease. Blood. 2009;113:4780-9 pubmed 出版商
  532. Ribeiro de Almeida C, Heath H, Krpic S, Dingjan G, van Hamburg J, Bergen I, et al. Critical role for the transcription regulator CCCTC-binding factor in the control of Th2 cytokine expression. J Immunol. 2009;182:999-1010 pubmed
  533. Saito K, Torii M, Ma N, Tsuchiya T, Wang L, Hori T, et al. Differential regulatory function of resting and preactivated allergen-specific CD4+ CD25+ regulatory T cells in Th2-type airway inflammation. J Immunol. 2008;181:6889-97 pubmed
  534. Milne K, Barnes R, Girardin A, Mawer M, Nesslinger N, Ng A, et al. Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS ONE. 2008;3:e3409 pubmed 出版商
  535. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol. 2008;181:3933-46 pubmed
  536. Reinwald S, Wiethe C, Westendorf A, Breloer M, Probst Kepper M, Fleischer B, et al. CD83 expression in CD4+ T cells modulates inflammation and autoimmunity. J Immunol. 2008;180:5890-7 pubmed
  537. Bommireddy R, Babcock G, Singh R, Doetschman T. TGFbeta1 deficiency does not affect the generation and maintenance of CD4+CD25+FOXP3+ putative Treg cells, but causes their numerical inadequacy and loss of regulatory function. Clin Immunol. 2008;127:206-13 pubmed 出版商
  538. Barron L, Knoechel B, Lohr J, Abbas A. Cutting edge: contributions of apoptosis and anergy to systemic T cell tolerance. J Immunol. 2008;180:2762-6 pubmed
  539. Rana S, Byrne S, MacDonald L, Chan C, Halliday G. Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am J Pathol. 2008;172:993-1004 pubmed 出版商
  540. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  541. Venanzi E, Gray D, Benoist C, Mathis D. Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J Immunol. 2007;179:5693-700 pubmed
  542. Cambos M, Belanger B, Jacques A, Roulet A, Scorza T. Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion. Int J Parasitol. 2008;38:229-38 pubmed
  543. Kang S, Lim H, Andrisani O, Broxmeyer H, Kim C. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol. 2007;179:3724-33 pubmed
  544. Yamazaki S, Bonito A, Spisek R, Dhodapkar M, Inaba K, Steinman R. Dendritic cells are specialized accessory cells along with TGF- for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood. 2007;110:4293-302 pubmed
  545. Jiang L, Yang P, He H, Li B, Lin X, Hou S, et al. Increased expression of Foxp3 in splenic CD8+ T cells from mice with anterior chamber-associated immune deviation. Mol Vis. 2007;13:968-74 pubmed
  546. Walsh C, Smith P, Fallon P. Role for CTLA-4 but not CD25+ T cells during Schistosoma mansoni infection of mice. Parasite Immunol. 2007;29:293-308 pubmed
  547. Stephens G, Andersson J, Shevach E. Distinct subsets of FoxP3+ regulatory T cells participate in the control of immune responses. J Immunol. 2007;178:6901-11 pubmed
  548. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225-32 pubmed
  549. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed
  550. MacKenzie D, Schartner J, Lin J, Timmel A, Jennens Clough M, Fathman C, et al. GRAIL is up-regulated in CD4+ CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J Biol Chem. 2007;282:9696-702 pubmed
  551. Erhardt A, Biburger M, Papadopoulos T, Tiegs G. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology. 2007;45:475-85 pubmed
  552. Wang Z, Davies J. CD8 blockade promotes the expansion of antigen-specific CD4+ FOXP3+ regulatory T cells in vivo. Int Immunopharmacol. 2007;7:249-65 pubmed
  553. Lohr J, Knoechel B, Wang J, Villarino A, Abbas A. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J Exp Med. 2006;203:2785-91 pubmed
  554. Gebe J, Unrath K, Falk B, Ito K, Wen L, Daniels T, et al. Age-dependent loss of tolerance to an immunodominant epitope of glutamic acid decarboxylase in diabetic-prone RIP-B7/DR4 mice. Clin Immunol. 2006;121:294-304 pubmed
  555. Cassan C, Piaggio E, Zappulla J, Mars L, Couturier N, Bucciarelli F, et al. Pertussis toxin reduces the number of splenic Foxp3+ regulatory T cells. J Immunol. 2006;177:1552-60 pubmed
  556. Hansen W, Loser K, Westendorf A, Bruder D, Pfoertner S, Siewert C, et al. G protein-coupled receptor 83 overexpression in naive CD4+CD25- T cells leads to the induction of Foxp3+ regulatory T cells in vivo. J Immunol. 2006;177:209-15 pubmed
  557. Leithäuser F, Meinhardt Krajina T, Fink K, Wotschke B, Moller P, Reimann J. Foxp3-expressing CD103+ regulatory T cells accumulate in dendritic cell aggregates of the colonic mucosa in murine transfer colitis. Am J Pathol. 2006;168:1898-909 pubmed
  558. Sfondrini L, Rossini A, Besusso D, Merlo A, Tagliabue E, Menard S, et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol. 2006;176:6624-30 pubmed
  559. Robertson S, Messer R, Carmody A, Hasenkrug K. In vitro suppression of CD8+ T cell function by Friend virus-induced regulatory T cells. J Immunol. 2006;176:3342-9 pubmed
  560. Wohlfert E, Gorelik L, Mittler R, Flavell R, Clark R. Cutting edge: deficiency in the E3 ubiquitin ligase Cbl-b results in a multifunctional defect in T cell TGF-beta sensitivity in vitro and in vivo. J Immunol. 2006;176:1316-20 pubmed