这是一篇来自已证抗体库的有关小鼠 Gfap的综述,是根据481篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gfap 抗体。
Gfap 同义词: AI836096

赛默飞世尔
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3d, 5b
  • 免疫细胞化学; 小鼠; 1:1000; 图 2e
赛默飞世尔 Gfap抗体(Thermofisher, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3d, 5b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2e). Nat Commun (2022) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:50; 图 s7c
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s7c). Acta Neuropathol Commun (2022) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Cell Rep Methods (2022) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s11
赛默飞世尔 Gfap抗体(eBioscience -Thermo Fisher Scientific, 41-9892-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s11). Nat Commun (2022) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1a
赛默飞世尔 Gfap抗体(Thermo Fisher, PA1-10004)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1a). Mol Neurodegener (2022) ncbi
domestic rabbit 重组(RM246)
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 5c
赛默飞世尔 Gfap抗体(Invitrogen, MA5-33059)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 5c). Prog Neurobiol (2022) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 图 s1j
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s1j). iScience (2022) ncbi
大鼠 单克隆(2.2B10)
  • 其他; 小鼠; 图 7e
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于其他在小鼠样本上 (图 7e). ACS Chem Neurosci (2022) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 e2a
赛默飞世尔 Gfap抗体(Thermo Fisher, 130300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 e2a). Nat Cancer (2022) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200; 图 2e
赛默飞世尔 Gfap抗体(Thermo Fisher, 53-9892-82)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2e). Diseases (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:300; 图 5f
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5f). Ann Neurol (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 2c
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 2c). Int J Mol Sci (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2c
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2c). Transl Psychiatry (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6, s8
赛默飞世尔 Gfap抗体(Thermo Fisher, PA1-10019)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6, s8). Brain Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 Gfap抗体(Invitrogen, PA5-16291)被用于被用于免疫组化在小鼠样本上 (图 2a). Aging Cell (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s6b
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s6b). Sci Adv (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 2c
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 2c). Nat Neurosci (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1s1i
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1s1i). elife (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 1b, 2b
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 1b, 2b). bioRxiv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7b
赛默飞世尔 Gfap抗体(Invitrogen, PA5-16291)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7b). Int J Mol Sci (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3c
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3c). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3f
赛默飞世尔 Gfap抗体(Thermo Fisher, PA5-16291)被用于被用于免疫细胞化学在小鼠样本上 (图 3f). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 6h
赛默飞世尔 Gfap抗体(ThermoFisher, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 6h). Theranostics (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图 1, 2, 3, 4
赛默飞世尔 Gfap抗体(Invitrogen, #14-9892-82)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 1, 2, 3, 4). Neurol Res Int (2020) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 大鼠; 1:500-1:1000; 图 4i, 4j, s4b
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500-1:1000 (图 4i, 4j, s4b). Cell Rep (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s4b
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s4b). Nature (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆(S.880.0)
  • 免疫细胞化学; 小鼠; 1:300; 图 s18a
赛默飞世尔 Gfap抗体(Thermo Fisher, MA5-15086)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s18a). J Clin Invest (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 e5b
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 e5b). Nature (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3a
赛默飞世尔 Gfap抗体(Thermo Fisher Scientific, 14-9892-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3a). Neuron (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 2d
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫细胞化学在小鼠样本上 (图 2d). Int J Mol Sci (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 1d). J Neurochem (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1d
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 1d). Dev Cell (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图 1c
  • 免疫组化; 人类; 1:250; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c) 和 被用于免疫组化在人类样本上浓度为1:250 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a, 5c
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a, 5c). J Neurovirol (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1b
赛默飞世尔 Gfap抗体(ThermoFischer, 13-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1b). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 S2G
赛默飞世尔 Gfap抗体(invitrogen, PA1-10019)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 S2G). PLoS ONE (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 12a
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 12a). J Neurosci (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 Gfap抗体(ThermoFisher, PA1-10004)被用于被用于免疫组化在小鼠样本上 (图 7a). Cell Stem Cell (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1f
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1f). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1a
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1a). J Cell Sci (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). J Vis Exp (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8m
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫组化在小鼠样本上 (图 8m). J Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6d
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
赛默飞世尔 Gfap抗体(生活技术, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4a). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 表 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Neurovirol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:5000; 图 5a
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6b
赛默飞世尔 Gfap抗体(ThermoFisher Scientific, PA3-16727)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6b). Dev Growth Differ (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 图 1g
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样本上 (图 1g). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 7b
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 7b). Neuroimage (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1f
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛默飞世尔 Gfap抗体(Thermo Fisher, PA1-9565)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Biol Cell (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000; 表 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (表 1). J Comp Neurol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2). Nature (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Proteomics (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:2000; 图 4
赛默飞世尔 Gfap抗体(Thermo Scientific, PA1-10004)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000 (图 4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Gfap抗体(Pierce, PA3-16727)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Neuroscience (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 3f
赛默飞世尔 Gfap抗体(Invitrogen, GA5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3f). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1c). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7
赛默飞世尔 Gfap抗体(Pierce, PA1-10019)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:6000; 图 1
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:6000 (图 1). J Neurochem (2016) ncbi
小鼠 单克隆(S.880.0)
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔 Gfap抗体(生活技术, MA5-15086)被用于被用于免疫细胞化学在人类样本上 (图 7). Sci Rep (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Mol Neurobiol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样本上. Biochem J (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gfap抗体(Thermo Scientific, RB-087-A)被用于. Neural Dev (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Ann Clin Transl Neurol (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Glia (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Nat Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; ready-to-use
赛默飞世尔 Gfap抗体(LabVision, RB-087-R7)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为ready-to-use. Nutr Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Genes Cancer (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gfap抗体(Lab Vision, RB-087-R7)被用于. Korean J Parasitol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gfap抗体(thermo, pa3-16727)被用于. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Stroke (2015) ncbi
小鼠 单克隆(S.880.0)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(Millipore, MA5-15086)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Curr Gene Ther (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200. Acta Neuropathol (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). EMBO Mol Med (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(S.880.0)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 Gfap抗体(Thermo Sci., MA5-15086)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Neurosci Res (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1). Stem Cells Dev (2014) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 Gfap抗体(Invitrogen, 12-0300)被用于. J Immunol (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Genes Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Neurol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1). Neurobiol Dis (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). J Virol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). PLoS ONE (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:250; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2). Endocrinology (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s1). Neurosci Lett (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Neuropathol Appl Neurobiol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). J Neuroimmunol (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样本上 (图 5). Adv Funct Mater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Biomaterials (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:400
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在人类样本上浓度为1:400. Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:200; 图 7
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 7). Acta Biomater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). J Virol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫印迹在小鼠样本上 (图 s1). Biol Psychiatry (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Glia (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:1000; 图 2
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2). J Comp Neurol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s4
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4). Pigment Cell Melanoma Res (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 Gfap抗体(Zymed/Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. J Neurosci (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 豚鼠; 1:100-1:200
  • 免疫组化; 人类; 1:100-1:200
赛默飞世尔 Gfap抗体(Zytomed, 13-0300)被用于被用于免疫组化在豚鼠样本上浓度为1:100-1:200 和 被用于免疫组化在人类样本上浓度为1:100-1:200. J Comp Neurol (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 8). J Virol (2007) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 表 2
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (表 2). Glia (2006) ncbi
大鼠 单克隆(2.2B10)
  • 免疫沉淀; 小鼠
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫沉淀在小鼠样本上. J Comp Neurol (2005) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 表 1
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (表 1). Exp Neurol (2004) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:10,000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Glia (2003) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Oncogene (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:2; 图 3
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2 (图 3). J Neurosci Res (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (1999) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Neuroreport (1998) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 Gfap抗体(Zymed, clone 2.2B10(1))被用于. J Neuropathol Exp Neurol (1996) ncbi
艾博抗(上海)贸易有限公司
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s4a
  • 免疫组化; 小鼠; 1:500; 图 s1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s4a) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 s1c). Sci Adv (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab207165)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s3a). Front Mol Neurosci (2022) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s7a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, AB4674)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s7a). Theranostics (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3b). Front Pharmacol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:4000; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab7260)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:4000 (图 1b). Front Neuroanat (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 6d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 6d). PLoS ONE (2022) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2b). STAR Protoc (2022) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫印迹; 小鼠; 1:10,000; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1b). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5c). Cell Rep (2022) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 5a). Nat Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). Fluids Barriers CNS (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4i
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4i). Int J Ophthalmol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:8000; 图 5d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 5d). Transl Vis Sci Technol (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4a). Mol Brain (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化; 大鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3c). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 2c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2c). J Neuroinflammation (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样本上 (图 1h). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 4h). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 3d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 3d). Mol Brain (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). Sci Rep (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4f). Brain Behav Immun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 s1a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 s1a). Cell Death Differ (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 2i
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 2i). J Neuroinflammation (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 1:500; 图 1d
  • 免疫组化; 小鼠; 1:500; 图 s5
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1d) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 s5). Nat Commun (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 1d). Front Psychiatry (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 5a). Proc Jpn Acad Ser B Phys Biol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 e1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 e1c). Nat Neurosci (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1b, 2b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1b, 2b). bioRxiv (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 e8a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 e8a). Nat Neurosci (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:300; 图 1a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, AB4674)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1a). Stem Cell Reports (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上 (图 3e). Sci Rep (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s2c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab16997)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). IBRO Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c). Acta Neuropathol Commun (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 Gfap抗体(Millipore, Ab68428)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1e). Front Behav Neurosci (2020) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3a). Aging (Albany NY) (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在大鼠样本上浓度为1:500. Biol Proced Online (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2e
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2e) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2b). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1b). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). Cancer Genomics Proteomics (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1c). Science (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 图 4e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫细胞化学在大鼠样本上 (图 4e). Commun Biol (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 图 4f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在大鼠样本上 (图 4f). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7a). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3
  • 免疫印迹; 大鼠; 1:5000; 图 2e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2e). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). Sci Rep (2020) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 s8c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 s8c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4c-f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c-f). CNS Neurosci Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 10b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 10b). Neurochem Res (2020) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab53554)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5a). Aging (Albany NY) (2020) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Neuron (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s7c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, AB7260)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s7c). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 s3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s3b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5c). Braz J Med Biol Res (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1b). Epilepsy Behav (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3a). Biosci Rep (2019) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 大鼠; 1:2000; 图 s1m
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 s1m). Cell Stem Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6b). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6b). Sci Adv (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s13a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s13a). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 1k
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 1k). Nat Neurosci (2019) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 4h). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在大鼠样本上 (图 s1). Front Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3e). Transl Psychiatry (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 4674)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2d). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Invest Ophthalmol Vis Sci (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 1d2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1d2). J Histochem Cytochem (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6e). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在人类样本上 (图 3a). Biochem Biophys Res Commun (2018) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). Epilepsia (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1d). elife (2018) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:3000; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样本上浓度为1:3000 (图 1b). J Histochem Cytochem (2018) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1e). Brain Behav Immun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:5000; 图 4
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:5000 (图 4) 和 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 2). Neurosci Res (2018) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:8000; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 3a). Neuropharmacology (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3b). Neuropharmacology (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5g
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5g). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 4b
艾博抗(上海)贸易有限公司 Gfap抗体(Millipore, AB7260)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4b). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1c). Oncol Lett (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1600; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1600 (图 2a). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Sigma, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1b). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6). Glia (2017) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). J Headache Pain (2017) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫印迹; 小鼠; 图 1t
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫印迹在小鼠样本上 (图 1t). Proteomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Mol Psychiatry (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:500; 图 2d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-自由浮动切片; 大鼠; 1:2000; 图 6
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1c). PLoS ONE (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-自由浮动切片; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, ab4648)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2f). Neuroimage (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7g
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7g) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 图 s4d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上. Mol Med Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 7260)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫印迹; 小鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). J Neuroinflammation (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:600; 表 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:600 (表 1). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化-冰冻切片; 小鼠; 图 8
艾博抗(上海)贸易有限公司 Gfap抗体(Epitomics, 2301-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab16997)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 2). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5a). Dev Neurobiol (2017) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1s1
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, 54554)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1s1). elife (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:50; 图 4
  • 免疫组化; 小鼠; 1:50; 图 3
艾博抗(上海)贸易有限公司 Gfap抗体(AbCam, Ab4648)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 3). Neuroscience (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; black ferret; 1:500; 图 9d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在black ferret样本上浓度为1:500 (图 9d). Shock (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 1b). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化; 小鼠; 1:250; 图 s2f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s2f). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1g
  • 免疫细胞化学; 小鼠; 1:2000; 图 1l
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1g) 和 被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 1l). Nat Commun (2016) ncbi
鸡 多克隆
  • 流式细胞仪; 大鼠; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于流式细胞仪在大鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000; 图 3
  • 免疫印迹; 大鼠; 1:20,000; 图 3
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 5f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 5f). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 ev1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 ev1c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab16997)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 1). Mol Med Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). Cell Mol Gastroenterol Hepatol (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Mol Ther (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 2A5)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s10
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s10). Brain (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4). Mol Pain (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 8a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 8a). Int J Mol Sci (2022) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1e
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1e). iScience (2022) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:75; 图 7c
  • 免疫印迹; 小鼠; 1:3000; 图 7c
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化在小鼠样本上浓度为1:75 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 7c). J Neuroinflammation (2020) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-冰冻切片; 小鼠; 图 s2
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-166458)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2). Cell Death Dis (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 大鼠; 1:500; 图 5f
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5f). Int J Mol Med (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6c
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6c). Sci Rep (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-自由浮动切片; 人类; 1:300; 图 10d
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:300 (图 10d). Brain Struct Funct (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 1:1000; 图 3c
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, SC-33673)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3c). Front Neurosci (2019) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 图 5g
  • 免疫印迹; 小鼠; 图 5e
圣克鲁斯生物技术 Gfap抗体(Santa, sc-33,673)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5g) 和 被用于免疫印迹在小鼠样本上 (图 5e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 小鼠; 1:200; 图 5a
圣克鲁斯生物技术 Gfap抗体(SCB, sc-33673)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). Aging Cell (2019) ncbi
小鼠 单克隆(1.BB.807)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, SC-71143)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Aging Cell (2019) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 6a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology Inc, sc-33673)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 6a). J Comp Neurol (2019) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology Inc, sc-33673)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7). Glia (2018) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 3j
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3j). Biomed Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 小鼠; 图 5d
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫印迹在小鼠样本上 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(52)
  • 免疫组化; 大鼠; 1:1000; 图 3a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-135921)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 人类; 图 s1d
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-33673)被用于被用于免疫印迹在人类样本上 (图 s1d). Oncotarget (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:50; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 9
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 9). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 s4f
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotech, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4f). Nat Biotechnol (2016) ncbi
小鼠 单克隆(GA-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-58766)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4n
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4n). Exp Neurol (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 犬; 1:1000; 图 6
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 6). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 7a
圣克鲁斯生物技术 Gfap抗体(SantaCruz, sc-33673)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 7a). Toxicology (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-51908)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Gfap抗体(santa Cruz, sc-33673)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, G3893)被用于被用于免疫细胞化学在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:400
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 和 被用于免疫印迹在小鼠样本上浓度为1:400. Neurobiol Aging (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-自由浮动切片; 大鼠; 1:300; 图 7a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:300 (图 7a). Restor Neurol Neurosci (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-58766)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 小鼠; 1:40; 图 5a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, Sc-33673)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:40 (图 5a). J Neuroinflammation (2014) ncbi
小鼠 单克隆(F-7)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-166458)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Mol Cell Biol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫细胞化学; 大鼠; 1:300
  • 免疫印迹; 大鼠; 1:400
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 和 被用于免疫印迹在大鼠样本上浓度为1:400. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 人类; 1:300; 图 5
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300 (图 5). Brain Struct Funct (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 人类
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc33673)被用于被用于免疫组化在人类样本上. Mol Psychiatry (2013) ncbi
小鼠 单克隆(F-2)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-166481)被用于被用于免疫细胞化学在小鼠样本上. Mediators Inflamm (2012) ncbi
BioLegend
小鼠 单克隆(2E1.E9)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4e
BioLegend Gfap抗体(BioLegend, 644701)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4e). Nat Commun (2021) ncbi
鸡 多克隆(Poly28294)
  • 免疫细胞化学; 人类; 1:1000; 图 4b
BioLegend Gfap抗体(Biolegend, 829401)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4b). Nat Neurosci (2021) ncbi
小鼠 单克隆(2E1.E9)
  • 免疫组化-石蜡切片; 小鼠; 图 4m, 4n
BioLegend Gfap抗体(BioLegend, 644701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4m, 4n). Cancers (Basel) (2021) ncbi
小鼠 单克隆(2E1.E9)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:3000; 图 4n
BioLegend Gfap抗体(BioLegend, 644702)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4n). J Neuroinflammation (2020) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1b, 3f
BioLegend Gfap抗体(BioLegend, 835301)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1b, 3f). Sci Adv (2020) ncbi
小鼠 单克隆(2E1.E9)
  • 流式细胞仪; 人类; 1:400; 图 4b
BioLegend Gfap抗体(BioLegend, 644706)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 4b). Epilepsy Behav (2019) ncbi
小鼠 单克隆(2E1.E9)
  • 流式细胞仪; 小鼠; 1:400; 图 1a
BioLegend Gfap抗体(BioLegend, 644704)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1a). PLoS Biol (2019) ncbi
鸡 多克隆(Poly28294)
  • 免疫细胞化学基因敲除验证; 小鼠; 1:1500; 图 8b
  • 免疫细胞化学; 大鼠; 1:1500; 图 1a
BioLegend Gfap抗体(Biolegend, 829401)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上浓度为1:1500 (图 8b) 和 被用于免疫细胞化学在大鼠样本上浓度为1:1500 (图 1a). Glia (2019) ncbi
小鼠 单克隆(2E1.E9)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3d
BioLegend Gfap抗体(BioLegend, 644704)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3d). Nat Commun (2019) ncbi
小鼠 单克隆(2E1.E9)
  • 流式细胞仪; 人类; 图 1e
BioLegend Gfap抗体(Biolegend, 644710)被用于被用于流式细胞仪在人类样本上 (图 1e). Brain Behav Immun (2019) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5b
BioLegend Gfap抗体(Covance, SMI-22R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5b). J Exp Med (2018) ncbi
小鼠 单克隆(SMI 23)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
BioLegend Gfap抗体(BioLegend, SMI-23)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1), 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:400 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 25)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend Gfap抗体(BioLegend, SMI-25)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 1), 被用于免疫印迹在人类样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 24)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend Gfap抗体(BioLegend, SMI-24)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 1), 被用于免疫印迹在人类样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
domestic rabbit 多克隆(Poly28400)
  • 免疫印迹; 人类; 1:1000; 图 6h
BioLegend Gfap抗体(Covance, PRB-571C)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Nat Commun (2017) ncbi
小鼠 单克隆(SMI 26)
BioLegend Gfap抗体(Biolegend, SMI26)被用于. Mol Biol Cell (2016) ncbi
小鼠 单克隆(SMI 25)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 4
BioLegend Gfap抗体(Covance, SMI-25R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 4). Mol Neurodegener (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 st1
BioLegend Gfap抗体(BioLegend, 835301)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 26)
  • 免疫组化; 小鼠; 1:1000; 图 1
BioLegend Gfap抗体(Sternberger Monoclonals, SMI-26)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). J Proteome Res (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 1
BioLegend Gfap抗体(Covance, SMI-22R-100)被用于被用于免疫组化在小鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(SMI 22)
  • 免疫印迹; 小鼠
BioLegend Gfap抗体(Covance, SMI-22R)被用于被用于免疫印迹在小鼠样本上. J Vis Exp (2014) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1000
BioLegend Gfap抗体(Covance, SMI-22R)被用于被用于免疫组化在大鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-石蜡切片; 人类; 1:3000
BioLegend Gfap抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000. J Comp Neurol (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1,000
BioLegend Gfap抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化在大鼠样本上浓度为1:1,000. J Comp Neurol (2006) ncbi
Synaptic Systems
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
Synaptic Systems Gfap抗体(Synaptic Systems, 173004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). iScience (2022) ncbi
小鼠 单克隆(186C6)
  • 其他; 小鼠; 图 7e
Synaptic Systems Gfap抗体(Synaptic Systems, 173211BT)被用于被用于其他在小鼠样本上 (图 7e). ACS Chem Neurosci (2022) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4a
Synaptic Systems Gfap抗体(Synaptic Systems, 173 004)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). EMBO Mol Med (2022) ncbi
豚鼠 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
Synaptic Systems Gfap抗体(Synaptic Systems, 173 004)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a). Cell Mol Life Sci (2022) ncbi
小鼠 单克隆(134B1)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 7f
Synaptic Systems Gfap抗体(Synaptic Systems, 173 011)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 7f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:3000; 图 1b
Synaptic Systems Gfap抗体(Synaptic Systems, 173002)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 1b). EMBO J (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a
Synaptic Systems Gfap抗体(Synaptic Systems, 173002)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
豚鼠 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 1c
Synaptic Systems Gfap抗体(Synaptic Systems, 173004)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 1c). Nat Commun (2021) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s3b
Synaptic Systems Gfap抗体(Synaptic Systems, 173 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s3b). Cell (2018) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 5e
Synaptic Systems Gfap抗体(Synaptic systems, 173004)被用于被用于免疫组化在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 5e). Glia (2017) ncbi
小鼠 单克隆(134B1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 7
Synaptic Systems Gfap抗体(Synaptic Systems, 173011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 7). Histochem Cell Biol (2016) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 1
Synaptic Systems Gfap抗体(SYnaptic SYstems, 173 004)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3
Synaptic Systems Gfap抗体(Synaptic Systems, 173 004)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Nature (2016) ncbi
小鼠 单克隆(134B1)
  • 免疫组化; 人类; 图 6
  • 免疫组化; 小鼠; 图 6
Synaptic Systems Gfap抗体(Synaptic Systems, 173011)被用于被用于免疫组化在人类样本上 (图 6) 和 被用于免疫组化在小鼠样本上 (图 6). Stem Cell Res Ther (2015) ncbi
EnCor Biotechnology
鸡 多克隆
  • 免疫组化; 小鼠; 1:1500; 图 s3a
EnCor Biotechnology Gfap抗体(EnCor, CPCA-GFAP)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 s3a). PLoS ONE (2021) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
EnCor Biotechnology Gfap抗体(EnCor Biotechnology, CPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 表 2
EnCor Biotechnology Gfap抗体(Encore, RPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (表 2). Glia (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
EnCor Biotechnology Gfap抗体(Encor, RPCA-GFAP)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 国内马; 图 3
EnCor Biotechnology Gfap抗体(EnCor-Biotechnology, 5C10)被用于被用于免疫组化-石蜡切片在国内马样本上 (图 3). Peerj (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2
EnCor Biotechnology Gfap抗体(EnCor Biotechnology, MCA-5C10)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:5000
EnCor Biotechnology Gfap抗体(EnCor Biotechnology Inc, MCA5C10)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Neurochem (2014) ncbi
武汉博士德生物工程有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5c
武汉博士德生物工程有限公司 Gfap抗体(Boster, PB9082)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5c). Int J Biol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
武汉博士德生物工程有限公司 Gfap抗体(Boster, PA1239)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). Front Neurosci (2021) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
Novus Biologicals Gfap抗体(Novus, NB300-141)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Cells (2021) ncbi
domestic rabbit 多克隆
Novus Biologicals Gfap抗体(Novus Biologic, NB300-141)被用于. Sci Rep (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠
亚诺法生技股份有限公司 Gfap抗体(Abnova, MAB11287)被用于被用于免疫组化在小鼠样本上. J Biol Chem (2015) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 s1f
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1f). Cell Rep (2022) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3p
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3p). Cell Rep (2022) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5f). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1f). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化; 小鼠; 1:200; 图 6d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389s)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6d). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 图 s1b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1b). Front Immunol (2021) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3a). Mol Neurobiol (2022) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 1b
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3655)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (图 1b). J Neuroinflammation (2021) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). Mol Brain (2021) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d). Front Mol Neurosci (2021) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s5a
  • 免疫印迹; 小鼠; 1:1000; 图 2e, 4b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e, 4b). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(GA5)
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3670S)被用于. Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 12389s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1c). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c, 4e
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c, 4e). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:100; 图 4a
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3670)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4a). Gene Ther (2021) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图 s1l
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1l). Sci Adv (2021) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1c). Nat Microbiol (2021) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化; 小鼠; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, D1F4Q)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3a). elife (2020) ncbi
小鼠 单克隆(GA5)
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technologies, 3670S)被用于. J Virol (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). J Clin Invest (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图 2d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2d). Mol Pain (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:2000; 图 4a
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signalling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4b). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3a
赛信通(上海)生物试剂有限公司 Gfap抗体(ell Signaling Technology, 3656s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3a). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 41-2
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, #3670)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 41-2). Eneuro (2020) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫细胞化学; 小鼠; 1:100; 图 5a
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 12389)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5a). PLoS ONE (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 1e
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 1e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(GA5)
  • 流式细胞仪; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3657)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Nat Commun (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:3000; 图 3g
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3g). J Exp Med (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling technology, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2c). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化; 大鼠; 1:200; 图 1d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1d). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 大鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2d). Cell Death Differ (2018) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Cell (2018) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 图 5c
  • 免疫印迹; 大鼠; 图 2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5c) 和 被用于免疫印迹在大鼠样本上 (图 2b). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Epilepsia (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 1a). J Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2j
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 2j). J Pain (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样本上 (图 1c). Redox Biol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 犬; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 犬; 1:2500; 图 st8
  • 免疫组化-冰冻切片; 大鼠; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 st8
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化-冰冻切片在犬样本上浓度为1:2500 (图 st8), 被用于免疫组化-石蜡切片在犬样本上浓度为1:2500 (图 st8), 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2500 (图 st8) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2500 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). PLoS ONE (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 图 3gb
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样本上 (图 3gb) 和 被用于免疫印迹在人类样本上 (图 3a). Mol Oncol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2b). J Exp Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 表 4
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling, 3670)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:250; 图 s5b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670P)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s5b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 s5
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 s5). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫细胞化学; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫细胞化学在人类样本上 (图 6b). Oncogene (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2c). Neurobiol Dis (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 8152)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化; 小鼠; 1:200; 图 S1c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 S1c). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 8
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 36705)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling, 3670)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司 Gfap抗体(cell signalling, GA5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:2000; 图 1s2
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1s2). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3c). Am J Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s22
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s22). Nat Biotechnol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Nature (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 图 3e
  • 免疫印迹; 大鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在大鼠样本上 (图 3e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3i). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫印迹在小鼠样本上浓度为1:500. FASEB J (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3670)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Brain (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Mol Cancer (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling Technology, 3670S)被用于被用于免疫细胞化学在小鼠样本上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 图 4h
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3657)被用于被用于免疫细胞化学在大鼠样本上 (图 4h). J Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:300; 图 5
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, clone GA5)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 流式细胞仪; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, GA5)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3655)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Int J Oral Maxillofac Surg (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, #3670)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Neurochem Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670S)被用于被用于免疫组化在小鼠样本上浓度为1:300. Mol Neurobiol (2014) ncbi
Aves Labs
  • 免疫组化; 大鼠; 1:200; 图 8
Aves Labs Gfap抗体(Abclonal, WH, China, GFAP)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 8). Int J Mol Sci (2020) ncbi
  • 免疫组化; gerbils; 1:1000; 图 4
Aves Labs Gfap抗体(Chemicon, Temecula, CA, USA, GFAP)被用于被用于免疫组化在gerbils样本上浓度为1:1000 (图 4). Mar Drugs (2020) ncbi
  • 免疫细胞化学; 人类; 1:500; 图 1a
Aves Labs Gfap抗体(Aves Labs, GFAP)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). Brain Behav Immun (2019) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 4
Aves Labs Gfap抗体(Aves Labs, GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 4). Front Microbiol (2017) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:400
Aves Labs Gfap抗体(AVES, GFAP)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Control Release (2015) ncbi
丹科医疗器械技术服务(上海)有限公司
多克隆
  • 免疫组化; 小鼠; 图 s3b
丹科医疗器械技术服务(上海)有限公司 Gfap抗体(Dako, ZO334)被用于被用于免疫组化在小鼠样本上 (图 s3b). Front Mol Neurosci (2021) ncbi
多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 1d
丹科医疗器械技术服务(上海)有限公司 Gfap抗体(DAKO, ZO334)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 1d). IBRO Neurosci Rep (2021) ncbi
多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s2a
丹科医疗器械技术服务(上海)有限公司 Gfap抗体(DAKO, ZO334)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s2a). PLoS Biol (2020) ncbi
多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 s8c
丹科医疗器械技术服务(上海)有限公司 Gfap抗体(DAKO, ZO334)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 s8c). Sci Rep (2020) ncbi
多克隆
  • 免疫组化; 小鼠; 1:200; 图 s3c
丹科医疗器械技术服务(上海)有限公司 Gfap抗体(Dako, ZO334)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3c). Nat Commun (2019) ncbi
上海普洛麦格生物产品有限公司
  • 免疫组化-自由浮动切片; 小鼠; 1:150; 图 1
上海普洛麦格生物产品有限公司 Gfap抗体(Promega, G560A)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:150 (图 1). PLoS ONE (2009) ncbi
Advanced ImmunoChemical
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-冰冻切片; 大鼠
Advanced ImmunoChemical Gfap抗体(Advanced Immunochemical, O31223)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-冰冻切片在大鼠样本上. J Comp Neurol (2006) ncbi
碧迪BD
小鼠 单克隆(52/GFAP)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2e
碧迪BD Gfap抗体(BD Biosciences, 610566)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2e). Int J Mol Sci (2022) ncbi
小鼠 单克隆(52/GFAP)
  • 免疫组化-自由浮动切片; 小鼠; 图 1e
碧迪BD Gfap抗体(BD Biosciences, 610565)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1e). Neural Regen Res (2022) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1e'
碧迪BD Gfap抗体(BD, 556330)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1e'). Front Neurosci (2022) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 图 2a
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). J Neuroinflammation (2021) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1b
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1b). Nat Commun (2021) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s6b
碧迪BD Gfap抗体(BD, 556329)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s6b). Nat Neurosci (2019) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 图 s7a
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s7a). Neurosurgery (2018) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Gfap抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Cell Sci (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 犬; 1:100; 图 st8
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st8
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st8
碧迪BD Gfap抗体(BD Biosciences, 556329)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (图 st8), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st8) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
碧迪BD Gfap抗体(BD Pharmingen, 556327)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 人类; 1:100; 图 s8
碧迪BD Gfap抗体(BD Biosciences, 561483)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠; 1:2000; 图 3
  • 免疫印迹; 大鼠; 1:2000; 图 3
碧迪BD Gfap抗体(BD, 556327)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:2000; 图 3
碧迪BD Gfap抗体(BD Pharmigen, 556327)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 1:50; 图 4
碧迪BD Gfap抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 人类; 1:500; 图 6
碧迪BD Gfap抗体(BD Pharmingen, 556330)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Glia (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 小鼠; 0.01 ug/ml; 图 4
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.01 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 4, 7
碧迪BD Gfap抗体(BD Pharmingen, 561483)被用于被用于流式细胞仪在小鼠样本上 (图 4, 7). Nat Neurosci (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:1000; 图 5
碧迪BD Gfap抗体(BD Pharmingen, 556329)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5). Eneuro (2015) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 人类; 图 4
碧迪BD Gfap抗体(Becton-Dickinson, 561449)被用于被用于流式细胞仪在人类样本上 (图 4). Int J Oncol (2015) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 小鼠; 图 2a
碧迪BD Gfap抗体(BD Biosciences, 1B4)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Hepatology (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠
碧迪BD Gfap抗体(BD Pharmagen, Clon 4a11, Ref. 55632)被用于被用于免疫组化在大鼠样本上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:200; 图 8
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8). Neurotherapeutics (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD Gfap抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD Gfap抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(52/GFAP)
  • 免疫细胞化学; 大鼠; 1:500; 图 11
碧迪BD Gfap抗体(BD Biosciences, 610565)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 11). Pain (2014) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:200
碧迪BD Gfap抗体(BD Pharmigen, 556327)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. J Comp Neurol (2010) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 6f
西格玛奥德里奇 Gfap抗体(Sigma, HPA056030)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 6f). NPJ Aging Mech Dis (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2d
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2d). EMBO Mol Med (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 3
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-A-5)被用于被用于免疫组化在小鼠样本上 (图 3). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(G-A-5)
  • 酶联免疫吸附测定; 小鼠
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, GA-5)被用于被用于酶联免疫吸附测定在小鼠样本上. Alzheimers Res Ther (2021) ncbi
小鼠 单克隆(G-A-5)
  • 流式细胞仪; 小鼠; 图 6a, b, c
西格玛奥德里奇 Gfap抗体(MilliporeSigma, GA5)被用于被用于流式细胞仪在小鼠样本上 (图 6a, b, c). JCI Insight (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:400; 图 4a
西格玛奥德里奇 Gfap抗体(Sigma, G-6171)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4a). Mol Biol Cell (2018) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 3e
西格玛奥德里奇 Gfap抗体(SIGMA, G6171)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Science (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 4
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:100; 图 8
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
西格玛奥德里奇 Gfap抗体(Sigma, G-A-5)被用于. Am J Pathol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:600
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫细胞化学在大鼠样本上浓度为1:600. J Neuroinflammation (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G6171)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Neurobiol Aging (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G6171)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 和 被用于免疫印迹在大鼠样本上浓度为1:2000. J Neurol Sci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:50,000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G6171)被用于被用于免疫组化在小鼠样本上浓度为1:50,000. Hippocampus (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, GA5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Dev Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类
  • 免疫组化-冰冻切片; domestic rabbit
  • 免疫印迹; domestic rabbit
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫组化-冰冻切片在人类样本上, 被用于免疫组化-冰冻切片在domestic rabbit样本上 和 被用于免疫印迹在domestic rabbit样本上. Exp Neurol (2013) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s6a
徕卡显微系统(上海)贸易有限公司 Gfap抗体(Novocastra, NCL-GFAP-GA5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s6a). Nat Commun (2022) ncbi
单克隆
  • 免疫组化; 小鼠; 1:500; 图 3
徕卡显微系统(上海)贸易有限公司 Gfap抗体(Novocastra-Leica, NCL-GFAP-GA5)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Mol Psychiatry (2021) ncbi
单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4b
徕卡显微系统(上海)贸易有限公司 Gfap抗体(Leica, NCL-GFAP-GA5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4b). FASEB J (2019) ncbi
单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s10c
徕卡显微系统(上海)贸易有限公司 Gfap抗体(Novocastra, NCL-GFAP-GA5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s10c). Nat Neurosci (2017) ncbi
单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
徕卡显微系统(上海)贸易有限公司 Gfap抗体(Novocastra, NCL-GFAPGA5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). EMBO J (2016) ncbi
单克隆
  • 免疫印迹; 小鼠; 1:500; 图 1b
徕卡显微系统(上海)贸易有限公司 Gfap抗体(Novocastra, NCL-GFAP-GA5)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Sci Rep (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(8-1E7)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 3a
Developmental Studies Hybridoma Bank Gfap抗体(DSHB, 8-1E7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 3a). J Clin Med (2020) ncbi
文章列表
  1. O Shea T, Ao Y, Wang S, Wollenberg A, Kim J, Ramos Espinoza R, et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun. 2022;13:5702 pubmed 出版商
  2. Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen T, et al. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep. 2022;40:111417 pubmed 出版商
  3. Welch G, Boix C, Schmauch E, Davila Velderrain J, Victor M, Dileep V, et al. Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration. Sci Adv. 2022;8:eabo4662 pubmed 出版商
  4. Re G, Li H, Yang J, Li Y, Zhang Z, Wu X, et al. Exercise modulates central and peripheral inflammatory responses and ameliorates methamphetamine-induced anxiety-like symptoms in mice. Front Mol Neurosci. 2022;15:955799 pubmed 出版商
  5. Atienzar Aroca R, Ferre Fern xe1 ndez J, Tevar A, Bonet Fern xe1 ndez J, Caba xf1 ero M, Ruiz Pastor M, et al. Transgenic Overexpression of Myocilin Leads to Variable Ocular Anterior Segment and Retinal Alterations Associated with Extracellular Matrix Abnormalities in Adult Zebrafish. Int J Mol Sci. 2022;23: pubmed 出版商
  6. Shi H, Yin Z, Koronyo Y, Fuchs D, Sheyn J, Davis M, et al. Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer's-induced retinal vasculopathy by limiting Clec7a/Galectin-3+ neurodegenerative microglia. Acta Neuropathol Commun. 2022;10:136 pubmed 出版商
  7. Agnew Svoboda W, Ubina T, Figueroa Z, Wong Y, Vizcarra E, Roebini B, et al. A genetic tool for the longitudinal study of a subset of post-inflammatory reactive astrocytes. Cell Rep Methods. 2022;2:100276 pubmed 出版商
  8. Coy S, Wang S, Stopka S, Lin J, Yapp C, Ritch C, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun. 2022;13:4814 pubmed 出版商
  9. Al Ahmady Z, Dickie B, Aldred I, Jasim D, Barrington J, Haley M, et al. Selective brain entry of lipid nanoparticles in haemorrhagic stroke is linked to biphasic blood-brain barrier disruption. Theranostics. 2022;12:4477-4497 pubmed 出版商
  10. Zhao P, Xu Y, Jiang L, Fan X, Ku Z, Li L, et al. LILRB2-mediated TREM2 signaling inhibition suppresses microglia functions. Mol Neurodegener. 2022;17:44 pubmed 出版商
  11. Hannawi Y, Ewees M, Moore J, Zweier J. Characterizing CD38 Expression and Enzymatic Activity in the Brain of Spontaneously Hypertensive Stroke-Prone Rats. Front Pharmacol. 2022;13:881708 pubmed 出版商
  12. Tan H, Yong Y, Xue Y, Liu H, Furihata T, Shankar E, et al. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience. 2022;25:104404 pubmed 出版商
  13. Vicario N, Denaro S, Turnaturi R, Longhitano L, Spitale F, Spoto S, et al. Mu and Delta Opioid Receptor Targeting Reduces Connexin 43-Based Heterocellular Coupling during Neuropathic Pain. Int J Mol Sci. 2022;23: pubmed 出版商
  14. Liang B, Thapa R, Zhang G, Moffitt C, Zhang Y, Johnston A, et al. Aberrant neural activity in prefrontal pyramidal neurons lacking TDP-43 precedes neuron loss. Prog Neurobiol. 2022;215:102297 pubmed 出版商
  15. Dentel B, Angeles Perez L, Ren C, Jakkamsetti V, Holley A, Caballero D, et al. Increased glycine contributes to synaptic dysfunction and early mortality in Nprl2 seizure model. iScience. 2022;25:104334 pubmed 出版商
  16. Schr xf6 tter S, Yuskaitis C, MacArthur M, Mitchell S, Hosios A, Osipovich M, et al. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep. 2022;39:110824 pubmed 出版商
  17. McMillan N, Kirschen G, Desai S, Xia E, Tsirka S, Aguirre A. ADAM10 facilitates rapid neural stem cell cycling and proper positioning within the subventricular zone niche via JAMC/RAP1Gap signaling. Neural Regen Res. 2022;17:2472-2483 pubmed 出版商
  18. Moore A, Chinnaiya K, Kim D, Brown S, Stewart I, Robins S, et al. Loss of Function of the Neural Cell Adhesion Molecule NrCAM Regulates Differentiation, Proliferation and Neurogenesis in Early Postnatal Hypothalamic Tanycytes. Front Neurosci. 2022;16:832961 pubmed 出版商
  19. Coviello S, Gramuntell Y, Klimczak P, Varea E, Blasco Iba xf1 ez J, Crespo C, et al. Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Front Neuroanat. 2022;16:851432 pubmed 出版商
  20. Quadros A, Arazola R, xc1 lvarez A, Pires J, Meredith R, Saarloos I, et al. Neuronal F-Box protein FBXO41 regulates synaptic transmission and hippocampal network maturation. iScience. 2022;25:104069 pubmed 出版商
  21. Permanne B, Sand A, Ousson S, N xe9 ny M, Hantson J, Schubert R, et al. O-GlcNAcase Inhibitor ASN90 is a Multimodal Drug Candidate for Tau and α-Synuclein Proteinopathies. ACS Chem Neurosci. 2022;13:1296-1314 pubmed 出版商
  22. Marino M, Zhou L, Rincon M, Callaerts Vegh Z, Verhaert J, Wahis J, et al. AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Mol Med. 2022;14:e09824 pubmed 出版商
  23. Abd El Rahman S, Fayed H. Improved cognition impairment by activating cannabinoid receptor type 2: Modulating CREB/BDNF expression and impeding TLR-4/NFκBp65/M1 microglia signaling pathway in D-galactose-injected ovariectomized rats. PLoS ONE. 2022;17:e0265961 pubmed 出版商
  24. Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H, et al. Forsythoside A Mitigates Alzheimer's-like Pathology by Inhibiting Ferroptosis-mediated Neuroinflammation via Nrf2/GPX4 Axis Activation. Int J Biol Sci. 2022;18:2075-2090 pubmed 出版商
  25. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  26. Meschkat M, Steyer A, Weil M, Kusch K, Jahn O, Piepkorn L, et al. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun. 2022;13:1163 pubmed 出版商
  27. Marengo L, Armbrust F, Schoenherr C, Storck S, Schmitt U, Zampar S, et al. Meprin β knockout reduces brain Aβ levels and rescues learning and memory impairments in the APP/lon mouse model for Alzheimer's disease. Cell Mol Life Sci. 2022;79:168 pubmed 出版商
  28. Anastasaki C, Wilson A, Chen A, Wegscheid M, Gutmann D. Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization. STAR Protoc. 2022;3:101173 pubmed 出版商
  29. Dai J, Cimino P, Gouin K, Grzelak C, Barrett A, Lim A, et al. Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nat Cancer. 2022;3:25-42 pubmed 出版商
  30. Khadka P, Reitman Z, Lu S, Buchan G, Gionet G, Dubois F, et al. PPM1D mutations are oncogenic drivers of de novo diffuse midline glioma formation. Nat Commun. 2022;13:604 pubmed 出版商
  31. Guo X, Kimura A, Namekata K, Harada C, Arai N, Takeda K, et al. ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  32. Qureshi Y, Berman D, Marsh S, Klein R, Patel V, Simoes S, et al. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep. 2022;38:110262 pubmed 出版商
  33. Hao W, Luo Q, Menger M, Fassbender K, Liu Y. Treatment With CD52 Antibody Protects Neurons in Experimental Autoimmune Encephalomyelitis Mice During the Recovering Phase. Front Immunol. 2021;12:792465 pubmed 出版商
  34. Wang Y, Xu Y, Zhou K, Zhang S, Wang Y, Li T, et al. Autophagy Inhibition Reduces Irradiation-Induced Subcortical White Matter Injury Not by Reducing Inflammation, but by Increasing Mitochondrial Fusion and Inhibiting Mitochondrial Fission. Mol Neurobiol. 2022;59:1199-1213 pubmed 出版商
  35. Singh L, Devi T. Potential Combination Drug Therapy to Prevent Redox Stress and Mitophagy Dysregulation in Retinal Müller Cells under High Glucose Conditions: Implications for Diabetic Retinopathy. Diseases. 2021;9: pubmed 出版商
  36. Chandrasekaran S, Espeso Gil S, Loh Y, Javidfar B, Kassim B, Zhu Y, et al. Neuron-specific chromosomal megadomain organization is adaptive to recent retrotransposon expansions. Nat Commun. 2021;12:7243 pubmed 出版商
  37. Arinrad S, Wilke J, Seelbach A, Doeren J, Hindermann M, Butt U, et al. NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Mol Psychiatry. 2021;: pubmed 出版商
  38. Kettwig M, Ternka K, Wendland K, Krüger D, Zampar S, Schob C, et al. Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nat Commun. 2021;12:6530 pubmed 出版商
  39. He W, Lu Q, Sherchan P, Huang L, Hu X, Zhang J, et al. Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS. 2021;18:44 pubmed 出版商
  40. Xiao Y, Liang J, Gao M, Sun J, Liu Y, Chen J, et al. Deletion of prominin-1 in mice results in disrupted photoreceptor outer segment protein homeostasis. Int J Ophthalmol. 2021;14:1334-1344 pubmed 出版商
  41. Weigelt C, Fuchs H, Schonberger T, Stierstorfer B, Strobel B, Lamla T, et al. AAV-Mediated Expression of Human VEGF, TNF-α, and IL-6 Induces Retinal Pathology in Mice. Transl Vis Sci Technol. 2021;10:15 pubmed 出版商
  42. Mayweather B, Buchanan S, Rubin L. GDF11 expressed in the adult brain negatively regulates hippocampal neurogenesis. Mol Brain. 2021;14:134 pubmed 出版商
  43. Blot F, Krijnen W, den Hoedt S, Osório C, White J, Mulder M, et al. Sphingolipid metabolism governs Purkinje cell patterned degeneration in Atxn1[82Q]/+ mice. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  44. Villanueva E, Tresse E, Liu Y, Duarte J, Jimenez Duran G, Ejlerskov P, et al. Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice. Ann Neurol. 2021;90:789-807 pubmed 出版商
  45. Banerjee S, Ghoshal S, Girardet C, Demars K, Yang C, Niehoff M, et al. Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice. NPJ Aging Mech Dis. 2021;7:23 pubmed 出版商
  46. Serpe C, Monaco L, Relucenti M, Iovino L, Familiari P, Scavizzi F, et al. Microglia-Derived Small Extracellular Vesicles Reduce Glioma Growth by Modifying Tumor Cell Metabolism and Enhancing Glutamate Clearance through miR-124. Cells. 2021;10: pubmed 出版商
  47. Ishikura T, Kinoshita M, Shimizu M, Yasumizu Y, Motooka D, Okuzaki D, et al. Anti-AQP4 autoantibodies promote ATP release from astrocytes and induce mechanical pain in rats. J Neuroinflammation. 2021;18:181 pubmed 出版商
  48. Soldati C, Lopez Fabuel I, Wanderlingh L, García Macia M, Monfregola J, Esposito A, et al. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol Med. 2021;13:e13742 pubmed 出版商
  49. Xiao X, Li W, Rong D, Xu Z, Zhang Z, Ye H, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov. 2021;7:212 pubmed 出版商
  50. Zhang H, Ben Zablah Y, Liu A, Lee D, Zhang H, Meng Y, et al. Overexpression of LIMK1 in hippocampal excitatory neurons improves synaptic plasticity and social recognition memory in APP/PS1 mice. Mol Brain. 2021;14:121 pubmed 出版商
  51. Kilicarslan I, Zanetti L, Novelli E, Schwarzer C, Strettoi E, Koschak A. Knockout of CaV1.3 L-type calcium channels in a mouse model of retinitis pigmentosa. Sci Rep. 2021;11:15146 pubmed 出版商
  52. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  53. Umans R, Pollock C, Mills W, Clark K, Pan Y, Sontheimer H. Using Zebrafish to Elucidate Glial-Vascular Interactions During CNS Development. Front Cell Dev Biol. 2021;9:654338 pubmed 出版商
  54. Beecher K, Wang J, Jacques A, Chaaya N, Chehrehasa F, Belmer A, et al. Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front Mol Neurosci. 2021;14:678267 pubmed 出版商
  55. Gaja Capdevila N, Hernández N, Zamanillo D, Vela J, Merlos M, Navarro X, et al. Neuroprotective Effects of Sigma 1 Receptor Ligands on Motoneuron Death after Spinal Root Injury in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  56. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  57. Yoneshige A, Hagiyama M, Takashima Y, Ueno S, Inoue T, Kimura R, et al. Elevated Hydrostatic Pressure Causes Retinal Degeneration Through Upregulating Lipocalin-2. Front Cell Dev Biol. 2021;9:664327 pubmed 出版商
  58. MacLean M, Juranek J, Cuddapah S, López Díez R, Ruiz H, Hu J, et al. Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. J Neuroinflammation. 2021;18:139 pubmed 出版商
  59. Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain. 2021;14:91 pubmed 出版商
  60. Martini T, Ripperger J, Stalin J, Kores A, Stumpe M, Albrecht U. Deletion of the clock gene Period2 (Per2) in glial cells alters mood-related behavior in mice. Sci Rep. 2021;11:12242 pubmed 出版商
  61. Polinski N, Martinez T, Gorodinsky A, Gareus R, Sasner M, Herberth M, et al. Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model. PLoS ONE. 2021;16:e0252325 pubmed 出版商
  62. Moyon S, Frawley R, Maréchal D, Huang D, Marshall Phelps K, Kegel L, et al. TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nat Commun. 2021;12:3359 pubmed 出版商
  63. Vicente Rodríguez M, Singh N, Turkheimer F, Peris Yague A, Randall K, Veronese M, et al. Resolving the cellular specificity of TSPO imaging in a rat model of peripherally-induced neuroinflammation. Brain Behav Immun. 2021;96:154-167 pubmed 出版商
  64. Haan N, Westacott L, Carter J, Owen M, Gray W, Hall J, et al. Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms. Transl Psychiatry. 2021;11:313 pubmed 出版商
  65. Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, et al. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun. 2021;12:3005 pubmed 出版商
  66. Tournissac M, Vu T, Vrabic N, Hozer C, Tremblay C, Mélançon K, et al. Repurposing beta-3 adrenergic receptor agonists for Alzheimer's disease: beneficial effects in a mouse model. Alzheimers Res Ther. 2021;13:103 pubmed 出版商
  67. Steubler V, Erdinger S, Back M, Ludewig S, Fässler D, Richter M, et al. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J. 2021;40:e107471 pubmed 出版商
  68. Sahu M, Pazos Boubeta Y, Steinzeig A, Kaurinkoski K, Palmisano M, Borowecki O, et al. Depletion of TrkB Receptors From Adult Serotonergic Neurons Increases Brain Serotonin Levels, Enhances Energy Metabolism and Impairs Learning and Memory. Front Mol Neurosci. 2021;14:616178 pubmed 出版商
  69. Park J, Kam T, Lee S, Park H, Oh Y, Kwon S, et al. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:78 pubmed 出版商
  70. Correll E, Ramser B, Knott M, McCullumsmith R, McGuire J, Ngwenya L. Deficits in pattern separation and dentate gyrus proliferation after rodent lateral fluid percussion injury. IBRO Neurosci Rep. 2021;10:31-41 pubmed 出版商
  71. Grissi M, Boudot C, Assem M, Candellier A, Lando M, Poirot Leclercq S, et al. Metformin prevents stroke damage in non-diabetic female mice with chronic kidney disease. Sci Rep. 2021;11:7464 pubmed 出版商
  72. Garcia Mesa Y, Xu H, Vance P, Gruenewald A, Garza R, Midkiff C, et al. Dimethyl Fumarate, an Approved Multiple Sclerosis Treatment, Reduces Brain Oxidative Stress in SIV-Infected Rhesus Macaques: Potential Therapeutic Repurposing for HIV Neuroprotection. Antioxidants (Basel). 2021;10: pubmed 出版商
  73. Higgins N, Greenslade J, Wu J, Miranda E, Galliciotti G, Monteiro M. Serpin neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Brain Pathol. 2021;:e12948 pubmed 出版商
  74. Niu M, Zhao F, Bondelid K, Siedlak S, Torres S, Fujioka H, et al. VPS35 D620N knockin mice recapitulate cardinal features of Parkinson's disease. Aging Cell. 2021;20:e13347 pubmed 出版商
  75. Yi M, Liu Y, Umpierre A, Chen T, Ying Y, Zheng J, et al. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol. 2021;19:e3001154 pubmed 出版商
  76. Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ. 2021;28:1822-1836 pubmed 出版商
  77. Schiweck J, Murk K, Ledderose J, Münster Wandowski A, Ornaghi M, Vida I, et al. Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat Commun. 2021;12:1490 pubmed 出版商
  78. Su W, Cui H, Wu D, Yu J, Ma L, Zhang X, et al. Suppression of TLR4-MyD88 signaling pathway attenuated chronic mechanical pain in a rat model of endometriosis. J Neuroinflammation. 2021;18:65 pubmed 出版商
  79. Amaya J, Suidgeest E, Sahut Barnola I, Dumontet T, Montanier N, Pag xe8 s G, et al. Effects of Long-Term Endogenous Corticosteroid Exposure on Brain Volume and Glial Cells in the AdKO Mouse. Front Neurosci. 2021;15:604103 pubmed 出版商
  80. Zarb Y, Sridhar S, Nassiri S, Utz S, Schaffenrath J, Maheshwari U, et al. Microglia control small vessel calcification via TREM2. Sci Adv. 2021;7: pubmed 出版商
  81. Ferreira N, Gonçalves N, Jan A, Jensen N, van der Laan A, Mohseni S, et al. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. Acta Neuropathol Commun. 2021;9:31 pubmed 出版商
  82. Gordon A, Yoon S, Tran S, Makinson C, Park J, Andersen J, et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci. 2021;24:331-342 pubmed 出版商
  83. Zhang T, Yu F, Xu H, Chen M, Chen X, Guo L, et al. Dysregulation of REV-ERBα impairs GABAergic function and promotes epileptic seizures in preclinical models. Nat Commun. 2021;12:1216 pubmed 出版商
  84. O Leary L, Belliveau C, Davoli M, Ma J, Tanti A, Turecki G, et al. Widespread Decrease of Cerebral Vimentin-Immunoreactive Astrocytes in Depressed Suicides. Front Psychiatry. 2021;12:640963 pubmed 出版商
  85. Torregrosa T, Lehman S, Hana S, Marsh G, Xu S, Koszka K, et al. Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice. Gene Ther. 2021;28:456-468 pubmed 出版商
  86. Asahina M, Fujinawa R, Fujihira H, Masahara Negishi Y, Andou T, Tozawa R, et al. JF1/B6F1 Ngly1-/- mouse as an isogenic animal model of NGLY1 deficiency. Proc Jpn Acad Ser B Phys Biol Sci. 2021;97:89-102 pubmed 出版商
  87. GUTTIKONDA S, Sikkema L, Tchieu J, Saurat N, Walsh R, Harschnitz O, et al. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nat Neurosci. 2021;24:343-354 pubmed 出版商
  88. Dorrier C, Aran D, Haenelt E, Sheehy R, Hoi K, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234-244 pubmed 出版商
  89. Zheng Q, Li G, Wang S, Zhou Y, Liu K, Gao Y, et al. Trisomy 21-induced dysregulation of microglial homeostasis in Alzheimer's brains is mediated by USP25. Sci Adv. 2021;7: pubmed 出版商
  90. Chen W, Foo S, Hong E, Wu C, Lee W, Lee S, et al. Zika virus NS3 protease induces bone morphogenetic protein-dependent brain calcification in human fetuses. Nat Microbiol. 2021;6:455-466 pubmed 出版商
  91. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  92. Andrews M, Mukhtar T, Eze U, Simoneau C, Perez Y, Mostajo Radji M, et al. Tropism of SARS-CoV-2 for Developing Human Cortical Astrocytes. bioRxiv. 2021;: pubmed 出版商
  93. Mastorakos P, Mihelson N, Luby M, Burks S, Johnson K, Hsia A, et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat Neurosci. 2021;24:245-258 pubmed 出版商
  94. Luongo C, Butruille L, S xe9 billot A, Le Blay K, Schwaninger M, Heuer H, et al. Absence of Both Thyroid Hormone Transporters MCT8 and OATP1C1 Impairs Neural Stem Cell Fate in the Adult Mouse Subventricular Zone. Stem Cell Reports. 2021;16:337-353 pubmed 出版商
  95. Yoon S, Bae Y, Oh S, Song W, Chang H, Kim M. Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency. Sci Rep. 2021;11:932 pubmed 出版商
  96. Zhao F, Austria Q, Wang W, Zhu X. Mfn2 Overexpression Attenuates MPTP Neurotoxicity In Vivo. Int J Mol Sci. 2021;22: pubmed 出版商
  97. Costa B, Fletcher M, Boskovic P, Ivanova E, Eisemann T, Lohr S, et al. A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  98. Nitschke S, Chown E, Zhao X, Gabrielian S, Petković S, Guisso D, et al. An inducible glycogen synthase-1 knockout halts but does not reverse Lafora disease progression in mice. J Biol Chem. 2021;296:100150 pubmed 出版商
  99. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  100. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  101. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  102. Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep. 2020;9:102-114 pubmed 出版商
  103. Suzuki G, Imura S, Hosokawa M, Katsumata R, Nonaka T, Hisanaga S, et al. α-synuclein strains that cause distinct pathologies differentially inhibit proteasome. elife. 2020;9: pubmed 出版商
  104. Garcia Mesa Y, Garza R, Diaz Ortiz M, Gruenewald A, Bastien B, Lobrovich R, et al. Regional Brain Recovery from Acute Synaptic Injury in Simian Immunodeficiency Virus-Infected Rhesus Macaques Associates with Heme Oxygenase Isoform Expression. J Virol. 2020;94: pubmed 出版商
  105. Tang S, Fesharaki Zadeh A, Takahashi H, Nies S, Smith L, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96 pubmed 出版商
  106. Chen T, Lennon V, Liu Y, Bosco D, Li Y, Yi M, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025-4038 pubmed 出版商
  107. Shin S, Itson Zoske B, Cai Y, Qiu C, Pan B, Stucky C, et al. Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Mol Pain. 2020;16:1744806920925425 pubmed 出版商
  108. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  109. Jia Y, Wininger K, Ho A, Peyton L, Baker M, Choi D. Astrocytic Glutamate Transporter 1 (GLT1) Deficiency Reduces Anxiety- and Depression-Like Behaviors in Mice. Front Behav Neurosci. 2020;14:57 pubmed 出版商
  110. Mishra P, Boutej H, Soucy G, Bareil C, Kumar S, Picher Martel V, et al. Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol Commun. 2020;8:65 pubmed 出版商
  111. Leong W, Xu W, Wang B, Gao S, Zhai X, Wang C, et al. PP2A subunit PPP2R2C is downregulated in the brains of Alzheimer's transgenic mice. Aging (Albany NY). 2020;12:6880-6890 pubmed 出版商
  112. Lee D, Kam M, Lee S, Lee H, Lee D. Peroxiredoxin 5 deficiency exacerbates iron overload-induced neuronal death via ER-mediated mitochondrial fission in mouse hippocampus. Cell Death Dis. 2020;11:204 pubmed 出版商
  113. Morse S, Boltersdorf T, Harriss B, Chan T, Baxan N, Jung H, et al. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics. 2020;10:2659-2674 pubmed 出版商
  114. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  115. Mashkaryan V, Siddiqui T, Popova S, Cosacak M, Bhattarai P, Brandt K, et al. Type 1 Interleukin-4 Signaling Obliterates Mouse Astroglia in vivo but Not in vitro. Front Cell Dev Biol. 2020;8:114 pubmed 出版商
  116. Kur I, Prouvot P, Fu T, Fan W, Müller Braun F, Das A, et al. Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo. PLoS Biol. 2020;18:e3000643 pubmed 出版商
  117. Xing Z, Zhang L, Zhang Y, Sun X, Sun X, Yu H, et al. DIP2B Interacts With α-Tubulin to Regulate Axon Outgrowth. Front Cell Neurosci. 2020;14:29 pubmed 出版商
  118. Famakin B, Tsymbalyuk O, Tsymbalyuk N, Ivanova S, Woo S, Kwon M, et al. HMGB1 is a Potential Mediator of Astrocytic TLR4 Signaling Activation following Acute and Chronic Focal Cerebral Ischemia. Neurol Res Int. 2020;2020:3929438 pubmed 出版商
  119. Li J, Tao T, Xu J, Liu Z, Zou Z, Jin M. HIF‑1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia‑reperfusion injury in a rat MCAO model. Int J Mol Med. 2020;45:1027-1036 pubmed 出版商
  120. Sardari M, Dzyubenko E, Schmermund B, Yin D, Qi Y, Kleinschnitz C, et al. Dose-Dependent Microglial and Astrocytic Responses Associated With Post-ischemic Neuroprotection After Lipopolysaccharide-Induced Sepsis-Like State in Mice. Front Cell Neurosci. 2020;14:26 pubmed 出版商
  121. Martinelli C, Gabriele F, Manai F, Ciccone R, Novara F, Sauta E, et al. The Search for Molecular Markers in a Gene-Orphan Case Study of a Pediatric Spinal Cord Pilocytic Astrocytoma. Cancer Genomics Proteomics. 2020;17:117-130 pubmed 出版商
  122. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease. J Neuroinflammation. 2020;17:72 pubmed 出版商
  123. Hu C, Wang W, Brind Amour J, Singh P, Reeves G, Lorincz M, et al. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science. 2020;367:870-874 pubmed 出版商
  124. Hughes C, Choi M, Yi J, Kim S, Drews A, George Hyslop P, et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death. Commun Biol. 2020;3:79 pubmed 出版商
  125. Moreno Rodríguez M, Perez S, Nadeem M, Malek Ahmadi M, Mufson E. Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer's disease. J Neuroinflammation. 2020;17:58 pubmed 出版商
  126. Ayanlaja A, Ji G, Wang J, Gao Y, Cheng B, Kanwore K, et al. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal. 2020;18:24 pubmed 出版商
  127. Angel A, Volkman R, Royal T, Offen D. Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci. 2020;21: pubmed 出版商
  128. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  129. Liu Y, Zhang S, Li X, Liu E, Wang X, Zhou Q, et al. Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep. 2020;40: pubmed 出版商
  130. Torres Mejía E, Trumbach D, Kleeberger C, Dornseifer U, Orschmann T, Bäcker T, et al. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep. 2020;10:1984 pubmed 出版商
  131. Lyu C, Lyu G, Mulder J, Uhlen M, Cai X, Hokfelt T, et al. Expression and regulation of FRMD6 in mouse DRG neurons and spinal cord after nerve injury. Sci Rep. 2020;10:1880 pubmed 出版商
  132. Viana G, Priestman D, Platt F, Khan S, Tomatsu S, Pshezhetsky A. Brain Pathology in Mucopolysaccharidoses (MPS) Patients with Neurological Forms. J Clin Med. 2020;9: pubmed 出版商
  133. Wan J, Nan S, Liu J, Ding M, Zhu H, Suo C, et al. Synaptotagmin 1 Is Involved in Neuropathic Pain and Electroacupuncture-Mediated Analgesic Effect. Int J Mol Sci. 2020;21: pubmed 出版商
  134. Dobolyi A, Bagó A, Palkovits M, Nemeria N, Jordan F, Doczi J, et al. Exclusive neuronal detection of KGDHC-specific subunits in the adult human brain cortex despite pancellular protein lysine succinylation. Brain Struct Funct. 2020;225:639-667 pubmed 出版商
  135. Guyot A, Leuxe C, Disdier C, Oumata N, Costa N, Roux G, et al. A Small Compound Targeting Prohibitin with Potential Interest for Cognitive Deficit Rescue in Aging mice and Tau Pathology Treatment. Sci Rep. 2020;10:1143 pubmed 出版商
  136. Yang F, Yang L, Wataya Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS ONE. 2020;15:e0228204 pubmed 出版商
  137. Udovin L, Kobiec T, Herrera M, Toro Urrego N, Kusnier C, Kolliker Frers R, et al. Partial Reversal of Striatal Damage by Palmitoylethanolamide Administration Following Perinatal Asphyxia. Front Neurosci. 2019;13:1345 pubmed 出版商
  138. Cha M, Lee K, Lee B. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep. 2020;10:943 pubmed 出版商
  139. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  140. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  141. Findlay A, McKie L, Keighren M, Clementson Mobbs S, Sanchez Pulido L, Wells S, et al. Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. Sci Rep. 2020;10:437 pubmed 出版商
  142. Linker K, Elabd M, Tawadrous P, Cano M, Green K, Wood M, et al. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun. 2020;11:306 pubmed 出版商
  143. Li C, Chen W, Wang J, Xia M, Jia Z, Guo C, et al. Nicotinamide riboside rescues angiotensin II-induced cerebral small vessel disease in mice. CNS Neurosci Ther. 2020;26:438-447 pubmed 出版商
  144. Lee T, Ahn J, Park C, Kim B, Park Y, Lee J, et al. Pre-Treatment with Laminarin Protects Hippocampal CA1 Pyramidal Neurons and Attenuates Reactive Gliosis Following Transient Forebrain Ischemia in Gerbils. Mar Drugs. 2020;18: pubmed 出版商
  145. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  146. Evonuk K, Doyle R, Moseley C, Thornell I, Adler K, Bingaman A, et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv. 2020;6:eaax5936 pubmed 出版商
  147. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 2020;17:19 pubmed 出版商
  148. Han C, Liu Y, Sui Y, Chen N, Du T, Jiang Y, et al. Integrated transcriptome expression profiling reveals a novel lncRNA associated with L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Aging (Albany NY). 2020;12:718-739 pubmed 出版商
  149. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  150. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  151. Wang X, Deng Y, Gao Y, Dong Y, Wang F, Guan Z, et al. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY). 2020;12:543-570 pubmed 出版商
  152. Ocasio J, Babcock B, Malawsky D, Weir S, Loo L, Simon J, et al. scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nat Commun. 2019;10:5829 pubmed 出版商
  153. Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed 出版商
  154. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res. 2019;52:e8735 pubmed 出版商
  155. Streeter K, Sunshine M, Brant J, Sandoval A, Maden M, Fuller D. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol. 2020;528:1535-1547 pubmed 出版商
  156. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  157. Rocktäschel P, Sen A, Cader M. High glucose concentrations mask cellular phenotypes in a stem cell model of tuberous sclerosis complex. Epilepsy Behav. 2019;101:106581 pubmed 出版商
  158. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  159. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  160. Neumann B, Baror R, Zhao C, SEGEL M, Dietmann S, Rawji K, et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell. 2019;25:473-485.e8 pubmed 出版商
  161. di Meco A, Pratico D. Early-life exposure to high-fat diet influences brain health in aging mice. Aging Cell. 2019;18:e13040 pubmed 出版商
  162. Blomfield I, Rocamonde B, Masdeu M, Mulugeta E, Vaga S, van den Berg D, et al. Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. elife. 2019;8: pubmed 出版商
  163. Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY). 2019;11:7257-7273 pubmed 出版商
  164. Kim J, Cho J, Kim S, Kang H, Kim D, Kim V, et al. Brain somatic mutations in MTOR reveal translational dysregulations underlying intractable focal epilepsy. J Clin Invest. 2019;129:4207-4223 pubmed 出版商
  165. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature. 2019;573:75-82 pubmed 出版商
  166. Wegmann S, Bennett R, Delorme L, Robbins A, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404 pubmed 出版商
  167. Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17:e3000330 pubmed 出版商
  168. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  169. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  170. Bertrand L, Méroth F, Tournebize M, Leda A, Sun E, Toborek M. Targeting the HIV-infected brain to improve ischemic stroke outcome. Nat Commun. 2019;10:2009 pubmed 出版商
  171. Li J, Khankan R, Caneda C, Godoy M, Haney M, Krawczyk M, et al. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia. 2019;67:1571-1597 pubmed 出版商
  172. Yang J, Vitery M, Chen J, Osei Owusu J, Chu J, Qiu Z. Glutamate-Releasing SWELL1 Channel in Astrocytes Modulates Synaptic Transmission and Promotes Brain Damage in Stroke. Neuron. 2019;102:813-827.e6 pubmed 出版商
  173. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  174. Rodriques S, Stickels R, Goeva A, Martin C, Murray E, Vanderburg C, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363:1463-1467 pubmed 出版商
  175. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  176. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  177. Martorell A, Paulson A, Suk H, Abdurrob F, Drummond G, Guan W, et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell. 2019;177:256-271.e22 pubmed 出版商
  178. Hlavac N, VandeVord P. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol. 2019;10:99 pubmed 出版商
  179. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  180. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed 出版商
  181. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  182. Koike T, Tanaka S, Hirahara Y, Oe S, Kurokawa K, Maeda M, et al. Morphological characteristics of p75 neurotrophin receptor-positive cells define a new type of glial cell in the rat dorsal root ganglia. J Comp Neurol. 2019;527:2047-2060 pubmed 出版商
  183. Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, et al. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun. 2019;10:633 pubmed 出版商
  184. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  185. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  186. Piantanida A, Acosta L, Brocardo L, Capurro C, Greer C, Rela L. Selective Cre-mediated gene deletion identifies connexin 43 as the main connexin channel supporting olfactory ensheathing cell networks. J Comp Neurol. 2019;527:1278-1289 pubmed 出版商
  187. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  188. Nazareth L, Chen M, Shelper T, Shah M, Tello Velasquez J, Walkden H, et al. Novel insights into the glia limitans of the olfactory nervous system. J Comp Neurol. 2019;527:1228-1244 pubmed 出版商
  189. Ko S, Price J, Blatch G, Nurgali K. Netrin-1-like-immunoreactivity Coexpresses With DCC and Has a Differential Level in the Myenteric Cholinergic and Nitrergic Neurons of the Adult Mouse Colon. J Histochem Cytochem. 2019;67:335-349 pubmed 出版商
  190. Salazar S, Cox T, Lee S, Brody A, Chyung A, Haas L, et al. Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J Neurosci. 2019;39:758-772 pubmed 出版商
  191. Hill J, Zuluaga Ramirez V, Gajghate S, Winfield M, Sriram U, Rom S, et al. Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation. Brain Behav Immun. 2019;76:165-181 pubmed 出版商
  192. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  193. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  194. Betlazar C, Harrison Brown M, Middleton R, Banati R, Liu G. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci. 2018;19: pubmed 出版商
  195. Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun. 2018;504:46-53 pubmed 出版商
  196. Weidner L, Kannan P, Mitsios N, Kang S, Hall M, Theodore W, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia. 2018;59:1507-1517 pubmed 出版商
  197. Pratt D, Dominah G, Lobel G, Obungu A, Lynes J, Sanchez V, et al. Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery. 2018;: pubmed 出版商
  198. Sato J, Horibe S, Kawauchi S, Sasaki N, Hirata K, Rikitake Y. Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and α-syntrophin in aquaporin-4 expression. J Neurochem. 2018;147:495-513 pubmed 出版商
  199. Zhao C, Dong C, Frah M, Deng Y, Marie C, Zhang F, et al. Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Dev Cell. 2018;45:753-768.e8 pubmed 出版商
  200. Giera S, Luo R, Ying Y, Ackerman S, Jeong S, Stoveken H, et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. elife. 2018;7: pubmed 出版商
  201. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  202. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  203. Hamdan H, Patyal P, Kockara N, Wight P. The wmN1 enhancer region in intron 1 is required for expression of human PLP1. Glia. 2018;66:1763-1774 pubmed 出版商
  204. Zhu B, Carmichael R, Solabre Valois L, Wilkinson K, Henley J. The transcription factor MEF2A plays a key role in the differentiation/maturation of rat neural stem cells into neurons. Biochem Biophys Res Commun. 2018;500:645-649 pubmed 出版商
  205. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  206. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  207. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  208. Zukor K, Wang H, Siddharthan V, Julander J, Morrey J. Zika virus-induced acute myelitis and motor deficits in adult interferon ??/? receptor knockout mice. J Neurovirol. 2018;24:273-290 pubmed 出版商
  209. Hu X, Das B, Hou H, He W, Yan R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J Exp Med. 2018;215:927-940 pubmed 出版商
  210. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  211. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172:409-422.e21 pubmed 出版商
  212. Sun G, Yang S, Cao G, Wang Q, Hao J, Wen Q, et al. γδ T cells provide the early source of IFN-γ to aggravate lesions in spinal cord injury. J Exp Med. 2018;215:521-535 pubmed 出版商
  213. Watanabe Matsumoto S, Moriwaki Y, Okuda T, Ohara S, Yamanaka K, Abe Y, et al. Dissociation of blood-brain barrier disruption and disease manifestation in an aquaporin-4-deficient mouse model of amyotrophic lateral sclerosis. Neurosci Res. 2018;133:48-57 pubmed 出版商
  214. Ito K, Noguchi A, Uosaki Y, Taga T, Arakawa H, Takizawa T. Gfap and Osmr regulation by BRG1 and STAT3 via interchromosomal gene clustering in astrocytes. Mol Biol Cell. 2018;29:209-219 pubmed 出版商
  215. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  216. Zou J, Zhang B, Gutmann D, Wong M. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Epilepsia. 2017;58:2053-2063 pubmed 出版商
  217. Curry D, Young M, Tran A, Daoud G, Howell L. Separating the agony from ecstasy: R(-)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice. Neuropharmacology. 2018;128:196-206 pubmed 出版商
  218. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  219. Brown I, Gulbransen B. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. Am J Physiol Gastrointest Liver Physiol. 2018;314:G39-G52 pubmed 出版商
  220. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  221. Yang Y, Yang S, Guo J, Cui Y, Tang B, Li X, et al. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci. 2017;37:9101-9115 pubmed 出版商
  222. Lin N, Messing A, Perng M. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS ONE. 2017;12:e0180694 pubmed 出版商
  223. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  224. Harder J, Braine C, Williams P, Zhu X, MacNicoll K, Sousa G, et al. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A. 2017;114:E3839-E3848 pubmed 出版商
  225. Hou J, Xue J, Lee M, Sung C. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury. Biomed Rep. 2017;6:435-440 pubmed 出版商
  226. Wizeman J, Mohan R. Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis. Biochem Biophys Res Commun. 2017;487:134-139 pubmed 出版商
  227. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  228. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  229. Yungher B, Ribeiro M, Park K. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci. 2017;58:1743-1750 pubmed 出版商
  230. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  231. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  232. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  233. Jongbloets B, Lemstra S, Schellino R, Broekhoven M, Parkash J, Hellemons A, et al. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun. 2017;8:14666 pubmed 出版商
  234. Ronca S, Smith J, Koma T, Miller M, Yun N, Dineley K, et al. Mouse Model of Neurological Complications Resulting from Encephalitic Alphavirus Infection. Front Microbiol. 2017;8:188 pubmed 出版商
  235. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  236. Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans Borgmeyer I, Liu B, et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017;65:773-789 pubmed 出版商
  237. Kuipers H, Yoon J, van Horssen J, Han M, Bollyky P, Palmer T, et al. Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination. Proc Natl Acad Sci U S A. 2017;114:E1745-E1754 pubmed 出版商
  238. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  239. Zhu Y, Lyapichev K, Lee D, Motti D, Ferraro N, Zhang Y, et al. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. J Neurosci. 2017;37:2362-2376 pubmed 出版商
  240. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  241. Mellott T, Huleatt O, Shade B, Pender S, Liu Y, Slack B, et al. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice. PLoS ONE. 2017;12:e0170450 pubmed 出版商
  242. Zhang C, Mukherjee S, Tucker Burden C, Ross J, Chau M, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280-294 pubmed 出版商
  243. Liddelow S, Guttenplan K, Clarke L, Bennett F, Bohlen C, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481-487 pubmed 出版商
  244. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  245. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  246. Kim J, Lee J, Sun W. Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone. J Vis Exp. 2016;: pubmed 出版商
  247. Zhao B, Pan Y, Xu H, Song X. Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats. J Headache Pain. 2017;18:1 pubmed 出版商
  248. Zhong L, Zhou J, Chen X, Liu J, Liu Z, Chen Y, et al. Quantitative proteomics reveals EVA1A-related proteins involved in neuronal differentiation. Proteomics. 2017;17: pubmed 出版商
  249. Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, et al. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med. 2017;214:547-563 pubmed 出版商
  250. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  251. Sun C, Zhang J, Chen L, Liu T, Xu G, Li C, et al. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol Med Rep. 2017;15:89-96 pubmed 出版商
  252. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  253. Gray J, Rubin T, Kogan J, Marrocco J, Weidmann J, Lindkvist S, et al. Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice. Mol Psychiatry. 2018;23:904-913 pubmed 出版商
  254. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  255. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  256. Retallack H, Di Lullo E, Arias C, Knopp K, Laurie M, Sandoval Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113:14408-14413 pubmed
  257. Ji B, Kaneko H, Minamimoto T, Inoue H, Takeuchi H, Kumata K, et al. Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors. J Neurosci. 2016;36:11544-11558 pubmed
  258. Marco E, Ballesta J, Irala C, Hernández M, Serrano M, Mela V, et al. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav. 2017;152:68-80 pubmed 出版商
  259. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  260. Song D, Wilson B, Zhao L, Bhuyan R, Bandyopadhyay M, Lyubarsky A, et al. Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration. PLoS ONE. 2016;11:e0166348 pubmed 出版商
  261. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  262. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  263. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  264. Hübner N, Mechling A, Lee H, Reisert M, Bienert T, Hennig J, et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1-18 pubmed 出版商
  265. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  266. Fröhlich D, Suchowerska A, Spencer Z, von Jonquieres G, Klugmann C, Bongers A, et al. In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiol Dis. 2017;97:24-35 pubmed 出版商
  267. Tirosh I, Venteicher A, Hebert C, Escalante L, Patel A, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309-313 pubmed 出版商
  268. Lin N, Huang Y, Opal P, Goldman R, Messing A, Perng M. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP. Mol Biol Cell. 2016;27:3980-3990 pubmed
  269. Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia. 2017;65:278-292 pubmed 出版商
  270. Goebbels S, Wieser G, Pieper A, Spitzer S, Weege B, Yan K, et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci. 2017;20:10-15 pubmed 出版商
  271. Zukor K, Wang H, Hurst B, Siddharthan V, van Wettere A, Pilowsky P, et al. Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters. J Neurovirol. 2017;23:186-204 pubmed 出版商
  272. Nguyen H, Kirkton R, Bursac N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat Commun. 2016;7:13132 pubmed 出版商
  273. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  274. Koyanagi S, Kusunose N, Taniguchi M, Akamine T, Kanado Y, Ozono Y, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102 pubmed 出版商
  275. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  276. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia. 2017;65:231-249 pubmed 出版商
  277. Wizeman J, Nicholas A, Ishigami A, Mohan R. Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis. 2016;22:1137-1155 pubmed
  278. Khoutorsky A, Sorge R, Prager Khoutorsky M, Pawlowski S, Longo G, Jafarnejad S, et al. eIF2? phosphorylation controls thermal nociception. Proc Natl Acad Sci U S A. 2016;113:11949-11954 pubmed
  279. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert D. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ. 2016;58:664-676 pubmed 出版商
  280. Draheim T, Liessem A, Scheld M, Wilms F, Weißflog M, Denecke B, et al. Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia. 2016;64:2219-2230 pubmed 出版商
  281. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  282. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  283. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  284. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  285. Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, et al. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun. 2016;4:94 pubmed 出版商
  286. Barron A, Tokunaga M, Zhang M, Ji B, Suhara T, Higuchi M. Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET. J Neuroinflammation. 2016;13:221 pubmed 出版商
  287. Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation. 2016;13:208 pubmed 出版商
  288. Cheng Z, Zhu W, Cao K, Wu F, Li J, Wang G, et al. Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury. Int J Mol Sci. 2016;17: pubmed 出版商
  289. Fitzgerald P, Sun N, Shibata B, Hess J. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium. Mol Vis. 2016;22:970-89 pubmed
  290. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  291. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  292. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  293. Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, et al. Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J. 2016;35:2008-25 pubmed 出版商
  294. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4:76 pubmed 出版商
  295. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed 出版商
  296. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  297. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  298. Nott A, Cheng J, Gao F, Lin Y, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497-1505 pubmed 出版商
  299. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  300. Achuta V, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, et al. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol. 2017;77:438-453 pubmed 出版商
  301. Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield S. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J Comp Neurol. 2019;527:159-173 pubmed 出版商
  302. Walker W, Oehler A, Edinger A, Wagner K, Gunn T. Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy. Biol Cell. 2016;108:324-337 pubmed 出版商
  303. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  304. Su X, Tan Q, Parikh B, Tan A, Mehta M, Sia Wey Y, et al. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina. Invest Ophthalmol Vis Sci. 2016;57:3397-408 pubmed 出版商
  305. Park K, Luo X, Mooney S, Yungher B, Belin S, Wang C, et al. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol. 2017;525:380-388 pubmed 出版商
  306. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  307. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  308. Mavlyutov T, Duellman T, Kim H, Epstein M, Leese C, Davletov B, et al. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience. 2016;331:148-57 pubmed 出版商
  309. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  310. Vernay A, Therreau L, Blot B, Risson V, Dirrig Grosch S, Waegaert R, et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2016;25:3341-3360 pubmed 出版商
  311. Cerman E, Akkoç T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, et al. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495 pubmed 出版商
  312. Hutchinson E, Schwerin S, Radomski K, Irfanoglu M, Juliano S, Pierpaoli C. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock. 2016;46:167-76 pubmed 出版商
  313. Kizuka Y, Nakano M, Miura Y, Taniguchi N. Epigenetic regulation of neural N-glycomics. Proteomics. 2016;16:2854-2863 pubmed 出版商
  314. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  315. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  316. Ávila Rodriguez M, Garcia Segura L, Hidalgo Lanussa O, Baez E, Gonzalez J, Barreto G. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol. 2016;433:35-46 pubmed 出版商
  317. Ko A, Hyun H, Min S, Kim J. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci. 2016;10:124 pubmed 出版商
  318. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  319. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  320. Nagaoka A, Takehara H, Hayashi Takagi A, Noguchi J, Ishii K, Shirai F, et al. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo. Sci Rep. 2016;6:26651 pubmed 出版商
  321. Agostoni E, Michelazzi S, Maurutto M, Carnemolla A, Ciani Y, Vatta P, et al. Effects of Pin1 Loss in Hdh(Q111) Knock-in Mice. Front Cell Neurosci. 2016;10:110 pubmed 出版商
  322. Heaven M, Flint D, Randall S, Sosunov A, Wilson L, Barnes S, et al. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res. 2016;15:2265-82 pubmed 出版商
  323. Thakurela S, Garding A, Jung R, Müller C, Goebbels S, White R, et al. The transcriptome of mouse central nervous system myelin. Sci Rep. 2016;6:25828 pubmed 出版商
  324. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  325. Funk L, Hackett A, Bunge M, Lee J. Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. J Neuroinflammation. 2016;13:87 pubmed 出版商
  326. Srinivasan K, Friedman B, Larson J, Lauffer B, Goldstein L, Appling L, et al. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016;7:11295 pubmed 出版商
  327. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  328. Bubenheimer R, Brown I, Fried D, McClain J, Gulbransen B. Sirtuin-3 Is Expressed by Enteric Neurons but It Does not Play a Major Role in Their Regulation of Oxidative Stress. Front Cell Neurosci. 2016;10:73 pubmed 出版商
  329. Fujiwara K, Fujita Y, Kasai A, Onaka Y, Hashimoto H, Okada H, et al. Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse. Transl Psychiatry. 2016;6:e766 pubmed 出版商
  330. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  331. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  332. Yousuf M, Tan C, Torres Altoro M, Lu F, Plautz E, Zhang S, et al. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem. 2016;138:317-27 pubmed 出版商
  333. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  334. Smeester B, O Brien E, Michlitsch K, Lee J, Beitz A. The relationship of bone-tumor-induced spinal cord astrocyte activation and aromatase expression to mechanical hyperalgesia and cold hypersensitivity in intact female and ovariectomized mice. Neuroscience. 2016;324:344-54 pubmed 出版商
  335. Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol. 2016;279:243-260 pubmed 出版商
  336. Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph K, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY). 2016;8:382-93 pubmed
  337. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  338. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  339. Hinrich A, Jodelka F, Chang J, Brutman D, Bruno A, Briggs C, et al. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol Med. 2016;8:328-45 pubmed 出版商
  340. Liu R, Li S, Garcia E, Glubrecht D, Poon H, Easaw J, et al. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia. 2016;64:963-76 pubmed 出版商
  341. Ma Y, Guo H, Zhang L, Tao L, Yin A, Liu Z, et al. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β. Sci Rep. 2016;6:21467 pubmed 出版商
  342. Liu B, Ma A, Zhang F, Wang Y, Li Z, Li Q, et al. MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis. Sci Rep. 2016;6:21534 pubmed 出版商
  343. Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease. Transl Psychiatry. 2016;6:e733 pubmed 出版商
  344. Delcambre G, Liu J, Herrington J, Vallario K, Long M. Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue. Peerj. 2016;4:e1601 pubmed 出版商
  345. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, et al. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep. 2016;13:2552-60 pubmed 出版商
  346. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  347. Wang C, Zhang F, Jiang S, Siedlak S, Shen L, Perry G, et al. Estrogen receptor-? is localized to neurofibrillary tangles in Alzheimer's disease. Sci Rep. 2016;6:20352 pubmed 出版商
  348. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  349. Hackett A, Lee D, Dawood A, Rodriguez M, Funk L, Tsoulfas P, et al. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis. 2016;89:10-22 pubmed 出版商
  350. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  351. Kang S, Murphy R, Hwang S, Lee S, Harburg D, Krueger N, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71-6 pubmed 出版商
  352. Brown I, McClain J, Watson R, Patel B, Gulbransen B. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2:77-91 pubmed
  353. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  354. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  355. Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep. 2016;6:18980 pubmed 出版商
  356. Choudhury S, Harris A, Cabral D, Keeler A, Sapp E, Ferreira J, et al. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Mol Ther. 2016;24:726-35 pubmed 出版商
  357. Platt T, Beckett T, Kohler K, Niedowicz D, Murphy M. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162-74 pubmed 出版商
  358. Sharpe M, Baskin D. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget. 2016;7:3379-93 pubmed 出版商
  359. Khoutorsky A, Bonin R, Sorge R, Gkogkas C, Pawlowski S, Jafarnejad S, et al. Translational control of nociception via 4E-binding protein 1. elife. 2015;4: pubmed 出版商
  360. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  361. Hristova M, Rocha Ferreira E, Fontana X, Thei L, Buckle R, Christou M, et al. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem. 2016;136:981-94 pubmed 出版商
  362. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  363. Higuchi A, Kao S, Ling Q, Chen Y, Li H, Alarfaj A, et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep. 2015;5:18136 pubmed 出版商
  364. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  365. Kim Y, Jo S, Kim W, Kweon O. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther. 2015;6:229 pubmed 出版商
  366. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  367. Park S, Brenner D, Shin G, Morgan C, Copits B, Chung H, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol. 2015;33:1280-1286 pubmed 出版商
  368. Wang S, Hsu J, Ko C, Chiu N, Kan W, Lai M, et al. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol. 2016;53:5912-5927 pubmed 出版商
  369. Baranowska Bosiacka I, Listos J, Gutowska I, Machoy Mokrzynska A, Kolasa Wołosiuk A, Tarnowski M, et al. Effects of perinatal exposure to lead (Pb) on purine receptor expression in the brain and gliosis in rats tolerant to morphine analgesia. Toxicology. 2016;339:19-33 pubmed 出版商
  370. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  371. Hauser D, Primiani C, Langston R, Kumaran R, Cookson M. The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice. Eneuro. 2015;2: pubmed 出版商
  372. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  373. Yamamuro S, Sano E, Okamoto Y, Ochiai Y, Ohta T, Ogino A, et al. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells. Int J Oncol. 2015;47:1647-54 pubmed 出版商
  374. Hua Z, Emiliani F, Nathans J. Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Dev. 2015;10:21 pubmed 出版商
  375. Chen B, Tao J, Lin Y, Lin R, Liu W, Chen L. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway. Int J Mol Med. 2015;36:1215-22 pubmed 出版商
  376. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  377. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  378. Mughal A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol Cancer. 2015;14:160 pubmed 出版商
  379. Khadem F, Gao X, Mou Z, Jia P, Movassagh H, Onyilagha C, et al. Hepatic stellate cells regulate liver immunity to visceral leishmaniasis through P110δ-dependent induction and expansion of regulatory T cells in mice. Hepatology. 2016;63:620-32 pubmed 出版商
  380. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  381. Qiu H, Xu Y, Jin G, Yang J, Liu M, Li S, et al. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain. 2015;11:46 pubmed 出版商
  382. Zhang P, Ha T, Larouche M, Swanson D, Goldowitz D. Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development. PLoS ONE. 2015;10:e0134390 pubmed 出版商
  383. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  384. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  385. Chen Y, Huang W, Séjourné J, Clipperton Allen A, Page D. Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling. J Neurosci. 2015;35:10252-67 pubmed 出版商
  386. Song C, Wang J, Mo C, Mu S, Jiang X, Li X, et al. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro. PLoS ONE. 2015;10:e0132480 pubmed 出版商
  387. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  388. Schachtrup C, Ryu J, Mammadzada K, Khan A, Carlton P, Perez A, et al. Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions. Nat Neurosci. 2015;18:1077-80 pubmed 出版商
  389. Kwon J, NABINGER S, Vega Z, Sahu S, Alluri R, Abdul Sater Z, et al. Pathophysiological role of microRNA-29 in pancreatic cancer stroma. Sci Rep. 2015;5:11450 pubmed 出版商
  390. O Brien E, Smeester B, Michlitsch K, Lee J, Beitz A. Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor. Neuroscience. 2015;301:235-45 pubmed 出版商
  391. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  392. Haley S, O Hara B, Nelson C, Brittingham F, Henriksen K, Stopa E, et al. Human polyomavirus receptor distribution in brain parenchyma contrasts with receptor distribution in kidney and choroid plexus. Am J Pathol. 2015;185:2246-58 pubmed 出版商
  393. Jiang J, Zhang Z, Yuan X, Poo M. Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J Cell Biol. 2015;209:759-74 pubmed 出版商
  394. Guo Y, Wang D, Qiao T, Yang C, Su Q, Gao G, et al. A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord. Mol Neurobiol. 2016;53:3235-3248 pubmed 出版商
  395. Ozacmak V, Sayan Ozacmak H, Barut F. Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion. Nutr Neurosci. 2016;19:176-86 pubmed 出版商
  396. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  397. López Gallardo M, Antón Fernández A, Llorente R, Mela V, Llorente Berzal A, Prada C, et al. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation. J Neuroendocrinol. 2015;27:658-69 pubmed 出版商
  398. Bedogni F, Cobolli Gigli C, Pozzi D, Rossi R, Scaramuzza L, Rossetti G, et al. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. Cereb Cortex. 2016;26:2517-2529 pubmed 出版商
  399. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  400. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  401. Shin C, Grossmann A, Holmen S, Robinson J. The BRAF kinase domain promotes the development of gliomas in vivo. Genes Cancer. 2015;6:9-18 pubmed
  402. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  403. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  404. Tokuda E, Watanabe S, Okawa E, Ono S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12:461-76 pubmed 出版商
  405. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  406. Eid M, El Kowrany S, Othman A, El Gendy D, Saied E. Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis. Korean J Parasitol. 2015;53:51-8 pubmed 出版商
  407. Romero J, Hanschmann E, Gellert M, Eitner S, Holubiec M, Blanco Calvo E, et al. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia. Biochim Biophys Acta. 2015;1850:1274-85 pubmed 出版商
  408. Thomas A, Palma J, Shea L. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release. 2015;204:1-10 pubmed 出版商
  409. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim J, Hsieh C, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci. 2015;35:3384-96 pubmed 出版商
  410. Chen Roetling J, Song W, Schipper H, Regan C, Regan R. Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage. Stroke. 2015;46:1093-8 pubmed 出版商
  411. Xu H, Rösler T, Carlsson T, de Andrade A, Fiala O, Höllerhage M, et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther. 2014;14:343-51 pubmed
  412. Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429-47 pubmed 出版商
  413. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  414. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med. 2015;7:175-89 pubmed 出版商
  415. Jendresen C, Cui H, Zhang X, Vlodavsky I, Nilsson L, Li J. Overexpression of heparanase lowers the amyloid burden in amyloid-β precursor protein transgenic mice. J Biol Chem. 2015;290:5053-64 pubmed 出版商
  416. Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young S, et al. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest. 2015;125:263-74 pubmed 出版商
  417. Ceber M, Mihmanli A, Kilic U, Sener U, Yuksek A, Durak M, et al. Changes in expression of Slit1 and its receptor Robo2 in trigeminal ganglion and inferior alveolar nerve following inferior alveolar nerve axotomy in adult rats: a pilot study. Int J Oral Maxillofac Surg. 2015;44:518-27 pubmed 出版商
  418. Lauretti E, di Meco A, Chu J, Praticò D. Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor. Neurobiol Aging. 2015;36:812-20 pubmed 出版商
  419. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  420. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  421. Nardai S, Dobolyi A, Pál G, Skopál J, Pintér N, Lakatos K, et al. Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neurol Neurosci. 2015;33:1-14 pubmed 出版商
  422. Garraway S, Woller S, Huie J, Hartman J, Hook M, Miranda R, et al. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain. 2014;155:2344-59 pubmed 出版商
  423. Quintas C, Pinho D, Pereira C, Saraiva L, Gonçalves J, Queiroz G. Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis. J Neuroinflammation. 2014;11:141 pubmed 出版商
  424. Marinelli S, Eleuteri C, Vacca V, Strimpakos G, Mattei E, Severini C, et al. Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury. Neurobiol Aging. 2015;36:352-64 pubmed 出版商
  425. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  426. Kawase S, Kuwako K, Imai T, Renault Mihara F, Yaguchi K, Itohara S, et al. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev. 2014;23:2250-61 pubmed 出版商
  427. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  428. Inada C, Niu Y, Matsumoto K, Le X, Fujiwara H. Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int. 2014;75:39-47 pubmed 出版商
  429. Neher M, Rich M, Keene C, Weckbach S, Bolden A, Losacco J, et al. Deficiency of complement receptors CR2/CR1 in Cr2?/? mice reduces the extent of secondary brain damage after closed head injury. J Neuroinflammation. 2014;11:95 pubmed 出版商
  430. Cekanaviciute E, Dietrich H, Axtell R, Williams A, Egusquiza R, Wai K, et al. Astrocytic TGF-? signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. J Immunol. 2014;193:139-49 pubmed 出版商
  431. Tse K, Chow K, Leung W, Wong Y, Wise H. Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways. Neuroscience. 2014;267:241-51 pubmed 出版商
  432. Karki P, Webb A, Smith K, Johnson J, Lee K, Son D, et al. Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol. 2014;34:1280-9 pubmed 出版商
  433. Chou V, Ko N, Holman T, Manning Bog A. Gene-environment interaction models to unmask susceptibility mechanisms in Parkinson's disease. J Vis Exp. 2014;:e50960 pubmed 出版商
  434. Gao X, Zhang J, Zhang J, Zou H, Liu J. Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol. 2014;34:257-68 pubmed 出版商
  435. Nakajima T, Yanagihara M, Nishii H. Temporal and regional patterns of Smad activation in the rat hippocampus following global ischemia. J Neurol Sci. 2014;337:25-37 pubmed 出版商
  436. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  437. Yan Y, Zhang J, Wang K, Xu Y, Ren K, Zhang B, et al. Significant reduction of the GLUT3 level, but not GLUT1 level, was observed in the brain tissues of several scrapie experimental animals and scrapie-infected cell lines. Mol Neurobiol. 2014;49:991-1004 pubmed 出版商
  438. Hawkins K, Demars K, Singh J, Yang C, Cho H, Frankowski J, et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129:130-42 pubmed 出版商
  439. Yamada J, Jinno S. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus. 2014;24:89-101 pubmed 出版商
  440. Dobolyi A, Ostergaard E, Bagó A, Doczi T, Palkovits M, Gal A, et al. Exclusive neuronal expression of SUCLA2 in the human brain. Brain Struct Funct. 2015;220:135-51 pubmed 出版商
  441. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  442. Bourque S, Kuny S, Reyes L, Davidge S, Sauve Y. Prenatal hypoxia is associated with long-term retinal dysfunction in rats. PLoS ONE. 2013;8:e61861 pubmed 出版商
  443. Vontell R, Supramaniam V, Thornton C, Wyatt Ashmead J, Mallard C, Gressens P, et al. Toll-like receptor 3 expression in glia and neurons alters in response to white matter injury in preterm infants. Dev Neurosci. 2013;35:130-9 pubmed 出版商
  444. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  445. Vinukonda G, Zia M, Bhimavarapu B, Hu F, Feinberg M, Bokhari A, et al. Intraventricular hemorrhage induces deposition of proteoglycans in premature rabbits, but their in vivo degradation with chondroitinase does not restore myelination, ventricle size and neurological recovery. Exp Neurol. 2013;247:630-44 pubmed 出版商
  446. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen K, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18:1225-34 pubmed 出版商
  447. Karasinska J, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit J, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445-55 pubmed 出版商
  448. Phares T, Stohlman S, Hinton D, Bergmann C. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013;87:3382-92 pubmed 出版商
  449. Chen S, Tsai H, Hung T, Chen C, Lee C, Wu C, et al. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS ONE. 2012;7:e45763 pubmed 出版商
  450. Gerber A, Bale T. Antiinflammatory treatment ameliorates HPA stress axis dysfunction in a mouse model of stress sensitivity. Endocrinology. 2012;153:4830-7 pubmed
  451. Dixon K, Munro K, Boyd A, Bartlett P, Turnley A. Partial change in EphA4 knockout mouse phenotype: loss of diminished GFAP upregulation following spinal cord injury. Neurosci Lett. 2012;525:66-71 pubmed 出版商
  452. Pan H, Wang H, Wang X, Zhu L, Mao L. The absence of Nrf2 enhances NF-?B-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm. 2012;2012:217580 pubmed 出版商
  453. Desilva T, Borenstein N, Volpe J, Kinney H, Rosenberg P. Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol. 2012;520:3912-32 pubmed 出版商
  454. Skjolding A, Holst A, Broholm H, Laursen H, Juhler M. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol. 2013;39:179-91 pubmed 出版商
  455. Lutz S, Raine C, Brosnan C. Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice. J Neuroimmunol. 2012;245:8-14 pubmed 出版商
  456. Lewitus D, Landers J, Branch J, Smith K, Callegari G, Kohn J, et al. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Adv Funct Mater. 2011;21:2624-2632 pubmed
  457. Zhao L, Ma W, Fariss R, Wong W. Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy. Am J Pathol. 2011;179:1265-77 pubmed 出版商
  458. Lewitus D, Smith K, Shain W, Bolikal D, Kohn J. The fate of ultrafast degrading polymeric implants in the brain. Biomaterials. 2011;32:5543-50 pubmed 出版商
  459. Chang C, Chen S, Lee T, Lee H, Chen S, Shyue S. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am J Pathol. 2011;178:1749-61 pubmed 出版商
  460. Lewitus D, Smith K, Shain W, Kohn J. Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomater. 2011;7:2483-91 pubmed 出版商
  461. Phares T, Marques C, Stohlman S, Hinton D, Bergmann C. Factors supporting intrathecal humoral responses following viral encephalomyelitis. J Virol. 2011;85:2589-98 pubmed 出版商
  462. Schwartz C, Cheng A, Mughal M, Mattson M, Yao P. Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. J Comp Neurol. 2010;518:3803-18 pubmed 出版商
  463. Yang H, Zhuo J, Chu J, Chinnici C, Pratico D. Amelioration of the Alzheimer's disease phenotype by absence of 12/15-lipoxygenase. Biol Psychiatry. 2010;68:922-9 pubmed 出版商
  464. DellaValle B, Hempel C, Kurtzhals J, Penkowa M. In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis. Glia. 2010;58:1220-7 pubmed 出版商
  465. Pang J, Gao F, Wu S. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina. J Comp Neurol. 2010;518:2456-74 pubmed 出版商
  466. VanBrocklin M, Robinson J, Lastwika K, Khoury J, Holmen S. Targeted delivery of NRASQ61R and Cre-recombinase to post-natal melanocytes induces melanoma in Ink4a/Arflox/lox mice. Pigment Cell Melanoma Res. 2010;23:531-41 pubmed 出版商
  467. Farioli Vecchioli S, Saraulli D, Costanzi M, Leonardi L, Cinà I, Micheli L, et al. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS ONE. 2009;4:e8339 pubmed 出版商
  468. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, et al. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies. J Neurosci. 2008;28:12255-67 pubmed 出版商
  469. Hoff S, Zeller F, Von Weyhern C, Wegner M, Schemann M, Michel K, et al. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J Comp Neurol. 2008;509:356-71 pubmed 出版商
  470. Blakqori G, Delhaye S, Habjan M, Blair C, S nchez Vargas I, Olson K, et al. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J Virol. 2007;81:4991-9 pubmed 出版商
  471. Horky L, Galimi F, Gage F, Horner P. Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol. 2006;498:525-38 pubmed
  472. Talos D, Fishman R, Park H, Folkerth R, Follett P, Volpe J, et al. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol. 2006;497:42-60 pubmed
  473. Herber D, Maloney J, Roth L, Freeman M, Morgan D, Gordon M. Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Glia. 2006;53:382-91 pubmed
  474. Wicher G, Larsson M, Rask L, Aldskogius H. Low-density lipoprotein receptor-related protein (LRP)-2/megalin is transiently expressed in a subpopulation of neural progenitors in the embryonic mouse spinal cord. J Comp Neurol. 2005;492:123-31 pubmed
  475. Herber D, Roth L, Wilson D, Wilson N, Mason J, Morgan D, et al. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol. 2004;190:245-53 pubmed
  476. Apicelli A, Uhlmann E, Baldwin R, Ding H, Nagy A, Guha A, et al. Role of the Rap1 GTPase in astrocyte growth regulation. Glia. 2003;42:225-34 pubmed
  477. Uhlmann E, Apicelli A, Baldwin R, Burke S, Bajenaru M, Onda H, et al. Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/- cells. Oncogene. 2002;21:4050-9 pubmed
  478. Seitz A, Aglow E, Heber Katz E. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse. J Neurosci Res. 2002;67:337-45 pubmed
  479. Penkowa M, Carrasco J, Giralt M, Moos T, Hidalgo J. CNS wound healing is severely depressed in metallothionein I- and II-deficient mice. J Neurosci. 1999;19:2535-45 pubmed
  480. Satoh J, Yukitake M, Kuroda Y. Constitutive and heat-inducible expression of HSP105 in neurons and glial cells in culture. Neuroreport. 1998;9:2977-83 pubmed
  481. Haring H, Akamine B, Habermann R, Koziol J, del Zoppo G. Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol. 1996;55:236-45 pubmed