这是一篇来自已证抗体库的有关小鼠 Gabrg2的综述,是根据17篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gabrg2 抗体。
Gabrg2 同义词: GABAA-R; Gabrg-2; gamma2

Synaptic Systems
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 3a
Synaptic Systems Gabrg2抗体(SySy, 224 004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3a). Cell Rep (2019) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 图 3a
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224004)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3a
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3a). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2b
Synaptic Systems Gabrg2抗体(Synaptic systems, 224003)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224003)被用于被用于免疫印迹在小鼠样本上 (图 2b). Biochem Biophys Res Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 e2c
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224003)被用于被用于免疫印迹在人类样本上 (图 e2c). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224 003)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Front Mol Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 4c
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224 003)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5e
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224003)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). J Biol Chem (2016) ncbi
小鼠 单克隆(331A12)
  • 其他; 大鼠; 1:600; 图 7a
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224 011)被用于被用于其他在大鼠样本上浓度为1:600 (图 7a). elife (2016) ncbi
豚鼠 多克隆
  • 免疫组化; 大鼠; 1:500; 图 11
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224 004)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 11). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:600; 图 1b
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224 003)被用于被用于免疫组化在大鼠样本上浓度为1:600 (图 1b). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224003)被用于被用于免疫印迹在大鼠样本上 (图 5). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224003)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224 003)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(331A12)
  • 免疫组化; 小鼠; 1:500; 图 3a
Synaptic Systems Gabrg2抗体(Synaptic Systems, 224011)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). elife (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
赛默飞世尔 Gabrg2抗体(Invitrogen, PA5-77404)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b). Cell Death Dis (2021) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2h
艾博抗(上海)贸易有限公司 Gabrg2抗体(Abcam, ab87328)被用于被用于免疫印迹在小鼠样本上 (图 2h). elife (2017) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3a
Alomone Labs Gabrg2抗体(Alomone Labs, AGA-005)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Cell Rep (2019) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6f
Novus Biologicals Gabrg2抗体(Novus, NB300-151)被用于被用于免疫组化在小鼠样本上 (图 6f). Cell Death Differ (2021) ncbi
Alpha Diagnostics
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 8e
Alpha Diagnostics Gabrg2抗体(Alpha Diagnostic International, GAG21-A)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 8e). Neurobiol Aging (2016) ncbi
文章列表
  1. Li X, Guo S, Xu S, Chen Z, Wang L, Ding J, et al. Neocortex- and hippocampus-specific deletion of Gabrg2 causes temperature-dependent seizures in mice. Cell Death Dis. 2021;12:553 pubmed 出版商
  2. Tamargo Gómez I, Martínez García G, Suarez M, Rey V, Fueyo A, Codina Martínez H, et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ. 2021;: pubmed 出版商
  3. Halff E, Szulc B, Lesept F, Kittler J. SNX27-Mediated Recycling of Neuroligin-2 Regulates Inhibitory Signaling. Cell Rep. 2019;29:2599-2607.e6 pubmed 出版商
  4. Fricke S, Metzdorf K, Ohm M, Haak S, Heine M, Korte M, et al. Fast Regulation of GABAAR Diffusion Dynamics by Nogo-A Signaling. Cell Rep. 2019;29:671-684.e6 pubmed 出版商
  5. Han W, Li J, Pelkey K, Pandey S, Chen X, Wang Y, et al. Shisa7 is a GABAA receptor auxiliary subunit controlling benzodiazepine actions. Science. 2019;366:246-250 pubmed 出版商
  6. Fu Y, Zhang B, Mu T. LMAN1 (ERGIC-53) promotes trafficking of neuroreceptors. Biochem Biophys Res Commun. 2019;511:356-362 pubmed 出版商
  7. Laverty D, Desai R, Uchański T, Masiulis S, Stec W, Malinauskas T, et al. Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature. 2019;565:516-520 pubmed 出版商
  8. Everington E, Gibbard A, Swinny J, Seifi M. Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Front Mol Neurosci. 2018;11:18 pubmed 出版商
  9. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  10. Chen M, Wang J, Jiang J, Zheng X, Justice N, Wang K, et al. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition. elife. 2017;6: pubmed 出版商
  11. Kilpatrick C, Murakami S, Feng M, Wu X, Lal R, Chen G, et al. Dissociation of Golgi-associated DHHC-type Zinc Finger Protein (GODZ)- and Sertoli Cell Gene with a Zinc Finger Domain-? (SERZ-?)-mediated Palmitoylation by Loss of Function Analyses in Knock-out Mice. J Biol Chem. 2016;291:27371-27386 pubmed 出版商
  12. Lauritzen K, Hasan Olive M, Regnell C, Kleppa L, Scheibye Knudsen M, Gjedde A, et al. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging. 2016;48:34-47 pubmed 出版商
  13. Kerti Szigeti K, Nusser Z. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells. elife. 2016;5: pubmed 出版商
  14. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 Depalmitoylating Enzymes. J Neurosci. 2016;36:6431-44 pubmed 出版商
  15. Brown L, Nicholson M, Arama J, Mercer A, Thomson A, Jovanovic J. ?-Aminobutyric Acid Type A (GABAA) Receptor Subunits Play a Direct Structural Role in Synaptic Contact Formation via Their N-terminal Extracellular Domains. J Biol Chem. 2016;291:13926-42 pubmed 出版商
  16. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  17. Orduz D, Maldonado P, Balia M, Vélez Fort M, de Sars V, Yanagawa Y, et al. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex. elife. 2015;4: pubmed 出版商