这是一篇来自已证抗体库的有关小鼠 Gcg的综述,是根据64篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gcg 抗体。
Gcg 同义词: GLP-1; Glu; PPG

艾博抗(上海)贸易有限公司
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6b). Cells (2020) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, K79bB10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2c). elife (2019) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 小鼠; 1:250; 图 1d
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1d). Pflugers Arch (2019) ncbi
小鼠 单克隆(K79bB10)
  • 免疫细胞化学; 人类; 图 1ii
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫细胞化学在人类样本上 (图 1ii). J Cell Biochem (2017) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 人类; 图 2D
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化在人类样本上 (图 2D). Cell Syst (2016) ncbi
小鼠 单克隆(1100)
  • 免疫细胞化学; 小鼠; 1:50; 图 8
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, AB23468)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7b
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7b). Cell Stem Cell (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 Gcg抗体(abcam, ab10988)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). J Biol Chem (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 4e
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 4e). J Mol Histol (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). Diabetol Metab Syndr (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 人类; 1:200; 图 1s
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1s). Nat Commun (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 犬
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化在犬样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(K79bB10)
  • 流式细胞仪; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:300
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 和 被用于免疫组化-石蜡切片在大鼠样本上. J Diabetes Res (2013) ncbi
小鼠 单克隆(K79bB10)
  • 免疫细胞化学; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Exp Cell Res (2013) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab10988)被用于被用于免疫组化在小鼠样本上浓度为1:200. Exp Diabetes Res (2012) ncbi
小鼠 单克隆(4F3)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Gcg抗体(Abcam, ab23472)被用于被用于免疫印迹在人类样本上. Diabetologia (2012) ncbi
西格玛奥德里奇
小鼠 单克隆(K79bB10)
  • 免疫细胞化学; 小鼠; 1:50; 图 1a
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1a). Nat Commun (2020) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2c
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G2654)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2c). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 斑马鱼; 1:100; 图 s11a
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 s11a). Development (2018) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; black ferret; 1:500; 图 3a
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化-石蜡切片在black ferret样本上浓度为1:500 (图 3a). Am J Pathol (2018) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 人类; 1:9000; 图 2b
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G-2654)被用于被用于免疫组化在人类样本上浓度为1:9000 (图 2b). JCI Insight (2017) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3c
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G2654)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3c). J Clin Invest (2017) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 1c
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G2654)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 1c). Diabetes (2017) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 人类; 图 5b
西格玛奥德里奇 Gcg抗体(Sigma, G 2654)被用于被用于免疫组化在人类样本上 (图 5b). Autoimmunity (2017) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2h
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G2654)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2h). Dev Cell (2017) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 斑马鱼; 1:200; 图 6b
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 6b). BMC Biol (2017) ncbi
小鼠 单克隆(K79bB10)
  • 流式细胞仪; 人类; 1:250; 图 5c
  • 免疫细胞化学; 人类; 1:1000; 图 5b
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于流式细胞仪在人类样本上浓度为1:250 (图 5c) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7d
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, K79Bb10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 7d). Dev Biol (2017) ncbi
小鼠 单克隆(K79bB10)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 小鼠; 1:1000; 图 3a
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G2654)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). FEBS Lett (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 图 2
西格玛奥德里奇 Gcg抗体(Sigma?\Aldrich, 2654)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G 2654)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5). Diabetes (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4). Methods (2016) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 小鼠; 1:4000; 图 2f
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 2f). Mol Endocrinol (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6a
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6a). PLoS ONE (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Pflugers Arch (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2). Diabetologia (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠; 1:2000
西格玛奥德里奇 Gcg抗体(Dako Japan, G2654)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000. PLoS ONE (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1&2
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G2654)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1&2). Nat Med (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 小鼠; 1:4000; 图 s3
西格玛奥德里奇 Gcg抗体(Sigma, g2654)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 s3). Cell Rep (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 斑马鱼; 1:200
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化在斑马鱼样本上浓度为1:200. Dev Biol (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 人类; 1:1000
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 Gcg抗体(Sigma, G-2654)被用于被用于免疫组化在人类样本上浓度为1:1000 和 被用于免疫组化在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化; 人类
西格玛奥德里奇 Gcg抗体(Sigma, K79bB10)被用于被用于免疫组化在人类样本上. Hum Gene Ther Methods (2014) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 人类; 1:2000
  • 免疫细胞化学; 人类; 1:2000
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G2654)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 和 被用于免疫细胞化学在人类样本上浓度为1:2000. J Clin Invest (2014) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 猪; 1:500
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化-石蜡切片在猪样本上浓度为1:500. Islets (2013) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-冰冻切片; 小鼠; 1:3000
西格玛奥德里奇 Gcg抗体(Sigma, G 2654)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000. Diabetes (2014) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇 Gcg抗体(Sigma, G2654)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 大鼠
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G2654)被用于被用于免疫组化-石蜡切片在大鼠样本上. Diabetes (2013) ncbi
小鼠 单克隆(K79bB10)
  • 免疫组化-石蜡切片; 大鼠; 1:200
西格玛奥德里奇 Gcg抗体(Sigma-Aldrich, G2654)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Endocrinol (2011) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 4a
赛信通(上海)生物试剂有限公司 Gcg抗体(CST, 2760)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Gcg抗体(Cell Signaling Technology, 2760)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c). Diabetes (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4k
赛信通(上海)生物试剂有限公司 Gcg抗体(Cell Signaling, 2760)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4k). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
  • 免疫组化-石蜡切片; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Gcg抗体(Cell Signaling, 2760S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c) 和 被用于免疫组化-石蜡切片在人类样本上 (图 2c). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D16G10)
  • 流式细胞仪; 人类; 1:100; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 1
赛信通(上海)生物试剂有限公司 Gcg抗体(Cell signaling, D16G10)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 1) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D16G10)
  • 免疫组化; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 Gcg抗体(Cell Signaling, 8233)被用于被用于免疫组化在大鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D16G10)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5
  • 免疫组化-石蜡切片; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Gcg抗体(Cell Signaling Technology, 8233S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 5). Diabetes (2016) ncbi
domestic rabbit 单克隆(D16G10)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Gcg抗体(Cell Signaling Technology, 8233)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(D16G10)
  • 免疫组化-石蜡切片; 小鼠; 1:400
赛信通(上海)生物试剂有限公司 Gcg抗体(Cell Signal Technology, 8233)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Endocrinology (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s3g
丹科医疗器械技术服务(上海)有限公司 Gcg抗体(Dako, A0565)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3g). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
丹科医疗器械技术服务(上海)有限公司 Gcg抗体(Dako, A0565)被用于被用于免疫组化在小鼠样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:750; 表 2
丹科医疗器械技术服务(上海)有限公司 Gcg抗体(Dakocytomation, A0565)被用于被用于免疫细胞化学在小鼠样本上浓度为1:750 (表 2). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1500; 图 1e
丹科医疗器械技术服务(上海)有限公司 Gcg抗体(Dako, A0565)被用于被用于免疫组化在大鼠样本上浓度为1:1500 (图 1e). Diabetes (2016) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化-石蜡切片; 小鼠; 图 2e
徕卡显微系统(上海)贸易有限公司 Gcg抗体(Novocastra, NCL-GLUCp)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Oncotarget (2016) ncbi
文章列表
  1. Pittala S, Levy I, De S, Kumar Pandey S, Melnikov N, Hyman T, et al. The VDAC1-based R-Tf-D-LP4 Peptide as a Potential Treatment for Diabetes Mellitus. Cells. 2020;9: pubmed 出版商
  2. Zhu K, Lai Y, Cao H, Bai X, Liu C, Yan Q, et al. Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice. Nat Commun. 2020;11:484 pubmed 出版商
  3. Jang I, Pottekat A, Poothong J, Yong J, Lagunas Acosta J, Charbono A, et al. PDIA1/P4HB is required for efficient proinsulin maturation and ß cell health in response to diet induced obesity. elife. 2019;8: pubmed 出版商
  4. Al Amily I, Dunér P, Groop L, Salehi A. The functional impact of G protein-coupled receptor 142 (Gpr142) on pancreatic β-cell in rodent. Pflugers Arch. 2019;471:633-645 pubmed 出版商
  5. Zhang Y, Parajuli K, Fava G, Gupta R, Xu W, Nguyen L, et al. GLP-1 Receptor in Pancreatic α-Cells Regulates Glucagon Secretion in a Glucose-Dependent Bidirectional Manner. Diabetes. 2019;68:34-44 pubmed 出版商
  6. Parilla J, Hull R, Zraika S. Neprilysin Deficiency Is Associated With Expansion of Islet β-Cell Mass in High Fat-Fed Mice. J Histochem Cytochem. 2018;66:523-530 pubmed 出版商
  7. Freudenblum J, Iglesias J, Hermann M, Walsen T, Wilfinger A, Meyer D, et al. In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis. Development. 2018;145: pubmed 出版商
  8. Rotti P, Xie W, Poudel A, Yi Y, Sun X, Tyler S, et al. Pancreatic and Islet Remodeling in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Knockout Ferrets. Am J Pathol. 2018;188:876-890 pubmed 出版商
  9. Almgren P, Lindqvist A, Krus U, Hakaste L, Ottosson Laakso E, Asplund O, et al. Genetic determinants of circulating GIP and GLP-1 concentrations. JCI Insight. 2017;2: pubmed 出版商
  10. Hamada S, Shimosegawa T, Taguchi K, Nabeshima T, Yamamoto M, Masamune A. Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. Am J Physiol Gastrointest Liver Physiol. 2018;314:G65-G74 pubmed 出版商
  11. Kuroda M, Muramatsu R, Maedera N, Koyama Y, Hamaguchi M, Fujimura H, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127:3496-3509 pubmed 出版商
  12. Spaeth J, Gupte M, Perelis M, Yang Y, CYPHERT H, Guo S, et al. Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes. 2017;66:2830-2839 pubmed 出版商
  13. Smith Anttila C, Bensing S, Alimohammadi M, Dalin F, Oscarson M, Zhang M, et al. Identification of endothelin-converting enzyme-2 as an autoantigen in autoimmune polyendocrine syndrome type 1. Autoimmunity. 2017;50:223-231 pubmed 出版商
  14. Krentz N, Van Hoof D, Li Z, Watanabe A, Tang M, Nian C, et al. Phosphorylation of NEUROG3 Links Endocrine Differentiation to the Cell Cycle in Pancreatic Progenitors. Dev Cell. 2017;41:129-142.e6 pubmed 出版商
  15. Tarifeño Saldivia E, Lavergne A, Bernard A, Padamata K, Bergemann D, Voz M, et al. Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biol. 2017;15:21 pubmed 出版商
  16. Mosialou I, Shikhel S, Liu J, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543:385-390 pubmed 出版商
  17. Shi Z, Lee K, Yang D, Amin S, Verma N, Li Q, et al. Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell. 2017;20:675-688.e6 pubmed 出版商
  18. Zhang Y, Zeng S, Hao Q, Lu H. Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner. Dev Biol. 2017;423:34-45 pubmed 出版商
  19. Chandravanshi B, Bhonde R. Shielding Engineered Islets With Mesenchymal Stem Cells Enhance Survival Under Hypoxia. J Cell Biochem. 2017;118:2672-2683 pubmed 出版商
  20. Keller M, Paul P, Rabaglia M, Stapleton D, Schueler K, Broman A, et al. The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets. PLoS Genet. 2016;12:e1006466 pubmed 出版商
  21. Fielitz K, Althoff K, De Preter K, Nonnekens J, Ohli J, Elges S, et al. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells. Oncotarget. 2016;7:74415-74426 pubmed 出版商
  22. Massumi M, Pourasgari F, Nalla A, Batchuluun B, Nagy K, Neely E, et al. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS ONE. 2016;11:e0164457 pubmed 出版商
  23. Muraro M, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, et al. A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Syst. 2016;3:385-394.e3 pubmed 出版商
  24. Lim S, Jin L, Jin J, Yang C. Effect of Exendin-4 on Autophagy Clearance in Beta Cell of Rats with Tacrolimus-induced Diabetes Mellitus. Sci Rep. 2016;6:29921 pubmed 出版商
  25. Sakano D, Choi S, Kataoka M, Shiraki N, Uesugi M, Kume K, et al. Dopamine D2 Receptor-Mediated Regulation of Pancreatic ? Cell Mass. Stem Cell Reports. 2016;7:95-109 pubmed 出版商
  26. Chepurny O, Leech C, Tomanik M, DiPoto M, Li H, Han X, et al. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy. Sci Rep. 2016;6:28934 pubmed 出版商
  27. Omori H, Ogaki S, Sakano D, Sato M, Umeda K, Takeda N, et al. Changes in expression of C2cd4c in pancreatic endocrine cells during pancreatic development. FEBS Lett. 2016;590:2584-93 pubmed 出版商
  28. Grün D, Muraro M, Boisset J, Wiebrands K, Lyubimova A, Dharmadhikari G, et al. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data. Cell Stem Cell. 2016;19:266-277 pubmed 出版商
  29. Roth Flach R, Danai L, DiStefano M, Kelly M, Menendez L, Jurczyk A, et al. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia. J Biol Chem. 2016;291:16221-30 pubmed 出版商
  30. Mohan H, Gasner M, Ramesh N, Unniappan S. Ghrelin, ghrelin-O-acyl transferase, nucleobindin-2/nesfatin-1 and prohormone convertases in the pancreatic islets of Sprague Dawley rats during development. J Mol Histol. 2016;47:325-36 pubmed 出版商
  31. Shirakawa J, Okuyama T, Kyohara M, Yoshida E, Togashi Y, Tajima K, et al. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetol Metab Syndr. 2016;8:16 pubmed 出版商
  32. Singhal G, Fisher F, Chee M, Tan T, El Ouaamari A, Adams A, et al. Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas. PLoS ONE. 2016;11:e0148252 pubmed 出版商
  33. Bruin J, Saber N, O Dwyer S, Fox J, Mojibian M, Arora P, et al. Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice. Diabetes. 2016;65:1297-309 pubmed 出版商
  34. Patel A, Yamashita N, Ascano M, Bodmer D, Boehm E, Bodkin Clarke C, et al. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat Commun. 2015;6:10119 pubmed 出版商
  35. Huang Y, Lan Q, Ponsonnet L, Blanquet M, Christofori G, Zaric J, et al. The matricellular protein CYR61 interferes with normal pancreatic islets architecture and promotes pancreatic neuroendocrine tumor progression. Oncotarget. 2016;7:1663-74 pubmed 出版商
  36. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  37. Korytnikov R, Nostro M. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells. Methods. 2016;101:56-64 pubmed 出版商
  38. Wiedemann T, Bielohuby M, Müller T, Bidlingmaier M, Pellegata N. Obesity in MENX Rats Is Accompanied by High Circulating Levels of Ghrelin and Improved Insulin Sensitivity. Diabetes. 2016;65:406-20 pubmed 出版商
  39. Galloway J, Bethea M, Liu Y, Underwood R, Mobley J, Hunter C. SSBP3 Interacts With Islet-1 and Ldb1 to Impact Pancreatic β-Cell Target Genes. Mol Endocrinol. 2015;29:1774-86 pubmed 出版商
  40. Song I, Patel O, Himpe E, Muller C, Bouwens L. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin. PLoS ONE. 2015;10:e0140148 pubmed 出版商
  41. Han Y, Ryu S, Park S, Lee K, Lee S, Ho W. Ca(2+) clearance by plasmalemmal NCLX, Li(+)-permeable Na(+)/Ca(2+) exchanger, is required for the sustained exocytosis in rat insulinoma INS-1 cells. Pflugers Arch. 2015;467:2461-72 pubmed 出版商
  42. Shields E, Lam C, Cox A, Rankin M, Van Winkle T, Hess R, et al. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes. PLoS ONE. 2015;10:e0129809 pubmed 出版商
  43. Wang L, Liang J, Leung P. The ACE2/Ang-(1-7)/Mas Axis Regulates the Development of Pancreatic Endocrine Cells in Mouse Embryos. PLoS ONE. 2015;10:e0128216 pubmed 出版商
  44. Spaeth J, Hunter C, Bonatakis L, Guo M, French C, Slack I, et al. The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia. 2015;58:1836-44 pubmed 出版商
  45. Huang C, Yuan L, Cao S. Endogenous GLP-1 as a key self-defense molecule against lipotoxicity in pancreatic islets. Int J Mol Med. 2015;36:173-85 pubmed 出版商
  46. Tamura K, Minami K, Kudo M, Iemoto K, Takahashi H, Seino S. Liraglutide improves pancreatic Beta cell mass and function in alloxan-induced diabetic mice. PLoS ONE. 2015;10:e0126003 pubmed 出版商
  47. Bonner C, Kerr Conte J, Gmyr V, Queniat G, Moerman E, Thévenet J, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21:512-7 pubmed 出版商
  48. Cheng Y, Su Y, Shan A, Jiang X, Ma Q, Wang W, et al. Generation and Characterization of Transgenic Mice Expressing Mouse Ins1 Promoter for Pancreatic β-Cell-Specific Gene Overexpression and Knockout. Endocrinology. 2015;156:2724-31 pubmed 出版商
  49. McKenna B, Guo M, Reynolds A, Hara M, Stein R. Dynamic recruitment of functionally distinct Swi/Snf chromatin remodeling complexes modulates Pdx1 activity in islet β cells. Cell Rep. 2015;10:2032-42 pubmed 出版商
  50. Dalgin G, Prince V. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates. Dev Biol. 2015;402:81-97 pubmed 出版商
  51. Sharivkin R, Walker M, Soen Y. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets. PLoS ONE. 2015;10:e0115100 pubmed 出版商
  52. Aragón F, Karaca M, Novials A, Maldonado R, Maechler P, Rubí B. Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochim Biophys Acta. 2015;1850:343-51 pubmed 出版商
  53. Shimoda M, Chen S, Noguchi H, Takita M, Sugimoto K, Itoh T, et al. A new method for generating insulin-secreting cells from human pancreatic epithelial cells after islet isolation transformed by NeuroD1. Hum Gene Ther Methods. 2014;25:206-19 pubmed 出版商
  54. Scharfmann R, Pechberty S, Hazhouz Y, von Bülow M, Bricout Neveu E, Grenier Godard M, et al. Development of a conditionally immortalized human pancreatic ? cell line. J Clin Invest. 2014;124:2087-98 pubmed 出版商
  55. Ellis C, Vulesevic B, Suuronen E, Yeung T, Seeberger K, Korbutt G. Bioengineering a highly vascularized matrix for the ectopic transplantation of islets. Islets. 2013;5:216-25 pubmed 出版商
  56. Diaz de Durana Y, Lau J, Knee D, Filippi C, Londei M, McNamara P, et al. IL-2 immunotherapy reveals potential for innate beta cell regeneration in the non-obese diabetic mouse model of autoimmune diabetes. PLoS ONE. 2013;8:e78483 pubmed 出版商
  57. Chen Z, Morris D, Jiang L, Liu Y, Rui L. SH2B1 in ?-cells regulates glucose metabolism by promoting ?-cell survival and islet expansion. Diabetes. 2014;63:585-95 pubmed 出版商
  58. Bonnavion R, Jaafar R, Kerr Conte J, Assade F, Van Stralen E, Leteurtre E, et al. Both PAX4 and MAFA are expressed in a substantial proportion of normal human pancreatic alpha cells and deregulated in patients with type 2 diabetes. PLoS ONE. 2013;8:e72194 pubmed 出版商
  59. Qian J, Block G, Colwell C, Matveyenko A. Consequences of exposure to light at night on the pancreatic islet circadian clock and function in rats. Diabetes. 2013;62:3469-78 pubmed 出版商
  60. Novikova L, Smirnova I, Rawal S, Dotson A, Benedict S, Stehno Bittel L. Variations in rodent models of type 1 diabetes: islet morphology. J Diabetes Res. 2013;2013:965832 pubmed 出版商
  61. Pérez R, Benoit Y, Gudas L. Deletion of retinoic acid receptor ? (RAR?) impairs pancreatic endocrine differentiation. Exp Cell Res. 2013;319:2196-204 pubmed 出版商
  62. Farmer K, Williams S, Novikova L, Ramachandran K, Rawal S, Blagg B, et al. KU-32, a novel drug for diabetic neuropathy, is safe for human islets and improves in vitro insulin secretion and viability. Exp Diabetes Res. 2012;2012:671673 pubmed 出版商
  63. Marchetti P, Lupi R, Bugliani M, Kirkpatrick C, Sebastiani G, Grieco F, et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia. 2012;55:3262-72 pubmed 出版商
  64. Romero Zerbo S, Rafacho A, Diaz Arteaga A, Suarez J, Quesada I, Imbernon M, et al. A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J Endocrinol. 2011;211:177-85 pubmed 出版商