这是一篇来自已证抗体库的有关小鼠 磷酸甘油醛脱氢酶 (Gapdh) 的综述,是根据1087篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合磷酸甘油醛脱氢酶 抗体。
磷酸甘油醛脱氢酶 同义词: Gapd

赛默飞世尔
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6??s1d
赛默飞世尔磷酸甘油醛脱氢酶抗体(ThermoFisher, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6??s1d). elife (2021) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:2000; 图 s1a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1a). J Cell Biol (2021) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:3000; 图 2a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, MA5-15738-HRP)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2a). elife (2020) ncbi
小鼠 单克隆(GA1R)
  • 流式细胞仪; 人类; 1:300; 图 s5h
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 s5h). Science (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:10,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. Commun Biol (2020) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 9
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 9). Cells (2019) ncbi
小鼠 单克隆(GA1R)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4c
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, GA1R)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4c). Arch Immunol Ther Exp (Warsz) (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1c
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1c). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:1000. Science (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 6b
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Cell (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:150,000; 图 1a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:150,000 (图 1a). Sci Rep (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 4300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Biochem Pharmacol (2019) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 3d
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 3d). PLoS Pathog (2018) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 s4g
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM43000)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s4g). Nat Commun (2018) ncbi
小鼠 单克隆(6C5)
  • 其他; 人类; 图 4c
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, AM4300)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:1000; 图 6h
  • 免疫印迹; 小鼠; 1:1000; 图 6h
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, MA5-15738-BTIN)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6h). Sci Rep (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:5000; 图 9a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 9a). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 s1b
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Science (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 4e
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 4e). ChemMedChem (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; brewer's yeast; 图 1c
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在brewer's yeast样本上 (图 1c). Autophagy (2017) ncbi
小鼠 单克隆(6C5)
  • reverse phase protein lysate microarray; 人类; 图 7a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 7a). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, PA1-988)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 2a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2a). PLoS Biol (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:10,000; 图 4f
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, GA1R)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:4000; 图 1a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1a). Am J Physiol Cell Physiol (2017) ncbi
小鼠 单克隆(6C5)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:500; 图 2h
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, ZG003)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2h). Nat Med (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 s2b
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, AM4300)被用于被用于免疫印迹在人类样本上 (图 s2b). Mol Carcinog (2017) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 大鼠; 1:40,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fischer Scientific, MA1-16757)被用于被用于免疫印迹在大鼠样本上浓度为1:40,000. elife (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于免疫印迹在人类样本上. Am J Sports Med (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, MA5-15738)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上 (图 3a). Osteoarthritis Cartilage (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 2b
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 2b). Biomed Pharmacother (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2e
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 2e). J Immunol (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 6b
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6b). Transl Res (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 5d
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 5d). Cell Death Discov (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔磷酸甘油醛脱氢酶抗体(ThermoFisher, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 4b). Integr Biol (Camb) (2016) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, MA1-16757)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7b
赛默飞世尔磷酸甘油醛脱氢酶抗体(ThermoFisher Scientific, PA1-987)被用于被用于免疫印迹在小鼠样本上 (图 7b). Biomed Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, PA1-987)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 4300)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fischer, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 5a). Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛默飞世尔磷酸甘油醛脱氢酶抗体(ThermoFisher, PA1-988)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Mol Nutr Food Res (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Front Oncol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:4000; 图 1a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1a). J Cell Sci (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, ZG003)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). BMC Mol Biol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, PA1-988)被用于被用于免疫印迹在牛样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, PA1-987)被用于被用于免疫印迹在小鼠样本上 (图 2f). Biol Reprod (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; fission yeast; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在fission yeast样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, PA1-988)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, PA1-988)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:1500; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(ThermoFisher, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 6). Cell Microbiol (2017) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 3). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, PA1-16777)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:50,000; 表 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion Applied Biosystems, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (表 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 2). Diabetes (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Cycle (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, MA5-15738)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). J Appl Physiol (1985) (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; roundworm ; 1:5000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在roundworm 样本上浓度为1:5000 (图 2). Exp Biol Med (Maywood) (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 7
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 1). Oncogene (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). Mol Carcinog (2017) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Front Microbiol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 猫; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 8) 和 被用于免疫印迹在猫样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:50,000; 图 7
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(ThermoFisher, PA1-16777)被用于被用于免疫印迹在人类样本上 (图 6). Acta Physiol (Oxf) (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 4). EMBO Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Int J Obes (Lond) (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:4000; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5). J Cell Sci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Am J Respir Cell Mol Biol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:6000; 图 4c
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 4300)被用于被用于免疫印迹在大鼠样本上浓度为1:6000 (图 4c). PLoS ONE (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上 (图 4). F1000Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:20,000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(ThermoFisher, MA5-15738-HRP)被用于被用于免疫印迹在人类样本上. Nature (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 豚鼠; 1:1000; 图 7
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在豚鼠样本上浓度为1:1000 (图 7). J Cell Biochem (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:5000; 图 1b
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在人类样本上 (图 1a). Melanoma Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, PA1-987)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Br J Pharmacol (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, MA5-15738)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, PA1-988)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:4000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:4000 (图 1). Neurobiol Dis (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; barley; 1:1000; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在barley样本上浓度为1:1000 (图 3). Plant Physiol Biochem (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, GA1R)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:15,000; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 4). Oncogenesis (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:5000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 8
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 8). PLoS Pathog (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上 (图 4). elife (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 仓鼠; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher, AM4300)被用于被用于免疫印迹在仓鼠样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Arthritis Res Ther (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 1). elife (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 398600)被用于被用于免疫印迹在人类样本上 (图 4). J Clin Invest (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM43000)被用于被用于免疫印迹在人类样本上 (图 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. BMJ Open Gastroenterol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Life Technologies-Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Genes Cancer (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000. PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:10,000; 图 1a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). Microbes Infect (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 6C5)被用于被用于免疫印迹在人类样本上 (图 2). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Neurosci Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:4000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Neuroscience (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA515738)被用于被用于免疫印迹在小鼠样本上 (图 6). J Neurosci (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:100; 图 2d
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2d). Parkinsonism Relat Disord (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, am4300)被用于被用于免疫印迹在人类样本上 (图 1). Stem Cells (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 398600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS Pathog (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; brewer's yeast; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于免疫印迹在brewer's yeast样本上 (图 6). Methods Enzymol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:10,000; 图 1.a,b
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1.a,b). Nat Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上. J Proteome Res (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上. Cell Cycle (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在人类样本上 (图 4). J Proteome Res (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:5000; 图 s3
赛默飞世尔磷酸甘油醛脱氢酶抗体(ThermoScientific, GA1R)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, 398600)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cell Biol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:50,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:50,000. J Cell Physiol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Commun (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 幽门螺杆菌; 1:5000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, GA1R)被用于被用于免疫印迹在幽门螺杆菌样本上浓度为1:5000. Int J Mol Med (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:20,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(ThermoFischer Scientific, 4300)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000. Eur J Neurosci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 398600)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上. Vaccines (Basel) (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce Chemical Co, PA1-987)被用于. Am J Obstet Gynecol (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; fission yeast
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA5-15738)被用于被用于免疫印迹在fission yeast样本上. Genetics (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 犬
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫细胞化学在犬样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:15,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:15,000. Obesity (Silver Spring) (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Cell Struct Funct (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, GA1R)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, 6C5)被用于被用于免疫印迹在人类样本上 (图 1b). Cell (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上. Muscle Nerve (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于免疫印迹在大鼠样本上 (图 1). J Transl Med (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Gastroenterology (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:16,000; 图 5
  • 免疫印迹; 人类; 1:16,000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:16,000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:16,000 (图 2). J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:40,000; 图 2a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:40,000 (图 2a). Sci Signal (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, 6C5)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:4000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Mol Med Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, PA1-988)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Mol Endocrinol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 非洲爪蛙; 1:5000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000. PLoS Genet (2015) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:10,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Neuroscience (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 鸡
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在鸡样本上. Virus Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2015) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, MA1-16757)被用于被用于免疫印迹在人类样本上. Int J Cancer (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion Austin, AM4300)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Aging Cell (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Pierce, MA5-15738)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 s2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 6C5)被用于被用于免疫印迹在小鼠样本上 (图 s2). Nature (2015) ncbi
小鼠 单克隆(GA1R)
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo, MA5-15738)被用于. Nature (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Fisher Scientific, MA5-15738)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, PA1987)被用于. Dev Biol (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:3000; 图 1,2,3,4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1,2,3,4). Nat Commun (2014) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 0.025 ug/ml; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为0.025 ug/ml (图 4). Cell (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:20,000. J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:2000; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, 6C5)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). J Neurosci Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). J Bone Miner Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion Inc./Life Technologies, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000. BMC Genomics (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上. Virus Genes (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:40,000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Orthop Res (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, MA5-15738)被用于被用于免疫印迹在人类样本上浓度为1:2000. Breast Cancer Res (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion Life Technologies, AM4300)被用于被用于免疫印迹在人类样本上. Behav Brain Res (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 0.2 ug/ml
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, 39-8600)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo Scientific, GA1R)被用于被用于免疫印迹在小鼠样本上. Front Physiol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1 ug/ml; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 6). Stem Cells Dev (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Oncogene (2015) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 小鼠; 1:3000; 图 4c
  • 免疫印迹; 人类; 1:3000; 图 1a
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo, MA5-15738)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 1a). Nat Cell Biol (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 7
赛默飞世尔磷酸甘油醛脱氢酶抗体(Lifetechnologies, EP1264Y)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:40,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000. Nat Commun (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图  2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图  2). Pharmacol Biochem Behav (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:15,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000. J Leukoc Biol (2014) ncbi
小鼠 单克隆(GA1R)
  • 免疫印迹; 大鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Thermo, MA5-15738)被用于被用于免疫印迹在大鼠样本上. J Parkinsons Dis (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:5000; 图 4c
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 398600)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4c). Nat Struct Mol Biol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 2). Am J Physiol Heart Circ Physiol (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Physiol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 8). J Biol Chem (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Cancer Biol Ther (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Eur J Hum Genet (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:20,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, Am4300)被用于被用于免疫印迹在人类样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. elife (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Nucleus (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 仓鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在仓鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 小鼠; 1:1000
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, 6C5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. J Bone Miner Res (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:2000. Head Neck (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. BMC Biol (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 398600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). J Biol Chem (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:20,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1d
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1d). Hum Mol Genet (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Toxicol Sci (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Genes Cells (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000. Arthritis Rheumatol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Cell Death Dis (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1, 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Cell Commun Signal (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上. Autophagy (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:500; 图 1
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Endocrinology (2014) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:10,000; 图 s1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Zymed, clone ZG003)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1). Cell Commun Signal (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:5000; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 犬; 图 7
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在犬样本上 (图 7). PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Hum Mol Genet (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:40,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000. Brain Struct Funct (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:2000; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5). PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cell Cycle (2013) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Zymed, 39-8600)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Res (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4). J Biol Chem (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Endocrinology (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Virol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). J Pharmacol Sci (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Mol Carcinog (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Kidney Int (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Evid Based Complement Alternat Med (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:15,000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Bone (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Signal (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 4). Toxicol Appl Pharmacol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000. Urol Oncol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Clin Genet (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Life TechnologiesIncorporated, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Neuroscience (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1, 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1, 2). J Virol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:1000. Am J Med Genet B Neuropsychiatr Genet (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; forest day mosquito; 1:6000; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在forest day mosquito样本上浓度为1:6000 (图 4). Arch Virol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:20,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000. Purinergic Signal (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1b
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1b). Biol Open (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, #AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:3000; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4). Glia (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 0.2 ug/ml; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml (图 3). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Autophagy (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上 (图 8). Am J Physiol Cell Physiol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Hum Mol Genet (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:3000. J Immunol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). RNA Biol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(生活技术, AM4300)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上 (图 2). Endocrinology (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 小鼠; 4 ug/ml; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫细胞化学在小鼠样本上浓度为4 ug/ml (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 8). Kidney Int (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS Genet (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Toxicol Lett (2012) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上 (图 3). Lab Invest (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:40,000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000 (图 1). Blood (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Nat Neurosci (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Am J Physiol Lung Cell Mol Physiol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔磷酸甘油醛脱氢酶抗体(Zymed, AM4300)被用于被用于免疫组化在小鼠样本上浓度为1:200. Mech Dev (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). Front Biosci (Landmark Ed) (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. J Neuroimmune Pharmacol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Neuroscience (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. J Virol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 6C5)被用于被用于免疫印迹在人类样本上 (图 5). BMC Mol Biol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 4
  • 免疫印迹; 小鼠; 1:10,000; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, #AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫组化; 小鼠; 1:1000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Endocrinology (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 s3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 s3). PLoS ONE (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). PLoS ONE (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 s5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 s5). Nucleic Acids Res (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). MAbs (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). J Thorac Oncol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 6). Dev Biol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 3). J Virol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). Lab Invest (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 0.5 ug/ml; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, clone 6C5)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 4). FASEB J (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:10,000; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 5). J Cell Physiol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Pathol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 7
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 4300)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:20,000; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 5). J Am Coll Cardiol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 6C5)被用于被用于免疫印迹在小鼠样本上. Genes Cells (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). J Immunol (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:15,000; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:15,000 (图 5). J Neurosci (2010) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:2000; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Int J Radiat Oncol Biol Phys (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 人类; 图 3
  • 免疫组化; 人类; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫组化在人类样本上 (图 3). J Vasc Surg (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM 4300)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Applied Biosystems/Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Antioxid Redox Signal (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 4300)被用于被用于免疫印迹在人类样本上 (图 6). J Cell Physiol (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 0.5 ug/ml; 图 8
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上浓度为0.5 ug/ml (图 8). J Proteomics (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Clin Cancer Res (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Cell Cycle (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Am J Physiol Gastrointest Liver Physiol (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5). Stem Cells (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:4000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Mol Cell Endocrinol (2010) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:15,000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, 39-8600)被用于被用于免疫印迹在人类样本上浓度为1:15,000. J Neurosci Res (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Innate Immun (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在大鼠样本上 (图 3). Mol Biol Cell (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2010) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; roundworm ; 1:2000; 图 s1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在roundworm 样本上浓度为1:2000 (图 s1). PLoS ONE (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Oncogene (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Renal Physiol (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 4300)被用于被用于免疫印迹在小鼠样本上 (图 3). Exp Gerontol (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. J Comp Neurol (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 2). Eur J Cardiothorac Surg (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; African green monkey; 图 5
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在African green monkey样本上 (图 5). Gene (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上浓度为1:4000. Biochim Biophys Acta (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Physiol Genomics (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 7
赛默飞世尔磷酸甘油醛脱氢酶抗体(Affinity BioReagents, 6C5)被用于被用于免疫印迹在人类样本上 (图 7). Mol Biol Cell (2008) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; pigs ; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Zymed, 39-8600)被用于被用于免疫印迹在pigs 样本上 (图 6). Circulation (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1 ug/ml; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 6C5)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1). Cancer Res (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上. Apoptosis (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 6C5)被用于被用于免疫印迹在人类样本上. Oncogene (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 4
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Biol Ther (2007) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, AM4300)被用于被用于免疫印迹在小鼠样本上. Bone (2008) ncbi
小鼠 单克隆(ZG003)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔磷酸甘油醛脱氢酶抗体(Invitrogen, ZG003)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). J Neurochem (2008) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 非洲爪蛙; 1:1000
赛默飞世尔磷酸甘油醛脱氢酶抗体(ambion, AM4300)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000. Apoptosis (2007) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔磷酸甘油醛脱氢酶抗体(Ambion, 4300)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2006) ncbi
圣克鲁斯生物技术
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 2g
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(SCBT, sc-47724)被用于被用于免疫印迹在人类样本上 (图 2g). Mol Ther Nucleic Acids (2021) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS Genet (2021) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-47724)被用于被用于免疫印迹在人类样本上 (图 5a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-137179)被用于被用于免疫印迹在人类样本上 (图 1c). NPJ Breast Cancer (2021) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc32233)被用于被用于免疫印迹在人类样本上 (图 2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). PLoS Biol (2021) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 3b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b). Genome Biol (2021) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:2000; 图 5c
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, SC-47724)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). Viruses (2020) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 大鼠; 图 1g
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-47724)被用于被用于免疫印迹在大鼠样本上 (图 1g). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:2000. elife (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:3000; 图 2b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2b). elife (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 4e
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(SCBT, SC32233)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4e). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 s2k
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2k). Nature (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotech, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Cell Death Dis (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:500; 图 1a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Commun Biol (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000; 图 4c
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4c). Oncol Lett (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, C5 #sc-32233)被用于被用于免疫印迹在人类样本上. elife (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Nat Commun (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 s3a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnologies, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫组化; 小鼠; 1:1000; 图 7a, s2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa-Cruz, sc-32233)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7a, s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Mol Neurodegener (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上 (图 3b). Nature (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Rep (2019) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Cancers (Basel) (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在人类样本上 (图 7a). Cell (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 6d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6d). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000; 图 6s1b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6s1b). elife (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000; 图 5b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 5b). elife (2019) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:4000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:4000. Science (2019) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 1:800; 图 s18a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-365062)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 s18a). Nat Commun (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Stem Cell (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, SC-32233)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biochem Biophys Res Commun (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, SC-32233)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在人类样本上 (图 6b). Cancer Lett (2019) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 s4n
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-47724)被用于被用于免疫印迹在人类样本上 (图 s4n). Cell (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在人类样本上 (图 3e). Oncogene (2019) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 s17d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-365062)被用于被用于免疫印迹在人类样本上 (图 s17d). Science (2018) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-47724)被用于被用于免疫印迹在人类样本上 (图 6b). J Clin Invest (2019) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). J Virol (2018) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-47724)被用于被用于免疫印迹在人类样本上 (图 3d). Front Immunol (2018) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-365062)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2018) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 s5d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 s5d). Mol Cancer Res (2018) ncbi
小鼠 单克隆(6C5)
  • 流式细胞仪; 人类; 1:200; 图 7b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa, 6C5)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7b). Stem Cells (2018) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-32233)被用于被用于免疫印迹在人类样本上 (图 2c). Clin Cancer Res (2018) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:1000; 图 4d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Mol Med Rep (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 6C5)被用于被用于免疫印迹在小鼠样本上 (图 2). Front Immunol (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫细胞化学; 人类; 1:200; 图 3e
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e). Oncotarget (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 3). elife (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 表 7
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-32233)被用于被用于免疫印迹在大鼠样本上 (表 7). Cardiovasc Diabetol (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 5A
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 0411)被用于被用于免疫印迹在人类样本上 (图 5A). Neoplasia (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 6C5)被用于被用于免疫印迹在人类样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa cruz, sc-166545)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 7d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 7d). elife (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:2000; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Dis Model Mech (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 2a
  • 免疫印迹; 人类; 1:5000; 图 1b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Biochem J (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:3000; 图 3
  • 免疫印迹; 牛; 1:3000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3) 和 被用于免疫印迹在牛样本上浓度为1:3000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 3A
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 3A). Onco Targets Ther (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:10,000; 图 s3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, O411)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s3). J Clin Endocrinol Metab (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上 (图 1). Exp Ther Med (2016) ncbi
小鼠 单克隆(6C5)
  • 核糖核酸免疫沉淀; 人类; 1:1000; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(SantaCruz, SC-32233)被用于被用于核糖核酸免疫沉淀在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:8000; 图 7
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 7). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:50,000; 图 1
  • 免疫印迹; 小鼠; 1:50,000; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc365062)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-166545)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:200; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 6). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 10a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 10a). Cancer Cell Int (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在大鼠样本上 (图 4). Mol Brain (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz,, sc-32233)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Cell Int (2016) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-59540)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 s4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 4). Protein Cell (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 豚鼠; 1:1000; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-47724)被用于被用于免疫印迹在豚鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-3650620)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 1). Int J Oncol (2016) ncbi
小鼠 单克隆(G-9)
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 1:1500; 图 1B
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166574)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 1B). Mol Med Rep (2016) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫印迹; pigs ; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166574)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2), 被用于免疫印迹在pigs 样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 小鼠; 0.2 ug/ml; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-47724)被用于被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotech, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). J Korean Med Sci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 6C5)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Cell Biol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在大鼠样本上 (图 1). Anal Biochem (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上 (图 7). Cell Death Dis (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Inflammation (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). BMC Biol (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 国内马; 1:1000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, SC-137179)被用于被用于免疫印迹在国内马样本上浓度为1:1000 (图 1). J Vet Sci (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 7
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 1). Cell Signal (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, SC-47724)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 1:5000; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Kangchen Biotechnology Inc., sc-365062)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 表 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 图 s1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Anal Cell Pathol (Amst) (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 11
  • 免疫印迹; 大鼠; 图 9
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 11) 和 被用于免疫印迹在大鼠样本上 (图 9). PLoS ONE (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-166574)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Oncol Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 6
  • 免疫印迹; 大鼠; 1:2000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, SC-32233)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 3). J Neurosci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-166574)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上 (图 3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上 (图 5d). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa cruz, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上 (图 4). J Neuroimmune Pharmacol (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:4000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). elife (2016) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:10,000; 图 3a
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3a). Nat Commun (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa cruz, sc-47724)被用于被用于免疫印迹在人类样本上 (图 4d). J Biol Chem (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 2). J Cell Biol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 1). Int J Oncol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 1). Genes Immun (2016) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, SC59540)被用于被用于免疫印迹在人类样本上 (图 1). Front Endocrinol (Lausanne) (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000; 图 3c
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3c). Int J Oncol (2016) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 小鼠; 1:500; 图 3
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-166574)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 犬; 1:5000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 6C5)被用于被用于免疫印迹在犬样本上浓度为1:5000 (图 2). elife (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, H-12)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 2). Redox Biol (2016) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166574)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 4). BMC Genomics (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Genome Biol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:500; 表 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:2000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Front Pharmacol (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 6C5)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:20,000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 0411)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). BMC Cancer (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, A-3)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166574)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在大鼠样本上 (图 5). Int J Mol Med (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 s3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Oncotarget (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, 32233)被用于被用于免疫印迹在大鼠样本上 (图 3). J Nutr (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-13717)被用于被用于免疫印迹在人类样本上 (图 5). Autophagy (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-137179)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 0411)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166545)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1e
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 1e). J Biol Chem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, SC32233)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 猕猴; 1:2000; 图 8
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在猕猴样本上浓度为1:2000 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Cell Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 s4g
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, SC-365062)被用于被用于免疫印迹在人类样本上 (图 s4g). Nat Genet (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠; 1:10,000; 图 s13
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 137179)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s13). Genome Res (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Med Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; fission yeast
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 6C5)被用于被用于免疫印迹在fission yeast样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 鸡; 1:500
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在鸡样本上浓度为1:500. Biosci Biotechnol Biochem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 3b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology), SC-32233)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3b). J Cell Sci (2015) ncbi
小鼠 单克隆(0411)
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc32233)被用于被用于免疫印迹在小鼠样本上 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 小鼠; 1:500; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, SC-166545)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上 (图 s1). Oncotarget (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 小鼠; 1:2500; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166545)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠; 1:3000; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-59540)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). J Reprod Dev (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3). Dis Model Mech (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruzs, sc365062)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上 (图 4). J Exp Med (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc365062)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). J Surg Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 4b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4b). Oncotarget (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:3000; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnologies, SC-32,233)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Life Sci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠; 1:5000; 图 8
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 8). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotech, sc-365062)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 0411)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 1f
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 1f). Neuron (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上 (图 2). EMBO Mol Med (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, SC-32233)被用于被用于免疫印迹在人类样本上. Basic Res Cardiol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 6). Cell Death Dis (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在小鼠样本上. Diabetes (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(0411)
  • 免疫沉淀; 人类; 图 7b
  • 免疫细胞化学; 人类; 图 7a
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, sc-47724)被用于被用于免疫沉淀在人类样本上 (图 7b), 被用于免疫细胞化学在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 3e). PLoS ONE (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Mol Med (2015) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166574)被用于被用于免疫印迹在人类样本上浓度为1:2000. Tumour Biol (2015) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在大鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Development (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 s7
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 s7). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; domestic rabbit; 1:1000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000. J Mol Endocrinol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 5,6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 6C5)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5,6). Nat Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 0411)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:500. Oncol Lett (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Genet Metab (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上 (图 3). Mol Oncol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(scbt, sc-47724)被用于被用于免疫印迹在小鼠样本上. J Proteome Res (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Immunology (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Cell Death Dis (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2). Int J Biol Sci (2015) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-166545)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上 (图 3). Br J Cancer (2015) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:15,000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:15,000. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, SC32-233)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. FASEB J (2015) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166574)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在大鼠样本上. Pediatr Surg Int (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上. J Comp Neurol (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上. Infect Immun (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, 6C5)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. J Neurosci Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Neurosci (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:100,000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:100,000. J Neurochem (2014) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上. Mol Cell Biochem (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; pigs ; 1:10,000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在pigs 样本上浓度为1:10,000. PLoS ONE (2014) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:20,000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc47724)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2). elife (2014) ncbi
小鼠 单克隆(D-6)
  • 免疫组化-石蜡切片; 斑马鱼
  • 免疫印迹; 斑马鱼
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166545)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 和 被用于免疫印迹在斑马鱼样本上. Cell Res (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 3). Mucosal Immunol (2015) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc16674)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology Inc, sc-32233)被用于被用于免疫印迹在人类样本上. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上. Toxicol Sci (2014) ncbi
小鼠 单克隆(H-12)
  • 免疫印迹; crucian carp
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-166574)被用于被用于免疫印迹在crucian carp样本上. Dev Comp Immunol (2014) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 2
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Skelet Muscle (2014) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上. Mol Endocrinol (2014) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-365062)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上浓度为1:500. FASEB J (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:800
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:800. J Physiol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1500; 图 s4
  • 免疫印迹; African green monkey; 1:1500; 图 s4
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 s4) 和 被用于免疫印迹在African green monkey样本上浓度为1:1500 (图 s4). Oncogene (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 13
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa, SC-32233)被用于被用于免疫印迹在小鼠样本上 (图 13). BMC Nephrol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology Inc, sc-32233)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Clin Invest (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上. J Thorac Cardiovasc Surg (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, SC-32233)被用于被用于免疫印迹在人类样本上. Eur Urol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:1000. Med Oncol (2014) ncbi
小鼠 单克隆(G-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-365062)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, SC-47724)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在小鼠样本上. Antioxid Redox Signal (2014) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2013) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上 (图 1c). Carcinogenesis (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上. Mol Neurobiol (2013) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-166545)被用于被用于免疫印迹在小鼠样本上. Stem Cell Res (2013) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 图 8b
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa cruz, sc-47724)被用于被用于免疫印迹在人类样本上 (图 8b). Oncogene (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Res (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:400
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:400. Endocr Relat Cancer (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-137179)被用于被用于免疫印迹在人类样本上. Int J Oncol (2013) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; African green monkey
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-47724)被用于被用于免疫印迹在African green monkey样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Endocr Relat Cancer (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上. EMBO J (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, 6C5)被用于被用于免疫印迹在人类样本上. Clin Exp Metastasis (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Renin Angiotensin Aldosterone Syst (2014) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; pigs
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-59540)被用于被用于免疫印迹在pigs 样本上. Int J Biol Sci (2012) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; pigs ; 1:1000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-59540)被用于被用于免疫印迹在pigs 样本上浓度为1:1000. Mamm Genome (2013) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Hum Mol Genet (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Pharmacol (2013) ncbi
小鼠 单克隆(0411)
  • 免疫印迹; 人类; 1:10,000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology Inc., sc-47724)被用于被用于免疫印迹在人类样本上浓度为1:10,000. PLoS ONE (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, SC32233)被用于被用于免疫印迹在大鼠样本上. Biochem Pharmacol (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-32233)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncogene (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnologies, sc-32233)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz, sc-32233)被用于被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术磷酸甘油醛脱氢酶抗体(Santa Cruz Biotechnology, sc-59540)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2012) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:500; 图 6l
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6l). Cancer Cell Int (2021) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 2a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 1:10,000; 图 3j
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3j). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 1:10,000; 图 3c
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 图 6d
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上 (图 6d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 1g
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 1g). Redox Biol (2021) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 1:10,000; 图 7a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 7a). Asian Pac J Cancer Prev (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 s3i
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3i). BMC Cancer (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 11c
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 11c). PLoS ONE (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 1h
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1h). Science (2020) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 1a). Commun Biol (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 6d
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 6d). PLoS Genet (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 2e
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2e). Mol Metab (2020) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上. elife (2020) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Transl Med (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 1f, 2b, 3f
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Cambridge, England, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f, 2b, 3f). Integr Cancer Ther (2020) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Mol Biol Lett (2020) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Biosci Rep (2020) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 3f
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(EPR16884)
  • 免疫印迹; 大鼠; 1:5000; 图 6
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Cambridge, MA, USA;, ab181603)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 6). Mol Med Rep (2020) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 1b). Theranostics (2020) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 3a). Exp Ther Med (2020) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:5000; 图 3g
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3g). Sci Adv (2019) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 5k
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, AB181602)被用于被用于免疫印迹在人类样本上 (图 5k). Cell (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 1b). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2g
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 2g). Cell Rep (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 s3). Int J Biol Sci (2019) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). elife (2019) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 5b). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 5a). Biosci Rep (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Clin Invest (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 s2a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a). J Cell Biol (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). BMC Complement Altern Med (2019) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 4b). Biosci Rep (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 2d). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 1:10,000; 图 3b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3b). Cancer Cell Int (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 6b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 6b). Cell (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1d
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 1d). Sci Adv (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 人类; 1:500; 图 3c
  • 免疫印迹; 人类; 1:2000; 图 3j
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3j). Atherosclerosis (2019) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 1:10,000; 图 s2a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s2a). Biochem Biophys Rep (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 3b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8425)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3b). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 5a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(EPR16884)
  • 免疫印迹; 人类; 1:10,000; 图 5g
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181603)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5g). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 1:5000; 图 2a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, EPR-16891)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2a). Cancer Res (2019) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 3d
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3d). EMBO Mol Med (2019) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:1000; 图 1e
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 1:10,000; 图 3e
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3e). Biomed Res Int (2018) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5e
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(ABCAM, ab8245)被用于被用于免疫印迹在人类样本上 (图 5e). Dev Cell (2018) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biol (2018) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 3b). J Am Heart Assoc (2018) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 6i
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6i). Oncogene (2018) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 1c). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:1500; 表 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:1500 (表 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 1). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 斑马鱼; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(AbCam, ab8245)被用于被用于免疫印迹在斑马鱼样本上 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 s4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Oncotarget (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 3). J Virol (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上 (图 8). PLoS Pathog (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:4000; 图 6
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 6). Mol Neurodegener (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). MBio (2016) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上 (图 5). Physiol Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000; 图 3e
  • 免疫印迹; 人类; 1:10,000; 图 5b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3e) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; domestic rabbit; 1:5000; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:5000 (图 3). Front Aging Neurosci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 9484)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在人类样本上 (图 s3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:20,000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 1). J Neurochem (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 大鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 9
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 9). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 3). Oncogenesis (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab9484)被用于被用于免疫印迹在小鼠样本上 (图 5). J Transl Med (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Arch Biochem Biophys (2016) ncbi
小鼠 单克隆(mAbcam 9484)
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于. Cell Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000; 图 1e
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1e). Biomaterials (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:600; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:600 (图 1). RNA (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4). Biol Open (2016) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 4). Mol Hum Reprod (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:1000; 图 7
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:5000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Schizophr Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 6a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上 (图 1). Iran J Basic Med Sci (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:50,000; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:15,000; 图 3
  • 免疫印迹; 小鼠; 1:15,000; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). elife (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Cell Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab8245)被用于被用于免疫印迹在人类样本上 (图 4). Exp Cell Res (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Int J Mol Med (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:50,000; 图 s16
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 s16). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000; 图 8
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Cancer Cell Int (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 1d
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab8245)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:10,000; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Virology (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:25,000; 图 7
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:25,000 (图 7). elife (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 8). Mol Syst Biol (2016) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 7). Mol Cell Biol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 3s
  • 免疫细胞化学; roundworm
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫细胞化学在人类样本上, 被用于免疫印迹在人类样本上 (图 3s) 和 被用于免疫细胞化学在roundworm 样本上. elife (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 8245)被用于被用于免疫印迹在小鼠样本上 (图 4). Cardiovasc Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在大鼠样本上 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 大鼠; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在大鼠样本上 (图 1). J Neurosci (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 大鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Mol Med (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; domestic rabbit; 1:1000; 图 7
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 7). Cytotechnology (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:15,000; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, AB9484)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 3). Neuropathol Appl Neurobiol (2017) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Sci (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 s4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在人类样本上 (图 2). Cell Microbiol (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Exp Gerontol (2016) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2015) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(mAbcam, 9484)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000; 图 1c
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在小鼠样本上 (图 3). J Cell Mol Med (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Sci (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在大鼠样本上 (图 2). Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1 ug/ml; 图 3k
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 3k). Oncotarget (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 3). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上 (图 4). Reproduction (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:60,000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在大鼠样本上浓度为1:60,000 (图 1). Cell Calcium (2015) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 大鼠; 1:5000; 图 7
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab9484)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab8245)被用于被用于免疫印迹在人类样本上浓度为1:2000. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:4000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:4000. J Cell Sci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:4000; 图 5
  • 免疫印迹; 人类; 1:4000; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1g
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 1g). RNA (2015) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 4b). Autophagy (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 5b). Autophagy (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:7500; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:7500 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR16891)
  • 免疫印迹; 人类; 1:10,000; 图 6
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab181602)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Cycle (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上. Stem Cells Int (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). Hum Mol Genet (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Oncol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab824)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. FASEB J (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). MBio (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:3000; 图 1c
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1c). Circ Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). Mol Ther Methods Clin Dev (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:3000; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS Pathog (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1, 6
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 1, 6). Autophagy (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:5000; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 7
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在人类样本上. Acta Neuropathol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:5000; 图 s6
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Front Pharmacol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:5000; 图 9
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 8245)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 9). Mol Neurobiol (2016) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:10,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. PLoS ONE (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Cell Biol (2015) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 9484)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 3,7,8
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 3,7,8). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Dis (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 4). Br J Cancer (2015) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上 (图 6). Mol Syst Biol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Oncol Rep (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:3000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). Cell Metab (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; brewer's yeast; 1:2500; 图 4f
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(AbCam, ab8245)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:2500 (图 4f). Nat Chem Biol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Endocrinology (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:20,000. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2). Jpn J Infect Dis (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:2000. Stem Cell Reports (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上 (图 3). Proteomics (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab8245)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在大鼠样本上. Pharm Res (2015) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; pigs
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam Inc, ab9484)被用于被用于免疫印迹在pigs 样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; domestic rabbit; 1:2000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2000. Biomed Res Int (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:2000; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:50,000
  • 免疫印迹; 人类; 1:50,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在大鼠样本上浓度为1:50,000 和 被用于免疫印迹在人类样本上浓度为1:50,000. Gene Ther (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Front Genet (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫细胞化学在人类样本上. J Neurosci (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:20,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. Eur J Neurosci (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; pigs
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在pigs 样本上. Vet Microbiol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:20,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:20,000. Am J Pathol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:10,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Nat Commun (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Glia (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:60,000; 图 5
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:60,000 (图 5). Cardiovasc Res (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab-9484)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 大鼠; 1:900
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在大鼠样本上浓度为1:900. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 1:5000
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 和 被用于免疫印迹在人类样本上浓度为1:5000. Am J Transplant (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Cell Biol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:3000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:3000. PLoS ONE (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Clin Invest (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(6C5)
  • reverse phase protein lysate microarray; 人类; 0.1 ug/ml
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为0.1 ug/ml. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 1a). Biochem J (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 8245)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Commun (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Pharm Pharmacol (2014) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, AB9484)被用于被用于免疫印迹在人类样本上 (图 6). Blood (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 鸡
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在鸡样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上. Arch Oral Biol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 大鼠; 图 1
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在大鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 5b). Hum Mol Genet (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上. Am J Physiol Gastrointest Liver Physiol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3). Tumour Biol (2014) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, Ab8245)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. BMC Cell Biol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠
  • 免疫印迹; African green monkey
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在African green monkey样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫细胞化学在人类样本上. Stem Cells (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Stem Cells (2013) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:1500
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在小鼠样本上浓度为1:1500. Am J Physiol Heart Circ Physiol (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245-100)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Pathog (2013) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 非洲爪蛙
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在人类样本上浓度为1:5000. Pathol Oncol Res (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:10,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Neurobiol Dis (2013) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:100,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:100,000. J Biol Chem (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 6C5)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Neurosci (2012) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2013) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab9484)被用于被用于免疫印迹在大鼠样本上. Mol Biol Cell (2012) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:3000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 9484)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. J Comp Neurol (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上. Nat Genet (2011) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Immunol (2009) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:40,000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, ab8245)被用于被用于免疫印迹在人类样本上浓度为1:40,000. BMC Cancer (2008) ncbi
小鼠 单克隆(mAbcam 9484)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司磷酸甘油醛脱氢酶抗体(Abcam, 9484)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Comp Neurol (2008) ncbi
GeneTex
小鼠 单克隆(GT239)
  • 免疫印迹; 小鼠; 图 1f
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GT239)被用于被用于免疫印迹在小鼠样本上 (图 1f). Nature (2019) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 图 3b
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408-01)被用于被用于免疫印迹在人类样本上 (图 3b). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; root; 图 5b
GeneTex磷酸甘油醛脱氢酶抗体(GeneTEX, GT239)被用于被用于免疫印迹在root样本上 (图 5b). Exp Eye Res (2018) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 1:5000; 图 2
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GT239)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 1:5000; 图 1h
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1h). Nat Commun (2016) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 小鼠; 图 2
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 图 4
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 图 s7
GeneTex磷酸甘油醛脱氢酶抗体(Genetex, GTX627408)被用于被用于免疫印迹在人类样本上 (图 s7). Nat Immunol (2016) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 1:2000
GeneTex磷酸甘油醛脱氢酶抗体(Genetex, GT239)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nature (2016) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 3
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 图 2
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 图 1e
GeneTex磷酸甘油醛脱氢酶抗体(Gentex, GTX627408)被用于被用于免疫印迹在人类样本上 (图 1e). Mol Cell Biol (2015) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 小鼠; 1:1000
GeneTex磷酸甘油醛脱氢酶抗体(Genetex, 627408)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 1:5000; 图 4
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Nat Genet (2015) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 1:5000; 图 3
GeneTex磷酸甘油醛脱氢酶抗体(Gene Tex, GTX627408)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 1:1000
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Mol Med (2015) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 1:10; 图 4
GeneTex磷酸甘油醛脱氢酶抗体(Genetex, GTX627408)被用于被用于免疫印迹在人类样本上浓度为1:10 (图 4). Anal Chem (2014) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 小鼠; 1:4000; 图 2
GeneTex磷酸甘油醛脱氢酶抗体(GeneTex, GTX627408)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2). Eur J Neurosci (2014) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 人类; 1:1000
GeneTex磷酸甘油醛脱氢酶抗体(Genetex, GTX627408)被用于被用于免疫印迹在人类样本上浓度为1:1000. Hum Mol Genet (2014) ncbi
小鼠 单克隆(GT239)
  • 免疫印迹; 小鼠; 1:2000; 图 4
GeneTex磷酸甘油醛脱氢酶抗体(Genetex, gt239)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Sci Rep (2014) ncbi
Novus Biologicals
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠; 图 5d
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus, NB300-221)被用于被用于免疫印迹在小鼠样本上 (图 5d). PLoS Biol (2020) ncbi
domestic rabbit 多克隆(5B12)
  • 免疫印迹; fruit fly ; 图 2b
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus Biologicals, NB100-56875)被用于被用于免疫印迹在fruit fly 样本上 (图 2b). PLoS ONE (2017) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠; 图 1
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus, NB300-221)被用于被用于免疫印迹在小鼠样本上 (图 1). Nature (2016) ncbi
domestic rabbit 多克隆(H3)
  • 免疫印迹; 大鼠; 图 8
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus, NB300-327)被用于被用于免疫印迹在大鼠样本上 (图 8). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠; 1:1000; 图 1
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus Biologicals, 1D4)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). elife (2016) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 人类; 1:1000; 图 3a
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus, NB300-221)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠; 1:5000; 图 3
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus Biologicals, 1D4)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 人类; 1:1000
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus Biologicals, NB300-221)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus, NB300-326)被用于. Biol Reprod (2015) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 牛; 图 2
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus Biologicals, NB300-221SS)被用于被用于免疫印迹在牛样本上 (图 2). J Reprod Dev (2015) ncbi
小鼠 单克隆(1D4)
Novus Biologicals磷酸甘油醛脱氢酶抗体(NOVUS, NB300-221)被用于. Stem Cell Res Ther (2015) ncbi
domestic rabbit 多克隆(5B12)
Novus Biologicals磷酸甘油醛脱氢酶抗体(Abgent, NB100-56875)被用于. Bone (2015) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 人类; 图 6b
Novus Biologicals磷酸甘油醛脱氢酶抗体(NOVUS, NB300-221)被用于被用于免疫印迹在人类样本上 (图 6b). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠; 图 1
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus Biologicals, NB300-221)被用于被用于免疫印迹在小鼠样本上 (图 1). Toxicol Sci (2014) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; pigs
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus Bio, NB300-221)被用于被用于免疫印迹在pigs 样本上. J Mol Cell Cardiol (2013) ncbi
小鼠 单克隆(1D4)
  • 免疫印迹; 小鼠
Novus Biologicals磷酸甘油醛脱氢酶抗体(Novus, NB300-221)被用于被用于免疫印迹在小鼠样本上. Curr Biol (2012) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(4G5)
  • 免疫印迹; 人类; 1:50,000; 图 7
伯乐(Bio-Rad)公司磷酸甘油醛脱氢酶抗体(ABD Serotec, MCA4740)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 人类; 1:1000; 图 7
伯乐(Bio-Rad)公司磷酸甘油醛脱氢酶抗体(Bio-Rad, MCA4739)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). PLoS ONE (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 1:2000; 图 2
伯乐(Bio-Rad)公司磷酸甘油醛脱氢酶抗体(ABD Serotec, MCA4739)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(4G5)
  • 免疫印迹; 人类; 图 5c
伯乐(Bio-Rad)公司磷酸甘油醛脱氢酶抗体(AbD Serotec, MCA4740)被用于被用于免疫印迹在人类样本上 (图 5c). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(6C5)
  • 免疫印迹; 小鼠; 图 6
伯乐(Bio-Rad)公司磷酸甘油醛脱氢酶抗体(AbD Serotec, MCA4739)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS Genet (2015) ncbi
小鼠 单克隆(4G5)
  • 免疫印迹; 人类
伯乐(Bio-Rad)公司磷酸甘油醛脱氢酶抗体(AbD Serotec, MCA4740)被用于被用于免疫印迹在人类样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
小鼠 单克隆(4G5)
  • 免疫细胞化学; 人类
伯乐(Bio-Rad)公司磷酸甘油醛脱氢酶抗体(AbD Serotech, 4G5)被用于被用于免疫细胞化学在人类样本上. Eur J Cell Biol (2014) ncbi
EnCor Biotechnology
小鼠 单克隆
  • 免疫印迹; 人类; 图 5a
EnCor Biotechnology磷酸甘油醛脱氢酶抗体(EnCor, MCA-1D4)被用于被用于免疫印迹在人类样本上 (图 5a). J Clin Med (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000
EnCor Biotechnology磷酸甘油醛脱氢酶抗体(Encor, MCA-1D4)被用于被用于免疫印迹在人类样本上浓度为1:2000. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 2
EnCor Biotechnology磷酸甘油醛脱氢酶抗体(Encor Biotechnology Inc., MCA-1D4)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). ASN Neuro (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
EnCor Biotechnology磷酸甘油醛脱氢酶抗体(Encor, MCA-1D4)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:10,000
EnCor Biotechnology磷酸甘油醛脱氢酶抗体(Encor Biotechnology, MCA-1D4)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. ASN Neuro (2013) ncbi
亚诺法生技股份有限公司
domestic goat 多克隆
  • 免疫印迹; 人类; 1:50,000; 图 6
亚诺法生技股份有限公司磷酸甘油醛脱氢酶抗体(Abnova, PAB6637)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 6). Front Cell Infect Microbiol (2016) ncbi
小鼠 单克隆(3C2)
  • 免疫印迹; 人类; 1:4000
亚诺法生技股份有限公司磷酸甘油醛脱氢酶抗体(Abnova, H00002597-M01)被用于被用于免疫印迹在人类样本上浓度为1:4000. Cancer Lett (2015) ncbi
小鼠 单克隆(3C2)
  • 免疫印迹; 人类; 图 7
亚诺法生技股份有限公司磷酸甘油醛脱氢酶抗体(Abnova, H00002597-M01)被用于被用于免疫印迹在人类样本上 (图 7). Tissue Eng Part A (2015) ncbi
SICGEN
domestic goat 多克隆
SICGEN磷酸甘油醛脱氢酶抗体(Sicgen, AB006720)被用于. J Cell Biol (2015) ncbi
domestic goat 多克隆
SICGEN磷酸甘油醛脱氢酶抗体(Sicgen, AB0049-200)被用于. Sci Rep (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:3000; 图 1g
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1g). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5b
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5b). Arch Toxicol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于被用于免疫印迹在小鼠样本上 (图 3e). Front Immunol (2020) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9295)被用于被用于免疫印迹在人类样本上 (图 3c). PLoS Pathog (2020) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:10,000; 图 5b
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5b). Nat Microbiol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:5000; 图 3a
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Merck, G9545)被用于被用于免疫印迹在斑马鱼样本上浓度为1:5000 (图 3a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d, 3a
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于被用于免疫印迹在人类样本上 (图 2d, 3a). JCI Insight (2020) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, g8795)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Oncogene (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:20,000; 图 3b, 6d
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 3b, 6d). Sci Rep (2020) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 3a). FEBS Open Bio (2020) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Sci Adv (2019) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 5d
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Rep (2019) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G-8795)被用于被用于免疫印迹在人类样本上 (图 3b). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3h
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3h). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G-9295)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a). Front Mol Neurosci (2019) ncbi
小鼠 单克隆(GAPDH-71.1)
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于. J Biol Chem (2019) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:20,000; 图 s9c
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 s9c). Nat Commun (2019) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:20,000; 图 1b
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1b). J Cell Sci (2019) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 3a). Curr Biol (2019) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1e
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, GAPDH-71.1; G8795)被用于被用于免疫印迹在人类样本上 (图 1e). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在人类样本上 (图 2c). Front Immunol (2018) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 图 s6b
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(sigma, G8795)被用于被用于免疫印迹在小鼠样本上 (图 s6b). Am J Pathol (2017) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:1000; 图 6
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在人类样本上 (图 3). J Neuroinflammation (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:40,000; 图 2
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, GAPDH-71.1)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000 (图 2). Hum Gene Ther (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:500; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:20,000; 图 5
  • 免疫印迹; 人类; 1:20,000; 图 5
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:20,000 (图 5). BMC Biol (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9295)被用于被用于免疫印迹在人类样本上 (图 1). BMC Neurosci (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9295)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). Acta Neuropathol (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 1). Am J Transl Res (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:10,000; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 图 5
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:15,000; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 1). Alzheimers Dement (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 1:5000; 图 7
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 7). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:15,000; 图 7
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 7). Neurobiol Dis (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, 8795)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 1). Anal Bioanal Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 图 s3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在鸡样本上 (图 s3). EMBO J (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 1:40,000; 图 s7
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9295)被用于被用于免疫印迹在大鼠样本上浓度为1:40,000 (图 s7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在小鼠样本上 (图 6). Genome Biol (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:10,000; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3). PLoS Genet (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 1:10,000; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1). J Nutr (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 7). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 鸡; 1:5000; 图 7
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在鸡样本上浓度为1:5000 (图 7). BMC Biol (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 3). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在小鼠样本上 (图 2). Antioxid Redox Signal (2017) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:10,000; 图 6
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6). J Mol Endocrinol (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9295)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:1000; 图 6
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9295)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Int J Biochem Cell Biol (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 犬; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在犬样本上 (图 3). J Cell Physiol (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:2000; 图 s4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). PLoS ONE (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, 68795)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Mol Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 9
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 9). Oncotarget (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:1000; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Biolinks, G9295)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 1:25,000; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在大鼠样本上浓度为1:25,000 (图 3). Brain Behav (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于. Stem Cell Reports (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:50,000; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9295)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 4). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1d
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1d). Aging Cell (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. J Neuroinflammation (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. Oncogenesis (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). FASEB J (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 1:5000; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4). BMC Neurosci (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:4000; 图 2b
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2b). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 1). J Exp Clin Cancer Res (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. J Am Heart Assoc (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 4). Front Pharmacol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:5000; 图 s13c
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s13c). Nat Med (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:10,000; 图 5a
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9295)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5a). BMC Cancer (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. BMC Cancer (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于. Anal Cell Pathol (Amst) (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. elife (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 家羊; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在家羊样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Alrich, G9545)被用于. Front Microbiol (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Cardiovasc Diabetol (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 1:8000; 图 6
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在大鼠样本上浓度为1:8000 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于. J Neurochem (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9295)被用于被用于免疫印迹在小鼠样本上. Biol Sex Differ (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. J Cell Sci (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:1000; 图 2
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9295)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2016) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9295)被用于被用于免疫印迹在小鼠样本上. J Cell Physiol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. Hum Mol Genet (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. Cell Death Dis (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:15,000
  • 免疫印迹; 人类; 1:15,000
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9295)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 和 被用于免疫印迹在人类样本上浓度为1:15,000. Mol Ther (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 4). Nucleic Acids Res (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上. Am J Hum Genet (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. Autophagy (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich Co., G8795)被用于被用于免疫印迹在大鼠样本上 (图 4). Int J Mol Med (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:20,000; 图 6
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G 9295)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:10,000; 图 5e
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5e). PLoS ONE (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Exp Clin Cancer Res (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上浓度为1:2000. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, g8795)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, GAPDH-71.1)被用于被用于免疫印迹在人类样本上. J Immunol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9545)被用于. J Virol (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biol (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G9295)被用于被用于免疫印迹在人类样本上. Mucosal Immunol (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 图 1.3.4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G-9295)被用于被用于免疫印迹在小鼠样本上 (图 1.3.4). Int J Cancer (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9545)被用于. Mol Cancer Res (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 图 S3
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G9295)被用于被用于免疫印迹在小鼠样本上 (图 S3). Oncogene (2015) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在人类样本上 (图 1). Basic Res Cardiol (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, GAPDH-71.1)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:2000; 图 1
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在人类样本上 (图 6). EMBO J (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 大鼠; 1:600
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldric, G8795)被用于被用于免疫印迹在大鼠样本上浓度为1:600. J Histochem Cytochem (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, GAPDH71.1)被用于被用于免疫印迹在人类样本上. MBio (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Pflugers Arch (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 牛; 1:100; 图 2
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(#G8795, #G8795)被用于被用于免疫印迹在牛样本上浓度为1:100 (图 2). Biol Reprod (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795-200UL)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 人类; 0.2 ug/ml
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, GAPDH71.1)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml. Endocrinology (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:10,000; 图 7
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7). Neurobiol Dis (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma-Aldrich, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. J Comp Neurol (2014) ncbi
小鼠 单克隆(GAPDH-71.1)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
西格玛奥德里奇磷酸甘油醛脱氢酶抗体(Sigma, G8795)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Cell (2013) ncbi
文章列表
  1. Zhang L, Yao L, Zhou W, Tian J, Ruan B, Lu Z, et al. miR-497 defect contributes to gastric cancer tumorigenesis and progression via regulating CDC42/ITGB1/FAK/PXN/AKT signaling. Mol Ther Nucleic Acids. 2021;25:567-577 pubmed 出版商
  2. Yue M, Liu T, Yan G, Luo X, Wang L. LINC01605, regulated by the EP300-SMYD2 complex, potentiates the binding between METTL3 and SPTBN2 in colorectal cancer. Cancer Cell Int. 2021;21:504 pubmed 出版商
  3. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  4. Zhang H, Shang R, Bi P. Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet. 2021;17:e1009729 pubmed 出版商
  5. You X, Wu J, Zhao X, Jiang X, Tao W, Chen Z, et al. Fibroblastic galectin-1-fostered invasion and metastasis are mediated by TGF-β1-induced epithelial-mesenchymal transition in gastric cancer. Aging (Albany NY). 2021;13:18464-18481 pubmed 出版商
  6. Dalal J, Winden K, SALUSSOLIA C, Sundberg M, Singh A, Pham T, et al. Loss of Tsc1 in cerebellar Purkinje cells induces transcriptional and translation changes in FMRP target transcripts. elife. 2021;10: pubmed 出版商
  7. Chen H, Padia R, Li T, Li Y, Li B, Jin L, et al. Signaling of MK2 sustains robust AP1 activity for triple negative breast cancer tumorigenesis through direct phosphorylation of JAB1. NPJ Breast Cancer. 2021;7:91 pubmed 出版商
  8. Cao Y, Huang W, Wu F, Shang J, Ping F, Wang W, et al. ZFP36 protects lungs from intestinal I/R-induced injury and fibrosis through the CREBBP/p53/p21/Bax pathway. Cell Death Dis. 2021;12:685 pubmed 出版商
  9. Ko P, Choi J, Song S, Keum S, Jeong J, Hwang Y, et al. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci. 2021;22: pubmed 出版商
  10. Pipathsouk A, Brunetti R, Town J, Graziano B, Breuer A, Pellett P, et al. The WAVE complex associates with sites of saddle membrane curvature. J Cell Biol. 2021;220: pubmed 出版商
  11. Howell L, Jenkins R, Lynch S, Duckworth C, Kevin Park B, Goldring C. Proteomic profiling of murine biliary-derived hepatic organoids and their capacity for drug disposition, bioactivation and detoxification. Arch Toxicol. 2021;95:2413-2430 pubmed 出版商
  12. Wu K, Zheng X, Yao Z, Zheng Z, Huang W, Mu X, et al. Accumulation of CD45RO+CD8+ T cells is a diagnostic and prognostic biomarker for clear cell renal cell carcinoma. Aging (Albany NY). 2021;13:14304-14321 pubmed 出版商
  13. Yi M, Liu Y, Umpierre A, Chen T, Ying Y, Zheng J, et al. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol. 2021;19:e3001154 pubmed 出版商
  14. Li L, Ugalde A, Scheele C, Dieter S, Nagel R, Ma J, et al. A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis. Genome Biol. 2021;22:54 pubmed 出版商
  15. Wang S, Yan C, Luo J. NLRC4 gene silencing-dependent blockade of NOD-like receptor pathway inhibits inflammation, reduces proliferation and increases apoptosis of dendritic cells in mice with septic shock. Aging (Albany NY). 2021;13:1440-1457 pubmed 出版商
  16. Lay Mendoza M, Acciani M, Levit C, Santa Maria C, BRINDLEY M. Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins. Viruses. 2020;12: pubmed 出版商
  17. Liu M, Li W, Song F, Zhang L, Sun X. Silencing of lncRNA MIAT alleviates LPS-induced pneumonia via regulating miR-147a/NKAP/NF-κB axis. Aging (Albany NY). 2020;13:2506-2518 pubmed 出版商
  18. Tullett K, Tan P, Park H, Schittenhelm R, Michael N, Li R, et al. RNF41 regulates the damage recognition receptor Clec9A and antigen cross-presentation in mouse dendritic cells. elife. 2020;9: pubmed 出版商
  19. Ma L, Chen T, Zhang X, Miao Y, Tian X, Yu K, et al. The m6A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol. 2021;38:101801 pubmed 出版商
  20. He F, Li L, Li P, Deng Y, Yang Y, Deng Y, et al. Cyclooxygenase-2/sclerostin mediates TGF-β1-induced calcification in vascular smooth muscle cells and rats undergoing renal failure. Aging (Albany NY). 2020;12:21220-21235 pubmed 出版商
  21. Omairi I, Kobeissy F, Nasreddine S. Anti-Oxidant, Anti-Hemolytic Effects of Crataegus aronia Leaves and Its Anti- Proliferative Effect Enhance Cisplatin Cytotoxicity in A549 Human Lung Cancer Cell Line. Asian Pac J Cancer Prev. 2020;21:2993-3003 pubmed 出版商
  22. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  23. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  24. Suzuki K, Matsumoto M, Katoh Y, Liu L, Ochiai K, Aizawa Y, et al. Bach1 promotes muscle regeneration through repressing Smad-mediated inhibition of myoblast differentiation. PLoS ONE. 2020;15:e0236781 pubmed 出版商
  25. Yoshida S, Aoki K, Fujiwara K, Nakakura T, Kawamura A, Yamada K, et al. The novel ciliogenesis regulator DYRK2 governs Hedgehog signaling during mouse embryogenesis. elife. 2020;9: pubmed 出版商
  26. Zatulovskiy E, Zhang S, Berenson D, Topacio B, Skotheim J. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 2020;369:466-471 pubmed 出版商
  27. Cupo R, Shorter J. Skd3 (human ClpB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations. elife. 2020;9: pubmed 出版商
  28. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster M. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;: pubmed 出版商
  29. Xiong L, Zhao K, Cao Y, Guo H, Pan J, Yang X, et al. Linking skeletal muscle aging with osteoporosis by lamin A/C deficiency. PLoS Biol. 2020;18:e3000731 pubmed 出版商
  30. Sola M, Magrin C, Pedrioli G, Pinton S, Salvade A, Papin S, et al. Tau affects P53 function and cell fate during the DNA damage response. Commun Biol. 2020;3:245 pubmed 出版商
  31. Mishra P, Boutej H, Soucy G, Bareil C, Kumar S, Picher Martel V, et al. Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol Commun. 2020;8:65 pubmed 出版商
  32. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  33. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  34. Gao P, Wang D, Liu M, Chen S, Yang Z, Zhang J, et al. DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways. PLoS Genet. 2020;16:e1008592 pubmed 出版商
  35. Waaler J, Mygland L, Tveita A, Strand M, Solberg N, Olsen P, et al. Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 2020;3:196 pubmed 出版商
  36. Ngamsri K, Jans C, Putri R, Schindler K, Gamper Tsigaras J, Eggstein C, et al. Inhibition of CXCR4 and CXCR7 Is Protective in Acute Peritoneal Inflammation. Front Immunol. 2020;11:407 pubmed 出版商
  37. Inoue S, Tsunoda T, Riku M, Ito H, Inoko A, Murakami H, et al. Diffuse mesothelin expression leads to worse prognosis through enhanced cellular proliferation in colorectal cancer. Oncol Lett. 2020;19:1741-1750 pubmed 出版商
  38. Wang W, Hu D, Wu C, Feng Y, Li A, Liu W, et al. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathog. 2020;16:e1008335 pubmed 出版商
  39. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  40. Cao F, Zhou Y, Liu X, Yu C. Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane. Commun Biol. 2020;3:117 pubmed 出版商
  41. Atashpaz S, Samadi Shams S, Gonzalez J, Sebestyén E, Arghavanifard N, Gnocchi A, et al. ATR expands embryonic stem cell fate potential in response to replication stress. elife. 2020;9: pubmed 出版商
  42. Gao Y, Dai X, Li Y, Li G, Lin X, Ai C, et al. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J Transl Med. 2020;18:114 pubmed 出版商
  43. Chen Z, Zhang J, Xue H, Qian M, Guo X, Gao X, et al. Nitidine Chloride Is a Potential Alternative Therapy for Glioma Through Inducing Endoplasmic Reticulum Stress and Alleviating Epithelial-Mesenchymal Transition. Integr Cancer Ther. 2020;19:1534735419900927 pubmed 出版商
  44. Ding H, Zhang X, Su Y, Jia C, Dai C. GNAS promotes inflammation-related hepatocellular carcinoma progression by promoting STAT3 activation. Cell Mol Biol Lett. 2020;25:8 pubmed 出版商
  45. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;: pubmed 出版商
  46. Duplaquet L, Leroy C, Vinchent A, Paget S, Lefebvre J, Vanden Abeele F, et al. Control of cell death/survival balance by the MET dependence receptor. elife. 2020;9: pubmed 出版商
  47. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  48. Chávez M, Morales R, Lopez Crisosto C, Roa J, Allende M, Lavandero S. Autophagy Activation in Zebrafish Heart Regeneration. Sci Rep. 2020;10:2191 pubmed 出版商
  49. Viscarra J, Wang Y, Nguyen H, Choi Y, Sul H. Histone demethylase JMJD1C is phosphorylated by mTOR to activate de novo lipogenesis. Nat Commun. 2020;11:796 pubmed 出版商
  50. Hartenian E, Gilbertson S, Federspiel J, Cristea I, Glaunsinger B. RNA decay during gammaherpesvirus infection reduces RNA polymerase II occupancy of host promoters but spares viral promoters. PLoS Pathog. 2020;16:e1008269 pubmed 出版商
  51. Lian Y, Zhao F, Wang W. Use of Bao Gui capsule in treatment of a polycystic ovary syndrome rat model. Mol Med Rep. 2020;21:1461-1470 pubmed 出版商
  52. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  53. Mallampalli R, Li X, Jang J, Kaminski T, Hoji A, Coon T, et al. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight. 2020;5: pubmed 出版商
  54. Ricci B, Millner T, Pomella N, Zhang X, Guglielmi L, Badodi S, et al. Polycomb-mediated repression of EphrinA5 promotes growth and invasion of glioblastoma. Oncogene. 2020;39:2523-2538 pubmed 出版商
  55. Voisin A, Damon Soubeyrand C, Bravard S, Saez F, Drevet J, Guiton R. Differential expression and localisation of TGF-β isoforms and receptors in the murine epididymis. Sci Rep. 2020;10:995 pubmed 出版商
  56. Lin C, Lin W, Cho R, Yang C, Yeh Y, Hsiao L, et al. Induction of HO-1 by Mevastatin Mediated via a Nox/ROS-Dependent c-Src/PDGFRα/PI3K/Akt/Nrf2/ARE Cascade Suppresses TNF-α-Induced Lung Inflammation. J Clin Med. 2020;9: pubmed 出版商
  57. Cifelli J, Berg K, Yang J. Benzothiazole amphiphiles promote RasGRF1-associated dendritic spine formation in human stem cell-derived neurons. FEBS Open Bio. 2020;10:386-395 pubmed 出版商
  58. El Gaamouch F, Audrain M, Lin W, Beckmann N, Jiang C, Hariharan S, et al. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener. 2020;15:4 pubmed 出版商
  59. Xue J, Zhao Y, Aronowitz J, Mai T, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577:421-425 pubmed 出版商
  60. Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10:218-230 pubmed 出版商
  61. Luo C, Wang Y, Wei C, Chen Y, Ji Z. The anti-migration and anti-invasion effects of Bruceine D in human triple-negative breast cancer MDA-MB-231 cells. Exp Ther Med. 2020;19:273-279 pubmed 出版商
  62. Hoj J, Mayro B, Pendergast A. A TAZ-AXL-ABL2 Feed-Forward Signaling Axis Promotes Lung Adenocarcinoma Brain Metastasis. Cell Rep. 2019;29:3421-3434.e8 pubmed 出版商
  63. Guo H, Li Y, Shen L, Wang T, Jia X, Liu L, et al. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Sci Adv. 2019;5:eaax2166 pubmed 出版商
  64. Wenta T, Rychlowski M, Jarzab M, Lipinska B. HtrA4 Protease Promotes Chemotherapeutic-Dependent Cancer Cell Death. Cells. 2019;8: pubmed 出版商
  65. Majer O, Liu B, Woo B, Kreuk L, Van Dis E, Barton G. Release from UNC93B1 reinforces the compartmentalized activation of select TLRs. Nature. 2019;575:371-374 pubmed 出版商
  66. Shan L, Liu W, Zhan Y. Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY). 2019;11:7780-7795 pubmed 出版商
  67. Gong D, Dai X, Jih J, Liu Y, Bi G, Sun R, et al. DNA-Packing Portal and Capsid-Associated Tegument Complexes in the Tumor Herpesvirus KSHV. Cell. 2019;178:1329-1343.e12 pubmed 出版商
  68. Xiao W, Wang L, Howard J, Kolhe R, Rojiani A, Rojiani M. TIMP-1-Mediated Chemoresistance via Induction of IL-6 in NSCLC. Cancers (Basel). 2019;11: pubmed 出版商
  69. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  70. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  71. He M, Shen P, Qiu C, Wang J. miR-627-3p inhibits osteosarcoma cell proliferation and metastasis by targeting PTN. Aging (Albany NY). 2019;11:5744-5756 pubmed 出版商
  72. Jiang C, Trudeau S, Cheong T, Guo R, Teng M, Wang L, et al. CRISPR/Cas9 Screens Reveal Multiple Layers of B cell CD40 Regulation. Cell Rep. 2019;28:1307-1322.e8 pubmed 出版商
  73. Zhang X, Du K, Lou Z, Ding K, Zhang F, Zhu J, et al. The CtBP1-HDAC1/2-IRF1 transcriptional complex represses the expression of the long noncoding RNA GAS5 in human osteosarcoma cells. Int J Biol Sci. 2019;15:1460-1471 pubmed 出版商
  74. Wyżewski Z, Gregorczyk Zboroch K, Mielcarska M, Bossowska Nowicka M, Struzik J, Szczepanowska J, et al. Mitochondrial Heat Shock Response Induced by Ectromelia Virus is Accompanied by Reduced Apoptotic Potential in Murine L929 Fibroblasts. Arch Immunol Ther Exp (Warsz). 2019;67:401-414 pubmed 出版商
  75. Stavoe A, Gopal P, Gubas A, Tooze S, Holzbaur E. Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. elife. 2019;8: pubmed 出版商
  76. Zhang H, Sathyamurthy A, Liu F, Li L, Zhang L, Dong Z, et al. Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice. elife. 2019;8: pubmed 出版商
  77. Jia Q, Nie H, Yu P, Xie B, Wang C, Yang F, et al. HNRNPA1-mediated 3' UTR length changes of HN1 contributes to cancer- and senescence-associated phenotypes. Aging (Albany NY). 2019;11:4407-4437 pubmed 出版商
  78. Tang K, Tang H, Du Y, Tian T, Xiong S. PAR-2 promotes cell proliferation, migration and invasion through activating PI3K/AKT signaling pathway in oral squamous cell carcinoma. Biosci Rep. 2019;: pubmed 出版商
  79. Ying W, Li X, Rangarajan S, Feng W, Curtis L, Sanders P. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J Clin Invest. 2019;129:2792-2806 pubmed 出版商
  80. Galino J, Cervellini I, Zhu N, Stöberl N, Hütte M, Fricker F, et al. RalGTPases contribute to Schwann cell repair after nerve injury via regulation of process formation. J Cell Biol. 2019;: pubmed 出版商
  81. Zhong H, Wu H, Bai H, Wang M, Wen J, Gong J, et al. Panax notoginseng saponins promote liver regeneration through activation of the PI3K/AKT/mTOR cell proliferation pathway and upregulation of the AKT/Bad cell survival pathway in mice. BMC Complement Altern Med. 2019;19:122 pubmed 出版商
  82. Zhang H, Pan B, Wu P, Parajuli N, Rekhter M, Goldberg A, et al. PDE1 inhibition facilitates proteasomal degradation of misfolded proteins and protects against cardiac proteinopathy. Sci Adv. 2019;5:eaaw5870 pubmed 出版商
  83. Hyle J, Zhang Y, Wright S, Xu B, Shao Y, Easton J, et al. Acute depletion of CTCF directly affects MYC regulation through loss of enhancer-promoter looping. Nucleic Acids Res. 2019;: pubmed 出版商
  84. Fang D, Wang H, Li M, Wei W. α-bisabolol enhances radiotherapy-induced apoptosis in endometrial cancer cells by reducing the effect of XIAP on inhibiting caspase-3. Biosci Rep. 2019;39: pubmed 出版商
  85. Nandakumar S, McFarland S, Mateyka L, Lareau C, Ulirsch J, Ludwig L, et al. Gene-centric functional dissection of human genetic variation uncovers regulators of hematopoiesis. elife. 2019;8: pubmed 出版商
  86. Chung H, Zou X, Bajar B, Brand V, Huo Y, Alcudia J, et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science. 2019;364: pubmed 出版商
  87. Yang Q, Zhang L, Zhong Y, Lai L, Li X. miR-206 inhibits cell proliferation, invasion, and migration by down-regulating PTP1B in hepatocellular carcinoma. Biosci Rep. 2019;39: pubmed 出版商
  88. Tang L, Wen J, Wen P, Li X, Gong M, Li Q. Long non-coding RNA LINC01314 represses cell migration, invasion, and angiogenesis in gastric cancer via the Wnt/β-catenin signaling pathway by down-regulating KLK4. Cancer Cell Int. 2019;19:94 pubmed 出版商
  89. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  90. Kang H, Yang B, Zhang K, Pan Q, Yuan W, Li G, et al. Immunoregulation of macrophages by dynamic ligand presentation via ligand-cation coordination. Nat Commun. 2019;10:1696 pubmed 出版商
  91. Zhang Q, Higginbotham J, Jeppesen D, Yang Y, Li W, McKinley E, et al. Transfer of Functional Cargo in Exomeres. Cell Rep. 2019;27:940-954.e6 pubmed 出版商
  92. Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, et al. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Sci Adv. 2019;5:eaav9824 pubmed 出版商
  93. Ferraro D, Patella F, Zanivan S, Donato C, Aceto N, Giannotta M, et al. Endothelial cell-derived nidogen-1 inhibits migration of SK-BR-3 breast cancer cells. BMC Cancer. 2019;19:312 pubmed 出版商
  94. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  95. Gersch M, Wagstaff J, Toms A, Graves B, Freund S, Komander D. Distinct USP25 and USP28 Oligomerization States Regulate Deubiquitinating Activity. Mol Cell. 2019;74:436-451.e7 pubmed 出版商
  96. Tsai C, Tsai C, Yi J, Kao H, Huang Y, Wang C, et al. Activin A regulates the epidermal growth factor receptor promoter by activating the PI3K/SP1 pathway in oral squamous cell carcinoma cells. Sci Rep. 2019;9:5197 pubmed 出版商
  97. Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, et al. Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis. 2019;284:110-120 pubmed 出版商
  98. Hu J, Gao C, Wei C, Xue Y, Shao C, Hao Y, et al. RBFox2-miR-34a-Jph2 axis contributes to cardiac decompensation during heart failure. Proc Natl Acad Sci U S A. 2019;116:6172-6180 pubmed 出版商
  99. Poondla N, Chandrasekaran A, Heese K, Kim K, Ramakrishna S. CRISPR-mediated upregulation of DR5 and downregulation of cFLIP synergistically sensitize HeLa cells to TRAIL-mediated apoptosis. Biochem Biophys Res Commun. 2019;: pubmed 出版商
  100. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  101. Yan M, Wang J, Ren Y, Li L, He W, Zhang Y, et al. Over-expression of FSIP1 promotes breast cancer progression and confers resistance to docetaxel via MRP1 stabilization. Cell Death Dis. 2019;10:204 pubmed 出版商
  102. DeLalio L, Billaud M, Ruddiman C, Johnstone S, Butcher J, Wolpe A, et al. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem. 2019;294:6940-6956 pubmed 出版商
  103. Otsuka Y, Egawa K, Kanzaki N, Izumo T, Rogi T, Shibata H. Quercetin glycosides prevent dexamethasone-induced muscle atrophy in mice. Biochem Biophys Rep. 2019;18:100618 pubmed 出版商
  104. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  105. Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, et al. Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett. 2019;449:87-98 pubmed 出版商
  106. Bell Temin H, Yousefzadeh M, Bondarenko A, Quarles E, Jones Laughner J, Robbins P, et al. Measuring biological age in mice using differential mass spectrometry. Aging (Albany NY). 2019;11:1045-1061 pubmed 出版商
  107. Chen S, Huang V, Xu X, Livingstone J, Soares F, Jeon J, et al. Widespread and Functional RNA Circularization in Localized Prostate Cancer. Cell. 2019;176:831-843.e22 pubmed 出版商
  108. Rangel L, Bernabé Rubio M, Fernández Barrera J, Casares Arias J, Millan J, Alonso M, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep. 2019;9:1116 pubmed 出版商
  109. Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, et al. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci. 2019;132: pubmed 出版商
  110. Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, et al. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol. 2019;: pubmed 出版商
  111. Rossi F, Legnini I, Megiorni F, Colantoni A, Santini T, Morlando M, et al. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene. 2019;38:3843-3854 pubmed 出版商
  112. Taura M, Song E, Ho Y, Iwasaki A. Apobec3A maintains HIV-1 latency through recruitment of epigenetic silencing machinery to the long terminal repeat. Proc Natl Acad Sci U S A. 2019;116:2282-2289 pubmed 出版商
  113. Mooney M, Geerts D, Kort E, Bachmann A. Anti-tumor effect of sulfasalazine in neuroblastoma. Biochem Pharmacol. 2019;162:237-249 pubmed 出版商
  114. Cai W, Xu Y, Zuo W, Su Z. MicroR-542-3p can mediate ILK and further inhibit cell proliferation, migration and invasion in osteosarcoma cells. Aging (Albany NY). 2019;11:18-32 pubmed 出版商
  115. Jiu Y, Kumari R, Fenix A, Schaible N, Liu X, Varjosalo M, et al. Myosin-18B Promotes the Assembly of Myosin II Stacks for Maturation of Contractile Actomyosin Bundles. Curr Biol. 2019;29:81-92.e5 pubmed 出版商
  116. Silberman A, Goldman O, Boukobza Assayag O, Jacob A, Rabinovich S, Adler L, et al. Acid-Induced Downregulation of ASS1 Contributes to the Maintenance of Intracellular pH in Cancer. Cancer Res. 2019;79:518-533 pubmed 出版商
  117. Cui Y, Carosi J, Yang Z, Ariotti N, Kerr M, Parton R, et al. Retromer has a selective function in cargo sorting via endosome transport carriers. J Cell Biol. 2019;218:615-631 pubmed 出版商
  118. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  119. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  120. Leoz M, Kukanja P, Luo Z, Huang F, Cary D, Peterlin B, et al. HEXIM1-Tat chimera inhibits HIV-1 replication. PLoS Pathog. 2018;14:e1007402 pubmed 出版商
  121. Mulati K, Hamanishi J, Matsumura N, Chamoto K, Mise N, Abiko K, et al. VISTA expressed in tumour cells regulates T cell function. Br J Cancer. 2019;120:115-127 pubmed 出版商
  122. Schwartz A, Das N, Ramakrishnan S, Jain C, Jurkovic M, Wu J, et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J Clin Invest. 2019;129:336-348 pubmed 出版商
  123. Heusinger E, Deppe K, Sette P, Krapp C, Kmiec D, Kluge S, et al. Preadaptation of Simian Immunodeficiency Virus SIVsmm Facilitated Env-Mediated Counteraction of Human Tetherin by Human Immunodeficiency Virus Type 2. J Virol. 2018;92: pubmed 出版商
  124. Schlögl E, Radeva M, Vielmuth F, Schinner C, Waschke J, Spindler V. Keratin Retraction and Desmoglein3 Internalization Independently Contribute to Autoantibody-Induced Cell Dissociation in Pemphigus Vulgaris. Front Immunol. 2018;9:858 pubmed 出版商
  125. Pearce M, Gamble J, Kopparapu P, O Donnell E, Mueller M, Jang H, et al. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget. 2018;9:26072-26085 pubmed 出版商
  126. Ashok A, Karmakar S, Chandel R, Ravikumar R, Dalal S, Kong Q, et al. Prion protein modulates iron transport in the anterior segment: Implications for ocular iron homeostasis and prion transmission. Exp Eye Res. 2018;175:1-13 pubmed 出版商
  127. Liu L, Liu K, Yan Y, Chu Z, Tang Y, Tang C. Two Transcripts of FBXO5 Promote Migration and Osteogenic Differentiation of Human Periodontal Ligament Mesenchymal Stem Cells. Biomed Res Int. 2018;2018:7849294 pubmed 出版商
  128. Luisier R, Tyzack G, Hall C, Mitchell J, Devine H, Taha D, et al. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun. 2018;9:2010 pubmed 出版商
  129. Roders N, Herr F, Ambroise G, Thaunat O, Portier A, Vazquez A, et al. SYK Inhibition Induces Apoptosis in Germinal Center-Like B Cells by Modulating the Antiapoptotic Protein Myeloid Cell Leukemia-1, Affecting B-Cell Activation and Antibody Production. Front Immunol. 2018;9:787 pubmed 出版商
  130. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  131. Puri C, Vicinanza M, Ashkenazi A, Gratian M, Zhang Q, Bento C, et al. The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Dev Cell. 2018;45:114-131.e8 pubmed 出版商
  132. Melzer C, von der Ohe J, Hass R. In Vitro Fusion of Normal and Neoplastic Breast Epithelial Cells with Human Mesenchymal Stroma/Stem Cells Partially Involves Tumor Necrosis Factor Receptor Signaling. Stem Cells. 2018;36:977-989 pubmed 出版商
  133. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  134. Yurchenko M, Skjesol A, Ryan L, Richard G, Kandasamy R, Wang N, et al. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol. 2018;217:1411-1429 pubmed 出版商
  135. Wen G, An W, Chen J, Maguire E, Chen Q, Yang F, et al. Genetic and Pharmacologic Inhibition of the Neutrophil Elastase Inhibits Experimental Atherosclerosis. J Am Heart Assoc. 2018;7: pubmed 出版商
  136. Liu F, Dai M, Xu Q, Zhu X, Zhou Y, Jiang S, et al. SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis. Oncogene. 2018;37:2394-2409 pubmed 出版商
  137. Xue C, Hong L, Lin J, Yao X, Wu D, Lin X, et al. β-Elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway. Biosci Rep. 2018;38: pubmed 出版商
  138. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  139. Kumar S, Nakashizuka H, Jones A, Lambert A, Zhao X, Shen M, et al. Proteolytic Degradation and Inflammation Play Critical Roles in Polypoidal Choroidal Vasculopathy. Am J Pathol. 2017;187:2841-2857 pubmed 出版商
  140. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed 出版商
  141. Wu X, Zhou H, Yue B, Li M, Liu F, Qiu C, et al. Upregulation of microRNA-25-3p inhibits proliferation, migration and invasion of osteosarcoma cells in vitro by directly targeting SOX4. Mol Med Rep. 2017;16:4293-4300 pubmed 出版商
  142. Whitson J, Zhang X, Medvedovic M, Chen J, Wei Z, Monnier V, et al. Transcriptome of the GSH-Depleted Lens Reveals Changes in Detoxification and EMT Signaling Genes, Transport Systems, and Lipid Homeostasis. Invest Ophthalmol Vis Sci. 2017;58:2666-2684 pubmed 出版商
  143. Tan H, Liao H, Zhao L, Lu Y, Jiang S, Tao D, et al. HILI destabilizes microtubules by suppressing phosphorylation and Gigaxonin-mediated degradation of TBCB. Sci Rep. 2017;7:46376 pubmed 出版商
  144. Bi P, Ramirez Martinez A, Li H, Cannavino J, McAnally J, Shelton J, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356:323-327 pubmed 出版商
  145. AlAmri M, Kadri H, Alderwick L, Simpkins N, Mehellou Y. Rafoxanide and Closantel Inhibit SPAK and OSR1 Kinases by Binding to a Highly Conserved Allosteric Site on Their C-terminal Domains. ChemMedChem. 2017;12:639-645 pubmed 出版商
  146. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  147. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  148. Longo F, Mercatelli D, Novello S, Arcuri L, Brugnoli A, Vincenzi F, et al. Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathol Commun. 2017;5:22 pubmed 出版商
  149. de Oliveira R, Vicente Miranda H, Francelle L, Pinho R, Szego E, Martinho R, et al. The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017;15:e2000374 pubmed 出版商
  150. Xiang J, Yang S, Xin N, Gaertig M, Reeves R, Li S, et al. DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome. Proc Natl Acad Sci U S A. 2017;114:E1224-E1233 pubmed 出版商
  151. Guo R, Si R, Scott B, Makino A. Mitochondrial connexin40 regulates mitochondrial calcium uptake in coronary endothelial cells. Am J Physiol Cell Physiol. 2017;312:C398-C406 pubmed 出版商
  152. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  153. Vonk J, Yeshaw W, Pinto F, Faber A, Lahaye L, Kanon B, et al. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain. PLoS ONE. 2017;12:e0170106 pubmed 出版商
  154. Herold N, Rudd S, Ljungblad L, Sanjiv K, Myrberg I, Paulin C, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med. 2017;23:256-263 pubmed 出版商
  155. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  156. Yu X, Curlik D, Oh M, Yin J, Disterhoft J. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats. elife. 2017;6: pubmed 出版商
  157. Miroshnychenko O, Chang W, Dragoo J. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration. Am J Sports Med. 2017;45:945-953 pubmed 出版商
  158. Zhang D, Wu B, Wang P, Wang Y, Lu P, Nechiporuk T, et al. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Res. 2017;45:3102-3115 pubmed 出版商
  159. Radhakrishnan V, Gilpatrick M, Parsa N, Kiela P, Ghishan F. Expression of Cav1.3 calcium channel in the human and mouse colon: posttranscriptional inhibition by IFN?. Am J Physiol Gastrointest Liver Physiol. 2017;312:G77-G84 pubmed 出版商
  160. Akagi R, Akatsu Y, Fisch K, Alvarez Garcia O, Teramura T, Muramatsu Y, et al. Dysregulated circadian rhythm pathway in human osteoarthritis: NR1D1 and BMAL1 suppression alters TGF-? signaling in chondrocytes. Osteoarthritis Cartilage. 2017;25:943-951 pubmed 出版商
  161. Hwang D, Jo H, Hwang S, Kim J, Kim I, Lim Y. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells. Biomed Pharmacother. 2017;85:280-286 pubmed 出版商
  162. Takács E, Boto P, Simo E, Csuth T, Toth B, Raveh Amit H, et al. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. J Immunol. 2017;198:239-248 pubmed
  163. Lin J, Kumari S, Kim C, Van T, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124-128 pubmed 出版商
  164. Chehaibi K, le Maire L, Bradoni S, Escolà J, Blanco Vaca F, Slimane M. Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res. 2017;182:27-48 pubmed 出版商
  165. Liu L, Tao Z, Zheng L, Brooke J, Smith C, Liu D, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discov. 2016;2:16066 pubmed
  166. Pachulec E, Neitzke Montinelli V, Viola J. NFAT2 Regulates Generation of Innate-Like CD8+ T Lymphocytes and CD8+ T Lymphocytes Responses. Front Immunol. 2016;7:411 pubmed
  167. Nguyen A, Nyberg K, Scott M, Welsh A, Nguyen A, Wu N, et al. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb). 2016;8:1232-1245 pubmed
  168. Yang T, Wang J, Pang Y, Dang X, Ren H, Liu Y, et al. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact. Mol Med Rep. 2016;14:4643-4649 pubmed 出版商
  169. Jain S, Krishna Meka S, Chatterjee K. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed Mater. 2016;11:055007 pubmed
  170. Baravalle R, Di Nardo G, Bandino A, Barone I, Catalano S, Ando S, et al. Impact of R264C and R264H polymorphisms in human aromatase function. J Steroid Biochem Mol Biol. 2017;167:23-32 pubmed 出版商
  171. Zhan Y, Mou L, Cheng K, Wang C, Deng X, Chen J, et al. Hepatocellular carcinoma stem cell-like cells are enriched following low-dose 5-fluorouracil chemotherapy. Oncol Lett. 2016;12:2511-2516 pubmed
  172. Alphonse M, Duong T, Shumitzu C, Hoang T, McCrindle B, Franco A, et al. Inositol-Triphosphate 3-Kinase C Mediates Inflammasome Activation and Treatment Response in Kawasaki Disease. J Immunol. 2016;197:3481-3489 pubmed
  173. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  174. Kim Y, Yadava R, Mandal M, Mahadevan K, Yu Q, Leitges M, et al. Disease Phenotypes in a Mouse Model of RNA Toxicity Are Independent of Protein Kinase Cα and Protein Kinase Cβ. PLoS ONE. 2016;11:e0163325 pubmed 出版商
  175. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  176. Bi P, Yue F, Sato Y, Wirbisky S, Liu W, Shan T, et al. Stage-specific effects of Notch activation during skeletal myogenesis. elife. 2016;5: pubmed 出版商
  177. Wu H, Li S, Hu J, Yu X, Xu H, Chen Z, et al. Demystifying the mechanistic and functional aspects of p21 gene activation with double-stranded RNAs in human cancer cells. J Exp Clin Cancer Res. 2016;35:145 pubmed 出版商
  178. Vernia S, Edwards Y, Han M, Cavanagh Kyros J, Barrett T, Kim J, et al. An alternative splicing program promotes adipose tissue thermogenesis. elife. 2016;5: pubmed 出版商
  179. Charrier A, Wang L, Stephenson E, Ghanta S, Ko C, Croniger C, et al. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice. Am J Physiol Endocrinol Metab. 2016;311:E869-E880 pubmed 出版商
  180. Gao C, Wang J, Li C, Zhang W, Liu G. A Functional Polymorphism (rs10817938) in the XPA Promoter Region Is Associated with Poor Prognosis of Oral Squamous Cell Carcinoma in a Chinese Han Population. PLoS ONE. 2016;11:e0160801 pubmed 出版商
  181. Waasdorp M, Duitman J, Florquin S, Spek C. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice. Sci Rep. 2016;6:33030 pubmed 出版商
  182. Lutgen V, Narasipura S, Sharma A, Min S, Al Harthi L. β-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. J Neuroinflammation. 2016;13:242 pubmed 出版商
  183. De Los Santos S, García Pérez V, Hernández Reséndiz S, Palma Flores C, González Gutiérrez C, Zazueta C, et al. (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Mol Nutr Food Res. 2017;61: pubmed 出版商
  184. Arsenault J, Gholizadeh S, Niibori Y, Pacey L, Halder S, Koxhioni E, et al. FMRP Expression Levels in Mouse Central Nervous System Neurons Determine Behavioral Phenotype. Hum Gene Ther. 2016;27:982-996 pubmed 出版商
  185. Deeg K, Chung I, Bauer C, Rippe K. Cancer Cells with Alternative Lengthening of Telomeres Do Not Display a General Hypersensitivity to ATR Inhibition. Front Oncol. 2016;6:186 pubmed 出版商
  186. Li J, Yang Z, Chen Z, Bao Y, Zhang H, Fang X, et al. ATF3 suppresses ESCC via downregulation of ID1. Oncol Lett. 2016;12:1642-1648 pubmed
  187. Luo H, Zhang J, Miao F. Effects of pramipexole treatment on the ?-synuclein content in serum exosomes of Parkinson's disease patients. Exp Ther Med. 2016;12:1373-1376 pubmed
  188. Rosa C, Gimenes R, Campos D, Guirado G, Gimenes C, Fernandes A, et al. Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovasc Diabetol. 2016;15:126 pubmed 出版商
  189. Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation. 2016;13:208 pubmed 出版商
  190. Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, et al. Desmin and ?B-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci. 2016;129:3705-3720 pubmed
  191. Georgescu M, Gagea M, Cote G. NHERF1/EBP50 Suppresses Wnt-?-Catenin Pathway-Driven Intestinal Neoplasia. Neoplasia. 2016;18:512-23 pubmed 出版商
  192. Skrdlant L, Stark J, Lin R. Myelodysplasia-associated mutations in serine/arginine-rich splicing factor SRSF2 lead to alternative splicing of CDC25C. BMC Mol Biol. 2016;17:18 pubmed 出版商
  193. Hong J, Kwak Y, Woo Y, Park C, Lee S, Lee H, et al. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep. 2016;6:31827 pubmed 出版商
  194. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed 出版商
  195. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  196. Pourcelot M, Zemirli N, Silva da Costa L, Loyant R, Garcin D, Vitour D, et al. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol. 2016;14:69 pubmed 出版商
  197. Ahn J, Kim K, Park S, Ahn Y, Kim H, Yoon H, et al. Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer. Oncotarget. 2016;7:63252-63260 pubmed 出版商
  198. Fokkelman M, BalcıoÄŸlu H, Klip J, Yan K, Verbeek F, Danen E, et al. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour. Sci Rep. 2016;6:31707 pubmed 出版商
  199. Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H, Naguro I, et al. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. elife. 2016;5: pubmed 出版商
  200. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  201. Yuan W, Guo Y, Li X, Deng M, Shen Z, Bo C, et al. MicroRNA-126 inhibits colon cancer cell proliferation and invasion by targeting the chemokine (C-X-C motif) receptor 4 and Ras homolog gene family, member A, signaling pathway. Oncotarget. 2016;7:60230-60244 pubmed 出版商
  202. Moreno A, Carrington J, Albergante L, Al Mamun M, Haagensen E, Komseli E, et al. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A. 2016;113:E5757-64 pubmed 出版商
  203. Koch F, Lamp O, Eslamizad M, Weitzel J, Kuhla B. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk. PLoS ONE. 2016;11:e0160912 pubmed 出版商
  204. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  205. Surtees R, Dowall S, Shaw A, Armstrong S, Hewson R, Carroll M, et al. Heat Shock Protein 70 Family Members Interact with Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus Nucleocapsid Proteins and Perform a Functional Role in the Nairovirus Replication Cycle. J Virol. 2016;90:9305-16 pubmed 出版商
  206. Batalha V, Ferreira D, Coelho J, Valadas J, Gomes R, Temido Ferreira M, et al. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci Rep. 2016;6:31493 pubmed 出版商
  207. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  208. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  209. Wang X, Buechler N, Martin A, Wells J, Yoza B, McCall C, et al. Sirtuin-2 Regulates Sepsis Inflammation in ob/ob Mice. PLoS ONE. 2016;11:e0160431 pubmed 出版商
  210. Kazantseva J, Sadam H, Neuman T, Palm K. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming. Sci Rep. 2016;6:30852 pubmed 出版商
  211. Wang Y, Lin S, Hsieh P, Hung S. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes. Biochem Biophys Res Commun. 2016;478:689-95 pubmed 出版商
  212. Wilhelmi I, Kanski R, Neumann A, Herdt O, Hoff F, Jacob R, et al. Sec16 alternative splicing dynamically controls COPII transport efficiency. Nat Commun. 2016;7:12347 pubmed 出版商
  213. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  214. Kim H, Lee K, Kim A, Choi M, Choi K, Kang M, et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 2016;9:839-48 pubmed 出版商
  215. Al Sady B, Greenstein R, El Samad H, Braun S, Madhani H. Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics. PLoS ONE. 2016;11:e0159292 pubmed 出版商
  216. Ito G, Katsemonova K, Tonelli F, Lis P, Baptista M, Shpiro N, et al. Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors. Biochem J. 2016;473:2671-85 pubmed 出版商
  217. Sullivan K, Lewis H, Hill A, Pandey A, Jackson L, Cabral J, et al. Trisomy 21 consistently activates the interferon response. elife. 2016;5: pubmed 出版商
  218. Ortega A, Gil Cayuela C, Tarazón E, García Manzanares M, Montero J, Cinca J, et al. New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction. PLoS ONE. 2016;11:e0160168 pubmed 出版商
  219. Koopmans T, Kumawat K, Halayko A, Gosens R. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Sci Rep. 2016;6:30676 pubmed 出版商
  220. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  221. Song Y, Li A, Zhang L, Duan L. Expression of G protein-coupled receptor 56 is associated with tumor progression in non-small-cell lung carcinoma patients. Onco Targets Ther. 2016;9:4105-12 pubmed 出版商
  222. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  223. Fotouhi O, Kjellin H, Larsson C, Hashemi J, Barriuso J, Juhlin C, et al. Proteomics Suggests a Role for APC-Survivin in Response to Somatostatin Analog Treatment of Neuroendocrine Tumors. J Clin Endocrinol Metab. 2016;101:3616-3627 pubmed
  224. Ling D, Chen Z, Liao Q, Feng J, Zhang X, Yin T. Differential effects of MTSS1 on invasion and proliferation in subtypes of non-small cell lung cancer cells. Exp Ther Med. 2016;12:1225-1231 pubmed
  225. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  226. Bieberstein N, Kozáková E, Huranová M, Thakur P, Krchňáková Z, Krausova M, et al. TALE-directed local modulation of H3K9 methylation shapes exon recognition. Sci Rep. 2016;6:29961 pubmed 出版商
  227. Thomas R, Henson A, Gerrish A, Jones L, Williams J, Kidd E. Decreasing the expression of PICALM reduces endocytosis and the activity of β-secretase: implications for Alzheimer's disease. BMC Neurosci. 2016;17:50 pubmed 出版商
  228. Gong K, Qu B, Liao D, Liu D, Wang C, Zhou J, et al. MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor ?/?-dependent manner. Biochem Biophys Res Commun. 2016;478:260-267 pubmed 出版商
  229. Liu S, Hossinger A, Hofmann J, Denner P, Vorberg I. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles. MBio. 2016;7: pubmed 出版商
  230. Tichon A, Gil N, Lubelsky Y, Havkin Solomon T, Lemze D, Itzkovitz S, et al. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat Commun. 2016;7:12209 pubmed 出版商
  231. Pagliuso A, Valente C, Giordano L, Filograna A, Li G, Circolo D, et al. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase ?. Nat Commun. 2016;7:12148 pubmed 出版商
  232. Chandler J, Wongtrakool C, Banton S, Li S, Orr M, Barr D, et al. Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice. Physiol Rep. 2016;4: pubmed 出版商
  233. Winter L, Wittig I, Peeva V, Eggers B, Heidler J, Chevessier F, et al. Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathol. 2016;132:453-73 pubmed 出版商
  234. Qu B, Ma Y, Yan M, Gong K, Liang F, Deng S, et al. Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor ? in MC3T3-E1 cells. Biochem Biophys Res Commun. 2016;478:439-445 pubmed 出版商
  235. Kapeli K, Pratt G, Vu A, Hutt K, Martinez F, Sundararaman B, et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat Commun. 2016;7:12143 pubmed 出版商
  236. Gao Y, Mutter Rottmayer E, Greenwalt A, Goldfarb D, Yan F, Yang Y, et al. A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis. Nat Commun. 2016;7:12105 pubmed 出版商
  237. Chen X, Wagener J, Ghribi O, Geiger J. Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Front Aging Neurosci. 2016;8:129 pubmed 出版商
  238. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun. 2016;4:64 pubmed 出版商
  239. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  240. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  241. Edmondson R, Adcock A, Yang L. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins. PLoS ONE. 2016;11:e0158116 pubmed 出版商
  242. Helland Ø, Popa M, Bischof K, Gjertsen B, McCormack E, Bjørge L. The HDACi Panobinostat Shows Growth Inhibition Both In Vitro and in a Bioluminescent Orthotopic Surgical Xenograft Model of Ovarian Cancer. PLoS ONE. 2016;11:e0158208 pubmed 出版商
  243. Languino L, Singh A, Prisco M, Inman G, Luginbuhl A, Curry J, et al. Exosome-mediated transfer from the tumor microenvironment increases TGF? signaling in squamous cell carcinoma. Am J Transl Res. 2016;8:2432-7 pubmed
  244. Cheng Y, Li H, Li J, Li J, Gao Y, Liu B. O-GlcNAcylation enhances anaplastic thyroid carcinoma malignancy. Oncol Lett. 2016;12:572-578 pubmed
  245. Zhao J, Chen F, Zhou Q, Pan W, Wang X, Xu J, et al. B7-H3 protein expression in a murine model of osteosarcoma. Oncol Lett. 2016;12:383-386 pubmed
  246. Zheng C, Yang K, Zhang M, Zou M, Bai E, Ma Q, et al. Specific protein 1 depletion attenuates glucose uptake and proliferation of human glioma cells by regulating GLUT3 expression. Oncol Lett. 2016;12:125-131 pubmed
  247. Justis A, Hansen B, Beare P, King K, Heinzen R, Gilk S. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol. 2017;19: pubmed 出版商
  248. Inoue T, Ikeda M, Ide T, Fujino T, Matsuo Y, Arai S, et al. Twinkle overexpression prevents cardiac rupture after myocardial infarction by alleviating impaired mitochondrial biogenesis. Am J Physiol Heart Circ Physiol. 2016;311:H509-19 pubmed 出版商
  249. Choi H, Jin S, Kwon J, Kim J, Jeong J, Kim J, et al. Characterization of Mammalian ADAM2 and Its Absence from Human Sperm. PLoS ONE. 2016;11:e0158321 pubmed 出版商
  250. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  251. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  252. Ortiz D, Glassbrook J, Pellett P. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103. J Virol. 2016;90:7798-810 pubmed 出版商
  253. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  254. Bennesch M, Segala G, Wider D, Picard D. LSD1 engages a corepressor complex for the activation of the estrogen receptor ? by estrogen and cAMP. Nucleic Acids Res. 2016;44:8655-8670 pubmed
  255. Zhang W, Chin T, Yang H, Nga M, Lunny D, Lim E, et al. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat Commun. 2016;7:11702 pubmed 出版商
  256. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed 出版商
  257. Li Y, Liu C, Su T, Cheng H, Jeng Y, Lin H, et al. Characterization of metastatic tumor antigen 1 and its interaction with hepatitis B virus X protein in NF-κB signaling and tumor progression in a woodchuck hepatocellular carcinoma model. Oncotarget. 2016;7:47173-47185 pubmed 出版商
  258. Muñoz Félix J, Pérez Roque L, Núñez Gómez E, Oujo B, Arevalo M, Ruiz Remolina L, et al. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. Biochim Biophys Acta. 2016;1862:1801-14 pubmed 出版商
  259. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  260. Cui L, Wang Y, Yu R, Li B, Xie S, Gao Y, et al. Jia-Shen decoction-medicated serum inhibits angiotensin-II induced cardiac fibroblast proliferation via the TGF-?1/Smad signaling pathway. Mol Med Rep. 2016;14:1610-6 pubmed 出版商
  261. Herring A, Münster Y, Metzdorf J, Bolczek B, Krüssel S, Krieter D, et al. Late running is not too late against Alzheimer's pathology. Neurobiol Dis. 2016;94:44-54 pubmed 出版商
  262. Joly S, Pernet V. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma. J Neurochem. 2016;138:571-86 pubmed 出版商
  263. Tsai K, Leung C, Lo Y, Chen T, Chan W, Yu S, et al. Arm Selection Preference of MicroRNA-193a Varies in Breast Cancer. Sci Rep. 2016;6:28176 pubmed 出版商
  264. Pomo J, Taylor R, Gullapalli R. Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics. Cancer Cell Int. 2016;16:44 pubmed 出版商
  265. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  266. Tagscherer K, Fassl A, Sinkovic T, Richter J, Schecher S, Macher Goeppinger S, et al. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016;16:42 pubmed 出版商
  267. Jin P, Li T, Li X, Shen X, Zhao Y. Suppression of oxidative stress in endothelial progenitor cells promotes angiogenesis and improves cardiac function following myocardial infarction in diabetic mice. Exp Ther Med. 2016;11:2163-2170 pubmed
  268. Ryan T, Schmidt C, Green T, Spangenburg E, Neufer P, McClung J. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice. Diabetes. 2016;65:2553-68 pubmed 出版商
  269. Vilmont V, Cadot B, Vezin E, Le Grand F, Gomes E. Dynein disruption perturbs post-synaptic components and contributes to impaired MuSK clustering at the NMJ: implication in ALS. Sci Rep. 2016;6:27804 pubmed 出版商
  270. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  271. Bento C, Ashkenazi A, Jimenez Sanchez M, Rubinsztein D. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun. 2016;7:11803 pubmed 出版商
  272. Jayashree B, Srimany A, Jayaraman S, Bhutra A, Janakiraman N, Chitipothu S, et al. Monitoring of changes in lipid profiles during PLK1 knockdown in cancer cells using DESI MS. Anal Bioanal Chem. 2016;408:5623-32 pubmed 出版商
  273. Boada Romero E, Serramito Gómez I, Sacristán M, Boone D, Xavier R, Pimentel Muiños F. The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1. Nat Commun. 2016;7:11821 pubmed 出版商
  274. Zhang Z, Zhao G, Zhuang C, Shen Y, Zhao W, Xu J, et al. Long non-coding RNA LINC00628 functions as a gastric cancer suppressor via long-range modulating the expression of cell cycle related genes. Sci Rep. 2016;6:27435 pubmed 出版商
  275. Duran C, Lee D, Jung J, Ravi S, Pogue C, Toussaint L, et al. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-?B pathway. Oncogenesis. 2016;5:e231 pubmed 出版商
  276. Liu L, Zheng L, Zou P, Brooke J, Smith C, Long Y, et al. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle. 2016;15:2033-41 pubmed 出版商
  277. Hartmann L, Dutta S, Opatz S, Vosberg S, Reiter K, Leubolt G, et al. ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. Nat Commun. 2016;7:11733 pubmed 出版商
  278. Petrera A, Gassenhuber J, Ruf S, Gunasekaran D, Esser J, Shahinian J, et al. Cathepsin A inhibition attenuates myocardial infarction-induced heart failure on the functional and proteomic levels. J Transl Med. 2016;14:153 pubmed 出版商
  279. Salazar Cantú A, Pérez Treviño P, Montalvo Parra D, Balderas Villalobos J, Gómez Víquez N, García N, et al. Role of SERCA and the sarcoplasmic reticulum calcium content on calcium waves propagation in rat ventricular myocytes. Arch Biochem Biophys. 2016;604:11-9 pubmed 出版商
  280. Nutter C, Jaworski E, Verma S, Deshmukh V, Wang Q, Botvinnik O, et al. Dysregulation of RBFOX2 Is an Early Event in Cardiac Pathogenesis of Diabetes. Cell Rep. 2016;15:2200-2213 pubmed 出版商
  281. Pumberger M, Qazi T, Ehrentraut M, Textor M, Kueper J, Stoltenburg Didinger G, et al. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials. 2016;99:95-108 pubmed 出版商
  282. Høydal M, Stølen T, Kettlewell S, Maier L, Brown J, Sowa T, et al. Exercise training reverses myocardial dysfunction induced by CaMKII?C overexpression by restoring Ca2+ homeostasis. J Appl Physiol (1985). 2016;121:212-20 pubmed 出版商
  283. Zhu K, Liu L, Zhang J, Wang Y, Liang H, Fan G, et al. MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6. Protein Cell. 2016;7:434-44 pubmed 出版商
  284. Han B, Poppinga W, Zuo H, Zuidhof A, Bos I, Smit M, et al. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease. Sci Rep. 2016;6:26928 pubmed 出版商
  285. Romanello M, Schiavone D, Frey A, Sale J. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J. 2016;35:1452-64 pubmed 出版商
  286. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  287. Lin J, Xue A, Li L, Li B, Li Y, Shen Y, et al. MicroRNA-19b Downregulates Gap Junction Protein Alpha1 and Synergizes with MicroRNA-1 in Viral Myocarditis. Int J Mol Sci. 2016;17: pubmed 出版商
  288. Martinelli G, Olivari D, Re Cecconi A, Talamini L, Ottoboni L, Lecker S, et al. Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia. Oncogene. 2016;35:6212-6222 pubmed 出版商
  289. Huang Y, Yang X, Xu T, Kong Q, Zhang Y, Shen Y, et al. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol. 2016;49:153-63 pubmed 出版商
  290. Kohler T, Scholz A, Kiachludis D, Hammerschmidt S. Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Front Cell Infect Microbiol. 2016;6:48 pubmed 出版商
  291. Kalantari R, Hicks J, Li L, Gagnon K, Sridhara V, Lemoff A, et al. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA. 2016;22:1085-98 pubmed 出版商
  292. Lee J, Kwon G, Park J, Kim J, Lim Y. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp Biol Med (Maywood). 2016;241:1757-63 pubmed 出版商
  293. Dar A, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M, et al. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci U S A. 2016;113:6254-8 pubmed 出版商
  294. Chen R, Liu H, Cheng Q, Jiang B, Peng R, Zou Q, et al. MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide. Biol Open. 2016;5:669-77 pubmed 出版商
  295. Fusté N, Fernández Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, et al. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun. 2016;7:11581 pubmed 出版商
  296. Bianchi Smiraglia A, Bagati A, Fink E, Moparthy S, Wawrzyniak J, Marvin E, et al. Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene. 2017;36:84-96 pubmed 出版商
  297. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  298. Hou D, Jin Y, Nie X, Zhang M, Ta N, Zhao L, et al. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos. Sci Rep. 2016;6:25838 pubmed 出版商
  299. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  300. Hudson C, McArdle C, López Bernal A. Steroid receptor co-activator interacting protein (SIP) mediates EGF-stimulated expression of the prostaglandin synthase COX2 and prostaglandin release in human myometrium. Mol Hum Reprod. 2016;22:512-25 pubmed 出版商
  301. Pandolfini L, Luzi E, Bressan D, Ucciferri N, Bertacchi M, Brandi R, et al. RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biol. 2016;17:94 pubmed 出版商
  302. Riaz M, Raz Y, van Putten M, Paniagua Soriano G, Krom Y, Florea B, et al. PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genet. 2016;12:e1006031 pubmed 出版商
  303. Chen C, Wei X, Lv Z, Sun X, Wang S, Zhang Y, et al. Cyclic Equibiaxial Tensile Strain Alters Gene Expression of Chondrocytes via Histone Deacetylase 4 Shuttling. PLoS ONE. 2016;11:e0154951 pubmed 出版商
  304. Scott T, Wicker C, Suganya R, Dhar B, Pittman T, Horbinski C, et al. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Mol Carcinog. 2017;56:325-336 pubmed 出版商
  305. Maza P, Suzuki E. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment. Front Microbiol. 2016;7:580 pubmed 出版商
  306. Humoud M, Doyle N, Royall E, Willcocks M, Sorgeloos F, van Kuppeveld F, et al. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. J Virol. 2016;90:6489-6501 pubmed 出版商
  307. Huebner S, Blohowiak S, Kling P, Smith S. Prenatal Alcohol Exposure Alters Fetal Iron Distribution and Elevates Hepatic Hepcidin in a Rat Model of Fetal Alcohol Spectrum Disorders. J Nutr. 2016;146:1180-8 pubmed 出版商
  308. Jadav R, Kumar D, Buwa N, Ganguli S, Thampatty S, Balasubramanian N, et al. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice. Cell Signal. 2016;28:1124-36 pubmed 出版商
  309. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  310. Xiang J, Guo S, Jiang S, Xu Y, Li J, Li L, et al. Silencing of Long Non-Coding RNA MALAT1 Promotes Apoptosis of Glioma Cells. J Korean Med Sci. 2016;31:688-94 pubmed 出版商
  311. García Bea A, Walker M, Hyde T, Kleinman J, Harrison P, Lane T. Metabotropic glutamate receptor 3 (mGlu3; mGluR3; GRM3) in schizophrenia: Antibody characterisation and a semi-quantitative western blot study. Schizophr Res. 2016;177:18-27 pubmed 出版商
  312. Watanabe Y, Papoutsoglou P, Maturi V, Tsubakihara Y, Hottiger M, Heldin C, et al. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. J Biol Chem. 2016;291:12706-23 pubmed 出版商
  313. McKey J, Martire D, de Santa Barbara P, Faure S. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors. BMC Biol. 2016;14:34 pubmed 出版商
  314. Josipovic I, Fork C, Preussner J, Prior K, Iloska D, Vasconez A, et al. PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells. Acta Physiol (Oxf). 2016;218:13-27 pubmed 出版商
  315. Winter L, Türk M, Harter P, Mittelbronn M, Kornblum C, Norwood F, et al. Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy. Acta Neuropathol Commun. 2016;4:44 pubmed 出版商
  316. Tran N, Su H, Khodadadi Jamayran A, Lin S, Zhang L, Zhou D, et al. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 2016;17:887-900 pubmed 出版商
  317. Seo J, Singh N, Ottesen E, Sivanesan S, Shishimorova M, Singh R. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene. PLoS ONE. 2016;11:e0154390 pubmed 出版商
  318. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  319. Liang Q, Wang B, Pang L, Wang Y, Zheng M, Wang Q, et al. Application of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice. Iran J Basic Med Sci. 2016;19:43-8 pubmed
  320. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  321. Dokas J, Chadt A, Joost H, Al Hasani H. Tbc1d1 deletion suppresses obesity in leptin-deficient mice. Int J Obes (Lond). 2016;40:1242-9 pubmed 出版商
  322. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed 出版商
  323. Feng L, Wang Y, Cai H, Sun G, Niu W, Xin Q, et al. ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice. J Cell Sci. 2016;129:2202-12 pubmed 出版商
  324. Kurkinen K, Marttinen M, Turner L, Natunen T, Mäkinen P, Haapalinna F, et al. SEPT8 modulates ?-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1. J Cell Sci. 2016;129:2224-38 pubmed 出版商
  325. Terauchi A, Johnson Venkatesh E, Bullock B, Lehtinen M, Umemori H. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain. elife. 2016;5: pubmed 出版商
  326. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  327. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  328. Elosegui Artola A, Oria R, Chen Y, Kosmalska A, Pérez González C, Castro N, et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol. 2016;18:540-8 pubmed 出版商
  329. Flodby P, Kim Y, Beard L, Gao D, Ji Y, Kage H, et al. Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance. Am J Respir Cell Mol Biol. 2016;55:395-406 pubmed 出版商
  330. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  331. Fortes M, Marzuca Nassr G, Vitzel K, da Justa Pinheiro C, Newsholme P, Curi R. Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models?. Anal Biochem. 2016;504:38-40 pubmed 出版商
  332. Hall A, Lu W, Godfrey J, Antonov A, Paicu C, Moxon S, et al. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis. 2016;7:e2184 pubmed 出版商
  333. Hwang H, Park C, Goodarzi H, Fak J, Mele A, Moore M, et al. PAPERCLIP Identifies MicroRNA Targets and a Role of CstF64/64tau in Promoting Non-canonical poly(A) Site Usage. Cell Rep. 2016;15:423-35 pubmed 出版商
  334. Kumar A, Jagadeeshan S, Subramanian A, Chidambaram S, Surabhi R, Singhal M, et al. Molecular Mechanism of Regulation of MTA1 Expression by Granulocyte Colony-stimulating Factor. J Biol Chem. 2016;291:12310-21 pubmed 出版商
  335. Liu Z, Wang S, Liu J, Wang F, Liu Y, Zhao Y. Leukocyte Infiltration Triggers Seizure Recurrence in a Rat Model of Temporal Lobe Epilepsy. Inflammation. 2016;39:1090-8 pubmed 出版商
  336. Liu W, Cai H, Lin M, Zhu L, Gao L, Zhong R, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp Cell Res. 2016;343:248-257 pubmed 出版商
  337. Navarra A, Musto A, Gargiulo A, Petrosino G, Pierantoni G, Fusco A, et al. Hmga2 is necessary for Otx2-dependent exit of embryonic stem cells from the pluripotent ground state. BMC Biol. 2016;14:24 pubmed 出版商
  338. Cheng C, Jiao J, Qian Y, Guo X, Huang J, Dai M, et al. Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol Med Rep. 2016;13:3763-70 pubmed 出版商
  339. Jia W, Jian Z, Li J, Luo L, Zhao L, Zhou Y, et al. Upregulated ATF6 contributes to chronic intermittent hypoxia-afforded protection against myocardial ischemia/reperfusion injury. Int J Mol Med. 2016;37:1199-208 pubmed 出版商
  340. Wang Y, Lichter Konecki U, Anyane Yeboa K, Shaw J, Lu J, Ostlund C, et al. A mutation abolishing the ZMPSTE24 cleavage site in prelamin A causes a progeroid disorder. J Cell Sci. 2016;129:1975-80 pubmed 出版商
  341. Ledsaak M, Bengtsen M, Molværsmyr A, Fuglerud B, Matre V, Eskeland R, et al. PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status. Biochim Biophys Acta. 2016;1859:705-18 pubmed 出版商
  342. Lee B, Kang H, Lee D, Ahn C, Jeung E. Claudin-1, -2, -4, and -5: comparison of expression levels and distribution in equine tissues. J Vet Sci. 2016;17:445-451 pubmed 出版商
  343. Liang H, Wang F, Chu D, Zhang W, Liao Z, Fu Z, et al. miR-93 functions as an oncomiR for the downregulation of PDCD4 in gastric carcinoma. Sci Rep. 2016;6:23772 pubmed 出版商
  344. Starokadomskyy P, Gemelli T, Rios J, Xing C, Wang R, Li H, et al. DNA polymerase-? regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol. 2016;17:495-504 pubmed 出版商
  345. Del Debbio C, Mir Q, Parameswaran S, Mathews S, Xia X, Zheng L, et al. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1. PLoS ONE. 2016;11:e0152025 pubmed 出版商
  346. Kimball S, Gordon B, Moyer J, Dennis M, Jefferson L. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cell Signal. 2016;28:896-906 pubmed 出版商
  347. Chen Y, Zhou C, Ji W, Mei Z, Hu B, Zhang W, et al. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nat Commun. 2016;7:11057 pubmed 出版商
  348. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  349. Douanne T, Gavard J, Bidère N. The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling. J Cell Sci. 2016;129:1775-80 pubmed 出版商
  350. Ortuno D, Carlisle H, Miller S. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?. F1000Res. 2016;5:137 pubmed 出版商
  351. Yu L, Fan Y, Ye G, Li J, Feng X, Lin K, et al. Curcumin alleviates brain edema by lowering AQP4 expression levels in a rat model of hypoxia-hypercapnia-induced brain damage. Exp Ther Med. 2016;11:709-716 pubmed
  352. Salzman D, Nakamura K, Nallur S, Dookwah M, Metheetrairut C, Slack F, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7:10954 pubmed 出版商
  353. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  354. Hayashi K, Michiue H, Yamada H, Takata K, Nakayama H, Wei F, et al. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Sci Rep. 2016;6:23372 pubmed 出版商
  355. Giannogonas P, Apostolou A, Manousopoulou A, Theocharis S, Macari S, Psarras S, et al. Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep. 2016;6:23342 pubmed 出版商
  356. Lin R, Zhang J, Zhou L, Wang B. Altered function of monocytes/macrophages in patients with autoimmune hepatitis. Mol Med Rep. 2016;13:3874-80 pubmed 出版商
  357. Decorsière A, Mueller H, van Breugel P, Abdul F, Gerossier L, Beran R, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386-9 pubmed 出版商
  358. Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan C, Gao J, et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature. 2016;531:471-475 pubmed 出版商
  359. Kang R, Zhao S, Liu L, Li F, Li E, Luo L, et al. Knockdown of PSCA induces EMT and decreases metastatic potentials of the human prostate cancer DU145 cells. Cancer Cell Int. 2016;16:20 pubmed 出版商
  360. Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, et al. Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation. Sci Rep. 2016;6:23188 pubmed 出版商
  361. German P, Bai S, Liu X, Sun M, Zhou L, Kalra S, et al. Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function. Oncogene. 2016;35:4973-80 pubmed 出版商
  362. Álvarez Santos M, Carbajal V, Tellez Jiménez O, Martínez Cordero E, Ruiz V, Hernández Pando R, et al. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation. J Cell Biochem. 2016;117:2385-96 pubmed 出版商
  363. Barja Fernández S, Folgueira C, Castelao C, Al Massadi O, Bravo S, Garcia Caballero T, et al. FNDC5 is produced in the stomach and associated to body composition. Sci Rep. 2016;6:23067 pubmed 出版商
  364. Martínez Pizarro A, Desviat L, Ugarte M, Perez B, Richard E. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects. PLoS ONE. 2016;11:e0150357 pubmed 出版商
  365. Gdynia G, Sauer S, Kopitz J, Fuchs D, Duglova K, Ruppert T, et al. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nat Commun. 2016;7:10764 pubmed 出版商
  366. Chen Y, Wang Y, Yu Y, Xu L, Zhang Y, Yu S, et al. Transcription Factor HBP1 Enhances Radiosensitivity by Inducing Apoptosis in Prostate Cancer Cell Lines. Anal Cell Pathol (Amst). 2016;2016:7015659 pubmed 出版商
  367. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  368. Jing H, Sun W, Fan J, Zhang Y, Yang J, Jia J, et al. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep. 2016;13:3009-16 pubmed 出版商
  369. Ren B, Wei X, Zou G, He J, Xu G, Xu F, et al. Cancer testis antigen SPAG9 is a promising marker for the diagnosis and treatment of lung cancer. Oncol Rep. 2016;35:2599-605 pubmed 出版商
  370. Cannavo A, Liccardo D, Eguchi A, Elliott K, Traynham C, Ibetti J, et al. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun. 2016;7:10877 pubmed 出版商
  371. Nguyen J, Bernert R, In K, Kang P, Sebastiao N, Hu C, et al. Gamma-interferon-inducible lysosomal thiol reductase is upregulated in human melanoma. Melanoma Res. 2016;26:125-37 pubmed 出版商
  372. Hyrsová L, Smutny T, Carazo A, Moravcik S, Mandíková J, Trejtnar F, et al. The pregnane X receptor down-regulates organic cation transporter 1 (SLC22A1) in human hepatocytes by competing for ("squelching") SRC-1 coactivator. Br J Pharmacol. 2016;173:1703-15 pubmed 出版商
  373. Belcher J, Chen C, Nguyen J, Zhang P, Abdulla F, Nguyen P, et al. Control of Oxidative Stress and Inflammation in Sickle Cell Disease with the Nrf2 Activator Dimethyl Fumarate. Antioxid Redox Signal. 2017;26:748-762 pubmed 出版商
  374. Haven B, Heilig E, Donham C, Settles M, Vasilevsky N, Owen K. Registered report: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. elife. 2016;5: pubmed 出版商
  375. Ganesan A, Siekierska A, Beerten J, Brams M, Van Durme J, De Baets G, et al. Structural hot spots for the solubility of globular proteins. Nat Commun. 2016;7:10816 pubmed 出版商
  376. Wild T, Larsen M, Narita T, Schou J, Nilsson J, Choudhary C. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity. Cell Rep. 2016;14:1829-40 pubmed 出版商
  377. Zhao L, Marciano A, Rivet C, Imperiale M. Caveolin- and clathrin-independent entry of BKPyV into primary human proximal tubule epithelial cells. Virology. 2016;492:66-72 pubmed 出版商
  378. Scheckel C, Drapeau E, Frias M, Park C, Fak J, Zucker Scharff I, et al. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. elife. 2016;5: pubmed 出版商
  379. Gawron D, Ndah E, Gevaert K, Van Damme P. Positional proteomics reveals differences in N-terminal proteoform stability. Mol Syst Biol. 2016;12:858 pubmed 出版商
  380. Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36:2247-60 pubmed 出版商
  381. Liu Z, Gan L, Chen Y, Luo D, Zhang Z, Cao W, et al. Mark4 promotes oxidative stress and inflammation via binding to PPARγ and activating NF-κB pathway in mice adipocytes. Sci Rep. 2016;6:21382 pubmed 出版商
  382. Echeverría P, Briand P, Picard D. A Remodeled Hsp90 Molecular Chaperone Ensemble with the Novel Cochaperone Aarsd1 Is Required for Muscle Differentiation. Mol Cell Biol. 2016;36:1310-21 pubmed 出版商
  383. Yang Y, Poe J, Yang L, Fedoriw A, Desai S, Magnuson T, et al. Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway in vivo. Nucleic Acids Res. 2016;44:4174-88 pubmed 出版商
  384. Hwang S, Lee H, Kim H, Lee H, Shin C, Yun S, et al. Ubiquitin-specific protease 4 controls metastatic potential through β-catenin stabilization in brain metastatic lung adenocarcinoma. Sci Rep. 2016;6:21596 pubmed 出版商
  385. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed 出版商
  386. Wike C, Graves H, Hawkins R, Gibson M, Ferdinand M, Zhang T, et al. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis. elife. 2016;5:e11402 pubmed 出版商
  387. Awad P, Sanon N, Chattopadhyaya B, Carriço J, Ouardouz M, Gagné J, et al. Reducing premature KCC2 expression rescues seizure susceptibility and spine morphology in atypical febrile seizures. Neurobiol Dis. 2016;91:10-20 pubmed 出版商
  388. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  389. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf M, Fresser F, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep. 2016;6:20930 pubmed 出版商
  390. Astorquiza P, Usorach J, Racagni G, Villasuso A. Diacylglycerol pyrophosphate binds and inhibits the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone. Plant Physiol Biochem. 2016;101:88-95 pubmed 出版商
  391. Gupta S, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F, et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res. 2016;110:215-26 pubmed 出版商
  392. Cekan P, Hasegawa K, Pan Y, Tubman E, Odde D, Chen J, et al. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol Biol Cell. 2016;27:1346-57 pubmed 出版商
  393. Flønes I, Sztromwasser P, Haugarvoll K, Dölle C, Lykouri M, Schwarzlmüller T, et al. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy. PLoS ONE. 2016;11:e0149055 pubmed 出版商
  394. Wadosky K, Berthiaume J, Tang W, Zungu M, Portman M, Gerdes A, et al. MuRF1 mono-ubiquitinates TRα to inhibit T3-induced cardiac hypertrophy in vivo. J Mol Endocrinol. 2016;56:273-90 pubmed 出版商
  395. Prior K, Wittig I, Leisegang M, Groenendyk J, Weissmann N, Michalak M, et al. The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein. J Biol Chem. 2016;291:7045-59 pubmed 出版商
  396. Li Y, Banerjee S, Wang Y, Goldstein S, Dong B, Gaughan C, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci U S A. 2016;113:2241-6 pubmed 出版商
  397. Weilinger N, Lohman A, Rakai B, Ma E, Bialecki J, Maslieieva V, et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci. 2016;19:432-42 pubmed 出版商
  398. Wang M, Dong Q, Wang H, He Y, Chen Y, Zhang H, et al. Oblongifolin M, an active compound isolated from a Chinese medical herb Garcinia oblongifolia, potently inhibits enterovirus 71 reproduction through downregulation of ERp57. Oncotarget. 2016;7:8797-808 pubmed 出版商
  399. Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, et al. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget. 2016;7:9859-75 pubmed 出版商
  400. Zhang Y, Zou C, Yang S, Fu J. P120 catenin attenuates the angiotensin II-induced apoptosis of human umbilical vein endothelial cells by suppressing the mitochondrial pathway. Int J Mol Med. 2016;37:623-30 pubmed 出版商
  401. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  402. Lima W, De Hoyos C, Liang X, Crooke S. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Res. 2016;44:3351-63 pubmed 出版商
  403. Johnson J, Miller D, Jiang R, Liu Y, Shi Z, Tarwater L, et al. Protease-activated Receptor-2 (PAR-2)-mediated Nf-κB Activation Suppresses Inflammation-associated Tumor Suppressor MicroRNAs in Oral Squamous Cell Carcinoma. J Biol Chem. 2016;291:6936-45 pubmed 出版商
  404. Schoen M, Reichel J, Demestre M, Putz S, Deshpande D, Proepper C, et al. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci. 2015;9:496 pubmed 出版商
  405. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. J Neuroimmune Pharmacol. 2016;11:279-93 pubmed 出版商
  406. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  407. Bondy Chorney E, Crawford Parks T, Ravel Chapuis A, Klinck R, Rocheleau L, Pelchat M, et al. Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier. PLoS Genet. 2016;12:e1005827 pubmed 出版商
  408. Sun H, Chen J, Qian W, Kang J, Wang J, Jiang L, et al. Integrated long non-coding RNA analyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis. J Cell Mol Med. 2016;20:1234-46 pubmed 出版商
  409. Evans M, Sauer S, Nath S, Robinson T, Morse M, Devi G. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity. Cell Death Dis. 2016;7:e2073 pubmed 出版商
  410. Huang H, Wang S, Gui J, Shen H. A study to identify and characterize the stem/progenitor cell in rabbit meniscus. Cytotechnology. 2016;68:2083-103 pubmed 出版商
  411. Panda A, Abdelmohsen K, Martindale J, Di Germanio C, Yang X, Grammatikakis I, et al. Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis. Nucleic Acids Res. 2016;44:2393-408 pubmed 出版商
  412. Pillay S, Meyer N, Puschnik A, Davulcu O, Diep J, Ishikawa Y, et al. An essential receptor for adeno-associated virus infection. Nature. 2016;530:108-12 pubmed 出版商
  413. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  414. Grego Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson K. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. elife. 2016;5:e12034 pubmed 出版商
  415. Iorga A, Li J, Sharma S, Umar S, Bopassa J, Nadadur R, et al. Rescue of Pressure Overload-Induced Heart Failure by Estrogen Therapy. J Am Heart Assoc. 2016;5: pubmed 出版商
  416. Martone J, Briganti F, Legnini I, Morlando M, Picillo E, Sthandier O, et al. The lack of the Celf2a splicing factor converts a Duchenne genotype into a Becker phenotype. Nat Commun. 2016;7:10488 pubmed 出版商
  417. Jiang C, Fang X, Jiang Y, Shen F, Hu Z, Li X, et al. TNF-α induces vascular endothelial cells apoptosis through overexpressing pregnancy induced noncoding RNA in Kawasaki disease model. Int J Biochem Cell Biol. 2016;72:118-124 pubmed 出版商
  418. Villarroel Espíndola F, Tapia C, González Stegmaier R, Concha I, Slebe J. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells. J Cell Physiol. 2016;231:2142-52 pubmed 出版商
  419. Chavoshi S, Egorova O, Lacdao I, Farhadi S, Sheng Y, Saridakis V. Identification of Kaposi Sarcoma Herpesvirus (KSHV) vIRF1 Protein as a Novel Interaction Partner of Human Deubiquitinase USP7. J Biol Chem. 2016;291:6281-91 pubmed 出版商
  420. Hares K, Redondo J, Kemp K, Rice C, Scolding N, Wilkins A. Axonal motor protein KIF5A and associated cargo deficits in multiple sclerosis lesional and normal-appearing white matter. Neuropathol Appl Neurobiol. 2017;43:227-241 pubmed 出版商
  421. Rebbapragada I, Birkus G, Perry J, Xing W, Kwon H, Pflanz S. Molecular Determinants of GS-9620-Dependent TLR7 Activation. PLoS ONE. 2016;11:e0146835 pubmed 出版商
  422. Korwitz A, Merkwirth C, Richter Dennerlein R, Tröder S, Sprenger H, Quirós P, et al. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol. 2016;212:157-66 pubmed 出版商
  423. Owen S, Sanders A, Mason M, Jiang W. Importance of osteoprotegrin and receptor activator of nuclear factor κB in breast cancer response to hepatocyte growth factor and the bone microenvironment in vitro. Int J Oncol. 2016;48:919-28 pubmed 出版商
  424. Roßner F, Gieseler C, Morkel M, Royer H, Rivera M, Bläker H, et al. Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer. Oncogenesis. 2016;5:e187 pubmed 出版商
  425. M L, P P, T K, M P, E S, J P, et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 2016;10:735-750 pubmed 出版商
  426. Dave J, Abbey C, Duran C, Seo H, Johnson G, Bayless K. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci. 2016;129:743-56 pubmed 出版商
  427. Kümper S, Mardakheh F, McCarthy A, Yeo M, Stamp G, Paul A, et al. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. elife. 2016;5:e12994 pubmed 出版商
  428. Berge T, Leikfoss I, Brorson I, Bos S, Page C, Gustavsen M, et al. The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells. Genes Immun. 2016;17:118-27 pubmed 出版商
  429. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed 出版商
  430. Puvirajesinghe T, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, et al. Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun. 2016;7:10318 pubmed 出版商
  431. Böhringer M, Pohlers S, Schulze S, Albrecht Eckardt D, Piegsa J, Weber M, et al. Candida albicans infection leads to barrier breakdown and a MAPK/NF-κB mediated stress response in the intestinal epithelial cell line C2BBe1. Cell Microbiol. 2016;18:889-904 pubmed 出版商
  432. Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, et al. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY). 2016;8:16-33 pubmed
  433. Wyckelsma V, McKenna M, Levinger I, Petersen A, Lamboley C, Murphy R. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Exp Gerontol. 2016;75:8-15 pubmed 出版商
  434. Zhou H, Wang T, Zheng T, Teng J, Chen J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun. 2016;7:10151 pubmed 出版商
  435. Chen Y, Statt S, Wu R, Chang H, Liao J, Wang C, et al. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep. 2016;6:18815 pubmed 出版商
  436. Leen E, Sorgeloos F, Correia S, Chaudhry Y, Cannac F, Pastore C, et al. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. PLoS Pathog. 2016;12:e1005379 pubmed 出版商
  437. da Silva P, Do Amaral V, Gabrielli V, Montt Guevara M, Mannella P, Baracat E, et al. Prolactin Promotes Breast Cancer Cell Migration through Actin Cytoskeleton Remodeling. Front Endocrinol (Lausanne). 2015;6:186 pubmed 出版商
  438. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed 出版商
  439. Singh A, Kan C, Dong B, Liu J. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter. J Biol Chem. 2016;291:5373-84 pubmed 出版商
  440. Baude A, Aaes T, Zhai B, Al Nakouzi N, Oo H, Daugaard M, et al. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Res. 2016;44:2214-26 pubmed 出版商
  441. Yang X, Liang L, Zong C, Lai F, Zhu P, Liu Y, et al. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget. 2016;7:1084-95 pubmed 出版商
  442. Zhang H, Cannell M, Kim S, Watson J, Norman R, Calaghan S, et al. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload. PLoS ONE. 2015;10:e0144309 pubmed 出版商
  443. Yuan D, Chi X, Jin Y, Li X, Ge M, Gao W, et al. Intestinal injury following liver transplantation was mediated by TLR4/NF-κB activation-induced cell apoptosis. Mol Med Rep. 2016;13:1525-32 pubmed 出版商
  444. Altuntas S, Rossin F, Marsella C, D Eletto M, Diaz Hidalgo L, Farrace M, et al. The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation. Oncotarget. 2015;6:44941-54 pubmed 出版商
  445. Gomez Villafuertes R, García Huerta P, Díaz Hernández J, Miras Portugal M. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Sci Rep. 2015;5:18417 pubmed 出版商
  446. Blachère N, Parveen S, Fak J, Frank M, Orange D. Inflammatory but not apoptotic death of granulocytes citrullinates fibrinogen. Arthritis Res Ther. 2015;17:369 pubmed 出版商
  447. Wu J, Chen Y, Kuo C, Wenshin Yu H, Chen Y, Chiou A, et al. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration. Sci Rep. 2015;5:18476 pubmed 出版商
  448. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  449. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  450. Pei S, Yang X, Wang H, Zhang H, Zhou B, Zhang D, et al. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2. BMC Cancer. 2015;15:965 pubmed 出版商
  451. Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. elife. 2015;4:e08887 pubmed 出版商
  452. Song G, Shi L, Guo Y, Yu L, Wang L, Zhang X, et al. A novel PAD4/SOX4/PU.1 signaling pathway is involved in the committed differentiation of acute promyelocytic leukemia cells into granulocytic cells. Oncotarget. 2016;7:3144-57 pubmed 出版商
  453. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed 出版商
  454. Chao C, Kan D, Lo T, Lu K, Chien C. Induction of neural differentiation in rat C6 glioma cells with taxol. Brain Behav. 2015;5:e00414 pubmed 出版商
  455. Yuniati L, van der Meer L, Tijchon E, van Ingen Schenau D, van Emst L, Levers M, et al. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress. Oncotarget. 2016;7:3128-43 pubmed 出版商
  456. Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, et al. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget. 2016;7:3520-32 pubmed 出版商
  457. Marazita M, Dugour A, Marquioni Ramella M, Figueroa J, Suburo A. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol. 2016;7:78-87 pubmed 出版商
  458. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  459. Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed 出版商
  460. Klacz J, Wierzbicki P, Wronska A, Rybarczyk A, Stanislawowski M, Slebioda T, et al. Decreased expression of RASSF1A tumor suppressor gene is associated with worse prognosis in clear cell renal cell carcinoma. Int J Oncol. 2016;48:55-66 pubmed 出版商
  461. Kim J, Lee K, Rhee K. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat Commun. 2015;6:10076 pubmed 出版商
  462. Kondo H, Kim H, Wang L, Okada M, Paul C, Millard R, et al. Blockade of senescence-associated microRNA-195 in aged skeletal muscle cells facilitates reprogramming to produce induced pluripotent stem cells. Aging Cell. 2016;15:56-66 pubmed 出版商
  463. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  464. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed 出版商
  465. Shi X, Zhan X, Wu J. A positive feedback loop between Gli1 and tyrosine kinase Hck amplifies shh signaling activities in medulloblastoma. Oncogenesis. 2015;4:e176 pubmed 出版商
  466. Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, et al. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene. 2016;35:4388-98 pubmed 出版商
  467. Yang B, Zhang M, Gao J, Li J, Fan L, Xiang G, et al. Small molecule RL71 targets SERCA2 at a novel site in the treatment of human colorectal cancer. Oncotarget. 2015;6:37613-25 pubmed 出版商
  468. Safavi S, Järnum S, Vannas C, Udhane S, Jonasson E, Tomić T, et al. HSP90 inhibition blocks ERBB3 and RET phosphorylation in myxoid/round cell liposarcoma and causes massive cell death in vitro and in vivo. Oncotarget. 2016;7:433-45 pubmed 出版商
  469. Gao X, Krokowski D, Guan B, Bederman I, Majumder M, Parisien M, et al. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response. elife. 2015;4:e10067 pubmed 出版商
  470. Lyu L, Whitcomb E, Jiang S, Chang M, Gu Y, Duncan M, et al. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J. 2016;30:1087-95 pubmed 出版商
  471. Nouws J, Goswami A, Bestwick M, McCann B, Surovtseva Y, Shadel G. Mitochondrial Ribosomal Protein L12 Is Required for POLRMT Stability and Exists as Two Forms Generated by Alternative Proteolysis during Import. J Biol Chem. 2016;291:989-97 pubmed 出版商
  472. Luberg K, Park R, Aleksejeva E, Timmusk T. Novel transcripts reveal a complex structure of the human TRKA gene and imply the presence of multiple protein isoforms. BMC Neurosci. 2015;16:78 pubmed 出版商
  473. Wang X, Liu Y, Chen H, Mei L, He C, Jiang L, et al. LEF-1 Regulates Tyrosinase Gene Transcription In Vitro. PLoS ONE. 2015;10:e0143142 pubmed 出版商
  474. Zhang L, Tran N, Su H, Wang R, Lu Y, Tang H, et al. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. elife. 2015;4: pubmed 出版商
  475. Chandrani P, Upadhyay P, Iyer P, Tanna M, Shetty M, Raghuram G, et al. Integrated genomics approach to identify biologically relevant alterations in fewer samples. BMC Genomics. 2015;16:936 pubmed 出版商
  476. Xi L, Schmidt J, Zaug A, Ascarrunz D, Cech T. A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol. 2015;16:231 pubmed 出版商
  477. Albrecht I, Wick C, Hallgren Ã, Tjärnlund A, Nagaraju K, Andrade F, et al. Development of autoantibodies against muscle-specific FHL1 in severe inflammatory myopathies. J Clin Invest. 2015;125:4612-24 pubmed 出版商
  478. Gatticchi L, Bellezza I, Del Sordo R, Peirce M, Sidoni A, Roberti R, et al. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury. PLoS ONE. 2015;10:e0141885 pubmed 出版商
  479. Majumder P, Chakrabarti O. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis. 2015;6:e1970 pubmed 出版商
  480. Hu J, Man W, Shen M, Zhang M, Lin J, Wang T, et al. Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through Mst1 inhibition. J Cell Mol Med. 2016;20:147-56 pubmed 出版商
  481. Tibullo D, Di Rosa M, Giallongo C, La Cava P, Parrinello N, Romano A, et al. Bortezomib modulates CHIT1 and YKL40 in monocyte-derived osteoclast and in myeloma cells. Front Pharmacol. 2015;6:226 pubmed 出版商
  482. Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, et al. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol. 2016;1344:147-81 pubmed 出版商
  483. Hilse K, Kalinovich A, Rupprecht A, Smorodchenko A, Zeitz U, Staniek K, et al. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue. Biochim Biophys Acta. 2016;1857:72-78 pubmed 出版商
  484. Leal L, Bueno A, Gomes D, Abduch R, de Castro M, Antonini S. Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis. Oncotarget. 2015;6:43016-32 pubmed 出版商
  485. d Avenia M, Citro R, De Marco M, Veronese A, Rosati A, Visone R, et al. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell Death Dis. 2015;6:e1948 pubmed 出版商
  486. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed 出版商
  487. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  488. Zhou X, Wei J, Chen F, Xiao X, Huang T, He Q, et al. Epigenetic downregulation of the ISG15-conjugating enzyme UbcH8 impairs lipolysis and correlates with poor prognosis in nasopharyngeal carcinoma. Oncotarget. 2015;6:41077-91 pubmed 出版商
  489. Quigley H, Pitha I, Welsbie D, Nguyen C, Steinhart M, Nguyen T, et al. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS ONE. 2015;10:e0141137 pubmed 出版商
  490. Becs G, Zarjou A, Agarwal A, Kovács K, Becs Ã, Nyitrai M, et al. Pharmacological induction of ferritin prevents osteoblastic transformation of smooth muscle cells. J Cell Mol Med. 2016;20:217-30 pubmed 出版商
  491. Nichols C, Shepherd D, Knuckles T, Thapa D, Stricker J, Stapleton P, et al. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol. 2015;309:H2017-30 pubmed 出版商
  492. Slezak Prochazka I, Kluiver J, de Jong D, Smigielska Czepiel K, Kortman G, Winkle M, et al. Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell lymphoma. Oncotarget. 2016;7:2391-400 pubmed 出版商
  493. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  494. Pasini L, Re A, Tebaldi T, Ricci G, Boi S, Adami V, et al. TrkA is amplified in malignant melanoma patients and induces an anti-proliferative response in cell lines. BMC Cancer. 2015;15:777 pubmed 出版商
  495. Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, et al. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS ONE. 2015;10:e0140645 pubmed 出版商
  496. Pinel A, Rigaudière J, Laillet B, Pouyet C, Malpuech Brugère C, Prip Buus C, et al. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861:12-20 pubmed 出版商
  497. Erkens R, Kramer C, Lückstädt W, Panknin C, Krause L, Weidenbach M, et al. Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radic Biol Med. 2015;89:906-17 pubmed 出版商
  498. Liu M, Zhou K, Huang Y, Cao Y. The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR-155-Rb1 pathway. J Exp Clin Cancer Res. 2015;34:121 pubmed 出版商
  499. Evans C, Rosser R, Waby J, Noirel J, Lai D, Wright P, et al. Reduced keratin expression in colorectal neoplasia and associated fields is reversible by diet and resection. BMJ Open Gastroenterol. 2015;2:e000022 pubmed 出版商
  500. Nilsson E, Laursen K, Whitchurch J, McWilliam A, Ødum N, Persson J, et al. MiR137 is an androgen regulated repressor of an extended network of transcriptional coregulators. Oncotarget. 2015;6:35710-25 pubmed 出版商
  501. Lv X, Wu W, Tang X, Wu Y, Zhu Y, Liu Y, et al. Regulation of SOX10 stability via ubiquitination-mediated degradation by Fbxw7α modulates melanoma cell migration. Oncotarget. 2015;6:36370-82 pubmed 出版商
  502. Chen D, Tao X, Wang Y, Tian F, Wei Y, Chen G, et al. Curcumin accelerates reendothelialization and ameliorates intimal hyperplasia in balloon-injured rat carotid artery via the upregulation of endothelial cell autophagy. Int J Mol Med. 2015;36:1563-71 pubmed 出版商
  503. Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff Yoessle S, Diem M, et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015;211:27-37 pubmed 出版商
  504. Aoki K, Teshima Y, Kondo H, Saito S, Fukui A, Fukunaga N, et al. Role of Indoxyl Sulfate as a Predisposing Factor for Atrial Fibrillation in Renal Dysfunction. J Am Heart Assoc. 2015;4:e002023 pubmed 出版商
  505. Fidaleo M, Svetoni F, Volpe E, Miñana B, Caporossi D, Paronetto M. Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9. Oncotarget. 2015;6:31740-57 pubmed 出版商
  506. Akhade V, Dighe S, Kataruka S, Rao M. Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells. Nucleic Acids Res. 2016;44:387-401 pubmed 出版商
  507. Renaud E, Barascu A, Rosselli F. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic Acids Res. 2016;44:648-56 pubmed 出版商
  508. Hurley P, Sundi D, Shinder B, Simons B, Hughes R, Miller R, et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res. 2016;22:448-58 pubmed 出版商
  509. Gerbaud P, Taskén K, Pidoux G. Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion. Front Pharmacol. 2015;6:202 pubmed 出版商
  510. Adesina A, Veo B, Courteau G, Mehta V, Wu X, Pang K, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol. 2015;46:1859-71 pubmed 出版商
  511. Xiong W, Zhang L, Yu L, Xie W, Man Y, Xiong Y, et al. Estradiol promotes cells invasion by activating β-catenin signaling pathway in endometriosis. Reproduction. 2015;150:507-16 pubmed 出版商
  512. Kosinsky R, Wegwitz F, Hellbach N, Dobbelstein M, Mansouri A, Vogel T, et al. Usp22 deficiency impairs intestinal epithelial lineage specification in vivo. Oncotarget. 2015;6:37906-18 pubmed 出版商
  513. Ambroise G, Portier A, Roders N, Arnoult D, Vazquez A. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells. Oncotarget. 2015;6:38181-94 pubmed 出版商
  514. Krisenko M, Higgins R, Ghosh S, Zhou Q, Trybula J, Wang W, et al. Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy. J Biol Chem. 2015;290:27803-15 pubmed 出版商
  515. Meschin P, Demion M, Cazorla O, Finan A, Thireau J, Richard S, et al. p11 modulates calcium handling through 5-HTâ‚„R pathway in rat ventricular cardiomyocytes. Cell Calcium. 2015;58:549-57 pubmed 出版商
  516. Görtz D, Braun G, Maruta Y, Djudjaj S, van Roeyen C, Martin I, et al. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery. Sci Rep. 2015;5:14685 pubmed 出版商
  517. Ha J, Gomathinayagam R, Yan M, Jayaraman M, Ramesh R, Dhanasekaran D. Determinant role for the gep oncogenes, Gα12/13, in ovarian cancer cell proliferation and xenograft tumor growth. Genes Cancer. 2015;6:356-364 pubmed
  518. Seo M, Jang W, Rhee K. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase. PLoS ONE. 2015;10:e0138905 pubmed 出版商
  519. Kimball S, Ravi S, Gordon B, Dennis M, Jefferson L. Amino Acid-Induced Activation of mTORC1 in Rat Liver Is Attenuated by Short-Term Consumption of a High-Fat Diet. J Nutr. 2015;145:2496-502 pubmed 出版商
  520. Barroso M, Tucker H, Drake L, Nichol K, Drake J. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules. J Biol Chem. 2015;290:27101-12 pubmed 出版商
  521. Granato M, Santarelli R, Filardi M, Gonnella R, Farina A, Torrisi M, et al. The activation of KSHV lytic cycle blocks autophagy in PEL cells. Autophagy. 2015;11:1978-1986 pubmed 出版商
  522. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  523. Watt S, Dayal J, Wright S, Riddle M, Pourreyron C, McMillan J, et al. Lysyl Hydroxylase 3 Localizes to Epidermal Basement Membrane and Is Reduced in Patients with Recessive Dystrophic Epidermolysis Bullosa. PLoS ONE. 2015;10:e0137639 pubmed 出版商
  524. Rastetter R, Blömacher M, Drebber U, Marko M, Behrens J, Solga R, et al. Coronin 2A (CRN5) expression is associated with colorectal adenoma-adenocarcinoma sequence and oncogenic signalling. BMC Cancer. 2015;15:638 pubmed 出版商
  525. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed 出版商
  526. Barros B, Maza P, Alcantara C, Suzuki E. Paracoccidioides brasiliensis induces recruitment of α3 and α5 integrins into epithelial cell membrane rafts, leading to cytokine secretion. Microbes Infect. 2016;18:68-77 pubmed 出版商
  527. Du Y, Ge M, Xue W, Yang Q, Wang S, Xu Y, et al. Chronic Lead Exposure and Mixed Factors of Gender×Age×Brain Regions Interactions on Dendrite Growth, Spine Maturity and NDR Kinase. PLoS ONE. 2015;10:e0138112 pubmed 出版商
  528. Wei Q, Chen Z, Wang L, Zhang T, Duan L, Behrens C, et al. LZTFL1 suppresses lung tumorigenesis by maintaining differentiation of lung epithelial cells. Oncogene. 2016;35:2655-63 pubmed 出版商
  529. Suzuki M, Watanabe M, Nakamaru Y, Takagi D, Takahashi H, Fukuda S, et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin. Cell Mol Life Sci. 2016;73:1085-101 pubmed 出版商
  530. Kim B, Stephen S, Hanby A, Horgan K, Perry S, Richardson J, et al. Chemotherapy induces Notch1-dependent MRP1 up-regulation, inhibition of which sensitizes breast cancer cells to chemotherapy. BMC Cancer. 2015;15:634 pubmed 出版商
  531. Zhao Y, Zhao L, Wang P, Miao Y, Liu Y, Wang Z, et al. Overexpression of miR-18a negatively regulates myocyte enhancer factor 2D to increase the permeability of the blood-tumor barrier via Krüppel-like factor 4-mediated downregulation of zonula occluden-1, claudin-5, and occludin. J Neurosci Res. 2015;93:1891-902 pubmed 出版商
  532. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  533. Renaud J, Dumont F, Khelfaoui M, Foisset S, Letourneur F, Bienvenu T, et al. Identification of intellectual disability genes showing circadian clock-dependent expression in the mouse hippocampus. Neuroscience. 2015;308:11-50 pubmed 出版商
  534. Pocheć E, Bocian K, ZÄ…bczyÅ„ska M, Korczak Kowalska G, LityÅ„ska A. Immunosuppressive drugs affect high-mannose/hybrid N-glycans on human allostimulated leukocytes. Anal Cell Pathol (Amst). 2015;2015:324980 pubmed 出版商
  535. Granato M, Gilardini Montani M, Filardi M, Faggioni A, Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget. 2015;6:29543-54 pubmed 出版商
  536. Kennedy A, Vallurupalli M, Chen L, Crompton B, Cowley G, Vazquez F, et al. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget. 2015;6:30178-93 pubmed 出版商
  537. Clark D, Tripathi K, Dorsman J, Palle K. FANCJ protein is important for the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation. Oncotarget. 2015;6:28816-32 pubmed 出版商
  538. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  539. Mori S, Kodaira M, Ito A, Okazaki M, Kawaguchi N, Hamada Y, et al. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1) in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT) in Mammary Epithelial Cells. PLoS ONE. 2015;10:e0137486 pubmed 出版商
  540. Paret C, Simon P, Vormbrock K, Bender C, Kölsch A, Breitkreuz A, et al. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer. Oncotarget. 2015;6:25356-67 pubmed 出版商
  541. Xia H, Najafov A, Geng J, Galan Acosta L, Han X, Guo Y, et al. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol. 2015;210:705-16 pubmed 出版商
  542. Chojnowski A, Ong P, Wong E, Lim J, Mutalif R, Navasankari R, et al. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. elife. 2015;4: pubmed 出版商
  543. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed 出版商
  544. Kurgonaite K, Gandhi H, Kurth T, Pautot S, Schwille P, Weidemann T, et al. Essential role of endocytosis for interleukin-4-receptor-mediated JAK/STAT signalling. J Cell Sci. 2015;128:3781-95 pubmed 出版商
  545. Zha L, Li F, Wu R, Artinian L, Rehder V, Yu L, et al. The Histone Demethylase UTX Promotes Brown Adipocyte Thermogenic Program Via Coordinated Regulation of H3K27 Demethylation and Acetylation. J Biol Chem. 2015;290:25151-63 pubmed 出版商
  546. Crispo M, Mulet A, Tesson L, Barrera N, Cuadro F, Dos Santos Neto P, et al. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes. PLoS ONE. 2015;10:e0136690 pubmed 出版商
  547. Goh V, Tan J, Tan B, Seow C, Ong W, Lim Y, et al. Postnatal Deletion of Fat Storage-inducing Transmembrane Protein 2 (FIT2/FITM2) Causes Lethal Enteropathy. J Biol Chem. 2015;290:25686-99 pubmed 出版商
  548. Korb E, Herre M, Zucker Scharff I, Darnell R, Allis C. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci. 2015;18:1464-73 pubmed 出版商
  549. Rennoll Bankert K, Rahman M, Gillespie J, Guillotte M, Kaur S, Lehman S, et al. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog. 2015;11:e1005115 pubmed 出版商
  550. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed 出版商
  551. Galicia Vázquez G, Chu J, Pelletier J. eIF4AII is dispensable for miRNA-mediated gene silencing. RNA. 2015;21:1826-33 pubmed 出版商
  552. Lorkova L, Scigelova M, Arrey T, Vit O, Pospisilova J, Doktorova E, et al. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells. PLoS ONE. 2015;10:e0135314 pubmed 出版商
  553. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  554. Volta M, Cataldi S, Beccano Kelly D, Munsie L, Tatarnikov I, Chou P, et al. Chronic and acute LRRK2 silencing has no long-term behavioral effects, whereas wild-type and mutant LRRK2 overexpression induce motor and cognitive deficits and altered regulation of dopamine release. Parkinsonism Relat Disord. 2015;21:1156-63 pubmed 出版商
  555. Wang Y, Li Z, Zhang P, Poon E, Kong C, Boheler K, et al. Nitric Oxide-cGMP-PKG Pathway Acts on Orai1 to Inhibit the Hypertrophy of Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells. 2015;33:2973-84 pubmed 出版商
  556. Kumar P, Thirkill T, Ji J, Monte L, Douglas G. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS ONE. 2015;10:e0135089 pubmed 出版商
  557. Pourteymour S, Lee S, Langleite T, Eckardt K, Hjorth M, Bindesbøll C, et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep. 2015;3: pubmed 出版商
  558. Meraviglia V, Azzimato V, Colussi C, Florio M, Binda A, Panariti A, et al. Acetylation mediates Cx43 reduction caused by electrical stimulation. J Mol Cell Cardiol. 2015;87:54-64 pubmed 出版商
  559. Chesarino N, McMichael T, Yount J. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3. PLoS Pathog. 2015;11:e1005095 pubmed 出版商
  560. Hwang J, Byun M, Kim A, Kim K, Cho H, Lee Y, et al. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation. PLoS ONE. 2015;10:e0135519 pubmed 出版商
  561. Wu G, Huang C, Yu Y. Pseudouridine in mRNA: Incorporation, Detection, and Recoding. Methods Enzymol. 2015;560:187-217 pubmed 出版商
  562. Wang H, Lööf S, Borg P, Nader G, Blau H, Simon A. Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun. 2015;6:7916 pubmed 出版商
  563. He J, Quintana M, Sullivan J, L Parry T, J Grevengoed T, Schisler J, et al. MuRF2 regulates PPARγ1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet. Cardiovasc Diabetol. 2015;14:97 pubmed 出版商
  564. Galbavy W, Kaczocha M, Puopolo M, Liu L, Rebecchi M. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age. PLoS ONE. 2015;10:e0134394 pubmed 出版商
  565. Gurt I, Artsi H, Cohen Kfir E, Hamdani G, Ben Shalom G, Feinstein B, et al. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells. PLoS ONE. 2015;10:e0134391 pubmed 出版商
  566. Hamazaki J, Hirayama S, Murata S. Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genet. 2015;11:e1005401 pubmed 出版商
  567. Treacy Abarca S, Mukherjee S. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat Commun. 2015;6:7887 pubmed 出版商
  568. Hieke N, Löffler A, Kaizuka T, Berleth N, Böhler P, Drießen S, et al. Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells. Autophagy. 2015;11:1471-83 pubmed 出版商
  569. Parchem R, Moore N, Fish J, Parchem J, Braga T, Shenoy A, et al. miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep. 2015;12:760-73 pubmed 出版商
  570. Rodríguez Seoane C, Ramos A, Korth C, Requena J. DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway. J Neurochem. 2015;135:598-605 pubmed 出版商
  571. Drießen S, Berleth N, Friesen O, Löffler A, Böhler P, Hieke N, et al. Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy. 2015;11:1458-70 pubmed 出版商
  572. de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, et al. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol. 2015;309:G475-90 pubmed 出版商
  573. Stiess M, Wegehingel S, Nguyen C, Nickel W, Bradke F, Cambridge S. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion. J Proteome Res. 2015;14:3229-38 pubmed 出版商
  574. Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, et al. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 2015;6:e1818 pubmed 出版商
  575. Kortüm F, Harms F, Hennighausen N, Rosenberger G. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor. PLoS ONE. 2015;10:e0132737 pubmed 出版商
  576. Silva R, Dautel M, Di Genova B, Amberg D, Castilho B, Sattlegger E. The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast. PLoS ONE. 2015;10:e0131070 pubmed 出版商
  577. Wu Y, Feng G, Song J, Zhang Y, Yu Y, Huang L, et al. TrAmplification of Human Dental Follicle Cells by piggyBac Transposon - Mediated Reversible Immortalization System. PLoS ONE. 2015;10:e0130937 pubmed 出版商
  578. Ripperger T, Manukjan G, Meyer J, Wolter S, Schambach A, Bohne J, et al. The heteromeric transcription factor GABP activates the ITGAM/CD11b promoter and induces myeloid differentiation. Biochim Biophys Acta. 2015;1849:1145-54 pubmed 出版商
  579. Shi J, Liu Y, Xu X, Zhang W, Yu T, Jia J, et al. Deubiquitinase USP47/UBP64E Regulates β-Catenin Ubiquitination and Degradation and Plays a Positive Role in Wnt Signaling. Mol Cell Biol. 2015;35:3301-11 pubmed 出版商
  580. Hobbs R, DePianto D, Jacob J, Han M, Chung B, Batazzi A, et al. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet. 2015;47:933-8 pubmed 出版商
  581. Fei Q, Yang X, Jiang H, Wang Q, Yu Y, Yu Y, et al. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res. 2015;25:1325-35 pubmed 出版商
  582. Xiong H, Zhou S, Sun A, He Y, Li J, Yuan X. MicroRNA‑197 reverses the drug resistance of fluorouracil‑induced SGC7901 cells by targeting mitogen‑activated protein kinase 1. Mol Med Rep. 2015;12:5019-25 pubmed 出版商
  583. Siriwardana N, Meyer R, Panchenko M. The novel function of JADE1S in cytokinesis of epithelial cells. Cell Cycle. 2015;14:2821-34 pubmed 出版商
  584. Hoover H, Li J, Marchese J, Rothwell C, Borawoski J, Jeffery D, et al. Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers. J Proteome Res. 2015;14:3670-9 pubmed 出版商
  585. Sharma V, Jordan J, Ciribilli Y, Resnick M, Bisio A, Inga A. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay. PLoS ONE. 2015;10:e0130170 pubmed 出版商
  586. Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino K, Kamisoyama H, et al. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem. 2015;79:1867-75 pubmed 出版商
  587. Thatcher S, Zhang X, Woody S, Wang Y, Alsiraj Y, Charnigo R, et al. Exogenous 17-β estradiol administration blunts progression of established angiotensin II-induced abdominal aortic aneurysms in female ovariectomized mice. Biol Sex Differ. 2015;6:12 pubmed 出版商
  588. Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed 出版商
  589. Cardona M, López J, Serafín A, Rongvaux A, Inserte J, García Dorado D, et al. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart. PLoS ONE. 2015;10:e0131411 pubmed 出版商
  590. Zhang J, Gao Q, Zhou Y, Dier U, Hempel N, Hochwald S. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene. 2016;35:1926-42 pubmed 出版商
  591. Sun L, Ban T, Liu C, Chen Q, Wang X, Yan M, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation. J Neurochem. 2015;134:1139-51 pubmed 出版商
  592. Fowler E, Benoist D, Drinkhill M, Stones R, Helmes M, Wüst R, et al. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension. J Mol Cell Cardiol. 2015;86:1-8 pubmed 出版商
  593. Ding B, Gomi K, Rafii S, Crystal R, Walters M. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci. 2015;128:2983-8 pubmed 出版商
  594. Yuzefovych Y, Blasczyk R, Huyton T. Oncogenic acidic nuclear phosphoproteins ANP32C/D are novel clients of heat shock protein 90. Biochim Biophys Acta. 2015;1853:2338-48 pubmed 出版商
  595. Kubli D, Cortez M, Moyzis A, Najor R, Lee Y, Gustafsson Ã. PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes. PLoS ONE. 2015;10:e0130707 pubmed 出版商
  596. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed 出版商
  597. Liu Q, Zhu Y, Yong W, Sze N, Tan N, Ding J. Cutting Edge: Synchronization of IRF1, JunB, and C/EBPβ Activities during TLR3-TLR7 Cross-Talk Orchestrates Timely Cytokine Synergy in the Proinflammatory Response. J Immunol. 2015;195:801-5 pubmed 出版商
  598. Cases O, Joseph A, Obry A, Santin M, Ben Yacoub S, Pâques M, et al. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia. PLoS ONE. 2015;10:e0129518 pubmed 出版商
  599. Bryant S, Kong C, Watson J, Cannell M, James A, Orchard C. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol. 2015;86:23-31 pubmed 出版商
  600. Huna A, Salmina K, Erenpreisa J, Vazquez Martin A, Krigerts J, Inashkina I, et al. Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide. Cell Cycle. 2015;14:2969-84 pubmed 出版商
  601. Ibeawuchi S, Agbor L, Quelle F, Sigmund C. Hypertension-causing Mutations in Cullin3 Protein Impair RhoA Protein Ubiquitination and Augment the Association with Substrate Adaptors. J Biol Chem. 2015;290:19208-17 pubmed 出版商
  602. Verma S, Mohapatra G, Ahmad S, Rana S, Jain S, Khalsa J, et al. Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol. 2015;35:2932-46 pubmed 出版商
  603. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  604. Song L, Ma L, Cong F, Shen X, Jing P, Ying X, et al. Radioprotective effects of genistein on HL-7702 cells via the inhibition of apoptosis and DNA damage. Cancer Lett. 2015;366:100-11 pubmed 出版商
  605. Masuda Y, Takahashi H, Sato S, Tomomori Sato C, Saraf A, Washburn M, et al. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. Nat Commun. 2015;6:7299 pubmed 出版商
  606. Zeidan B, Jackson T, Larkin S, Cutress R, Coulton G, Ashton Key M, et al. Annexin A3 is a mammary marker and a potential neoplastic breast cell therapeutic target. Oncotarget. 2015;6:21421-7 pubmed
  607. Zhang T, Zhou Q, Ogmundsdottir M, Möller K, Siddaway R, Larue L, et al. Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J Cell Sci. 2015;128:2938-50 pubmed 出版商
  608. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed 出版商
  609. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  610. Condelli V, Maddalena F, Sisinni L, Lettini G, Matassa D, Piscazzi A, et al. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma. Oncotarget. 2015;6:22298-309 pubmed
  611. Hannan F, Howles S, Rogers A, Cranston T, Gorvin C, Babinsky V, et al. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects. Hum Mol Genet. 2015;24:5079-92 pubmed 出版商
  612. Nasipak B, Padilla Benavides T, Green K, Leszyk J, Mao W, Konda S, et al. Opposing calcium-dependent signalling pathways control skeletal muscle differentiation by regulating a chromatin remodelling enzyme. Nat Commun. 2015;6:7441 pubmed 出版商
  613. Yuan Y, Wu Q, Cheng G, Liu X, Liu S, Luo J, et al. Recombinant human lactoferrin enhances the efficacy of triple therapy in mice infected with Helicobacter pylori. Int J Mol Med. 2015;36:363-8 pubmed 出版商
  614. Ma S, Yin N, Qi X, Pfister S, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320-33 pubmed
  615. Li X, Yang X, Biskup E, Zhou J, Li H, Wu Y, et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget. 2015;6:22880-9 pubmed
  616. Fedorenko I, Abel E, Koomen J, Fang B, Wood E, Chen Y, et al. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene. 2016;35:1225-35 pubmed 出版商
  617. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  618. Robertson C, Srivastava J, Siddiq A, Gredler R, Emdad L, Rajasekaran D, et al. Astrocyte Elevated Gene-1 (AEG-1) Regulates Lipid Homeostasis. J Biol Chem. 2015;290:18227-36 pubmed 出版商
  619. M baye M, Hua G, Khan H, Yang L. RNAi-mediated knockdown of INHBB increases apoptosis and inhibits steroidogenesis in mouse granulosa cells. J Reprod Dev. 2015;61:391-7 pubmed 出版商
  620. Kato M, Goto Y, Matsushita R, Kurozumi A, Fukumoto I, Nishikawa R, et al. MicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer. Int J Oncol. 2015;47:710-8 pubmed 出版商
  621. Ronchi G, Haastert Talini K, Fornasari B, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci. 2016;43:351-64 pubmed 出版商
  622. Li N, Mruk D, Wong C, Lee W, Han D, Cheng C. Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis. FASEB J. 2015;29:3788-805 pubmed 出版商
  623. Botto S, Totonchy J, Gustin J, Moses A. Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms. MBio. 2015;6:e00668 pubmed 出版商
  624. Song M, Gong G, Burelle Y, Gustafsson Ã, Kitsis R, Matkovich S, et al. Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circ Res. 2015;117:346-51 pubmed 出版商
  625. Padilla Benavides T, Nasipak B, Imbalzano A. Brg1 Controls the Expression of Pax7 to Promote Viability and Proliferation of Mouse Primary Myoblasts. J Cell Physiol. 2015;230:2990-7 pubmed 出版商
  626. Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, et al. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech. 2015;8:755-66 pubmed 出版商
  627. Liang H, Fu Z, Jiang X, Wang N, Wang F, Wang X, et al. miR-16 promotes the apoptosis of human cancer cells by targeting FEAT. BMC Cancer. 2015;15:448 pubmed 出版商
  628. Sachweh M, Stafford W, Drummond C, McCarthy A, Higgins M, Campbell J, et al. Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells. Oncotarget. 2015;6:16488-506 pubmed
  629. Kohl S, Zobor D, Chiang W, Weisschuh N, Staller J, González Menéndez I, et al. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat Genet. 2015;47:757-65 pubmed 出版商
  630. Hofmann B, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, et al. COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol Cancer. 2015;14:109 pubmed 出版商
  631. Winter L, Kuznetsov A, Grimm M, Zeöld A, Fischer I, Wiche G. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle. Hum Mol Genet. 2015;24:4530-44 pubmed 出版商
  632. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  633. Zatti S, Martewicz S, Serena E, Uno N, Giobbe G, Kazuki Y, et al. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient-derived cardiomyocytes. Mol Ther Methods Clin Dev. 2014;1:1 pubmed 出版商
  634. Ferry A, Parlakian A, Joanne P, Fraysse B, Mgrditchian T, Roy P, et al. Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. Am J Pathol. 2015;185:2012-24 pubmed 出版商
  635. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  636. Coudé M, Braun T, Berrou J, Dupont M, Bertrand S, Massé A, et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015;6:17698-712 pubmed
  637. Lucido C, Vermeer P, Wieking B, Vermeer D, Lee J. CD137 enhancement of HPV positive head and neck squamous cell carcinoma tumor clearance. Vaccines (Basel). 2014;2:841-53 pubmed 出版商
  638. Dell Ovo V, Rosenzweig J, Burd I, Merabova N, Darbinian N, Goetzl L. An animal model for chorioamnionitis at term. Am J Obstet Gynecol. 2015;213:387.e1-10 pubmed 出版商
  639. Hodges A, Gallegos I, Laughery M, Meas R, Tran L, Wyrick J. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae. Genetics. 2015;200:795-806 pubmed 出版商
  640. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed 出版商
  641. Kaushik S, Cuervo A. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015;17:759-70 pubmed 出版商
  642. Wang X, Buechler N, Yoza B, McCall C, Vachharajani V. Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-Induced modulation of adhesion molecules in ob/ob mice. Obesity (Silver Spring). 2015;23:1209-17 pubmed 出版商
  643. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  644. Landais I, Pelton C, Streblow D, DeFilippis V, McWeeney S, Nelson J. Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway. PLoS Pathog. 2015;11:e1004881 pubmed 出版商
  645. Stangel D, Erkan M, Buchholz M, Gress T, Michalski C, Raulefs S, et al. Kif20a inhibition reduces migration and invasion of pancreatic cancer cells. J Surg Res. 2015;197:91-100 pubmed 出版商
  646. Kumar S, Ingle H, Mishra S, Mahla R, Kumar A, Kawai T, et al. IPS-1 differentially induces TRAIL, BCL2, BIRC3 and PRKCE in type I interferons-dependent and -independent anticancer activity. Cell Death Dis. 2015;6:e1758 pubmed 出版商
  647. Mauro Lizcano M, Esteban Martínez L, Seco E, Serrano Puebla A, García Ledo L, Figueiredo Pereira C, et al. New method to assess mitophagy flux by flow cytometry. Autophagy. 2015;11:833-43 pubmed 出版商
  648. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  649. Yamagishi S, Yamada K, Sawada M, Nakano S, Mori N, Sawamoto K, et al. Netrin-5 is highly expressed in neurogenic regions of the adult brain. Front Cell Neurosci. 2015;9:146 pubmed 出版商
  650. Zhao Y, Xiao Z, Chen W, Yang J, Li T, Fan B. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression. Mol Med Rep. 2015;12:2313-22 pubmed 出版商
  651. Haley J, Thackeray J, Kolajova M, Thorn S, DaSilva J. Insulin therapy normalizes reduced myocardial β-adrenoceptors at both the onset and after sustained hyperglycemia in diabetic rats. Life Sci. 2015;132:101-7 pubmed 出版商
  652. Wright J, Atwan Z, Morris S, Leppard K. The Human Adenovirus Type 5 L4 Promoter Is Negatively Regulated by TFII-I and L4-33K. J Virol. 2015;89:7053-63 pubmed 出版商
  653. Iguchi Y, Ishihara S, Uchida Y, Tajima K, Mizutani T, Kawabata K, et al. Filamin B Enhances the Invasiveness of Cancer Cells into 3D Collagen Matrices. Cell Struct Funct. 2015;40:61-7 pubmed 出版商
  654. Quan C, Xie B, Wang H, Chen S. PKB-Mediated Thr649 Phosphorylation of AS160/TBC1D4 Regulates the R-Wave Amplitude in the Heart. PLoS ONE. 2015;10:e0124491 pubmed 出版商
  655. Martínez A, Sesé M, Losa J, Robichaud N, Sonenberg N, Aasen T, et al. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches. PLoS ONE. 2015;10:e0123352 pubmed 出版商
  656. Hsu P, Liu X, Zhang J, Wang H, Ye J, Shi Y. Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy. Autophagy. 2015;11:643-52 pubmed 出版商
  657. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  658. Mayer A, Di Iulio J, Maleri S, Eser U, Vierstra J, Reynolds A, et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell. 2015;161:541-554 pubmed 出版商
  659. Ljubicic V, Jasmin B. Metformin increases peroxisome proliferator-activated receptor γ Co-activator-1α and utrophin a expression in dystrophic skeletal muscle. Muscle Nerve. 2015;52:139-42 pubmed 出版商
  660. Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12:2089-97 pubmed 出版商
  661. Pozo K, Hillmann A, Augustyn A, Plattner F, Hai T, Singh T, et al. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis. Oncotarget. 2015;6:12080-93 pubmed
  662. Rocco M, Balzamino B, Petrocchi Passeri P, Micera A, Aloe L. Effect of purified murine NGF on isolated photoreceptors of a rodent developing retinitis pigmentosa. PLoS ONE. 2015;10:e0124810 pubmed 出版商
  663. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  664. Ghatak S, Chan Y, Khanna S, Banerjee J, Weist J, Roy S, et al. Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes. Mol Ther. 2015;23:1201-1210 pubmed 出版商
  665. Telese F, Ma Q, Perez P, Notani D, Oh S, Li W, et al. LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation. Neuron. 2015;86:696-710 pubmed 出版商
  666. Ji T, Guo Y, Kim K, McQueen P, Ghaffar S, Christ A, et al. Neuropilin-2 expression is inhibited by secreted Wnt antagonists and its down-regulation is associated with reduced tumor growth and metastasis in osteosarcoma. Mol Cancer. 2015;14:86 pubmed 出版商
  667. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed 出版商
  668. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  669. Roca Rodríguez M, El Bekay R, Garrido Sanchez L, Gómez Serrano M, Coin Aragüez L, Oliva Olivera W, et al. Parathyroid Hormone-Related Protein, Human Adipose-Derived Stem Cells Adipogenic Capacity and Healthy Obesity. J Clin Endocrinol Metab. 2015;100:E826-35 pubmed 出版商
  670. Fu H, Martin M, Regairaz M, Huang L, You Y, Lin C, et al. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage. Nat Commun. 2015;6:6746 pubmed 出版商
  671. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  672. Sheng X, Arnoldussen Y, Storm M, Tesikova M, Nenseth H, Zhao S, et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med. 2015;7:788-801 pubmed 出版商
  673. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed 出版商
  674. Zhang D, Zhu L, Li C, Mu J, Fu Y, Zhu Q, et al. Sialyltransferase7A, a Klf4-responsive gene, promotes cardiomyocyte apoptosis during myocardial infarction. Basic Res Cardiol. 2015;110:28 pubmed 出版商
  675. Milan G, Romanello V, Pescatore F, Armani A, Paik J, Frasson L, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670 pubmed 出版商
  676. Simões A, Pereira D, Gomes S, Brito H, Carvalho T, French A, et al. Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis. 2015;6:e1718 pubmed 出版商
  677. Shen W, Liang X, Sun H, Crooke S. 2'-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res. 2015;43:4569-78 pubmed 出版商
  678. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  679. Amrutkar M, Cansby E, Chursa U, Nuñez Durán E, Chanclón B, StÃ¥hlman M, et al. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model. Diabetes. 2015;64:2791-804 pubmed 出版商
  680. Monteiro da Rocha A, Ding J, Slawny N, Wolf A, Smith G. Loss of glycogen synthase kinase 3 isoforms during murine oocyte growth induces offspring cardiac dysfunction. Biol Reprod. 2015;92:127 pubmed 出版商
  681. Tsukiyama T, Fukui A, Terai S, Fujioka Y, Shinada K, Takahashi H, et al. Molecular Role of RNF43 in Canonical and Noncanonical Wnt Signaling. Mol Cell Biol. 2015;35:2007-23 pubmed 出版商
  682. Maquigussa E, Arnoni C, Pereira L, Boim M. Calcitriol ameliorates renal damage in a pre-established proteinuria model. Mol Med Rep. 2015;12:1009-15 pubmed 出版商
  683. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  684. Ikeda M, Ide T, Fujino T, Arai S, Saku K, Kakino T, et al. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS ONE. 2015;10:e0119687 pubmed 出版商
  685. Lee I, Hüttemann M, Kruger A, Bollig Fischer A, Malek M. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol. 2015;6:43 pubmed 出版商
  686. Aboelenain M, Kawahara M, Balboula A, Montasser A, Zaabel S, Okuda K, et al. Status of autophagy, lysosome activity and apoptosis during corpus luteum regression in cattle. J Reprod Dev. 2015;61:229-36 pubmed 出版商
  687. Bunn K, Daniel P, Rösken H, O Neill A, Cameron Christie S, Morgan T, et al. Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome. Am J Hum Genet. 2015;96:623-30 pubmed 出版商
  688. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  689. Kaneko Y, Sullivan R, Dailey T, Vale F, Tajiri N, Borlongan C. Kainic Acid-Induced Golgi Complex Fragmentation/Dispersal Shifts the Proteolysis of Reelin in Primary Rat Neuronal Cells: An In Vitro Model of Early Stage Epilepsy. Mol Neurobiol. 2016;53:1874-1883 pubmed 出版商
  690. Tapia O, Fong L, Huber M, Young S, Gerace L. Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases. PLoS ONE. 2015;10:e0116196 pubmed 出版商
  691. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  692. Zeng H, Vaka V, He X, Booz G, Chen J. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J Cell Mol Med. 2015;19:1847-56 pubmed 出版商
  693. Gomez Cavazos J, Hetzer M. The nucleoporin gp210/Nup210 controls muscle differentiation by regulating nuclear envelope/ER homeostasis. J Cell Biol. 2015;208:671-81 pubmed 出版商
  694. Richardson E, Shukla S, Sweet D, Wearsch P, Tsichlis P, Boom W, et al. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83:2242-54 pubmed 出版商
  695. Filipcik P, Cente M, Zilka N, Smolek T, Hanes J, Kučerák J, et al. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes. Biochim Biophys Acta. 2015;1852:1219-29 pubmed 出版商
  696. Hutchins A, Takahashi Y, Miranda Saavedra D. Genomic analysis of LPS-stimulated myeloid cells identifies a common pro-inflammatory response but divergent IL-10 anti-inflammatory responses. Sci Rep. 2015;5:9100 pubmed 出版商
  697. Liu Y, Li Y, Zhang D, Liu J, Gou K, Cui S. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum. Mol Endocrinol. 2015;29:703-15 pubmed 出版商
  698. Griffin J, Sondalle S, del Viso F, Baserga S, Khokha M. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. PLoS Genet. 2015;11:e1005018 pubmed 出版商
  699. Eriksen A, Torgersen M, Holm K, Abrahamsen G, Spurkland A, Moskaug J, et al. Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy. Autophagy. 2015;11:460-71 pubmed 出版商
  700. Chen S, Jiao J, Jiang D, Wan Z, Li L, Li K, et al. T-box transcription factor Brachyury in lung cancer cells inhibits macrophage infiltration by suppressing CCL2 and CCL4 chemokines. Tumour Biol. 2015;36:5881-90 pubmed 出版商
  701. Å talekar M, Yin X, Rebolj K, Darovic S, Troakes C, Mayr M, et al. Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport. Neuroscience. 2015;293:157-70 pubmed 出版商
  702. Li B, Li H, Wang Z, Wang Y, Gao A, Cui Y, et al. Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Exp Neurol. 2015;272:145-51 pubmed 出版商
  703. Grego Bessa J, Hildebrand J, Anderson K. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains. Development. 2015;142:1305-14 pubmed 出版商
  704. Guo H, Liu B, Hou L, The E, Li G, Wang D, et al. The role of mAKAPβ in the process of cardiomyocyte hypertrophy induced by angiotensin II. Int J Mol Med. 2015;35:1159-68 pubmed 出版商
  705. Takemoto K, Ishihara S, Mizutani T, Kawabata K, Haga H. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway. PLoS ONE. 2015;10:e0117937 pubmed 出版商
  706. Jarosinski K, Donovan K, Du G. Expression of fluorescent proteins within the repeat long region of the Marek's disease virus genome allows direct identification of infected cells while retaining full pathogenicity. Virus Res. 2015;201:50-60 pubmed 出版商
  707. Schisler J, Grevengoed T, Pascual F, Cooper D, Ellis J, Paul D, et al. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J Am Heart Assoc. 2015;4: pubmed 出版商
  708. Maganti A, Maier B, Tersey S, Sampley M, Mosley A, Özcan S, et al. Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem. 2015;290:9812-22 pubmed 出版商
  709. Ekumi K, Paculova H, Lenasi T, Pospichalova V, Bösken C, Rybarikova J, et al. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex. Nucleic Acids Res. 2015;43:2575-89 pubmed 出版商
  710. Bulk E, Ay A, Hammadi M, Ouadid Ahidouch H, Schelhaas S, Hascher A, et al. Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer. 2015;137:1306-17 pubmed 出版商
  711. López Ibarra Z, Modrego J, Valero Muñoz M, Rodríguez Sierra P, Zamorano León J, González Cantalapiedra A, et al. Metabolic differences between white and brown fat from fasting rabbits at physiological temperature. J Mol Endocrinol. 2015;54:105-13 pubmed 出版商
  712. Okamoto M, Iguchi T, Hattori T, Matsuzaki S, Koyama Y, Taniguchi M, et al. DBZ regulates cortical cell positioning and neurite development by sustaining the anterograde transport of Lis1 and DISC1 through control of Ndel1 dual-phosphorylation. J Neurosci. 2015;35:2942-58 pubmed 出版商
  713. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  714. Chittoor Vinod V, Lee S, Judge S, Notterpek L. Inducible HSP70 is critical in preventing the aggregation and enhancing the processing of PMP22. ASN Neuro. 2015;7: pubmed 出版商
  715. Yu H, Chen Y, Huang C, Liu C, Chiou A, Wang Y, et al. β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration. J Cell Mol Med. 2015;19:934-47 pubmed 出版商
  716. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  717. Kramer D, Schön M, Bayerlová M, Bleckmann A, Schön M, Zörnig M, et al. A pro-apoptotic function of iASPP by stabilizing p300 and CBP through inhibition of BRMS1 E3 ubiquitin ligase activity. Cell Death Dis. 2015;6:e1634 pubmed 出版商
  718. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  719. Okita N, Honda Y, Kishimoto N, Liao W, Azumi E, Hashimoto Y, et al. Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells. Tissue Eng Part A. 2015;21:1695-704 pubmed 出版商
  720. Fukumoto I, Hanazawa T, Kinoshita T, Kikkawa N, Koshizuka K, Goto Y, et al. MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer. 2015;112:891-900 pubmed 出版商
  721. Diner B, Li T, Greco T, Crow M, Fuesler J, Wang J, et al. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol. 2015;11:787 pubmed 出版商
  722. He Z, Li B, Rankin G, Rojanasakul Y, Chen Y. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells. Oncol Lett. 2015;9:1444-1450 pubmed
  723. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  724. Schreiber K, Ortiz D, Academia E, Anies A, Liao C, Kennedy B. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell. 2015;14:265-73 pubmed 出版商
  725. Radhakrishnan V, Kojs P, Ramalingam R, Midura Kiela M, Angeli P, Kiela P, et al. Experimental colitis is associated with transcriptional inhibition of Na+/Ca2+ exchanger isoform 1 (NCX1) expression by interferon γ in the renal distal convoluted tubules. J Biol Chem. 2015;290:8964-74 pubmed 出版商
  726. West A, Khoury Hanold W, Staron M, Tal M, Pineda C, Lang S, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553-7 pubmed 出版商
  727. Laemmle A, Hahn D, Hu L, Rüfenacht V, Gautschi M, Leibundgut K, et al. Fatal hyperammonemia and carbamoyl phosphate synthetase 1 (CPS1) deficiency following high-dose chemotherapy and autologous hematopoietic stem cell transplantation. Mol Genet Metab. 2015;114:438-44 pubmed 出版商
  728. Bai M, Yuan M, Liao H, Chen J, Xie B, Yan D, et al. OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma. Oncol Rep. 2015;33:1745-52 pubmed 出版商
  729. Choi S, Lee H, Choi J, Kim J, Park C, Joo H, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS ONE. 2015;10:e0117410 pubmed 出版商
  730. Liu S, Lee W, Lai D, Wu S, Liu C, Tien H, et al. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol Oncol. 2015;9:834-49 pubmed 出版商
  731. Du Z, Abedalthagafi M, Aizer A, McHenry A, Sun H, Bray M, et al. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget. 2015;6:4704-16 pubmed
  732. Tao Y, Xu L, Lu J, Hu S, Fang F, Cao L, et al. Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia. J Exp Clin Cancer Res. 2015;34:4 pubmed 出版商
  733. Mandell D, Lajoie M, Mee M, Takeuchi R, Kuznetsov G, Norville J, et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature. 2015;518:55-60 pubmed 出版商
  734. Song M, Mihara K, Chen Y, Scorrano L, Dorn G. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 2015;21:273-85 pubmed 出版商
  735. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  736. Peralta D, Bronowska A, Morgan B, Dóka Ã, Van Laer K, Nagy P, et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol. 2015;11:156-63 pubmed 出版商
  737. Cheng Y, Song L, Huang Y, Xiong Y, Zhang X, Sun H, et al. Effect of enterohaemorrhagic Escherichia coli O157:H7-specific enterohaemolysin on interleukin-1β production differs between human and mouse macrophages due to the different sensitivity of NLRP3 activation. Immunology. 2015;145:258-67 pubmed 出版商
  738. Sanderson T, Raghunayakula S, Kumar R. Release of mitochondrial Opa1 following oxidative stress in HT22 cells. Mol Cell Neurosci. 2015;64:116-22 pubmed 出版商
  739. Huber R, Lucas J, Gomez Sarosi L, Coleman I, Zhao S, Coleman R, et al. DNA damage induces GDNF secretion in the tumor microenvironment with paracrine effects promoting prostate cancer treatment resistance. Oncotarget. 2015;6:2134-47 pubmed
  740. Li P, Ma X, Adams I, Yuan P. A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death Dis. 2015;6:e1588 pubmed 出版商
  741. Liu L, Zou P, Zheng L, Linarelli L, Amarell S, Passaro A, et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 2015;6:e1586 pubmed 出版商
  742. Ikhapoh I, Pelham C, Agrawal D. Synergistic effect of angiotensin II on vascular endothelial growth factor-A-mediated differentiation of bone marrow-derived mesenchymal stem cells into endothelial cells. Stem Cell Res Ther. 2015;6:4 pubmed 出版商
  743. Cao H, Zheng L, Wang N, Wang L, Li Y, Li D, et al. Src blockage by siRNA inhibits VEGF-induced vascular hyperpemeability and osteoclast activity - an in vitro mechanism study for preventing destructive repair of osteonecrosis. Bone. 2015;74:58-68 pubmed 出版商
  744. Tao W, Liang X, Liu Y, Wang C, Pang D. Decrease of let-7f in low-dose metronomic Paclitaxel chemotherapy contributed to upregulation of thrombospondin-1 in breast cancer. Int J Biol Sci. 2015;11:48-58 pubmed 出版商
  745. Li W, Ouyang Z, Zhang Q, Wang L, Shen Y, Gu Y, et al. SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca(2+)-ATPase 2. Cell Death Dis. 2014;5:e1581 pubmed 出版商
  746. Hennig D, Müller S, Wichmann C, Drube S, Pietschmann K, Pelzl L, et al. Antagonism between granulocytic maturation and deacetylase inhibitor-induced apoptosis in acute promyelocytic leukaemia cells. Br J Cancer. 2015;112:329-37 pubmed 出版商
  747. Bisson J, Mills B, Paul Helt J, Zwaka T, Cohen E. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol. 2015;398:80-96 pubmed 出版商
  748. Zhang P, Wang L, Rodriguez Aguayo C, Yuan Y, Debeb B, Chen D, et al. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014;5:5671 pubmed 出版商
  749. Renner I, Funk N, Geissler R, Friedrich S, Penzel A, Behrens S. Antiviral interferon-beta signaling induced by designed transcription activator-like effectors (TALE). PLoS ONE. 2014;9:e114288 pubmed 出版商
  750. Cai H, Liu W, Xue Y, Shang X, Liu J, Li Z, et al. Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression. J Neuropathol Exp Neurol. 2015;74:25-37 pubmed 出版商
  751. Freund A, Zhong F, Venteicher A, Meng Z, Veenstra T, Frydman J, et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell. 2014;159:1389-403 pubmed 出版商
  752. Thapa D, Nichols C, Lewis S, Shepherd D, Jagannathan R, Croston T, et al. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. J Mol Cell Cardiol. 2015;79:212-23 pubmed 出版商
  753. Ndisang J, Tiwari S. Mechanisms by which heme oxygenase rescue renal dysfunction in obesity. Redox Biol. 2014;2:1029-37 pubmed 出版商
  754. Tang E, Mok K, Lee W, Cheng C. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology. 2015;156:680-93 pubmed 出版商
  755. Barbarin A, Séité P, Godet J, Bensalma S, Muller J, Chadéneau C. Atypical nuclear localization of VIP receptors in glioma cell lines and patients. Biochem Biophys Res Commun. 2014;454:524-30 pubmed 出版商
  756. Vigelsø A, Dybboe R, Hansen C, Dela F, Helge J, Guadalupe Grau A. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985). 2015;118:386-94 pubmed 出版商
  757. Rovetta A, Peña D, Hernández Del Pino R, Recalde G, Pellegrini J, Bigi F, et al. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy. 2014;10:2109-21 pubmed 出版商
  758. Caminos E, Garcia Pino E, Juiz J. Loss of auditory activity modifies the location of potassium channel KCNQ5 in auditory brainstem neurons. J Neurosci Res. 2015;93:604-14 pubmed 出版商
  759. Shirasago Y, Sekizuka T, Saito K, Suzuki T, Wakita T, Hanada K, et al. Isolation and characterization of an Huh.7.5.1-derived cell clone highly permissive to hepatitis C virus. Jpn J Infect Dis. 2015;68:81-8 pubmed 出版商
  760. Avitzour M, Mor Shaked H, Yanovsky Dagan S, Aharoni S, Altarescu G, Renbaum P, et al. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells. Stem Cell Reports. 2014;3:699-706 pubmed 出版商
  761. Lu S, Zeumer L, Sorensen H, Yang H, Ng Y, Yu F, et al. The murine Pbx1-d lupus susceptibility allele accelerates mesenchymal stem cell differentiation and impairs their immunosuppressive function. J Immunol. 2015;194:43-55 pubmed
  762. Chang S, Chang W, Lu C, Tarn W. Alanine repeats influence protein localization in splicing speckles and paraspeckles. Nucleic Acids Res. 2014;42:13788-98 pubmed 出版商
  763. Nonnenmacher M, Cintrat J, Gillet D, Weber T. Syntaxin 5-dependent retrograde transport to the trans-Golgi network is required for adeno-associated virus transduction. J Virol. 2015;89:1673-87 pubmed 出版商
  764. Grünhagen J, Bhushan R, Degenkolbe E, Jäger M, Knaus P, Mundlos S, et al. MiR-497∼195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res. 2015;30:796-808 pubmed 出版商
  765. Sun J, Lu F, He H, Shen J, Messina J, Mathew R, et al. STIM1- and Orai1-mediated Ca(2+) oscillation orchestrates invadopodium formation and melanoma invasion. J Cell Biol. 2014;207:535-48 pubmed 出版商
  766. Rochman M, Kartashov A, Caldwell J, Collins M, Stucke E, Kc K, et al. Neurotrophic tyrosine kinase receptor 1 is a direct transcriptional and epigenetic target of IL-13 involved in allergic inflammation. Mucosal Immunol. 2015;8:785-98 pubmed 出版商
  767. Shriver M, Stroka K, Vitolo M, Martin S, Huso D, Konstantopoulos K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. 2015;34:4248-59 pubmed 出版商
  768. Blair B, Wu X, Zahari M, Mohseni M, Cidado J, Wong H, et al. A phosphoproteomic screen demonstrates differential dependence on HER3 for MAP kinase pathway activation by distinct PIK3CA mutations. Proteomics. 2015;15:318-26 pubmed 出版商
  769. Israeli Rosenberg S, Chen C, Li R, Deussen D, Niesman I, Okada H, et al. Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J. 2015;29:374-84 pubmed 出版商
  770. Mooren O, Li J, Nawas J, Cooper J. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier. Mol Biol Cell. 2014;25:4115-29 pubmed 出版商
  771. Munday D, Wu W, Smith N, Fix J, Noton S, Galloux M, et al. Interactome analysis of the human respiratory syncytial virus RNA polymerase complex identifies protein chaperones as important cofactors that promote L-protein stability and RNA synthesis. J Virol. 2015;89:917-30 pubmed 出版商
  772. Sedlmeier E, Brunner S, Much D, Pagel P, Ulbrich S, Meyer H, et al. Human placental transcriptome shows sexually dimorphic gene expression and responsiveness to maternal dietary n-3 long-chain polyunsaturated fatty acid intervention during pregnancy. BMC Genomics. 2014;15:941 pubmed 出版商
  773. Haug S, Schnerch D, Halbach S, Mastroianni J, Dumit V, Follo M, et al. Metadherin exon 11 skipping variant enhances metastatic spread of ovarian cancer. Int J Cancer. 2015;136:2328-40 pubmed 出版商
  774. Huang Y, Chen J, Lu C, Han J, Wang G, Song C, et al. HDAC1 and Klf4 interplay critically regulates human myeloid leukemia cell proliferation. Cell Death Dis. 2014;5:e1491 pubmed 出版商
  775. Kaiser A, Jenewein B, Pircher H, Rostek U, Jansen Dürr P, Zwerschke W. Analysis of human papillomavirus E7 protein status in C-33A cervical cancer cells. Virus Genes. 2015;50:12-21 pubmed 出版商
  776. Hofmann A, Takahashi T, Duess J, Gosemann J, Puri P. Increased pulmonary vascular expression of Krüppel-like factor 5 and activated survivin in experimental congenital diaphragmatic hernia. Pediatr Surg Int. 2014;30:1191-7 pubmed 出版商
  777. Durk M, Fan J, Sun H, Yang Y, Pang H, Pang K, et al. Vitamin D receptor activation induces P-glycoprotein and increases brain efflux of quinidine: an intracerebral microdialysis study in conscious rats. Pharm Res. 2015;32:1128-40 pubmed 出版商
  778. Oujo B, Muñoz Félix J, Arévalo M, Núñez Gómez E, Pérez Roque L, Pericacho M, et al. L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction. PLoS ONE. 2014;9:e110365 pubmed 出版商
  779. Otabe K, Nakahara H, Hasegawa A, Matsukawa T, Ayabe F, Onizuka N, et al. Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Orthop Res. 2015;33:1-8 pubmed 出版商
  780. Hirota Y, Kubo K, Katayama K, Honda T, Fujino T, Yamamoto T, et al. Reelin receptors ApoER2 and VLDLR are expressed in distinct spatiotemporal patterns in developing mouse cerebral cortex. J Comp Neurol. 2015;523:463-78 pubmed 出版商
  781. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed 出版商
  782. Kocher B, White L, Piwnica Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015;13:358-67 pubmed 出版商
  783. Maney N, Reynolds G, Krippner Heidenreich A, Hilkens C. Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2. J Immunol. 2014;193:4914-4923 pubmed 出版商
  784. Pereira L, Pinto R, Silva D, Moreira A, Beitzinger C, Oliveira P, et al. Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun. 2014;82:5270-85 pubmed 出版商
  785. Kaneko M, Noguchi T, Ikegami S, Sakurai T, Kakita A, Toyoshima Y, et al. Zinc transporters ZnT3 and ZnT6 are downregulated in the spinal cords of patients with sporadic amyotrophic lateral sclerosis. J Neurosci Res. 2015;93:370-9 pubmed 出版商
  786. Lin Z, Xu Y, Namgoong S, Kim N. JMY functions as actin nucleation-promoting factor and mediator for p53-mediated DNA damage in porcine oocytes. PLoS ONE. 2014;9:e109385 pubmed 出版商
  787. Hsieh Y, Yang C, Liu S, Chou L, Hong C. Remote dose-dependent effects of dry needling at distant myofascial trigger spots of rabbit skeletal muscles on reduction of substance P levels of proximal muscle and spinal cords. Biomed Res Int. 2014;2014:982121 pubmed 出版商
  788. Provenzano G, Pangrazzi L, Poli A, Pernigo M, Sgadò P, Genovesi S, et al. Hippocampal dysregulation of neurofibromin-dependent pathways is associated with impaired spatial learning in engrailed 2 knock-out mice. J Neurosci. 2014;34:13281-8 pubmed 出版商
  789. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer J, Jimenez Sanchez M, et al. PICALM modulates autophagy activity and tau accumulation. Nat Commun. 2014;5:4998 pubmed 出版商
  790. Song J, An N, Chatterjee S, Kistner Griffin E, Mahajan S, Mehrotra S, et al. Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing. Oncogene. 2015;34:3728-36 pubmed 出版商
  791. Young D, Fong D, Lawlor P, Wu A, Mouravlev A, McRae M, et al. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Ther. 2014;21:1029-40 pubmed 出版商
  792. Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, et al. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16:435 pubmed 出版商
  793. Kang C, Lin J, Xu Z, Kumar S, Herr A. Single-cell Western blotting after whole-cell imaging to assess cancer chemotherapeutic response. Anal Chem. 2014;86:10429-36 pubmed 出版商
  794. Kurokawa K, Mizuno K, Ohkuma S. Sensitization of ethanol-induced place preference as a result of up-regulation of type 1 inositol 1,4,5-trisphosphate receptors in mouse nucleus accumbens. J Neurochem. 2014;131:836-47 pubmed 出版商
  795. Zhang S, Tang W, Weng S, Liu X, Rao B, Gu J, et al. Apollon modulates chemosensitivity in human esophageal squamous cell carcinoma. Oncotarget. 2014;5:7183-97 pubmed
  796. Haddock C, Blomenkamp K, Gautam M, James J, Mielcarska J, Gogol E, et al. PiZ mouse liver accumulates polyubiquitin conjugates that associate with catalytically active 26S proteasomes. PLoS ONE. 2014;9:e106371 pubmed 出版商
  797. Sonzogni S, Ogara M, Castillo D, Sirkin P, Radicella J, Cánepa E. Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation. Mol Cell Biochem. 2015;398:63-72 pubmed 出版商
  798. Fork C, Hitzel J, Nichols B, Tikkanen R, Brandes R. Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells. Basic Res Cardiol. 2014;109:439 pubmed 出版商
  799. Tantra M, Kröcher T, Papiol S, Winkler D, Röckle I, Jatho J, et al. St8sia2 deficiency plus juvenile cannabis exposure in mice synergistically affect higher cognition in adulthood. Behav Brain Res. 2014;275:166-75 pubmed 出版商
  800. Zieger M, Ahnelt P, Uhrin P. CX3CL1 (fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies. PLoS ONE. 2014;9:e106562 pubmed 出版商
  801. Abramowski P, Ogrodowczyk C, Martin R, Pongs O. A truncation variant of the cation channel P2RX5 is upregulated during T cell activation. PLoS ONE. 2014;9:e104692 pubmed 出版商
  802. Eberle M, Ebel P, Wegner M, Männich J, Tafferner N, Ferreirós N, et al. Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol. 2014;92:326-35 pubmed 出版商
  803. García E, Machesky L, Jones G, Antón I. WIP is necessary for matrix invasion by breast cancer cells. Eur J Cell Biol. 2014;93:413-23 pubmed 出版商
  804. Maarouf C, Kokjohn T, Walker D, Whiteside C, Kalback W, Whetzel A, et al. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. PLoS ONE. 2014;9:e105784 pubmed 出版商
  805. Niu F, Yao H, Zhang W, Sutliff R, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci. 2014;34:11812-25 pubmed 出版商
  806. Dvoriantchikova G, Ivanov D. Tumor necrosis factor-alpha mediates activation of NF-κB and JNK signaling cascades in retinal ganglion cells and astrocytes in opposite ways. Eur J Neurosci. 2014;40:3171-8 pubmed 出版商
  807. Welsh T, Hirst J, Palliser H, Zakar T. Progesterone receptor expression declines in the guinea pig uterus during functional progesterone withdrawal and in response to prostaglandins. PLoS ONE. 2014;9:e105253 pubmed 出版商
  808. Wang W, Wu T, Kirschner M. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. elife. 2014;3:e03083 pubmed 出版商
  809. Olivier Van Stichelen S, Hanover J. X-inactivation normalizes O-GlcNAc transferase levels and generates an O-GlcNAc-depleted Barr body. Front Genet. 2014;5:256 pubmed 出版商
  810. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed 出版商
  811. Carrillo Sepúlveda M, Keen H, Davis D, Grobe J, Sigmund C. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension. PLoS ONE. 2014;9:e103786 pubmed 出版商
  812. Sarkar J, Simanian E, Tuggy S, Bartlett J, Snead M, Sugiyama T, et al. Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front Physiol. 2014;5:277 pubmed 出版商
  813. Park S, Park J, Kim Y, Song S, Kwon H, Lee Y. Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress Chaperones. 2015;20:149-57 pubmed 出版商
  814. Wilson S, Tocchi A, Holly M, Parks W, Smith J. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol. 2015;8:352-61 pubmed 出版商
  815. Curto G, Nieto Estévez V, Hurtado Chong A, Valero J, Gómez C, Alonso J, et al. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev. 2014;23:2813-30 pubmed 出版商
  816. Tsai Y, Lai C, Lai C, Chang K, Wu K, Tseng S, et al. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget. 2014;5:6425-36 pubmed
  817. Riemer P, Sreekumar A, Reinke S, Rad R, Schäfer R, Sers C, et al. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene. 2015;34:3164-75 pubmed 出版商
  818. Dutta B, Yan R, Lim S, Tam J, Sze S. Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis. Mol Cell Proteomics. 2014;13:3236-49 pubmed 出版商
  819. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed 出版商
  820. Nagakura I, Van Wart A, Petravicz J, Tropea D, Sur M. STAT1 regulates the homeostatic component of visual cortical plasticity via an AMPA receptor-mediated mechanism. J Neurosci. 2014;34:10256-63 pubmed 出版商
  821. Clewell R, Sun B, Adeleye Y, Carmichael P, Efremenko A, McMullen P, et al. Profiling dose-dependent activation of p53-mediated signaling pathways by chemicals with distinct mechanisms of DNA damage. Toxicol Sci. 2014;142:56-73 pubmed 出版商
  822. Calabro S, Maczurek A, Morgan A, Tu T, Wen V, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS ONE. 2014;9:e90571 pubmed 出版商
  823. Wang B, Zhang Y, Liu T, Shi J, Sun F, Gui J. Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway. Dev Comp Immunol. 2014;47:140-9 pubmed 出版商
  824. Requejo Aguilar R, Lopez Fabuel I, Fernandez E, Martins L, Almeida A, Bolanos J. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun. 2014;5:4514 pubmed 出版商
  825. Desideri E, Vegliante R, Cardaci S, Nepravishta R, Paci M, Ciriolo M. MAPK14/p38?-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation. Autophagy. 2014;10:1652-65 pubmed 出版商
  826. Syhr K, Kallenborn Gerhardt W, Lu R, Olbrich K, Schmitz K, Männich J, et al. Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacol Biochem Behav. 2014;124:389-95 pubmed 出版商
  827. Joly S, Jordi N, Schwab M, Pernet V. The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve. Eur J Neurosci. 2014;40:3021-31 pubmed 出版商
  828. Moorwood C, Philippou A, Spinazzola J, Keyser B, Macarak E, Barton E. Absence of ?-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle. Skelet Muscle. 2014;4:13 pubmed 出版商
  829. Vachharajani V, Liu T, Brown C, Wang X, Buechler N, Wells J, et al. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol. 2014;96:785-96 pubmed 出版商
  830. Walker M, Volta M, Cataldi S, Dinelle K, Beccano Kelly D, Munsie L, et al. Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis. 2014;4:483-98 pubmed 出版商
  831. Ni Z, Xu C, Guo X, Hunter G, Kuznetsova O, Tempel W, et al. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation. Nat Struct Mol Biol. 2014;21:686-695 pubmed 出版商
  832. Cowling R, Yeo S, Kim I, Park J, Gu Y, Dalton N, et al. Discoidin domain receptor 2 germline gene deletion leads to altered heart structure and function in the mouse. Am J Physiol Heart Circ Physiol. 2014;307:H773-81 pubmed 出版商
  833. Charan R, Johnson B, Zaganelli S, Nardozzi J, LaVoie M. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of parkin. Cell Death Dis. 2014;5:e1313 pubmed 出版商
  834. Aligny C, Roux C, Dourmap N, Ramdani Y, do Rego J, Jegou S, et al. Ketamine alters cortical integration of GABAergic interneurons and induces long-term sex-dependent impairments in transgenic Gad67-GFP mice. Cell Death Dis. 2014;5:e1311 pubmed 出版商
  835. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  836. Takeda A, Oberoi Khanuja T, Glatz G, Schulenburg K, Scholz R, Carpy A, et al. Ubiquitin-dependent regulation of MEKK2/3-MEK5-ERK5 signaling module by XIAP and cIAP1. EMBO J. 2014;33:1784-801 pubmed 出版商
  837. Zhang X, Shi H, Chen J, Shi D, Li C, Feng L. EF1A interacting with nucleocapsid protein of transmissible gastroenteritis coronavirus and plays a role in virus replication. Vet Microbiol. 2014;172:443-8 pubmed 出版商
  838. Olenich S, Audet G, Roberts K, Olfert I. Effects of detraining on the temporal expression of positive and negative angioregulatory proteins in skeletal muscle of mice. J Physiol. 2014;592:3325-38 pubmed 出版商
  839. Suyama M, Koike M, Asaoka D, Mori H, Oguro M, Ueno T, et al. Increased immunoreactivity of cathepsins in the rat esophagus under chronic acid reflux esophagitis. J Histochem Cytochem. 2014;62:645-60 pubmed 出版商
  840. Stechschulte L, Hinds T, Khuder S, Shou W, Najjar S, SANCHEZ E. FKBP51 controls cellular adipogenesis through p38 kinase-mediated phosphorylation of GR? and PPAR?. Mol Endocrinol. 2014;28:1265-75 pubmed 出版商
  841. Chung L, Bailey D, Leen E, Emmott E, Chaudhry Y, Roberts L, et al. Norovirus translation requires an interaction between the C Terminus of the genome-linked viral protein VPg and eukaryotic translation initiation factor 4G. J Biol Chem. 2014;289:21738-50 pubmed 出版商
  842. Lebron M, Brennan L, Damoci C, Prewett M, O Mahony M, Duignan I, et al. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth. Cancer Biol Ther. 2014;15:1208-18 pubmed 出版商
  843. Kolanczyk M, Krawitz P, Hecht J, Hupalowska A, Miaczynska M, Marschner K, et al. Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome. Eur J Hum Genet. 2015;23:633-8 pubmed 出版商
  844. Screen M, Jonson P, Raheem O, Palmio J, Laaksonen R, Lehtimaki T, et al. Abnormal splicing of NEDD4 in myotonic dystrophy type 2: possible link to statin adverse reactions. Am J Pathol. 2014;184:2322-32 pubmed 出版商
  845. Lamarca A, Gella A, Martiáñez T, Segura M, Figueiro Silva J, Grijota Martinez C, et al. Uridine 5'-triphosphate promotes in vitro Schwannoma cell migration through matrix metalloproteinase-2 activation. PLoS ONE. 2014;9:e98998 pubmed 出版商
  846. Premkumar M, Sule G, Nagamani S, Chakkalakal S, Nordin A, Jain M, et al. Argininosuccinate lyase in enterocytes protects from development of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2014;307:G347-54 pubmed 出版商
  847. Chien P, Hsieh H, Chi P, Yang C. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol. 2014;171:4504-19 pubmed 出版商
  848. Relógio A, Thomas P, Medina Pérez P, Reischl S, Bervoets S, Gloc E, et al. Ras-mediated deregulation of the circadian clock in cancer. PLoS Genet. 2014;10:e1004338 pubmed 出版商
  849. Chapnik E, Rivkin N, Mildner A, Beck G, Pasvolsky R, Metzl Raz E, et al. miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. elife. 2014;3:e01964 pubmed 出版商
  850. Shin J, Le Dour C, Sera F, Iwata S, Homma S, Joseph L, et al. Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus. 2014;5:260-459 pubmed 出版商
  851. Durk M, Han K, Chow E, Ahrens R, Henderson J, Fraser P, et al. 1?,25-Dihydroxyvitamin D3 reduces cerebral amyloid-? accumulation and improves cognition in mouse models of Alzheimer's disease. J Neurosci. 2014;34:7091-101 pubmed 出版商
  852. Jafari M, Xu W, Pan R, Sweeting C, Karunaratne D, Chen P. Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery. PLoS ONE. 2014;9:e97797 pubmed 出版商
  853. Li S, Zhou T, Li C, Dai Z, Che D, Yao Y, et al. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS ONE. 2014;9:e97330 pubmed 出版商
  854. Zavodszky E, Seaman M, Moreau K, Jimenez Sanchez M, Breusegem S, Harbour M, et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828 pubmed 出版商
  855. Waza A, Andrabi K, Hussain M. Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal. 2014;26:1909-17 pubmed 出版商
  856. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  857. Chucair Elliott A, Conrady C, Zheng M, Kroll C, Lane T, Carr D. Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia. 2014;62:1418-34 pubmed 出版商
  858. Roberge S, Roussel J, Andersson D, Meli A, Vidal B, Blandel F, et al. TNF-?-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res. 2014;103:90-9 pubmed 出版商
  859. Lei Q, Pan X, Chang S, Malkowicz S, Guzzo T, Malykhina A. Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel. J Physiol. 2014;592:3013-30 pubmed 出版商
  860. Peffer M, Chandran U, Luthra S, Volonte D, Galbiati F, Garabedian M, et al. Caveolin-1 regulates genomic action of the glucocorticoid receptor in neural stem cells. Mol Cell Biol. 2014;34:2611-23 pubmed
  861. Abuali G, Chaisaklert W, Stelloo E, Pazarentzos E, Hwang M, Qize D, et al. The anticancer gene ORCTL3 targets stearoyl-CoA desaturase-1 for tumour-specific apoptosis. Oncogene. 2015;34:1718-28 pubmed 出版商
  862. Ding Z, German P, Bai S, Reddy A, Liu X, Sun M, et al. Genetic and pharmacological strategies to refunctionalize the von Hippel Lindau R167Q mutant protein. Cancer Res. 2014;74:3127-36 pubmed 出版商
  863. Asp N, Pust S, Sandvig K. Flotillin depletion affects ErbB protein levels in different human breast cancer cells. Biochim Biophys Acta. 2014;1843:1987-96 pubmed 出版商
  864. Gonzalez Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179 pubmed 出版商
  865. Sun Y, Chung H, Woo A, Lin V. Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor ? via distinct mechanisms. Biochim Biophys Acta. 2014;1843:2067-78 pubmed 出版商
  866. Lomonosova Y, Shenkman B, Kalamkarov G, Kostrominova T, Nemirovskaya T. L-arginine supplementation protects exercise performance and structural integrity of muscle fibers after a single bout of eccentric exercise in rats. PLoS ONE. 2014;9:e94448 pubmed 出版商
  867. Patoine A, Gaumond M, Jaiswal P, Fassier F, Rauch F, Moffatt P. Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfecta mutations on its cellular destination. J Bone Miner Res. 2014;29:2004-16 pubmed 出版商
  868. Edwards J, Bruno J, Key P, Cheng Y. Absence of chloride intracellular channel 4 (CLIC4) predisposes to acute kidney injury but has minimal impact on recovery. BMC Nephrol. 2014;15:54 pubmed 出版商
  869. Huang G, Wilson N, Reese S, Jacobson L, Zhong W, Djamali A. Characterization of transfusion-elicited acute antibody-mediated rejection in a rat model of kidney transplantation. Am J Transplant. 2014;14:1061-72 pubmed 出版商
  870. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  871. Jung Y, Vermeer P, Vermeer D, Lee S, Goh A, Ahn H, et al. CD200: association with cancer stem cell features and response to chemoradiation in head and neck squamous cell carcinoma. Head Neck. 2015;37:327-35 pubmed 出版商
  872. Erdozain A, Morentin B, Bedford L, King E, Tooth D, Brewer C, et al. Alcohol-related brain damage in humans. PLoS ONE. 2014;9:e93586 pubmed 出版商
  873. Liu Y, Tsai I, Morleo M, Oh E, Leitch C, Massa F, et al. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators. J Clin Invest. 2014;124:2059-70 pubmed
  874. Wang Q, Shi S, He W, Padilla M, Zhang L, Wang X, et al. Retaining MKP1 expression and attenuating JNK-mediated apoptosis by RIP1 for cisplatin resistance through miR-940 inhibition. Oncotarget. 2014;5:1304-14 pubmed
  875. Kensler K, Slocum S, Chartoumpekis D, Dolan P, Johnson N, Ilic Z, et al. Genetic or pharmacologic activation of Nrf2 signaling fails to protect against aflatoxin genotoxicity in hypersensitive GSTA3 knockout mice. Toxicol Sci. 2014;139:293-300 pubmed 出版商
  876. Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, et al. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol. 2014;12:25 pubmed 出版商
  877. Sonzogni S, Ogara M, Belluscio L, Castillo D, Scassa M, Cánepa E. p19INK4d is involved in the cellular senescence mechanism contributing to heterochromatin formation. Biochim Biophys Acta. 2014;1840:2171-83 pubmed 出版商
  878. Sharma A, Huard C, Vernochet C, Ziemek D, Knowlton K, Tyminski E, et al. Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6. PLoS ONE. 2014;9:e92608 pubmed 出版商
  879. Rappe U, Schlechter T, Aschoff M, Hotz Wagenblatt A, Hofmann I. Nuclear ARVCF protein binds splicing factors and contributes to the regulation of alternative splicing. J Biol Chem. 2014;289:12421-34 pubmed 出版商
  880. Chesarino N, McMichael T, Hach J, Yount J. Phosphorylation of the antiviral protein interferon-inducible transmembrane protein 3 (IFITM3) dually regulates its endocytosis and ubiquitination. J Biol Chem. 2014;289:11986-92 pubmed 出版商
  881. Canny S, Reese T, Johnson L, Zhang X, Kambal A, Duan E, et al. Pervasive transcription of a herpesvirus genome generates functionally important RNAs. MBio. 2014;5:e01033-13 pubmed 出版商
  882. Storm M, Kumpfmueller B, Bone H, Buchholz M, Sanchez Ripoll Y, Chaudhuri J, et al. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells. PLoS ONE. 2014;9:e89821 pubmed 出版商
  883. Grewal N, Gittenberger de Groot A, Poelmann R, Klautz R, Lindeman J, Goumans M, et al. Ascending aorta dilation in association with bicuspid aortic valve: a maturation defect of the aortic wall. J Thorac Cardiovasc Surg. 2014;148:1583-90 pubmed 出版商
  884. Yeo J, Lee E, Hendrickson E, Sobeck A. CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum Mol Genet. 2014;23:3695-705 pubmed 出版商
  885. Kuo H, Liu H, Chuang Y, Birder L, Chancellor M. Pilot study of liposome-encapsulated onabotulinumtoxina for patients with overactive bladder: a single-center study. Eur Urol. 2014;65:1117-24 pubmed 出版商
  886. Farg M, Sundaramoorthy V, Sultana J, Yang S, Atkinson R, Levina V, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23:3579-95 pubmed 出版商
  887. Puolakkainen P, Koski A, Vainionpää S, Shen Z, Repo H, Kemppainen E, et al. Anti-inflammatory macrophages activate invasion in pancreatic adenocarcinoma by increasing the MMP9 and ADAM8 expression. Med Oncol. 2014;31:884 pubmed 出版商
  888. Muenyi C, Trivedi A, Helm C, States J. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci. 2014;139:74-82 pubmed 出版商
  889. Born N, Thiesen H, Lorenz P. The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1. PLoS ONE. 2014;9:e87609 pubmed 出版商
  890. Miyazawa N, Yoshikawa H, Magae S, Ishikawa H, Izumikawa K, Terukina G, et al. Human cell growth regulator Ly-1 antibody reactive homologue accelerates processing of preribosomal RNA. Genes Cells. 2014;19:273-86 pubmed 出版商
  891. Yik J, Hu Z, Kumari R, Christiansen B, Haudenschild D. Cyclin-dependent kinase 9 inhibition protects cartilage from the catabolic effects of proinflammatory cytokines. Arthritis Rheumatol. 2014;66:1537-46 pubmed 出版商
  892. Arnandis T, Ferrer Vicens I, Torres L, García C, García Trevijano E, Zaragoza R, et al. Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J. 2014;459:355-68 pubmed 出版商
  893. Galicia Vázquez G, Di Marco S, Lian X, Ma J, Gallouzi I, Pelletier J. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation. PLoS ONE. 2014;9:e87237 pubmed 出版商
  894. Bayer M, Schjerling P, Herchenhan A, Zeltz C, Heinemeier K, Christensen L, et al. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS ONE. 2014;9:e86078 pubmed 出版商
  895. Kapoor Vazirani P, Vertino P. A dual role for the histone methyltransferase PR-SET7/SETD8 and histone H4 lysine 20 monomethylation in the local regulation of RNA polymerase II pausing. J Biol Chem. 2014;289:7425-37 pubmed 出版商
  896. Clarysse L, Gueguinou M, Potier Cartereau M, Vandecasteele G, Bougnoux P, Chevalier S, et al. cAMP-PKA inhibition of SK3 channel reduced both Ca2+ entry and cancer cell migration by regulation of SK3-Orai1 complex. Pflugers Arch. 2014;466:1921-32 pubmed 出版商
  897. Gangoso E, Thirant C, Chneiweiss H, Medina J, Tabernero A. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis. 2014;5:e1023 pubmed 出版商
  898. Cao Q, Wang X, Zhao M, Yang R, Malik R, Qiao Y, et al. The central role of EED in the orchestration of polycomb group complexes. Nat Commun. 2014;5:3127 pubmed 出版商
  899. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed 出版商
  900. Wong Y, Holzbaur E. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci. 2014;34:1293-305 pubmed 出版商
  901. Dannoura A, Giraldo A, Pereira I, Gibbins J, Dash P, Bicknell K, et al. Ibuprofen inhibits migration and proliferation of human coronary artery smooth muscle cells by inducing a differentiated phenotype: role of peroxisome proliferator-activated receptor ?. J Pharm Pharmacol. 2014;66:779-92 pubmed 出版商
  902. Ashraf M, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 2014;12:6 pubmed 出版商
  903. Bots M, Verbrugge I, Martin B, Salmon J, Ghisi M, Baker A, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood. 2014;123:1341-52 pubmed 出版商
  904. Al Sawaf O, Fragoulis A, Rosen C, Kan Y, Sönmez T, Pufe T, et al. Nrf2 protects against TWEAK-mediated skeletal muscle wasting. Sci Rep. 2014;4:3625 pubmed 出版商
  905. Yan X, Lin J, Talabattula V, Mußmann C, Yang F, Wree A, et al. ADAM10 negatively regulates neuronal differentiation during spinal cord development. PLoS ONE. 2014;9:e84617 pubmed 出版商
  906. Tsuyuki S, Takabayashi M, Kawazu M, Kudo K, Watanabe A, Nagata Y, et al. Detection of WIPI1 mRNA as an indicator of autophagosome formation. Autophagy. 2014;10:497-513 pubmed 出版商
  907. Nakajima M, Honda T, Miyauchi S, Yamazaki K. Th2 cytokines efficiently stimulate periostin production in gingival fibroblasts but periostin does not induce an inflammatory response in gingival epithelial cells. Arch Oral Biol. 2014;59:93-101 pubmed 出版商
  908. Zhang W, Ji W, Liu X, Ouyang G, Xiao W. ELL inhibits E2F1 transcriptional activity by enhancing E2F1 deacetylation via recruitment of histone deacetylase 1. Mol Cell Biol. 2014;34:765-75 pubmed 出版商
  909. Xavier J, Morgado A, Sola S, Rodrigues C. Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal. 2014;21:1009-24 pubmed 出版商
  910. Kowalczyk Zieba I, Boruszewska D, Sinderewicz E, Skarzynski D, Woclawek Potocka I. Influence of lysophosphatidic acid on nitric oxide-induced luteolysis in steroidogenic luteal cells in cows. Biol Reprod. 2014;90:17 pubmed 出版商
  911. Sisinni L, Maddalena F, Lettini G, Condelli V, Matassa D, Esposito F, et al. TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells. Int J Oncol. 2014;44:573-82 pubmed 出版商
  912. Lewis S, Hedman C, Ziegler T, Ricke W, Jorgensen J. Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation. Endocrinology. 2014;155:358-69 pubmed 出版商
  913. Shtam T, Kovalev R, Varfolomeeva E, Makarov E, Kil Y, Filatov M. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88 pubmed 出版商
  914. Arora S, Saini S, Fukuhara S, Majid S, Shahryari V, Yamamura S, et al. MicroRNA-4723 inhibits prostate cancer growth through inactivation of the Abelson family of nonreceptor protein tyrosine kinases. PLoS ONE. 2013;8:e78023 pubmed 出版商
  915. Chang K, Chang W, Chang Y, Hung L, Lai C, Yeh Y, et al. Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma. PLoS ONE. 2013;8:e79863 pubmed 出版商
  916. Dong P, Kaneuchi M, Xiong Y, Cao L, Cai M, Liu X, et al. Identification of KLF17 as a novel epithelial to mesenchymal transition inducer via direct activation of TWIST1 in endometrioid endometrial cancer. Carcinogenesis. 2014;35:760-8 pubmed 出版商
  917. Zhang R, Misra V. Effects of cyclic AMP response element binding protein-Zhangfei (CREBZF) on the unfolded protein response and cell growth are exerted through the tumor suppressor p53. Cell Cycle. 2014;13:279-92 pubmed 出版商
  918. Chittoor V, Sooyeon L, Rangaraju S, Nicks J, Schmidt J, Madorsky I, et al. Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro. 2013;5:e00128 pubmed 出版商
  919. Kusama K, Yoshie M, Tamura K, Nakayama T, Nishi H, Isaka K, et al. The role of exchange protein directly activated by cyclic AMP 2-mediated calreticulin expression in the decidualization of human endometrial stromal cells. Endocrinology. 2014;155:240-8 pubmed 出版商
  920. Chua J, Reddy S, Merry D, Adachi H, Katsuno M, Sobue G, et al. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet. 2014;23:1376-86 pubmed 出版商
  921. Alqudah M, Agarwal S, Al Keilani M, Sibenaller Z, Ryken T, Assem M. NOTCH3 is a prognostic factor that promotes glioma cell proliferation, migration and invasion via activation of CCND1 and EGFR. PLoS ONE. 2013;8:e77299 pubmed 出版商
  922. Bhaskar K, Maphis N, Xu G, Varvel N, Kokiko Cochran O, Weick J, et al. Microglial derived tumor necrosis factor-? drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014;62:273-85 pubmed 出版商
  923. Elisia I, Kitts D. Modulation of NF-?B and Nrf2 control of inflammatory responses in FHs 74 Int cell line is tocopherol isoform-specific. Am J Physiol Gastrointest Liver Physiol. 2013;305:G940-9 pubmed 出版商
  924. Di Carlo V, Grossi E, Laneve P, Morlando M, Dini Modigliani S, Ballarino M, et al. TDP-43 regulates the microprocessor complex activity during in vitro neuronal differentiation. Mol Neurobiol. 2013;48:952-63 pubmed 出版商
  925. Gurha P, Wang T, Larimore A, Sassi Y, Abreu Goodger C, Ramirez M, et al. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS ONE. 2013;8:e75882 pubmed 出版商
  926. Kyöstilä K, Lappalainen A, Lohi H. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10. PLoS ONE. 2013;8:e75621 pubmed 出版商
  927. Jiang K, Ren C, Nair V. MicroRNA-137 represses Klf4 and Tbx3 during differentiation of mouse embryonic stem cells. Stem Cell Res. 2013;11:1299-313 pubmed 出版商
  928. Fan C, Tian Y, Miao Y, Lin X, Zhang X, Jiang G, et al. ASAP3 expression in non-small cell lung cancer: association with cancer development and patients' clinical outcome. Tumour Biol. 2014;35:1489-94 pubmed
  929. Murholm M, Isidor M, Basse A, Winther S, Sørensen C, Skovgaard Petersen J, et al. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. BMC Cell Biol. 2013;14:41 pubmed 出版商
  930. Goodwin A, Tidyman W, Jheon A, Sharir A, Zheng X, Charles C, et al. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet. 2014;23:682-92 pubmed 出版商
  931. Kr cher T, Malinovskaja K, J rgenson M, Aonurm Helm A, Zharkovskaya T, Kalda A, et al. Schizophrenia-like phenotype of polysialyltransferase ST8SIA2-deficient mice. Brain Struct Funct. 2015;220:71-83 pubmed 出版商
  932. Gao H, Fisher P, Lambi A, WADE C, Barr Gillespie A, Popoff S, et al. Increased serum and musculotendinous fibrogenic proteins following persistent low-grade inflammation in a rat model of long-term upper extremity overuse. PLoS ONE. 2013;8:e71875 pubmed 出版商
  933. Dave J, Kang H, Abbey C, Maxwell S, Bayless K. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem. 2013;288:30720-33 pubmed 出版商
  934. Chen Y, Kamili A, Hardy J, Groblewski G, Khanna K, Byrne J. Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle. 2013;12:3083-97 pubmed 出版商
  935. Voss M, Campbell K, Saranzewa N, Campbell D, Hastie C, Peggie M, et al. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with ?-tubulin. Cell Cycle. 2013;12:2876-87 pubmed 出版商
  936. Perlson E, Hendricks A, Lazarus J, Ben Yaakov K, Gradus T, Tokito M, et al. Dynein interacts with the neural cell adhesion molecule (NCAM180) to tether dynamic microtubules and maintain synaptic density in cortical neurons. J Biol Chem. 2013;288:27812-24 pubmed 出版商
  937. Schreiner A, Durry S, Aida T, Stock M, Ruther U, Tanaka K, et al. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol. 2014;522:204-24 pubmed 出版商
  938. Shimojo M, Shudo Y, Ikeda M, Kobashi T, Ito S. The small cell lung cancer-specific isoform of RE1-silencing transcription factor (REST) is regulated by neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100). Mol Cancer Res. 2013;11:1258-68 pubmed 出版商
  939. Jakobsson M, Moen A, Bousset L, Egge Jacobsen W, Kernstock S, Melki R, et al. Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J Biol Chem. 2013;288:27752-63 pubmed 出版商
  940. Guo H, Gao M, Lu Y, Liang J, Lorenzi P, Bai S, et al. Coordinate phosphorylation of multiple residues on single AKT1 and AKT2 molecules. Oncogene. 2014;33:3463-72 pubmed 出版商
  941. Holle A, Tang X, Vijayraghavan D, Vincent L, Fuhrmann A, Choi Y, et al. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells. 2013;31:2467-77 pubmed 出版商
  942. Dokas J, Chadt A, Nolden T, Himmelbauer H, Zierath J, Joost H, et al. Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology. 2013;154:3502-14 pubmed 出版商
  943. Alfonso Pérez T, Domínguez Sánchez M, Garcia Dominguez M, Reyes J. Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis. Oncogene. 2014;33:3064-74 pubmed 出版商
  944. Sun X, Bristol J, Iwahori S, Hagemeier S, Meng Q, Barlow E, et al. Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol. 2013;87:10126-38 pubmed 出版商
  945. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 2013;23:994-1006 pubmed 出版商
  946. He W, Wang Q, Srinivasan B, Xu J, Padilla M, Li Z, et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene. 2014;33:3004-13 pubmed 出版商
  947. Katsushima Y, Sato T, Yamada C, Ito M, Suzuki Y, Ogawa E, et al. Interaction of PICK1 with C-terminus of growth hormone-releasing hormone receptor (GHRHR) modulates trafficking and signal transduction of human GHRHR. J Pharmacol Sci. 2013;122:193-204 pubmed
  948. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  949. Larabee J, Shakir S, Barua S, Ballard J. Increased cAMP in monocytes augments Notch signaling mechanisms by elevating RBP-J and transducin-like enhancer of Split (TLE). J Biol Chem. 2013;288:21526-36 pubmed 出版商
  950. Taylor Weiner H, Schwarzbauer J, Engler A. Defined extracellular matrix components are necessary for definitive endoderm induction. Stem Cells. 2013;31:2084-94 pubmed 出版商
  951. Zhou D, Tan R, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509-20 pubmed 出版商
  952. Xue W, Zhou X, Yi N, Jiang L, Tao W, Wu R, et al. Yueju pill rapidly induces antidepressant-like effects and acutely enhances BDNF expression in mouse brain. Evid Based Complement Alternat Med. 2013;2013:184367 pubmed 出版商
  953. Zhou D, Tan R, Zhou L, Li Y, Liu Y. Kidney tubular ?-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep. 2013;3:1878 pubmed 出版商
  954. Caramuta S, Lee L, Ozata D, Akçakaya P, Xie H, Höög A, et al. Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma. Endocr Relat Cancer. 2013;20:551-64 pubmed 出版商
  955. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  956. Medford H, Porter K, Marsh S. Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2013;305:H114-23 pubmed 出版商
  957. Vogt D, Camus G, Herker E, Webster B, Tsou C, Greene W, et al. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog. 2013;9:e1003302 pubmed 出版商
  958. Birrane G, Li H, Yang S, Tachado S, Seng S. Cigarette smoke induces nuclear translocation of heme oxygenase 1 (HO-1) in prostate cancer cells: nuclear HO-1 promotes vascular endothelial growth factor secretion. Int J Oncol. 2013;42:1919-28 pubmed 出版商
  959. Bosse K, Hans C, Zhao N, Koenig S, Huang N, Guggilam A, et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J Mol Cell Cardiol. 2013;60:27-35 pubmed 出版商
  960. Betschinger J, Nichols J, Dietmann S, Corrin P, Paddison P, Smith A. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell. 2013;153:335-47 pubmed 出版商
  961. Sanchez Ripoll Y, Bone H, Owen T, Guedes A, Abranches E, Kumpfmueller B, et al. Glycogen synthase kinase-3 inhibition enhances translation of pluripotency-associated transcription factors to contribute to maintenance of mouse embryonic stem cell self-renewal. PLoS ONE. 2013;8:e60148 pubmed 出版商
  962. Maier B, Kirsch M, Anderhub S, Zentgraf H, Krämer A. The novel actin/focal adhesion-associated protein MISP is involved in mitotic spindle positioning in human cells. Cell Cycle. 2013;12:1457-71 pubmed 出版商
  963. Ishida K, Acharya C, Christiansen B, Yik J, Dicesare P, Haudenschild D. Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone. 2013;55:23-35 pubmed 出版商
  964. Fu H, Sohail A, Valiathan R, Wasinski B, Kumarasiri M, Mahasenan K, et al. Shedding of discoidin domain receptor 1 by membrane-type matrix metalloproteinases. J Biol Chem. 2013;288:12114-29 pubmed 出版商
  965. Rejon C, Ho C, Wang Y, Zhou X, Bernard D, Hebert T. Cycloheximide inhibits follicle-stimulating hormone ? subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal. 2013;25:1403-12 pubmed 出版商
  966. Takeuchi Yorimoto A, Noto T, Yamada A, Miyamae Y, Oishi Y, Matsumoto M. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation. Toxicol Appl Pharmacol. 2013;268:264-77 pubmed 出版商
  967. Li Y, Zheng Y, Izumi K, Ishiguro H, Ye B, Li F, et al. Androgen activates ?-catenin signaling in bladder cancer cells. Endocr Relat Cancer. 2013;20:293-304 pubmed 出版商
  968. Gao Y, Yechikov S, Vazquez A, Chen D, Nie L. Distinct roles of molecular chaperones HSP90? and HSP90? in the biogenesis of KCNQ4 channels. PLoS ONE. 2013;8:e57282 pubmed 出版商
  969. Chen S, Chung C, Cheng Y, Huang C, Ruaan R, Chen W, et al. Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells. Urol Oncol. 2014;32:26.e17-24 pubmed 出版商
  970. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商
  971. Snyder A, Dulin Smith A, Houston R, Durban A, Brisbin B, Oostra T, et al. Expression pattern of id proteins in medulloblastoma. Pathol Oncol Res. 2013;19:437-46 pubmed 出版商
  972. Shi J, Wu X, Surma M, Vemula S, Zhang L, Yang Y, et al. Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment. Cell Death Dis. 2013;4:e483 pubmed 出版商
  973. Nowaczyk M, Thompson B, Zeesman S, Moog U, Sanchez Lara P, Magoulas P, et al. Deletion of MAP2K2/MEK2: a novel mechanism for a RASopathy?. Clin Genet. 2014;85:138-46 pubmed 出版商
  974. Murakami K, Jiang Y, Tanaka T, Bando Y, Mitrovic B, Yoshida S. In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins. Neuroscience. 2013;236:1-11 pubmed 出版商
  975. Kim S, Ishida H, Yamane D, Yi M, Swinney D, Foung S, et al. Contrasting roles of mitogen-activated protein kinases in cellular entry and replication of hepatitis C virus: MKNK1 facilitates cell entry. J Virol. 2013;87:4214-24 pubmed 出版商
  976. Torrell H, Montaña E, Abasolo N, Roig B, Gaviria A, Vilella E, et al. Mitochondrial DNA (mtDNA) in brain samples from patients with major psychiatric disorders: gene expression profiles, mtDNA content and presence of the mtDNA common deletion. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:213-23 pubmed 出版商
  977. Vega Almeida T, Salas Benito M, De Nova Ocampo M, del Angel R, Salas Benito J. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol. 2013;158:1189-207 pubmed 出版商
  978. Martiáñez T, Lamarca A, Casals N, Gella A. N-cadherin expression is regulated by UTP in schwannoma cells. Purinergic Signal. 2013;9:259-70 pubmed 出版商
  979. Morlando M, Dini Modigliani S, Torrelli G, Rosa A, Di Carlo V, Caffarelli E, et al. FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J. 2012;31:4502-10 pubmed 出版商
  980. Yamamoto M, Matsuzaki T, Takahashi R, Adachi E, Maeda Y, Yamaguchi S, et al. The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs. Biol Open. 2012;1:458-66 pubmed 出版商
  981. Megison M, Stewart J, Nabers H, Gillory L, Beierle E. FAK inhibition decreases cell invasion, migration and metastasis in MYCN amplified neuroblastoma. Clin Exp Metastasis. 2013;30:555-68 pubmed 出版商
  982. Yu L, Shao C, Gao L. Developmental expression patterns for angiotensin receptors in mouse skin and brain. J Renin Angiotensin Aldosterone Syst. 2014;15:139-49 pubmed 出版商
  983. Guo Y, Chen Y, Zhang Y, Zhang Y, Chen L, Mo D. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1. Int J Biol Sci. 2012;8:1408-17 pubmed 出版商
  984. Pernet V, Joly S, Dalkara D, Jordi N, Schwarz O, Christ F, et al. Long-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve. Neurobiol Dis. 2013;51:202-13 pubmed 出版商
  985. Li A, Mo D, Zhao X, Jiang W, Cong P, He Z, et al. Comparison of the longissimus muscle proteome between obese and lean pigs at 180 days. Mamm Genome. 2013;24:72-9 pubmed 出版商
  986. Shinozuka E, Miyashita M, Mizuguchi Y, Akagi I, Kikuchi K, Makino H, et al. SnoN/SKIL modulates proliferation through control of hsa-miR-720 transcription in esophageal cancer cells. Biochem Biophys Res Commun. 2013;430:101-6 pubmed 出版商
  987. García Huerta P, Diaz Hernandez M, Delicado E, Pimentel Santillana M, Miras Portugal M, Gomez Villafuertes R. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. J Biol Chem. 2012;287:44628-44 pubmed 出版商
  988. Nagpal P, Plant P, Correa J, Bain A, Takeda M, Kawabe H, et al. The ubiquitin ligase Nedd4-1 participates in denervation-induced skeletal muscle atrophy in mice. PLoS ONE. 2012;7:e46427 pubmed 出版商
  989. Destouches D, Huet E, Sader M, Frechault S, Carpentier G, Ayoul F, et al. Multivalent pseudopeptides targeting cell surface nucleoproteins inhibit cancer cell invasion through tissue inhibitor of metalloproteinases 3 (TIMP-3) release. J Biol Chem. 2012;287:43685-93 pubmed 出版商
  990. McClain C, Sim F, Goldman S. Pleiotrophin suppression of receptor protein tyrosine phosphatase-?/? maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells. J Neurosci. 2012;32:15066-75 pubmed 出版商
  991. Hübener J, Weber J, Richter C, Honold L, Weiss A, Murad F, et al. Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3). Hum Mol Genet. 2013;22:508-18 pubmed 出版商
  992. Magli A, Schnettler E, Rinaldi F, Bremer P, Perlingeiro R. Functional dissection of Pax3 in paraxial mesoderm development and myogenesis. Stem Cells. 2013;31:59-70 pubmed 出版商
  993. Krzysik Walker S, González Mariscal I, Scheibye Knudsen M, Indig F, Bernier M. The biarylpyrazole compound AM251 alters mitochondrial physiology via proteolytic degradation of ERR?. Mol Pharmacol. 2013;83:157-66 pubmed 出版商
  994. Peschard P, McCarthy A, Leblanc Dominguez V, Yeo M, Guichard S, Stamp G, et al. Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr Biol. 2012;22:2063-8 pubmed 出版商
  995. Xie H, Zhao Y, Caramuta S, Larsson C, Lui W. miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. PLoS ONE. 2012;7:e46990 pubmed 出版商
  996. Liu Y, Chen Y, Lu X, Wang Y, Duan Y, Cheng C, et al. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol Biol Cell. 2012;23:4506-14 pubmed 出版商
  997. Baltanás F, Berciano M, Valero J, Gómez C, Diaz D, Alonso J, et al. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia. 2013;61:254-72 pubmed 出版商
  998. Rosales R, Monte M, Blazquez A, Briz O, Marin J. ABCC2 is involved in the hepatocyte perinuclear barrier for small organic compounds. Biochem Pharmacol. 2012;84:1651-9 pubmed 出版商
  999. Jones B, Brunet S, Gilbert M, Nichols C, Su T, Westenbroek R, et al. Cardiomyocytes from AKAP7 knockout mice respond normally to adrenergic stimulation. Proc Natl Acad Sci U S A. 2012;109:17099-104 pubmed 出版商
  1000. Zou Z, Yuan Z, Zhang Q, Long Z, Chen J, Tang Z, et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy. 2012;8:1798-810 pubmed 出版商
  1001. Yui N, Lu H, Chen Y, Nomura N, Bouley R, Brown D. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol. 2013;304:C38-48 pubmed 出版商
  1002. Chatain N, Ziegler P, Fahrenkamp D, Jost E, Moriggl R, Schmitz Van de Leur H, et al. Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells. Oncogene. 2013;32:3587-97 pubmed 出版商
  1003. Lu C, Lin L, Tan H, Wu H, Sherman S, Gao F, et al. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet. 2012;21:5039-47 pubmed 出版商
  1004. Lopez Ramirez M, Fischer R, Torres Badillo C, Davies H, Logan K, Pfizenmaier K, et al. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J Immunol. 2012;189:3130-9 pubmed 出版商
  1005. Gao W, Liu M, Yang Y, Yang H, Liao Q, Bai Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol. 2012;9:1002-10 pubmed 出版商
  1006. Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones. 2013;18:11-23 pubmed 出版商
  1007. Peluso J, Lodde V, Liu X. Progesterone regulation of progesterone receptor membrane component 1 (PGRMC1) sumoylation and transcriptional activity in spontaneously immortalized granulosa cells. Endocrinology. 2012;153:3929-39 pubmed 出版商
  1008. Esteves T, Psathaki O, Pfeiffer M, Balbach S, Zeuschner D, Shitara H, et al. Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming. PLoS ONE. 2012;7:e36850 pubmed 出版商
  1009. Turinetto V, Orlando L, Sanchez Ripoll Y, Kumpfmueller B, Storm M, Porcedda P, et al. High basal ?H2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. Stem Cells. 2012;30:1414-23 pubmed 出版商
  1010. Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int. 2012;82:537-47 pubmed 出版商
  1011. Zhang Y, Cooke M, Panjwani S, Cao K, Krauth B, Ho P, et al. Histone h1 depletion impairs embryonic stem cell differentiation. PLoS Genet. 2012;8:e1002691 pubmed 出版商
  1012. Estecha A, Aguilera Montilla N, Sánchez Mateos P, Puig Kröger A. RUNX3 regulates intercellular adhesion molecule 3 (ICAM-3) expression during macrophage differentiation and monocyte extravasation. PLoS ONE. 2012;7:e33313 pubmed 出版商
  1013. Romoser A, Figueroa D, Sooresh A, Scribner K, Chen P, Porter W, et al. Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicol Lett. 2012;210:293-301 pubmed 出版商
  1014. Li L, Sarver A, Alamgir S, Subramanian S. Downregulation of microRNAs miR-1, -206 and -29 stabilizes PAX3 and CCND2 expression in rhabdomyosarcoma. Lab Invest. 2012;92:571-83 pubmed 出版商
  1015. Hutchins A, Poulain S, Miranda Saavedra D. Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood. 2012;119:e110-9 pubmed 出版商
  1016. Boulay G, Dubuissez M, Van Rechem C, Forget A, Helin K, Ayrault O, et al. Hypermethylated in cancer 1 (HIC1) recruits polycomb repressive complex 2 (PRC2) to a subset of its target genes through interaction with human polycomb-like (hPCL) proteins. J Biol Chem. 2012;287:10509-24 pubmed 出版商
  1017. O Hara J, Feener T, Fischer C, Buret A. Campylobacter jejuni disrupts protective Toll-like receptor 9 signaling in colonic epithelial cells and increases the severity of dextran sulfate sodium-induced colitis in mice. Infect Immun. 2012;80:1563-71 pubmed 出版商
  1018. Lee J, Jiffar T, Kupferman M. A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma. PLoS ONE. 2012;7:e30246 pubmed 出版商
  1019. Pérez Pérez R, Lopez J, García Santos E, Camafeita E, Gomez Serrano M, Ortega Delgado F, et al. Uncovering suitable reference proteins for expression studies in human adipose tissue with relevance to obesity. PLoS ONE. 2012;7:e30326 pubmed 出版商
  1020. Shinohara R, Thumkeo D, Kamijo H, Kaneko N, Sawamoto K, Watanabe K, et al. A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors. Nat Neurosci. 2012;15:373-80, S1-2 pubmed 出版商
  1021. Aytekin M, Aulak K, Haserodt S, Chakravarti R, Cody J, Minai O, et al. Abnormal platelet aggregation in idiopathic pulmonary arterial hypertension: role of nitric oxide. Am J Physiol Lung Cell Mol Physiol. 2012;302:L512-20 pubmed 出版商
  1022. Mork L, Tang H, Batchvarov I, Capel B. Mouse germ cell clusters form by aggregation as well as clonal divisions. Mech Dev. 2012;128:591-6 pubmed 出版商
  1023. Medrzycki M, Zhang Y, McDonald J, Fan Y. Profiling of linker histone variants in ovarian cancer. Front Biosci (Landmark Ed). 2012;17:396-406 pubmed
  1024. Matousek S, Ghosh S, Shaftel S, Kyrkanides S, Olschowka J, O Banion M. Chronic IL-1?-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer's disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol. 2012;7:156-64 pubmed 出版商
  1025. Gomez C, Curto G, Baltanás F, Valero J, O SHEA E, Colado M, et al. Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss. Neuroscience. 2012;201:20-33 pubmed 出版商
  1026. Chen Z, Kolokoltsov A, Wang J, Adhikary S, Lorinczi M, Elferink L, et al. GRB2 interaction with the ecotropic murine leukemia virus receptor, mCAT-1, controls virus entry and is stimulated by virus binding. J Virol. 2012;86:1421-32 pubmed 出版商
  1027. Miki T, Kamikawa Y, Kurono S, Kaneko Y, Katahira J, Yoneda Y. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1. BMC Mol Biol. 2011;12:48 pubmed 出版商
  1028. Kahr P, Piccini I, Fabritz L, Greber B, Schöler H, Scheld H, et al. Systematic analysis of gene expression differences between left and right atria in different mouse strains and in human atrial tissue. PLoS ONE. 2011;6:e26389 pubmed 出版商
  1029. Schulz N, Himmelbauer H, Rath M, van Weeghel M, Houten S, Kulik W, et al. Role of medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase in the regulation of body weight and thermogenesis. Endocrinology. 2011;152:4641-51 pubmed 出版商
  1030. Thumkeo D, Shinohara R, Watanabe K, Takebayashi H, Toyoda Y, Tohyama K, et al. Deficiency of mDia, an actin nucleator, disrupts integrity of neuroepithelium and causes periventricular dysplasia. PLoS ONE. 2011;6:e25465 pubmed 出版商
  1031. Kye M, Neveu P, Lee Y, Zhou M, Steen J, Sahin M, et al. NMDA mediated contextual conditioning changes miRNA expression. PLoS ONE. 2011;6:e24682 pubmed 出版商
  1032. Zumer K, Plemenitas A, Saksela K, Peterlin B. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res. 2011;39:7908-19 pubmed 出版商
  1033. Michaelson J, Amatucci A, Kelly R, Su L, Garber E, Day E, et al. Development of an Fn14 agonistic antibody as an anti-tumor agent. MAbs. 2011;3:362-75 pubmed
  1034. Zürner M, Mittelstaedt T, Tom Dieck S, Becker A, Schoch S. Analyses of the spatiotemporal expression and subcellular localization of liprin-? proteins. J Comp Neurol. 2011;519:3019-39 pubmed 出版商
  1035. Selinger C, Cooper W, Al Sohaily S, Mladenova D, Pangon L, Kennedy C, et al. Loss of special AT-rich binding protein 1 expression is a marker of poor survival in lung cancer. J Thorac Oncol. 2011;6:1179-89 pubmed 出版商
  1036. Billington C, Ng B, Forsman C, Schmidt B, Bagchi A, Symer D, et al. The molecular and cellular basis of variable craniofacial phenotypes and their genetic rescue in Twisted gastrulation mutant mice. Dev Biol. 2011;355:21-31 pubmed 出版商
  1037. Kim S, Welsch C, Yi M, Lemon S. Regulation of the production of infectious genotype 1a hepatitis C virus by NS5A domain III. J Virol. 2011;85:6645-56 pubmed 出版商
  1038. Baras A, Solomon A, Davidson R, Moskaluk C. Loss of VOPP1 overexpression in squamous carcinoma cells induces apoptosis through oxidative cellular injury. Lab Invest. 2011;91:1170-80 pubmed 出版商
  1039. Selvais C, D Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, et al. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J. 2011;25:2770-81 pubmed 出版商
  1040. Beguin P, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol. 2012;227:813-20 pubmed 出版商
  1041. Revuelta Cervantes J, Mayoral R, Miranda S, Gonzalez Rodriguez A, Fernandez M, Martín Sanz P, et al. Protein Tyrosine Phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice. Am J Pathol. 2011;178:1591-604 pubmed 出版商
  1042. Wang D, Li Y, Wu C, Liu Y. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS ONE. 2011;6:e17048 pubmed 出版商
  1043. Fabritz L, Hoogendijk M, Scicluna B, van Amersfoorth S, Fortmueller L, Wolf S, et al. Load-reducing therapy prevents development of arrhythmogenic right ventricular cardiomyopathy in plakoglobin-deficient mice. J Am Coll Cardiol. 2011;57:740-50 pubmed 出版商
  1044. Stoepker C, Hain K, Schuster B, Hilhorst Hofstee Y, Rooimans M, Steltenpool J, et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet. 2011;43:138-41 pubmed 出版商
  1045. Inaki M, Kato D, Utsugi T, Onoda F, Hanaoka F, Murakami Y. Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells. 2011;16:166-78 pubmed 出版商
  1046. Derbigny W, Johnson R, Toomey K, Ofner S, Jayarapu K. The Chlamydia muridarum-induced IFN-? response is TLR3-dependent in murine oviduct epithelial cells. J Immunol. 2010;185:6689-97 pubmed 出版商
  1047. Nassirpour R, Bahima L, Lalive A, Lüscher C, Lujan R, Slesinger P. Morphine- and CaMKII-dependent enhancement of GIRK channel signaling in hippocampal neurons. J Neurosci. 2010;30:13419-30 pubmed 出版商
  1048. Liikanen I, Dias J, Nokisalmi P, Sloniecka M, Kangasniemi L, Rajecki M, et al. Adenoviral E4orf3 and E4orf6 proteins, but not E1B55K, increase killing of cancer cells by radiotherapy in vivo. Int J Radiat Oncol Biol Phys. 2010;78:1201-9 pubmed 出版商
  1049. Andersen N, Chopra A, Monahan T, Malek J, Jain M, Pradhan L, et al. Endothelial cells are susceptible to rapid siRNA transfection and gene silencing ex vivo. J Vasc Surg. 2010;52:1608-15 pubmed 出版商
  1050. Fett M, Pilsl A, Paquet D, van Bebber F, Haass C, Tatzelt J, et al. Parkin is protective against proteotoxic stress in a transgenic zebrafish model. PLoS ONE. 2010;5:e11783 pubmed 出版商
  1051. Stankowski J, Zeiger S, Cohen E, DeFranco D, Cai J, McLaughlin B. C-terminus of heat shock cognate 70 interacting protein increases following stroke and impairs survival against acute oxidative stress. Antioxid Redox Signal. 2011;14:1787-801 pubmed 出版商
  1052. Weber K, Hildner K, Murphy K, Allen P. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol. 2010;185:2836-46 pubmed 出版商
  1053. Dasgupta J, Kar S, Liu R, Joseph J, Kalyanaraman B, Remington S, et al. Reactive oxygen species control senescence-associated matrix metalloproteinase-1 through c-Jun-N-terminal kinase. J Cell Physiol. 2010;225:52-62 pubmed 出版商
  1054. Magdeldin S, Li H, Yoshida Y, Enany S, Zhang Y, Xu B, et al. Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out Aquaporin 8. J Proteomics. 2010;73:2031-40 pubmed 出版商
  1055. Smith N, Baker D, James N, Ratcliffe K, Jenkins M, Ashton S, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res. 2010;16:3548-61 pubmed 出版商
  1056. Miller E, Berman S, Yuan T, Lees J. Disruption of calvarial ossification in E2f4 mutant embryos correlates with increased proliferation and progenitor cell populations. Cell Cycle. 2010;9:2620-8 pubmed 出版商
  1057. Dalmasso G, Nguyen H, Charrier Hisamuddin L, Yan Y, Laroui H, Demoulin B, et al. PepT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-{gamma}-D-Glu-meso-DAP in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;299:G687-96 pubmed 出版商
  1058. Smrt R, Szulwach K, Pfeiffer R, Li X, Guo W, Pathania M, et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 2010;28:1060-70 pubmed 出版商
  1059. Bergstrom R, Savary K, Morén A, Guibert S, Heldin C, Ohlsson R, et al. Transforming growth factor beta promotes complexes between Smad proteins and the CCCTC-binding factor on the H19 imprinting control region chromatin. J Biol Chem. 2010;285:19727-37 pubmed 出版商
  1060. Peluso J, Liu X, Gawkowska A, Lodde V, Wu C. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol. 2010;320:153-61 pubmed 出版商
  1061. Spatara M, Robinson A. Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction. J Neurosci Res. 2010;88:1951-61 pubmed 出版商
  1062. Feingold K, Shigenaga J, Patzek S, Chui L, Moser A, Grunfeld C. Endotoxin, zymosan, and cytokines decrease the expression of the transcription factor, carbohydrate response element binding protein, and its target genes. Innate Immun. 2011;17:174-82 pubmed 出版商
  1063. Qiang L, Yu W, Liu M, Solowska J, Baas P. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Mol Biol Cell. 2010;21:334-44 pubmed 出版商
  1064. Nguyen H, Dalmasso G, Yan Y, Laroui H, Dahan S, Mayer L, et al. MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation. J Biol Chem. 2010;285:1479-89 pubmed 出版商
  1065. Hoffmann M, Bellance N, Rossignol R, Koopman W, Willems P, Mayatepek E, et al. C. elegans ATAD-3 is essential for mitochondrial activity and development. PLoS ONE. 2009;4:e7644 pubmed 出版商
  1066. Hoover A, Strand G, Nowicki P, Anderson M, Vermeer P, Klingelhutz A, et al. Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway. Oncogene. 2009;28:3960-70 pubmed 出版商
  1067. Yu Z, Li M, Zhang D, Xu W, Kone B. Sp1 trans-activates the murine H(+)-K(+)-ATPase alpha(2)-subunit gene. Am J Physiol Renal Physiol. 2009;297:F63-70 pubmed 出版商
  1068. Dasgupta J, Kar S, Van Remmen H, Melendez J. Age-dependent increases in interstitial collagenase and MAP Kinase levels are exacerbated by superoxide dismutase deficiencies. Exp Gerontol. 2009;44:503-10 pubmed 出版商
  1069. Judson M, BERGMAN M, Campbell D, Eagleson K, Levitt P. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J Comp Neurol. 2009;513:511-31 pubmed 出版商
  1070. Szeles L, Keresztes G, Torocsik D, Balajthy Z, Krenacs L, Poliska S, et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol. 2009;182:2074-83 pubmed 出版商
  1071. Semsroth S, Stigler R, Bernecker O, Ruttmann Ulmer E, Troppmair J, Macfelda K, et al. Everolimus attenuates neointimal hyperplasia in cultured human saphenous vein grafts. Eur J Cardiothorac Surg. 2009;35:515-20 pubmed 出版商
  1072. Hohjoh H, Akari H, Fujiwara Y, Tamura Y, Hirai H, Wada K. Molecular cloning and characterization of the common marmoset huntingtin gene. Gene. 2009;432:60-6 pubmed 出版商
  1073. Sugawara S, Kawano T, Omoto T, Hosono M, Tatsuta T, Nitta K. Binding of Silurus asotus lectin to Gb3 on Raji cells causes disappearance of membrane-bound form of HSP70. Biochim Biophys Acta. 2009;1790:101-9 pubmed 出版商
  1074. Argyropoulos G, Stütz A, Ilnytska O, Rice T, Teran Garcia M, Rao D, et al. KIF5B gene sequence variation and response of cardiac stroke volume to regular exercise. Physiol Genomics. 2009;36:79-88 pubmed 出版商
  1075. Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino A. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer. 2008;8:229 pubmed 出版商
  1076. Inoue H, Ha V, Prekeris R, Randazzo P. Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Mol Biol Cell. 2008;19:4224-37 pubmed 出版商
  1077. Prunier F, Kawase Y, Gianni D, Scapin C, Danik S, Ellinor P, et al. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation. 2008;118:614-24 pubmed 出版商
  1078. Kano S, Miyajima N, Fukuda S, Hatakeyama S. Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res. 2008;68:5572-80 pubmed 出版商
  1079. Zhang Q, Wu J, Nguyen A, Wang B, He P, Laurent G, et al. Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays. Apoptosis. 2008;13:993-1004 pubmed 出版商
  1080. Cuende J, Moreno S, Bolanos J, Almeida A. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation. Oncogene. 2008;27:3339-44 pubmed 出版商
  1081. Kuznetsov A, Smigelskaite J, Doblander C, Janakiraman M, Hermann M, Wurm M, et al. Survival signaling by C-RAF: mitochondrial reactive oxygen species and Ca2+ are critical targets. Mol Cell Biol. 2008;28:2304-13 pubmed 出版商
  1082. Tseng K, Chau Y, Yang M, Lu K, Chien C. Abnormal cellular translocation of alpha-internexin in spinal motor neurons of Dystonia musculorum mice. J Comp Neurol. 2008;507:1053-64 pubmed
  1083. Beck S, Carethers J. BMP suppresses PTEN expression via RAS/ERK signaling. Cancer Biol Ther. 2007;6:1313-7 pubmed
  1084. Battaglino R, Pham L, Morse L, Vokes M, Sharma A, Odgren P, et al. NHA-oc/NHA2: a mitochondrial cation-proton antiporter selectively expressed in osteoclasts. Bone. 2008;42:180-92 pubmed
  1085. Nguyen T, Galvan V, Huang W, Banwait S, Tang H, Zhang J, et al. Signal transduction in Alzheimer disease: p21-activated kinase signaling requires C-terminal cleavage of APP at Asp664. J Neurochem. 2008;104:1065-80 pubmed
  1086. Saelim N, Holstein D, Chocron E, Camacho P, Lechleiter J. Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis. 2007;12:1781-94 pubmed
  1087. Lu Z, Lam K, Wang N, Xu X, Cortes M, Andersen B. LMO4 can interact with Smad proteins and modulate transforming growth factor-beta signaling in epithelial cells. Oncogene. 2006;25:2920-30 pubmed