这是一篇来自已证抗体库的有关小鼠 Gfap的综述,是根据527篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gfap 抗体。
Gfap 同义词: AI836096

赛默飞世尔
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s4b
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s4b). Nature (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3a
赛默飞世尔 Gfap抗体(Thermo Fisher Scientific, 14-9892-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3a). Neuron (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 2d
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫细胞化学在小鼠样本上 (图 2d). Int J Mol Sci (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 1d). J Neurochem (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1d
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 1d). Dev Cell (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图 1c
  • 免疫组化; 人类; 1:250; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c) 和 被用于免疫组化在人类样本上浓度为1:250 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a, 5c
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a, 5c). J Neurovirol (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1b
赛默飞世尔 Gfap抗体(ThermoFischer, 13-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1b). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 S2G
赛默飞世尔 Gfap抗体(invitrogen, PA1-10019)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 S2G). PLoS ONE (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 12a
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 12a). J Neurosci (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 Gfap抗体(ThermoFisher, PA1-10004)被用于被用于免疫组化在小鼠样本上 (图 7a). Cell Stem Cell (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1f
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1f). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1a
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1a). J Cell Sci (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). J Vis Exp (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8m
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫组化在小鼠样本上 (图 8m). J Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6d
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
赛默飞世尔 Gfap抗体(生活技术, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4a). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 表 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Neurovirol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:5000; 图 5a
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6b
赛默飞世尔 Gfap抗体(ThermoFisher Scientific, PA3-16727)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6b). Dev Growth Differ (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 图 1g
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样本上 (图 1g). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 7b
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 7b). Neuroimage (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1f
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛默飞世尔 Gfap抗体(Thermo Fisher, PA1-9565)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Biol Cell (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000; 表 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (表 1). J Comp Neurol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2). Nature (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Proteomics (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:2000; 图 4
赛默飞世尔 Gfap抗体(Thermo Scientific, PA1-10004)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000 (图 4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Gfap抗体(Pierce, PA3-16727)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Neuroscience (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 3f
赛默飞世尔 Gfap抗体(Invitrogen, GA5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3f). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1c). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7
赛默飞世尔 Gfap抗体(Pierce, PA1-10019)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:6000; 图 1
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:6000 (图 1). J Neurochem (2016) ncbi
小鼠 单克隆(S.880.0)
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔 Gfap抗体(生活技术, MA5-15086)被用于被用于免疫细胞化学在人类样本上 (图 7). Sci Rep (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Mol Neurobiol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样本上. Biochem J (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Ann Clin Transl Neurol (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Glia (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Nat Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; ready-to-use
赛默飞世尔 Gfap抗体(LabVision, RB-087-R7)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为ready-to-use. Nutr Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Genes Cancer (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Stroke (2015) ncbi
小鼠 单克隆(S.880.0)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(Millipore, MA5-15086)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Curr Gene Ther (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200. Acta Neuropathol (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). EMBO Mol Med (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(S.880.0)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 Gfap抗体(Thermo Sci., MA5-15086)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Neurosci Res (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1). Stem Cells Dev (2014) ncbi
小鼠 单克隆(GFA-02)
  • 流式细胞仪; 小鼠
赛默飞世尔 Gfap抗体(Pierce, MA1-35376)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2014) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 Gfap抗体(Invitrogen, 12-0300)被用于. J Immunol (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Genes Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Neurol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1). Neurobiol Dis (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). J Virol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). PLoS ONE (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:250; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2). Endocrinology (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s1). Neurosci Lett (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Neuropathol Appl Neurobiol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). J Neuroimmunol (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样本上 (图 5). Adv Funct Mater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Biomaterials (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:400
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在人类样本上浓度为1:400. Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:200; 图 7
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 7). Acta Biomater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). J Virol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫印迹在小鼠样本上 (图 s1). Biol Psychiatry (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Glia (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:1000; 图 2
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2). J Comp Neurol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s4
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4). Pigment Cell Melanoma Res (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 Gfap抗体(Zymed/Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. J Neurosci (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 豚鼠; 1:100-1:200
  • 免疫组化; 人类; 1:100-1:200
赛默飞世尔 Gfap抗体(Zytomed, 13-0300)被用于被用于免疫组化在豚鼠样本上浓度为1:100-1:200 和 被用于免疫组化在人类样本上浓度为1:100-1:200. J Comp Neurol (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 8). J Virol (2007) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 表 2
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (表 2). Glia (2006) ncbi
大鼠 单克隆(2.2B10)
  • 免疫沉淀; 小鼠
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫沉淀在小鼠样本上. J Comp Neurol (2005) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 表 1
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (表 1). Exp Neurol (2004) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:10,000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Glia (2003) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:10000
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Oncogene (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:2; 图 3
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2 (图 3). J Neurosci Res (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (1999) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Neuroreport (1998) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 Gfap抗体(Zymed, clone 2.2B10(1))被用于. J Neuropathol Exp Neurol (1996) ncbi
艾博抗(上海)贸易有限公司
domestic goat 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1c). Science (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 图 4f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在大鼠样本上 (图 4f). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). Sci Rep (2020) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab53554)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 s3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s3b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6b). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 1k
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 1k). Nat Neurosci (2019) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 4h). Cell (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 4674)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2d). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Invest Ophthalmol Vis Sci (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 1d2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1d2). J Histochem Cytochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6e). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在人类样本上 (图 3a). Biochem Biophys Res Commun (2018) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). Epilepsia (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1d). elife (2018) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:3000; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样本上浓度为1:3000 (图 1b). J Histochem Cytochem (2018) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1e). Brain Behav Immun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:5000; 图 4
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:5000 (图 4) 和 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 2). Neurosci Res (2018) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:8000; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 3a). Neuropharmacology (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3b). Neuropharmacology (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5g
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5g). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 4b
艾博抗(上海)贸易有限公司 Gfap抗体(Millipore, AB7260)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4b). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1c). Oncol Lett (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1600; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1600 (图 2a). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Sigma, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1b). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6). Glia (2017) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). J Headache Pain (2017) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫印迹; 小鼠; 图 1t
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫印迹在小鼠样本上 (图 1t). Proteomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Mol Psychiatry (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:500; 图 2d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-自由浮动切片; 大鼠; 1:2000; 图 6
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1c). PLoS ONE (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-自由浮动切片; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, ab4648)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2f). Neuroimage (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7g
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7g) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 图 s4d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上. Mol Med Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 7260)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫印迹; 小鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). J Neuroinflammation (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:600; 表 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:600 (表 1). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化-冰冻切片; 小鼠; 图 8
艾博抗(上海)贸易有限公司 Gfap抗体(Epitomics, 2301-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab16997)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 10,062)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). Mol Ther Nucleic Acids (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5a). Dev Neurobiol (2017) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1s1
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, 54554)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1s1). elife (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:50; 图 3
  • 免疫组化; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(AbCam, Ab4648)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3) 和 被用于免疫组化在大鼠样本上浓度为1:50 (图 4). Neuroscience (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 大鼠; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1). Mol Brain (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; black ferret; 1:500; 图 9d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在black ferret样本上浓度为1:500 (图 9d). Shock (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 1b). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化; 小鼠; 1:250; 图 s2f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s2f). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1g
  • 免疫细胞化学; 小鼠; 1:2000; 图 1l
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1g) 和 被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 1l). Nat Commun (2016) ncbi
鸡 多克隆
  • 流式细胞仪; 大鼠; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于流式细胞仪在大鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000; 图 3
  • 免疫印迹; 大鼠; 1:20,000; 图 3
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 5f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 5f). Mol Neurobiol (2017) ncbi
单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 3
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab49874)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 ev1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 ev1c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab16997)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 1). Mol Med Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). Cell Mol Gastroenterol Hepatol (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Mol Ther (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 2A5)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s10
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s10). Brain (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Mol Brain (2015) ncbi
单克隆
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab49874)被用于. J Neurosci Res (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 小鼠; 图 2
  • 免疫细胞化学; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, GF5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2) 和 被用于免疫细胞化学在小鼠样本上 (图 4). Neuroscience (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, ab10062)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). PLoS ONE (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4). Mol Pain (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:100; 图 s2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s2a). Nat Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
  • 免疫组化; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500, 被用于免疫组化在大鼠样本上浓度为1:500 和 被用于免疫印迹在大鼠样本上浓度为1:500. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:250; 图 5
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5). Age (Dordr) (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫细胞化学; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). J Neurosci (2015) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 10062)被用于被用于免疫组化-冰冻切片在小鼠样本上. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. J Innate Immun (2014) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 和 被用于免疫印迹在大鼠样本上浓度为1:500. Exp Neurol (2013) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. Mol Neurodegener (2012) ncbi
小鼠 单克隆(GF5)
  • 免疫组化-石蜡切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab10062)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. J Neuroimmunol (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 图 5g
  • 免疫印迹; 小鼠; 图 5e
圣克鲁斯生物技术 Gfap抗体(Santa, sc-33,673)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5g) 和 被用于免疫印迹在小鼠样本上 (图 5e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 小鼠; 1:200; 图 5a
圣克鲁斯生物技术 Gfap抗体(SCB, sc-33673)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). Aging Cell (2019) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 6a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology Inc, sc-33673)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 6a). J Comp Neurol (2019) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology Inc, sc-33673)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7). Glia (2018) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 3j
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3j). Biomed Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 小鼠; 图 5d
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫印迹在小鼠样本上 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(52)
  • 免疫组化; 大鼠; 1:1000; 图 3a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-135921)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 人类; 图 s1d
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-33673)被用于被用于免疫印迹在人类样本上 (图 s1d). Oncotarget (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:50; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 9
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 9). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 s4f
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotech, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4f). Nat Biotechnol (2016) ncbi
小鼠 单克隆(GA-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-58766)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4n
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4n). Exp Neurol (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 犬; 1:1000; 图 6
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 6). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 7a
圣克鲁斯生物技术 Gfap抗体(SantaCruz, sc-33673)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 7a). Toxicology (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-51908)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Gfap抗体(santa Cruz, sc-33673)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, G3893)被用于被用于免疫细胞化学在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:400
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 和 被用于免疫印迹在小鼠样本上浓度为1:400. Neurobiol Aging (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-自由浮动切片; 大鼠; 1:300; 图 7a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:300 (图 7a). Restor Neurol Neurosci (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-58766)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 小鼠; 1:40; 图 5a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, Sc-33673)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:40 (图 5a). J Neuroinflammation (2014) ncbi
小鼠 单克隆(F-7)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-166458)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Mol Cell Biol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫细胞化学; 大鼠; 1:300
  • 免疫印迹; 大鼠; 1:400
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 和 被用于免疫印迹在大鼠样本上浓度为1:400. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 人类; 1:300; 图 5
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300 (图 5). Brain Struct Funct (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 人类
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc33673)被用于被用于免疫组化在人类样本上. Mol Psychiatry (2013) ncbi
小鼠 单克隆(F-2)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-166481)被用于被用于免疫细胞化学在小鼠样本上. Mediators Inflamm (2012) ncbi
BioLegend
小鼠 单克隆(SMI 22)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1b, 3f
BioLegend Gfap抗体(BioLegend, 835301)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1b, 3f). Sci Adv (2020) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5b
BioLegend Gfap抗体(Covance, SMI-22R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5b). J Exp Med (2018) ncbi
小鼠 单克隆(SMI 24)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend Gfap抗体(BioLegend, SMI-24)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 1), 被用于免疫印迹在人类样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 25)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend Gfap抗体(BioLegend, SMI-25)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 1), 被用于免疫印迹在人类样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 23)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
BioLegend Gfap抗体(BioLegend, SMI-23)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1), 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:400 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
domestic rabbit 多克隆(Poly28400)
  • 免疫印迹; 人类; 1:1000; 图 6h
BioLegend Gfap抗体(Covance, PRB-571C)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Nat Commun (2017) ncbi
小鼠 单克隆(SMI 26)
BioLegend Gfap抗体(Biolegend, SMI26)被用于. Mol Biol Cell (2016) ncbi
小鼠 单克隆(SMI 25)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 4
BioLegend Gfap抗体(Covance, SMI-25R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 4). Mol Neurodegener (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 st1
BioLegend Gfap抗体(BioLegend, 835301)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 26)
  • 免疫组化; 小鼠; 1:1000; 图 1
BioLegend Gfap抗体(Sternberger Monoclonals, SMI-26)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). J Proteome Res (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 1
BioLegend Gfap抗体(Covance, SMI-22R-100)被用于被用于免疫组化在小鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(SMI 22)
  • 免疫印迹; 小鼠
BioLegend Gfap抗体(Covance, SMI-22R)被用于被用于免疫印迹在小鼠样本上. J Vis Exp (2014) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1000
BioLegend Gfap抗体(Covance, SMI-22R)被用于被用于免疫组化在大鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-石蜡切片; 人类; 1:3000
BioLegend Gfap抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000. J Comp Neurol (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1,000
BioLegend Gfap抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化在大鼠样本上浓度为1:1,000. J Comp Neurol (2006) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s3b
Synaptic Systems Gfap抗体(Synaptic Systems, 173 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s3b). Cell (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 5e
Synaptic Systems Gfap抗体(Synaptic systems, 173004)被用于被用于免疫组化在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 5e). Glia (2017) ncbi
小鼠 单克隆(134B1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 7
Synaptic Systems Gfap抗体(Synaptic Systems, 173011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 7). Histochem Cell Biol (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 1
Synaptic Systems Gfap抗体(SYnaptic SYstems, 173 004)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:500; 图 3
Synaptic Systems Gfap抗体(Synaptic Systems, 173 004)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Nature (2016) ncbi
小鼠 单克隆(134B1)
  • 免疫组化; 人类; 图 6
  • 免疫组化; 小鼠; 图 6
Synaptic Systems Gfap抗体(Synaptic Systems, 173011)被用于被用于免疫组化在人类样本上 (图 6) 和 被用于免疫组化在小鼠样本上 (图 6). Stem Cell Res Ther (2015) ncbi
EnCor Biotechnology
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
EnCor Biotechnology Gfap抗体(EnCor Biotechnology, CPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 表 2
EnCor Biotechnology Gfap抗体(Encore, RPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (表 2). Glia (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
EnCor Biotechnology Gfap抗体(Encor, RPCA-GFAP)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 国内马; 图 3
EnCor Biotechnology Gfap抗体(EnCor-Biotechnology, 5C10)被用于被用于免疫组化-石蜡切片在国内马样本上 (图 3). Peerj (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2
EnCor Biotechnology Gfap抗体(EnCor Biotechnology, MCA-5C10)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:5000
EnCor Biotechnology Gfap抗体(EnCor Biotechnology Inc, MCA5C10)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Neurochem (2014) ncbi
Novus Biologicals
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 4a
Novus Biologicals Gfap抗体(Novus, NBP1-05198)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4a). Autophagy (2019) ncbi
小鼠 单克隆(5c10)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 7c
Novus Biologicals Gfap抗体(Novus Biologicals, NBP1-05197)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 7c). J Comp Neurol (2017) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 0.57 ug/ml
亚诺法生技股份有限公司 Gfap抗体(Abnova, MAB11287)被用于被用于免疫组化在小鼠样本上浓度为0.57 ug/ml. J Biol Chem (2015) ncbi
西格玛奥德里奇
单克隆(G3896)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2b
西格玛奥德里奇 Gfap抗体(Sigma, G3896)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2b). J Histochem Cytochem (2019) ncbi
单克隆(G3896)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 1g
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-A-5)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 1g). J Exp Med (2016) ncbi
单克隆(G3896)
  • 免疫组化; 小鼠; 图 s8c
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, GA-5)被用于被用于免疫组化在小鼠样本上 (图 s8c). Nature (2016) ncbi
单克隆(G3896)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8f
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-A-5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s8f). Nat Commun (2016) ncbi
单克隆(G3896)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 1a
西格玛奥德里奇 Gfap抗体(Sigma, G-A-5)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 1a). PLoS ONE (2016) ncbi
单克隆(G3896)
  • 免疫印迹; 小鼠; 1:500; 图 4a
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-A-5)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Cereb Cortex (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
西格玛奥德里奇 Gfap抗体(Sigma Aldrich, G4546)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 1). Am J Physiol Heart Circ Physiol (2016) ncbi
单克隆(G3896)
  • 免疫组化; 小鼠; 图 3
西格玛奥德里奇 Gfap抗体(Sigma, GA5)被用于被用于免疫组化在小鼠样本上 (图 3). Am J Physiol Endocrinol Metab (2015) ncbi
单克隆(G3896)
  • 免疫细胞化学; domestic rabbit; 图 2.3.4.5.6.7.8
  • 免疫细胞化学; 小鼠; 图 2.3
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-A-5)被用于被用于免疫细胞化学在domestic rabbit样本上 (图 2.3.4.5.6.7.8) 和 被用于免疫细胞化学在小鼠样本上 (图 2.3). J Neuroimmunol (2015) ncbi
单克隆(G3896)
  • 免疫印迹; 大鼠; 1:10,000; 图 1
西格玛奥德里奇 Gfap抗体(Sigma, G-A-5)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1). Neuroscience (2015) ncbi
单克隆(G3896)
  • 免疫细胞化学; 人类; 1:400; 表 1
西格玛奥德里奇 Gfap抗体(Sigma, G-A-5)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 1). Stem Cells Dev (2015) ncbi
单克隆(G3896)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
西格玛奥德里奇 Gfap抗体(Sigma, G-A-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). PLoS ONE (2013) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling technology, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2c). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化; 大鼠; 1:200; 图 1d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1d). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 大鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2d). Cell Death Differ (2018) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Cell (2018) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 图 5c
  • 免疫印迹; 大鼠; 图 2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5c) 和 被用于免疫印迹在大鼠样本上 (图 2b). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Epilepsia (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 1a). J Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2j
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 2j). J Pain (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样本上 (图 1c). Redox Biol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 犬; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 犬; 1:2500; 图 st8
  • 免疫组化-冰冻切片; 大鼠; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 st8
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化-冰冻切片在犬样本上浓度为1:2500 (图 st8), 被用于免疫组化-石蜡切片在犬样本上浓度为1:2500 (图 st8), 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2500 (图 st8) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2500 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). PLoS ONE (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 图 3gb
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样本上 (图 3gb) 和 被用于免疫印迹在人类样本上 (图 3a). Mol Oncol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2b). J Exp Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 表 4
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling, 3670)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:250; 图 s5b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670P)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s5b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 s5
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 s5). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫细胞化学; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫细胞化学在人类样本上 (图 6b). Oncogene (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2c). Neurobiol Dis (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 8152)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化; 小鼠; 1:200; 图 S1c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 S1c). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 8
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 36705)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling, 3670)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司 Gfap抗体(cell signalling, GA5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:2000; 图 1s2
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1s2). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3c). Am J Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s22
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s22). Nat Biotechnol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Nature (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 图 3e
  • 免疫印迹; 大鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在大鼠样本上 (图 3e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3i). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫印迹在小鼠样本上浓度为1:500. FASEB J (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3670)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Brain (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Mol Cancer (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling Technology, 3670S)被用于被用于免疫细胞化学在小鼠样本上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 图 4h
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3657)被用于被用于免疫细胞化学在大鼠样本上 (图 4h). J Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:300; 图 5
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, clone GA5)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 流式细胞仪; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, GA5)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3655)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Int J Oral Maxillofac Surg (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, #3670)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Neurochem Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670S)被用于被用于免疫组化在小鼠样本上浓度为1:300. Mol Neurobiol (2014) ncbi
Aves Labs
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 4
Aves Labs Gfap抗体(Aves Labs, GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 4). Front Microbiol (2017) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:400
Aves Labs Gfap抗体(AVES, GFAP)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Control Release (2015) ncbi
Advanced ImmunoChemical
  • 免疫组化-冰冻切片; 大鼠
  • 免疫组化-冰冻切片; 小鼠
Advanced ImmunoChemical Gfap抗体(Advanced Immunochemical, O31223)被用于被用于免疫组化-冰冻切片在大鼠样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2006) ncbi
丹科医疗器械技术服务(上海)有限公司
多克隆
  • 免疫组化; 小鼠; 1:200; 图 s3c
丹科医疗器械技术服务(上海)有限公司 Gfap抗体(Dako, ZO334)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3c). Nat Commun (2019) ncbi
上海普洛麦格生物产品有限公司
  • 免疫组化-自由浮动切片; 小鼠; 1:150; 图 1
上海普洛麦格生物产品有限公司 Gfap抗体(Promega, G560A)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:150 (图 1). PLoS ONE (2009) ncbi
默克密理博中国
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 1a
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫细胞化学在人类样本上 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Theranostics (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Oxid Med Cell Longev (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4e
  • 免疫印迹; 小鼠; 1:1000; 图 4d
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:500; 图 1g1
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1g1). EBioMedicine (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 图 s9d
默克密理博中国 Gfap抗体(Milipore, MAB360)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s9d). Science (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 1:1500; 图 4c
默克密理博中国 Gfap抗体(EMD Millipore, MAB360)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1500 (图 4c). Nature (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3b
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4a). CNS Neurosci Ther (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4r
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4r). Nat Med (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:400; 图 2d
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2d). Neuron (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4b
  • 免疫细胞化学; 小鼠; 1:500; 图 2e
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2e). Cell (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1 ug/ml; 图 2a, 2s1c
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1 ug/ml (图 2a, 2s1c). elife (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 1b
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上 (图 1b). J Comp Neurol (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3c
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3c). Neuron (2018) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4b
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4b). J Chem Neuroanat (2018) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:50; 图 s2
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s2). PLoS Pathog (2018) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2s2c
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2s2c). elife (2018) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1a
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1a). Nat Med (2018) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2c
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2c). J Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 豚鼠; 1:200; 图 2c
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在豚鼠样本上浓度为1:200 (图 2c). Dev Growth Differ (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 表 2
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 2). J Neurosci Res (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:1000; 图 7e
默克密理博中国 Gfap抗体(Millipore Bioscience, MAB360)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 7e). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图 2d
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样本上 (图 2d). Stem Cells Int (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:5000; 表 1
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (表 1). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c). Nat Commun (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 1b
  • 免疫组化; 小鼠; 图 1b
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 1b) 和 被用于免疫组化在小鼠样本上 (图 1b). Neuron (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a,3b,3c
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3a,3b,3c). J Neuroinflammation (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 5d
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 5d). Nature (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:200; 图 4o
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4o). Int J Mol Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 7c
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 7c). J Mol Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3a
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3a). J Neurosci Res (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; baboons; 1:300; 图 4
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在baboons样本上浓度为1:300 (图 4). Biol Res (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 表 2
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (表 2). Front Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:10,000; 图 s2d
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:10,000 (图 s2d). Brain Behav Immun (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 2d
默克密理博中国 Gfap抗体(Millipore, MAB 360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (图 2d). BMC Neurosci (2016) ncbi
大鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7h
默克密理博中国 Gfap抗体(Calbiochem, 345860)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 7h). J Comp Neurol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 图 4
默克密理博中国 Gfap抗体(EMD Millipore, MAB3402)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). elife (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图 6a
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6a). Br J Pharmacol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5
  • 免疫印迹; 大鼠; 1:2500
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:2500. Mol Genet Metab (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2e
  • 免疫印迹; 小鼠; 1:2000; 图 1b
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2e) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b). Neuropharmacology (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 2
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上 (图 2). Redox Biol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3g
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3g). J Headache Pain (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 s2g
默克密理博中国 Gfap抗体(EMD Millipore, GA5)被用于被用于免疫组化在小鼠样本上 (图 s2g). Diabetes (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:5000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:5000. Neuroscience (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 鸡; 1:400; 图 2
默克密理博中国 Gfap抗体(Calbiochem, IF03L)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:400 (图 2). BMC Biol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:500; 图 3d
  • 免疫印迹; 小鼠; 1:1000; 图 3f
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Development (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 2-s1
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化在小鼠样本上 (图 2-s1). elife (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 6a
默克密理博中国 Gfap抗体(EMD Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Comp Neurol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 6
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1d
默克密理博中国 Gfap抗体(Millipore, Mab3402)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1d). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4g
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4g). Front Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 大鼠; 1:1200; 图 3
默克密理博中国 Gfap抗体(millipore, MAB360)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1200 (图 3). J Neurochem (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:800; 图 3
默克密理博中国 Gfap抗体(Merck Millipore, MAB360)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:2000; 图 s6
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:5000; 图 1
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Glia (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 7j
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 7j). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
默克密理博中国 Gfap抗体(EMD Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). J Clin Invest (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图 2b
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1g
  • 免疫细胞化学; 小鼠; 1:1000; 图 1l
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1g) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1l). Nat Commun (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:500; 图 5
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 3c-d
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上 (图 3e) 和 被用于免疫印迹在小鼠样本上 (图 3c-d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). EMBO Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:200; 图 6
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 6). J Mater Sci Mater Med (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 图 1
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 图 2
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 6
  • 免疫印迹; 大鼠; 1:400; 图 6
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:400 (图 6). Exp Neurol (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
默克密理博中国 Gfap抗体(Millipore, IF03L)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Neuropathol Appl Neurobiol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:800; 图 4a
  • 免疫印迹; 大鼠; 1:60,000; 图 2b
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:800 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:60,000 (图 2b). Neuroscience (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 1
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 图 5
默克密理博中国 Gfap抗体(Merck KGaA, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5). BMC Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; tiger salamander; 1:400; 图 7
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化在tiger salamander样本上浓度为1:400 (图 7). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:400; 图 6
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 2
默克密理博中国 Gfap抗体(Chemicon-Millipore, MAB 360)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 7
默克密理博中国 Gfap抗体(millipore, MAB3402)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 7). Anesthesiology (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:4000; 图 2
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000 (图 2). Mol Brain (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 图 2
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 图 1
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样本上 (图 1). Stem Cells Dev (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:500
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Glia (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 3
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:100. Eur J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 s13
默克密理博中国 Gfap抗体(Millipore, MAB 360)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s13). PLoS Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:5000
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化在大鼠样本上浓度为1:5000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化在大鼠样本上. CNS Neurosci Ther (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 2
默克密理博中国 Gfap抗体(Millipore, MAB 360)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 图 s2b
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2b). Nature (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Brain Inj (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:200; 图 s1
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:100
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. J Cell Physiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 10
默克密理博中国 Gfap抗体(EMD Millipore, mab3402)被用于被用于免疫组化在小鼠样本上 (图 10). Mol Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 人类; 1:200; 图 1
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1). Cell Transplant (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000; 图 3
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样本上浓度为1:200. Biomaterials (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 4
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上 (图 4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200
默克密理博中国 Gfap抗体(EMD Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. J Neuroinflammation (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:400
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:400. Neuroimage (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 5P
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5P). J Neurochem (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:200; 图 s4
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 s4). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 2
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). Int J Oncol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Neurobiol Dis (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:400
  • 免疫组化-石蜡切片; 人类; 1:400
默克密理博中国 Gfap抗体(Millipore, MAB 360)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Brain (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7). Nat Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 Gfap抗体(Millipore Corporation, Mab360)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurochem (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:400
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
  • 免疫细胞化学; 小鼠; 1:500; 图 4
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Development (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB3402C3)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Toxicol In Vitro (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:500
  • 免疫组化; 小鼠; 1:500
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上浓度为1:500. Neurobiol Dis (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:500; 图 2a
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2a). J Neurosci Res (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000. Front Neural Circuits (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 Gfap抗体(EMD Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:500
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Cell Tissue Res (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. Front Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:25,000; 图 s3
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25,000 (图 s3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
默克密理博中国 Gfap抗体(Millipore, MAB 360)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Cereb Cortex (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 1:1000
默克密理博中国 Gfap抗体(EMD Millipore, MAB360)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:100. Toxicol Sci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠
默克密理博中国 Gfap抗体(MIllipore, GA5)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Neurosci Res (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 大鼠; 图 2b
默克密理博中国 Gfap抗体(Calbiochem, IF03L)被用于被用于免疫细胞化学在大鼠样本上 (图 2b). Exp Neurol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 1b
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). J Cell Biochem (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. J Anat (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Front Cell Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上. Brain Behav Immun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200; 图 6
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6). Stem Cells (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:200
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Acta Neuropathol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 2
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Nat Med (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图  4
默克密理博中国 Gfap抗体(Chemicon/Millipore, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图  4). Pharmacol Biochem Behav (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 斑马鱼; 1:100; 图 3
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 3). Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:100
默克密理博中国 Gfap抗体(Merck Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Int J Dev Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:5000
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 5
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 5). Brain Struct Funct (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:100
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:100
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100, 被用于免疫组化在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:100. J Neuroinflammation (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:400
默克密理博中国 Gfap抗体(Millipore, Mab360)被用于被用于免疫组化在小鼠样本上浓度为1:400. Int J Dev Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 非洲爪蛙; 1:400
默克密理博中国 Gfap抗体(Milipore, MAB360)被用于被用于免疫细胞化学在非洲爪蛙样本上浓度为1:400. Gen Comp Endocrinol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
默克密理博中国 Gfap抗体(EMD Millipore, mAb360)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. J Histochem Cytochem (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:10000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. Front Integr Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:3000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:3000. J Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurochem (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样本上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 人类; 1:500
  • 免疫组化-自由浮动切片; 猕猴; 1:500
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 和 被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:500. J Comp Neurol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Glia (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:1000
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Chemicon International, MAB360)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 和 被用于免疫组化在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国 Gfap抗体(Chemicon International, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:10000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:10000. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; African green monkey; 1:100000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在African green monkey样本上浓度为1:100000. Mol Ther (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Eye Res (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:400
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400. J Virol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 大鼠
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫细胞化学在大鼠样本上. J Mol Neurosci (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 2, 3
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2, 3). Development (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). Development (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1500
默克密理博中国 Gfap抗体(Chemicon International, GA5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫细胞化学在小鼠样本上. Anal Chem (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
默克密理博中国 Gfap抗体(Millipore, GA5)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Toxicol Lett (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-自由浮动切片在小鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样本上. elife (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 犬
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在犬样本上. Methods Mol Biol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:4000
  • 免疫印迹; 小鼠
  • 免疫组化-自由浮动切片; 大鼠; 1:4000
  • 免疫印迹; 大鼠
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:4000, 被用于免疫印迹在小鼠样本上, 被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:4000 和 被用于免疫印迹在大鼠样本上. Mol Neurobiol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫组化-冰冻切片; 大鼠
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于免疫组化-冰冻切片在大鼠样本上. Anesthesiology (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:2500; 图 6
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 6). ASN Neuro (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 1:500
  • 免疫组化; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500, 被用于免疫组化在大鼠样本上浓度为1:500 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Biomaterials (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:1000. Neuro Oncol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 1 ug/ml
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; African green monkey; 1:100000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:100000. Hum Gene Ther (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:800
  • 免疫印迹; 大鼠; 1:60000
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800 和 被用于免疫印迹在大鼠样本上浓度为1:60000. J Neurotrauma (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200
默克密理博中国 Gfap抗体(Millipore Corporation, GA5)被用于被用于免疫组化在小鼠样本上浓度为1:200. Reprod Toxicol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Neuroinflammation (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在小鼠样本上. Neurobiol Dis (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:300
默克密理博中国 Gfap抗体(Millipore, GA5)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300. J Neurosci (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:500
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. PLoS ONE (2012) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 猕猴; 1:500
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫细胞化学在猕猴样本上浓度为1:500. Stem Cells Dev (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:800
  • 免疫组化; 人类; 1:800
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫细胞化学在人类样本上浓度为1:800 和 被用于免疫组化在人类样本上浓度为1:800. Gene Ther (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 大鼠; 1:800
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800. Cell Mol Neurobiol (2013) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:5000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000. J Neuroinflammation (2012) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Brain (2012) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. Exp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 Gfap抗体(Millipore, MAB360)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 人类; 1:2000
默克密理博中国 Gfap抗体(Millipore, MAB3402)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000. J Comp Neurol (2009) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1,000
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化在小鼠样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 小鼠; 1:2,000
  • 免疫细胞化学; 小鼠; 1:2,000
  • 免疫印迹; 小鼠; 1:30,000
默克密理博中国 Gfap抗体(Chemicon, MAB 3402)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2,000, 被用于免疫细胞化学在小鼠样本上浓度为1:2,000 和 被用于免疫印迹在小鼠样本上浓度为1:30,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 鸡; 1:400
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化在鸡样本上浓度为1:400. J Comp Neurol (2007) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:2,500
默克密理博中国 Gfap抗体(Chemicon, MAB360)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2,500. J Comp Neurol (2006) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
  • 免疫组化; 小鼠; 1:200
默克密理博中国 Gfap抗体(Chemicon, MAB3402)被用于被用于免疫组化在大鼠样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:200. J Comp Neurol (2006) ncbi
碧迪BD
小鼠 单克隆(2E1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s6b
碧迪BD Gfap抗体(BD, 556329)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s6b). Nat Neurosci (2019) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 图 s7a
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s7a). Neurosurgery (2018) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Gfap抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Cell Sci (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st8
  • 免疫组化-石蜡切片; 犬; 1:100; 图 st8
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st8
碧迪BD Gfap抗体(BD Biosciences, 556329)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 st8), 被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (图 st8) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
碧迪BD Gfap抗体(BD Pharmingen, 556327)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 人类; 1:100; 图 s8
碧迪BD Gfap抗体(BD Biosciences, 561483)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠; 1:2000; 图 3
  • 免疫印迹; 大鼠; 1:2000; 图 3
碧迪BD Gfap抗体(BD, 556327)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:2000; 图 3
碧迪BD Gfap抗体(BD Pharmigen, 556327)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 1:50; 图 4
碧迪BD Gfap抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 人类; 1:500; 图 6
碧迪BD Gfap抗体(BD Pharmingen, 556330)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Glia (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 小鼠; 0.01 ug/ml; 图 4
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.01 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 4, 7
碧迪BD Gfap抗体(BD Pharmingen, 561483)被用于被用于流式细胞仪在小鼠样本上 (图 4, 7). Nat Neurosci (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:1000; 图 5
碧迪BD Gfap抗体(BD Pharmingen, 556329)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5). Eneuro (2015) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 人类; 图 4
碧迪BD Gfap抗体(Becton-Dickinson, 561449)被用于被用于流式细胞仪在人类样本上 (图 4). Int J Oncol (2015) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 小鼠; 图 2a
碧迪BD Gfap抗体(BD Biosciences, 1B4)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Hepatology (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠
碧迪BD Gfap抗体(BD Pharmagen, Clon 4a11, Ref. 55632)被用于被用于免疫组化在大鼠样本上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:200; 图 8
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8). Neurotherapeutics (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD Gfap抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD Gfap抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(52/GFAP)
  • 免疫细胞化学; 大鼠; 1:500; 图 11
碧迪BD Gfap抗体(BD Biosciences, 610565)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 11). Pain (2014) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:200
碧迪BD Gfap抗体(BD Pharmigen, 556327)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. J Comp Neurol (2010) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s10c
徕卡显微系统(上海)贸易有限公司 Gfap抗体(Novocastra, NCL-GFAP-GA5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s10c). Nat Neurosci (2017) ncbi
单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
徕卡显微系统(上海)贸易有限公司 Gfap抗体(Novocastra, NCL-GFAPGA5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). EMBO J (2016) ncbi
单克隆
  • 免疫印迹; 小鼠; 1:500; 图 1b
徕卡显微系统(上海)贸易有限公司 Gfap抗体(Novocastra, NCL-GFAP-GA5)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Sci Rep (2016) ncbi
文章列表
  1. Huang C, Lu S, Huang T, Huang B, Sun H, Yang S, et al. FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics. 2020;10:2817-2831 pubmed 出版商
  2. Kosuge Y, Kaneko E, Nango H, Miyagishi H, Ishige K, Ito Y. Bidens pilosa Extract Administered after Symptom Onset Attenuates Glial Activation, Improves Motor Performance, and Prolongs Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. Oxid Med Cell Longev. 2020;2020:1020673 pubmed 出版商
  3. Hu C, Wang W, Brind Amour J, Singh P, Reeves G, Lorincz M, et al. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science. 2020;367:870-874 pubmed 出版商
  4. Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun. 2020;11:941 pubmed 出版商
  5. Ayanlaja A, Ji G, Wang J, Gao Y, Cheng B, Kanwore K, et al. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal. 2020;18:24 pubmed 出版商
  6. Chen F, Liu X, Chen Y, Liu J, Lu H, Wang W, et al. Sphere-induced reprogramming of RPE cells into dual-potential RPE stem-like cells. EBioMedicine. 2020;52:102618 pubmed 出版商
  7. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  8. Findlay A, McKie L, Keighren M, Clementson Mobbs S, Sanchez Pulido L, Wells S, et al. Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. Sci Rep. 2020;10:437 pubmed 出版商
  9. Evonuk K, Doyle R, Moseley C, Thornell I, Adler K, Bingaman A, et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv. 2020;6:eaax5936 pubmed 出版商
  10. Han C, Liu Y, Sui Y, Chen N, Du T, Jiang Y, et al. Integrated transcriptome expression profiling reveals a novel lncRNA associated with L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Aging (Albany NY). 2020;12:718-739 pubmed 出版商
  11. Wang X, Deng Y, Gao Y, Dong Y, Wang F, Guan Z, et al. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY). 2020;12:543-570 pubmed 出版商
  12. Sun A, Yuan Q, Fukuda M, Yu W, Yan H, Lim G, et al. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science. 2019;366:1486-1492 pubmed 出版商
  13. Streeter K, Sunshine M, Brant J, Sandoval A, Maden M, Fuller D. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol. 2020;528:1535-1547 pubmed 出版商
  14. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  15. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  16. di Meco A, Pratico D. Early-life exposure to high-fat diet influences brain health in aging mice. Aging Cell. 2019;18:e13040 pubmed 出版商
  17. Blomfield I, Rocamonde B, Masdeu M, Mulugeta E, Vaga S, van den Berg D, et al. Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. elife. 2019;8: pubmed 出版商
  18. Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY). 2019;11:7257-7273 pubmed 出版商
  19. Hodge R, Bakken T, Miller J, Smith K, Barkan E, Graybuck L, et al. Conserved cell types with divergent features in human versus mouse cortex. Nature. 2019;573:61-68 pubmed 出版商
  20. Zhang R, Liu Y, Chen Y, Li Q, Marshall C, Wu T, et al. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci Ther. 2020;26:228-239 pubmed 出版商
  21. Zeitler B, Froelich S, Marlen K, Shivak D, Yu Q, Li D, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nat Med. 2019;25:1131-1142 pubmed 出版商
  22. Wegmann S, Bennett R, Delorme L, Robbins A, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404 pubmed 出版商
  23. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  24. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  25. Yang J, Vitery M, Chen J, Osei Owusu J, Chu J, Qiu Z. Glutamate-Releasing SWELL1 Channel in Astrocytes Modulates Synaptic Transmission and Promotes Brain Damage in Stroke. Neuron. 2019;102:813-827.e6 pubmed 出版商
  26. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  27. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  28. Martorell A, Paulson A, Suk H, Abdurrob F, Drummond G, Guan W, et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell. 2019;177:256-271.e22 pubmed 出版商
  29. Ortiz Álvarez G, Daclin M, Shihavuddin A, Lansade P, Fortoul A, Faucourt M, et al. Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a Common Lineage Regulated by the Geminin Family Members. Neuron. 2019;102:159-172.e7 pubmed 出版商
  30. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  31. Rotoli D, Morales M, Maeso M, Avila J, Pérez Rodríguez N, Mobasheri A, et al. IQGAP1, AmotL2, and FKBP51 Scaffoldins in the Glioblastoma Microenvironment. J Histochem Cytochem. 2019;67:481-494 pubmed 出版商
  32. Koike T, Tanaka S, Hirahara Y, Oe S, Kurokawa K, Maeda M, et al. Morphological characteristics of p75 neurotrophin receptor-positive cells define a new type of glial cell in the rat dorsal root ganglia. J Comp Neurol. 2019;527:2047-2060 pubmed 出版商
  33. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  34. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  35. Piantanida A, Acosta L, Brocardo L, Capurro C, Greer C, Rela L. Selective Cre-mediated gene deletion identifies connexin 43 as the main connexin channel supporting olfactory ensheathing cell networks. J Comp Neurol. 2019;527:1278-1289 pubmed 出版商
  36. Wong Y, Lebon L, Basso A, Kohlhaas K, Nikkel A, Robb H, et al. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. elife. 2019;8: pubmed 出版商
  37. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  38. Nazareth L, Chen M, Shelper T, Shah M, Tello Velasquez J, Walkden H, et al. Novel insights into the glia limitans of the olfactory nervous system. J Comp Neurol. 2019;527:1228-1244 pubmed 出版商
  39. Ko S, Price J, Blatch G, Nurgali K. Netrin-1-like-immunoreactivity Coexpresses With DCC and Has a Differential Level in the Myenteric Cholinergic and Nitrergic Neurons of the Adult Mouse Colon. J Histochem Cytochem. 2019;67:335-349 pubmed 出版商
  40. Webster K, Sun M, Crack P, O Brien T, Shultz S, Semple B. Age-dependent release of high-mobility group box protein-1 and cellular neuroinflammation after traumatic brain injury in mice. J Comp Neurol. 2019;527:1102-1117 pubmed 出版商
  41. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  42. López Erauskin J, Tadokoro T, Baughn M, Myers B, McAlonis Downes M, Chillon Marinas C, et al. ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron. 2018;100:816-830.e7 pubmed 出版商
  43. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  44. Betlazar C, Harrison Brown M, Middleton R, Banati R, Liu G. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci. 2018;19: pubmed 出版商
  45. Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun. 2018;504:46-53 pubmed 出版商
  46. Driessen T, Zhao C, Saenz M, Stevenson S, Owada Y, Gammie S. Down-regulation of fatty acid binding protein 7 (Fabp7) is a hallmark of the postpartum brain. J Chem Neuroanat. 2018;92:92-101 pubmed 出版商
  47. Tseligka E, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, et al. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog. 2018;14:e1007190 pubmed 出版商
  48. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  49. Weidner L, Kannan P, Mitsios N, Kang S, Hall M, Theodore W, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia. 2018;59:1507-1517 pubmed 出版商
  50. Massaro G, Mattar C, Wong A, Sirka E, Buckley S, Herbert B, et al. Fetal gene therapy for neurodegenerative disease of infants. Nat Med. 2018;24:1317-1323 pubmed 出版商
  51. Pratt D, Dominah G, Lobel G, Obungu A, Lynes J, Sanchez V, et al. Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery. 2018;: pubmed 出版商
  52. Sato J, Horibe S, Kawauchi S, Sasaki N, Hirata K, Rikitake Y. Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and α-syntrophin in aquaporin-4 expression. J Neurochem. 2018;147:495-513 pubmed 出版商
  53. Zhao C, Dong C, Frah M, Deng Y, Marie C, Zhang F, et al. Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Dev Cell. 2018;45:753-768.e8 pubmed 出版商
  54. Giera S, Luo R, Ying Y, Ackerman S, Jeong S, Stoveken H, et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. elife. 2018;7: pubmed 出版商
  55. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  56. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  57. Hamdan H, Patyal P, Kockara N, Wight P. The wmN1 enhancer region in intron 1 is required for expression of human PLP1. Glia. 2018;66:1763-1774 pubmed 出版商
  58. Zhu B, Carmichael R, Solabre Valois L, Wilkinson K, Henley J. The transcription factor MEF2A plays a key role in the differentiation/maturation of rat neural stem cells into neurons. Biochem Biophys Res Commun. 2018;500:645-649 pubmed 出版商
  59. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  60. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  61. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  62. Zukor K, Wang H, Siddharthan V, Julander J, Morrey J. Zika virus-induced acute myelitis and motor deficits in adult interferon ??/? receptor knockout mice. J Neurovirol. 2018;24:273-290 pubmed 出版商
  63. Hu X, Das B, Hou H, He W, Yan R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J Exp Med. 2018;215:927-940 pubmed 出版商
  64. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  65. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172:409-422.e21 pubmed 出版商
  66. Sun G, Yang S, Cao G, Wang Q, Hao J, Wen Q, et al. γδ T cells provide the early source of IFN-γ to aggravate lesions in spinal cord injury. J Exp Med. 2018;215:521-535 pubmed 出版商
  67. Watanabe Matsumoto S, Moriwaki Y, Okuda T, Ohara S, Yamanaka K, Abe Y, et al. Dissociation of blood-brain barrier disruption and disease manifestation in an aquaporin-4-deficient mouse model of amyotrophic lateral sclerosis. Neurosci Res. 2018;133:48-57 pubmed 出版商
  68. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  69. Zou J, Zhang B, Gutmann D, Wong M. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Epilepsia. 2017;58:2053-2063 pubmed 出版商
  70. Curry D, Young M, Tran A, Daoud G, Howell L. Separating the agony from ecstasy: R(-)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice. Neuropharmacology. 2018;128:196-206 pubmed 出版商
  71. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  72. Brown I, Gulbransen B. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. Am J Physiol Gastrointest Liver Physiol. 2018;314:G39-G52 pubmed 出版商
  73. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  74. Bayguinov P, Ma Y, Gao Y, Zhao X, Jackson M. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. J Neurosci. 2017;37:9305-9319 pubmed 出版商
  75. Yang Y, Yang S, Guo J, Cui Y, Tang B, Li X, et al. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci. 2017;37:9101-9115 pubmed 出版商
  76. Lin N, Messing A, Perng M. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS ONE. 2017;12:e0180694 pubmed 出版商
  77. Filice F, Celio M, Babalian A, Blum W, Szabolcsi V. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice. J Comp Neurol. 2017;525:3266-3285 pubmed 出版商
  78. Hatakeyama J, Sato H, Shimamura K. Developing guinea pig brain as a model for cortical folding. Dev Growth Differ. 2017;59:286-301 pubmed 出版商
  79. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  80. Harder J, Braine C, Williams P, Zhu X, MacNicoll K, Sousa G, et al. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A. 2017;114:E3839-E3848 pubmed 出版商
  81. Hou J, Xue J, Lee M, Sung C. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury. Biomed Rep. 2017;6:435-440 pubmed 出版商
  82. Wizeman J, Mohan R. Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis. Biochem Biophys Res Commun. 2017;487:134-139 pubmed 出版商
  83. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  84. Theofilas P, Steinhäuser C, Theis M, Derouiche A. Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells. J Neurosci Res. 2017;95:2182-2194 pubmed 出版商
  85. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  86. Jin X, Yu Z, Chen F, Lu G, Ding X, Xie L, et al. Neuronal Nitric Oxide Synthase in Neural Stem Cells Induces Neuronal Fate Commitment via the Inhibition of Histone Deacetylase 2. Front Cell Neurosci. 2017;11:66 pubmed 出版商
  87. Yungher B, Ribeiro M, Park K. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci. 2017;58:1743-1750 pubmed 出版商
  88. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  89. Po A, Begalli F, Abballe L, Alfano V, Besharat Z, Catanzaro G, et al. ?-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest. Stem Cells Int. 2017;2017:5274171 pubmed 出版商
  90. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  91. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  92. Jongbloets B, Lemstra S, Schellino R, Broekhoven M, Parkash J, Hellemons A, et al. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun. 2017;8:14666 pubmed 出版商
  93. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  94. Ronca S, Smith J, Koma T, Miller M, Yun N, Dineley K, et al. Mouse Model of Neurological Complications Resulting from Encephalitic Alphavirus Infection. Front Microbiol. 2017;8:188 pubmed 出版商
  95. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  96. Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans Borgmeyer I, Liu B, et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017;65:773-789 pubmed 出版商
  97. Kuipers H, Yoon J, van Horssen J, Han M, Bollyky P, Palmer T, et al. Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination. Proc Natl Acad Sci U S A. 2017;114:E1745-E1754 pubmed 出版商
  98. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  99. Zhu Y, Lyapichev K, Lee D, Motti D, Ferraro N, Zhang Y, et al. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. J Neurosci. 2017;37:2362-2376 pubmed 出版商
  100. Berghoff S, Gerndt N, Winchenbach J, Stumpf S, Hosang L, Odoardi F, et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun. 2017;8:14241 pubmed 出版商
  101. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  102. Tufail Y, Cook D, Fourgeaud L, Powers C, Merten K, Clark C, et al. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron. 2017;93:574-586.e8 pubmed 出版商
  103. Zhao L, Li J, Fu Y, Zhang M, Wang B, Ouellette J, et al. Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration. J Neuroinflammation. 2017;14:14 pubmed 出版商
  104. Mellott T, Huleatt O, Shade B, Pender S, Liu Y, Slack B, et al. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice. PLoS ONE. 2017;12:e0170450 pubmed 出版商
  105. Zhang C, Mukherjee S, Tucker Burden C, Ross J, Chau M, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280-294 pubmed 出版商
  106. Liddelow S, Guttenplan K, Clarke L, Bennett F, Bohlen C, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481-487 pubmed 出版商
  107. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  108. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  109. Kim J, Lee J, Sun W. Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone. J Vis Exp. 2016;: pubmed 出版商
  110. Zhao B, Pan Y, Xu H, Song X. Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats. J Headache Pain. 2017;18:1 pubmed 出版商
  111. Zhong L, Zhou J, Chen X, Liu J, Liu Z, Chen Y, et al. Quantitative proteomics reveals EVA1A-related proteins involved in neuronal differentiation. Proteomics. 2017;17: pubmed 出版商
  112. Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, et al. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med. 2017;214:547-563 pubmed 出版商
  113. Liu W, Sun Y, He Y, Zhang H, Zheng Y, Yao Y, et al. IL-1? impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint. Int J Mol Med. 2017;39:317-326 pubmed 出版商
  114. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  115. Perland E, Hellsten S, Lekholm E, Eriksson M, Arapi V, Fredriksson R. The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake. J Mol Neurosci. 2017;61:199-214 pubmed 出版商
  116. Sun C, Zhang J, Chen L, Liu T, Xu G, Li C, et al. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol Med Rep. 2017;15:89-96 pubmed 出版商
  117. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  118. Gray J, Rubin T, Kogan J, Marrocco J, Weidmann J, Lindkvist S, et al. Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice. Mol Psychiatry. 2018;23:904-913 pubmed 出版商
  119. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  120. Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, et al. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res. 2017;95:1647-1665 pubmed 出版商
  121. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  122. Retallack H, Di Lullo E, Arias C, Knopp K, Laurie M, Sandoval Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113:14408-14413 pubmed
  123. Ji B, Kaneko H, Minamimoto T, Inoue H, Takeuchi H, Kumata K, et al. Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors. J Neurosci. 2016;36:11544-11558 pubmed
  124. Marco E, Ballesta J, Irala C, Hernández M, Serrano M, Mela V, et al. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav. 2017;152:68-80 pubmed 出版商
  125. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  126. Song D, Wilson B, Zhao L, Bhuyan R, Bandyopadhyay M, Lyubarsky A, et al. Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration. PLoS ONE. 2016;11:e0166348 pubmed 出版商
  127. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  128. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  129. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  130. Hayano Y, Takasu K, Koyama Y, Yamada M, Ogawa K, Minami K, et al. Dorsal horn interneuron-derived Netrin-4 contributes to spinal sensitization in chronic pain via Unc5B. J Exp Med. 2016;213:2949-2966 pubmed
  131. Hübner N, Mechling A, Lee H, Reisert M, Bienert T, Hennig J, et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1-18 pubmed 出版商
  132. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  133. Pérez Ibave D, González Alvarez R, de La Luz Martinez Fierro M, Ruiz Ayma G, Luna Muñoz M, Martínez de Villarreal L, et al. Olfactomedin-like 2 A and B (OLFML2A and OLFML2B) expression profile in primates (human and baboon). Biol Res. 2016;49:44 pubmed
  134. Fröhlich D, Suchowerska A, Spencer Z, von Jonquieres G, Klugmann C, Bongers A, et al. In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiol Dis. 2017;97:24-35 pubmed 出版商
  135. Tirosh I, Venteicher A, Hebert C, Escalante L, Patel A, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309-313 pubmed 出版商
  136. Shepherd D, Tsai S, O Brien T, Farrer R, Kartje G. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats. Front Neurosci. 2016;10:467 pubmed
  137. Lin N, Huang Y, Opal P, Goldman R, Messing A, Perng M. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP. Mol Biol Cell. 2016;27:3980-3990 pubmed
  138. Yu W, Parakramaweera R, Teng S, Gowda M, Sharad Y, Thakker Varia S, et al. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J Neurosci. 2016;36:11084-11096 pubmed
  139. Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia. 2017;65:278-292 pubmed 出版商
  140. Goebbels S, Wieser G, Pieper A, Spitzer S, Weege B, Yan K, et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci. 2017;20:10-15 pubmed 出版商
  141. Zukor K, Wang H, Hurst B, Siddharthan V, van Wettere A, Pilowsky P, et al. Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters. J Neurovirol. 2017;23:186-204 pubmed 出版商
  142. Nguyen H, Kirkton R, Bursac N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat Commun. 2016;7:13132 pubmed 出版商
  143. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  144. Teo J, Morris M, Jones N. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain Behav Immun. 2017;63:186-196 pubmed 出版商
  145. Koyanagi S, Kusunose N, Taniguchi M, Akamine T, Kanado Y, Ozono Y, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102 pubmed 出版商
  146. Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci. 2016;17:64 pubmed
  147. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  148. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia. 2017;65:231-249 pubmed 出版商
  149. Wizeman J, Nicholas A, Ishigami A, Mohan R. Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis. 2016;22:1137-1155 pubmed
  150. Khoutorsky A, Sorge R, Prager Khoutorsky M, Pawlowski S, Longo G, Jafarnejad S, et al. eIF2? phosphorylation controls thermal nociception. Proc Natl Acad Sci U S A. 2016;113:11949-11954 pubmed
  151. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert D. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ. 2016;58:664-676 pubmed 出版商
  152. Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn M, et al. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol. 2017;525:1155-1175 pubmed 出版商
  153. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  154. Draheim T, Liessem A, Scheld M, Wilms F, Weißflog M, Denecke B, et al. Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia. 2016;64:2219-2230 pubmed 出版商
  155. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  156. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  157. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  158. Alomar F, Singh J, Jang H, Rozanzki G, Shao C, Padanilam B, et al. Smooth muscle-generated methylglyoxal impairs endothelial cell-mediated vasodilatation of cerebral microvessels in type 1 diabetic rats. Br J Pharmacol. 2016;173:3307-3326 pubmed 出版商
  159. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  160. Cudré Cung H, Zavadakova P, Do Vale Pereira S, Remacle N, Henry H, Ivanisevic J, et al. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab. 2016;119:57-67 pubmed 出版商
  161. Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, et al. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun. 2016;4:94 pubmed 出版商
  162. Barron A, Tokunaga M, Zhang M, Ji B, Suhara T, Higuchi M. Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET. J Neuroinflammation. 2016;13:221 pubmed 出版商
  163. Choi S, Roh D, Yoon S, Kwon S, Choi H, Han H, et al. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology. 2016;111:34-46 pubmed 出版商
  164. Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation. 2016;13:208 pubmed 出版商
  165. Du R, Wu F, Lu M, Shu X, Ding J, Wu G, et al. Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression. Redox Biol. 2016;9:178-187 pubmed 出版商
  166. Cheng Z, Zhu W, Cao K, Wu F, Li J, Wang G, et al. Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury. Int J Mol Sci. 2016;17: pubmed 出版商
  167. Fitzgerald P, Sun N, Shibata B, Hess J. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium. Mol Vis. 2016;22:970-89 pubmed
  168. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  169. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  170. Chen N, Chen W, Sung C, Lu C, Chen C, Hung H, et al. Contributions of p38 and ERK to the antinociceptive effects of TGF-?1 in chronic constriction injury-induced neuropathic rats. J Headache Pain. 2016;17:72 pubmed 出版商
  171. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  172. Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, et al. Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J. 2016;35:2008-25 pubmed 出版商
  173. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4:76 pubmed 出版商
  174. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed 出版商
  175. Portillo J, Lopez Corcino Y, Miao Y, Tang J, Sheibani N, Kern T, et al. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy. Diabetes. 2017;66:483-493 pubmed 出版商
  176. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  177. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  178. Murlidharan G, Sakamoto K, Rao L, Corriher T, Wang D, Gao G, et al. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector. Mol Ther Nucleic Acids. 2016;5:e338 pubmed 出版商
  179. Nott A, Cheng J, Gao F, Lin Y, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497-1505 pubmed 出版商
  180. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  181. Achuta V, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, et al. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol. 2017;77:438-453 pubmed 出版商
  182. Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield S. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J Comp Neurol. 2019;527:159-173 pubmed 出版商
  183. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  184. Walker W, Oehler A, Edinger A, Wagner K, Gunn T. Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy. Biol Cell. 2016;108:324-337 pubmed 出版商
  185. Duggett N, Griffiths L, McKenna O, De Santis V, Yongsanguanchai N, Mokori E, et al. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience. 2016;333:13-26 pubmed 出版商
  186. Peretz Y, Eren N, Kohl A, Hen G, Yaniv K, Weisinger K, et al. A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biol. 2016;14:57 pubmed 出版商
  187. Huang Z, Hu J, Pan J, Wang Y, Hu G, Zhou J, et al. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development. 2016;143:2398-409 pubmed 出版商
  188. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5: pubmed 出版商
  189. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  190. Su X, Tan Q, Parikh B, Tan A, Mehta M, Sia Wey Y, et al. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina. Invest Ophthalmol Vis Sci. 2016;57:3397-408 pubmed 出版商
  191. Park K, Luo X, Mooney S, Yungher B, Belin S, Wang C, et al. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol. 2017;525:380-388 pubmed 出版商
  192. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  193. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  194. Mavlyutov T, Duellman T, Kim H, Epstein M, Leese C, Davletov B, et al. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience. 2016;331:148-57 pubmed 出版商
  195. Yoo S, Motari M, Schnaar R. Agenesis of the corpus callosum in Nogo receptor deficient mice. J Comp Neurol. 2017;525:291-301 pubmed 出版商
  196. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  197. Vernay A, Therreau L, Blot B, Risson V, Dirrig Grosch S, Waegaert R, et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2016;25:3341-3360 pubmed 出版商
  198. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  199. Cerman E, Akkoç T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, et al. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495 pubmed 出版商
  200. Hutchinson E, Schwerin S, Radomski K, Irfanoglu M, Juliano S, Pierpaoli C. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock. 2016;46:167-76 pubmed 出版商
  201. Kizuka Y, Nakano M, Miura Y, Taniguchi N. Epigenetic regulation of neural N-glycomics. Proteomics. 2016;16:2854-2863 pubmed 出版商
  202. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  203. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  204. Perland E, Lekholm E, Eriksson M, Bagchi S, Arapi V, Fredriksson R. The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis. PLoS ONE. 2016;11:e0156912 pubmed 出版商
  205. Ávila Rodriguez M, Garcia Segura L, Hidalgo Lanussa O, Baez E, Gonzalez J, Barreto G. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol. 2016;433:35-46 pubmed 出版商
  206. Ko A, Hyun H, Min S, Kim J. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci. 2016;10:124 pubmed 出版商
  207. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  208. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  209. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  210. Nagaoka A, Takehara H, Hayashi Takagi A, Noguchi J, Ishii K, Shirai F, et al. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo. Sci Rep. 2016;6:26651 pubmed 出版商
  211. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  212. Heaven M, Flint D, Randall S, Sosunov A, Wilson L, Barnes S, et al. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res. 2016;15:2265-82 pubmed 出版商
  213. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  214. Thakurela S, Garding A, Jung R, Müller C, Goebbels S, White R, et al. The transcriptome of mouse central nervous system myelin. Sci Rep. 2016;6:25828 pubmed 出版商
  215. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  216. Rosiak K, Smolarz M, Stec W, Peciak J, Grzela D, Winiecka Klimek M, et al. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis. PLoS ONE. 2016;11:e0154726 pubmed 出版商
  217. Funk L, Hackett A, Bunge M, Lee J. Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. J Neuroinflammation. 2016;13:87 pubmed 出版商
  218. Srinivasan K, Friedman B, Larson J, Lauffer B, Goldstein L, Appling L, et al. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016;7:11295 pubmed 出版商
  219. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  220. Almad A, Doreswamy A, Gross S, Richard J, Huo Y, Haughey N, et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia. 2016;64:1154-69 pubmed 出版商
  221. Chtarto A, Humbert Claude M, Bockstael O, Das A, Boutry S, Breger L, et al. A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. Mol Ther Methods Clin Dev. 2016;5:16027 pubmed 出版商
  222. Kim S, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126:1983-97 pubmed 出版商
  223. Isotani A, Yamagata K, Okabe M, Ikawa M. Generation of Hprt-disrupted rat through mouse?rat ES chimeras. Sci Rep. 2016;6:24215 pubmed 出版商
  224. Bubenheimer R, Brown I, Fried D, McClain J, Gulbransen B. Sirtuin-3 Is Expressed by Enteric Neurons but It Does not Play a Major Role in Their Regulation of Oxidative Stress. Front Cell Neurosci. 2016;10:73 pubmed 出版商
  225. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  226. Fujiwara K, Fujita Y, Kasai A, Onaka Y, Hashimoto H, Okada H, et al. Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse. Transl Psychiatry. 2016;6:e766 pubmed 出版商
  227. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  228. Meunier C, Dallérac G, Le Roux N, Sacchi S, Levasseur G, Amar M, et al. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period. PLoS ONE. 2016;11:e0151233 pubmed 出版商
  229. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  230. Yousuf M, Tan C, Torres Altoro M, Lu F, Plautz E, Zhang S, et al. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem. 2016;138:317-27 pubmed 出版商
  231. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  232. Smeester B, O Brien E, Michlitsch K, Lee J, Beitz A. The relationship of bone-tumor-induced spinal cord astrocyte activation and aromatase expression to mechanical hyperalgesia and cold hypersensitivity in intact female and ovariectomized mice. Neuroscience. 2016;324:344-54 pubmed 出版商
  233. Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol. 2016;279:243-260 pubmed 出版商
  234. Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph K, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY). 2016;8:382-93 pubmed
  235. Wang G, Liu X, Gaertig M, Li S, Li X. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci U S A. 2016;113:3359-64 pubmed 出版商
  236. Bonini S, Mastinu A, Maccarinelli G, Mitola S, Premoli M, La Rosa L, et al. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice. Cereb Cortex. 2016;26:2832-49 pubmed 出版商
  237. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  238. Maeda S, Djukic B, Taneja P, Yu G, Lo I, Davis A, et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 2016;17:530-51 pubmed 出版商
  239. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  240. Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez Marin A, et al. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet. 2016;25:1792-802 pubmed 出版商
  241. Hinrich A, Jodelka F, Chang J, Brutman D, Bruno A, Briggs C, et al. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol Med. 2016;8:328-45 pubmed 出版商
  242. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J Mater Sci Mater Med. 2016;27:77 pubmed 出版商
  243. Liu R, Li S, Garcia E, Glubrecht D, Poon H, Easaw J, et al. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia. 2016;64:963-76 pubmed 出版商
  244. Ma Y, Guo H, Zhang L, Tao L, Yin A, Liu Z, et al. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β. Sci Rep. 2016;6:21467 pubmed 出版商
  245. Zhu Y, Gao W, Zhang Y, Jia F, Zhang H, Liu Y, et al. Astrocyte-derived phosphatidic acid promotes dendritic branching. Sci Rep. 2016;6:21096 pubmed 出版商
  246. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed 出版商
  247. Merdzo I, Rutkai I, Tokés T, Sure V, Katakam P, Busija D. The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats. Am J Physiol Heart Circ Physiol. 2016;310:H830-8 pubmed 出版商
  248. Liu B, Ma A, Zhang F, Wang Y, Li Z, Li Q, et al. MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis. Sci Rep. 2016;6:21534 pubmed 出版商
  249. Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease. Transl Psychiatry. 2016;6:e733 pubmed 出版商
  250. Delcambre G, Liu J, Herrington J, Vallario K, Long M. Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue. Peerj. 2016;4:e1601 pubmed 出版商
  251. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, et al. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep. 2016;13:2552-60 pubmed 出版商
  252. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  253. Wang C, Zhang F, Jiang S, Siedlak S, Shen L, Perry G, et al. Estrogen receptor-? is localized to neurofibrillary tangles in Alzheimer's disease. Sci Rep. 2016;6:20352 pubmed 出版商
  254. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  255. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  256. Hackett A, Lee D, Dawood A, Rodriguez M, Funk L, Tsoulfas P, et al. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis. 2016;89:10-22 pubmed 出版商
  257. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  258. Hares K, Redondo J, Kemp K, Rice C, Scolding N, Wilkins A. Axonal motor protein KIF5A and associated cargo deficits in multiple sclerosis lesional and normal-appearing white matter. Neuropathol Appl Neurobiol. 2017;43:227-241 pubmed 出版商
  259. Kang S, Murphy R, Hwang S, Lee S, Harburg D, Krueger N, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71-6 pubmed 出版商
  260. Brown I, McClain J, Watson R, Patel B, Gulbransen B. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2:77-91 pubmed
  261. Najafi E, Stoodley M, Bilston L, Hemley S. Inwardly rectifying potassium channel 4.1 expression in post-traumatic syringomyelia. Neuroscience. 2016;317:23-35 pubmed 出版商
  262. Lian H, Litvinchuk A, Chiang A, Aithmitti N, Jankowsky J, Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci. 2016;36:577-89 pubmed 出版商
  263. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  264. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  265. Choudhury S, Harris A, Cabral D, Keeler A, Sapp E, Ferreira J, et al. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Mol Ther. 2016;24:726-35 pubmed 出版商
  266. Platt T, Beckett T, Kohler K, Niedowicz D, Murphy M. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162-74 pubmed 出版商
  267. Sharpe M, Baskin D. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget. 2016;7:3379-93 pubmed 出版商
  268. Janmaat C, de Rooij K, Locher H, de Groot S, de Groot J, Frijns J, et al. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins. PLoS ONE. 2015;10:e0145235 pubmed 出版商
  269. Khoutorsky A, Bonin R, Sorge R, Gkogkas C, Pawlowski S, Jafarnejad S, et al. Translational control of nociception via 4E-binding protein 1. elife. 2015;4: pubmed 出版商
  270. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  271. Hristova M, Rocha Ferreira E, Fontana X, Thei L, Buckle R, Christou M, et al. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem. 2016;136:981-94 pubmed 出版商
  272. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  273. Higuchi A, Kao S, Ling Q, Chen Y, Li H, Alarfaj A, et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep. 2015;5:18136 pubmed 出版商
  274. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  275. Kim Y, Jo S, Kim W, Kweon O. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther. 2015;6:229 pubmed 出版商
  276. Fang M, Yuan Y, Rangarajan P, Lu J, Wu Y, Wang H, et al. Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci. 2015;16:84 pubmed 出版商
  277. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  278. Mircsof D, Langouët M, Rio M, Moutton S, Siquier Pernet K, Bole Feysot C, et al. Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects. Nat Neurosci. 2015;18:1731-6 pubmed 出版商
  279. Rodrigo Albors A, Tazaki A, Rost F, Nowoshilow S, Chara O, Tanaka E. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. elife. 2015;4:e10230 pubmed 出版商
  280. Park S, Brenner D, Shin G, Morgan C, Copits B, Chung H, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol. 2015;33:1280-1286 pubmed 出版商
  281. Winiecka Klimek M, Smolarz M, Walczak M, Zieba J, Hulas Bigoszewska K, Kmieciak B, et al. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS ONE. 2015;10:e0141688 pubmed 出版商
  282. Bonaventura G, Chamayou S, Liprino A, Guglielmino A, Fichera M, Caruso M, et al. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability. PLoS ONE. 2015;10:e0140790 pubmed 出版商
  283. Wang S, Hsu J, Ko C, Chiu N, Kan W, Lai M, et al. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol. 2016;53:5912-5927 pubmed 出版商
  284. Tajerian M, Leu D, Yang P, Huang T, Kingery W, Clark J. Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice. Anesthesiology. 2015;123:1435-47 pubmed 出版商
  285. Baranowska Bosiacka I, Listos J, Gutowska I, Machoy Mokrzynska A, Kolasa Wołosiuk A, Tarnowski M, et al. Effects of perinatal exposure to lead (Pb) on purine receptor expression in the brain and gliosis in rats tolerant to morphine analgesia. Toxicology. 2016;339:19-33 pubmed 出版商
  286. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  287. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  288. Hauser D, Primiani C, Langston R, Kumaran R, Cookson M. The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice. Eneuro. 2015;2: pubmed 出版商
  289. Ko A, Hyun H, Min S, Kim J, Kang T. Endothelin-1 induces LIMK2-mediated programmed necrotic neuronal death independent of NOS activity. Mol Brain. 2015;8:58 pubmed 出版商
  290. Moravcová S, ÄŒervená K, Pačesová D, Bendová Z. Identification of STAT3 and STAT5 proteins in the rat suprachiasmatic nucleus and the Day/Night difference in astrocytic STAT3 phosphorylation in response to lipopolysaccharide. J Neurosci Res. 2016;94:99-108 pubmed 出版商
  291. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  292. Yamamuro S, Sano E, Okamoto Y, Ochiai Y, Ohta T, Ogino A, et al. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells. Int J Oncol. 2015;47:1647-54 pubmed 出版商
  293. Hakanen J, Salminen M. Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice. Int J Dev Neurosci. 2015;47:206-15 pubmed 出版商
  294. Telias M, Mayshar Y, Amit A, Ben Yosef D. Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells. Stem Cells Dev. 2015;24:2353-65 pubmed 出版商
  295. Chen H, Sun Y, Lai L, Wu H, Xiao Y, Ming B, et al. Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice. Neuroscience. 2015;308:157-68 pubmed 出版商
  296. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  297. Chen B, Tao J, Lin Y, Lin R, Liu W, Chen L. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway. Int J Mol Med. 2015;36:1215-22 pubmed 出版商
  298. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed 出版商
  299. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  300. Huang Y, Tiao M, Huang L, Chuang J, Kuo K, Yang Y, et al. Activation of Mir-29a in Activated Hepatic Stellate Cells Modulates Its Profibrogenic Phenotype through Inhibition of Histone Deacetylases 4. PLoS ONE. 2015;10:e0136453 pubmed 出版商
  301. Korb E, Herre M, Zucker Scharff I, Darnell R, Allis C. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci. 2015;18:1464-73 pubmed 出版商
  302. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  303. Angliker N, Burri M, Zaichuk M, Fritschy J, Rüegg M. mTORC1 and mTORC2 have largely distinct functions in Purkinje cells. Eur J Neurosci. 2015;42:2595-612 pubmed 出版商
  304. Mughal A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol Cancer. 2015;14:160 pubmed 出版商
  305. Khadem F, Gao X, Mou Z, Jia P, Movassagh H, Onyilagha C, et al. Hepatic stellate cells regulate liver immunity to visceral leishmaniasis through P110δ-dependent induction and expansion of regulatory T cells in mice. Hepatology. 2016;63:620-32 pubmed 出版商
  306. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  307. Qiu H, Xu Y, Jin G, Yang J, Liu M, Li S, et al. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain. 2015;11:46 pubmed 出版商
  308. Wong F, Fei J, Mora Bermúdez F, Taverna E, Haffner C, Fu J, et al. Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biol. 2015;13:e1002217 pubmed 出版商
  309. Kim J, Ko A, Hyun H, Kang T. ETB receptor-mediated MMP-9 activation induces vasogenic edema via ZO-1 protein degradation following status epilepticus. Neuroscience. 2015;304:355-67 pubmed 出版商
  310. Zhang P, Ha T, Larouche M, Swanson D, Goldowitz D. Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development. PLoS ONE. 2015;10:e0134390 pubmed 出版商
  311. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  312. Chen W, Chen C, Chen N, Sung C, Wen Z. Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury. CNS Neurosci Ther. 2015;21:698-707 pubmed 出版商
  313. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  314. Chen Y, Huang W, Séjourné J, Clipperton Allen A, Page D. Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling. J Neurosci. 2015;35:10252-67 pubmed 出版商
  315. Song C, Wang J, Mo C, Mu S, Jiang X, Li X, et al. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro. PLoS ONE. 2015;10:e0132480 pubmed 出版商
  316. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  317. Schachtrup C, Ryu J, Mammadzada K, Khan A, Carlton P, Perez A, et al. Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions. Nat Neurosci. 2015;18:1077-80 pubmed 出版商
  318. Noell S, Fallier Becker P, Mack A, Hoffmeister M, Beschorner R, Ritz R. Water Channels Aquaporin 4 and -1 Expression in Subependymoma Depends on the Localization of the Tumors. PLoS ONE. 2015;10:e0131367 pubmed 出版商
  319. Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, et al. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo. J Neurosci. 2015;35:9336-55 pubmed 出版商
  320. Attardo A, Fitzgerald J, Schnitzer M. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature. 2015;523:592-6 pubmed 出版商
  321. Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, et al. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj. 2015;29:1165-1174 pubmed 出版商
  322. O Brien E, Smeester B, Michlitsch K, Lee J, Beitz A. Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor. Neuroscience. 2015;301:235-45 pubmed 出版商
  323. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  324. Götze S, Schumacher E, Kordes C, Häussinger D. Epigenetic Changes during Hepatic Stellate Cell Activation. PLoS ONE. 2015;10:e0128745 pubmed 出版商
  325. Tang N, Lyu D, Liu T, Chen F, Jing S, Hao T, et al. Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells. J Cell Physiol. 2016;231:172-80 pubmed 出版商
  326. Jiang J, Zhang Z, Yuan X, Poo M. Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J Cell Biol. 2015;209:759-74 pubmed 出版商
  327. Du M, Otalora L, Martin A, Moiseyev G, Vanlandingham P, Wang Q, et al. Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism. Mol Cell Biol. 2015;35:2771-89 pubmed 出版商
  328. Hoeber J, Trolle C, König N, Du Z, Gallo A, Hermans E, et al. Human Embryonic Stem Cell-Derived Progenitors Assist Functional Sensory Axon Regeneration after Dorsal Root Avulsion Injury. Sci Rep. 2015;5:10666 pubmed 出版商
  329. Guo Y, Wang D, Qiao T, Yang C, Su Q, Gao G, et al. A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord. Mol Neurobiol. 2016;53:3235-3248 pubmed 出版商
  330. Ozacmak V, Sayan Ozacmak H, Barut F. Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion. Nutr Neurosci. 2016;19:176-86 pubmed 出版商
  331. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  332. López Gallardo M, Antón Fernández A, Llorente R, Mela V, Llorente Berzal A, Prada C, et al. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation. J Neuroendocrinol. 2015;27:658-69 pubmed 出版商
  333. Bedogni F, Cobolli Gigli C, Pozzi D, Rossi R, Scaramuzza L, Rossetti G, et al. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. Cereb Cortex. 2016;26:2517-2529 pubmed 出版商
  334. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  335. Terzic D, Maxon J, Krevitt L, DiBartolomeo C, Goyal T, Low W, et al. Directed Differentiation of Oligodendrocyte Progenitor Cells From Mouse Induced Pluripotent Stem Cells. Cell Transplant. 2016;25:411-24 pubmed 出版商
  336. Yamagishi S, Yamada K, Sawada M, Nakano S, Mori N, Sawamoto K, et al. Netrin-5 is highly expressed in neurogenic regions of the adult brain. Front Cell Neurosci. 2015;9:146 pubmed 出版商
  337. Chen W, Huang S, Liao C, Sung C, Chen J, Wen Z. The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials. 2015;53:1-11 pubmed 出版商
  338. Sheean R, Weston R, Perera N, D Amico A, Nutt S, Turner B. Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice. J Neuroinflammation. 2015;12:40 pubmed 出版商
  339. Huang S, Sung C, Chen W, Chen C, Feng C, Yang S, et al. Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain. J Neuroinflammation. 2015;12:59 pubmed 出版商
  340. Orije J, Kara F, Guglielmetti C, Praet J, Van der Linden A, Ponsaerts P, et al. Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy. Neuroimage. 2015;114:128-35 pubmed 出版商
  341. Watzlawik J, Kahoud R, Ng S, Painter M, Papke L, Zoecklein L, et al. Polysialic acid as an antigen for monoclonal antibody HIgM12 to treat multiple sclerosis and other neurodegenerative disorders. J Neurochem. 2015;134:865-78 pubmed 出版商
  342. Gu Q, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789 pubmed 出版商
  343. Frank C, Liu F, Wijayatunge R, Song L, Biegler M, Yang M, et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 2015;18:647-56 pubmed 出版商
  344. Kubelt C, Hattermann K, Sebens S, Mehdorn H, Held Feindt J. Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. Int J Oncol. 2015;46:2515-25 pubmed 出版商
  345. Isaev D, Lushnikova I, Lunko O, Zapukhliak O, Maximyuk O, Romanov A, et al. Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol Dis. 2015;78:68-76 pubmed 出版商
  346. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  347. Shin C, Grossmann A, Holmen S, Robinson J. The BRAF kinase domain promotes the development of gliomas in vivo. Genes Cancer. 2015;6:9-18 pubmed
  348. Luna Sánchez M, Díaz Casado E, Barca E, Tejada M, Montilla García Ã, Cobos E, et al. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol Med. 2015;7:670-87 pubmed 出版商
  349. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  350. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  351. Filipcik P, Cente M, Zilka N, Smolek T, Hanes J, Kučerák J, et al. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes. Biochim Biophys Acta. 2015;1852:1219-29 pubmed 出版商
  352. Bedner P, Dupper A, Hüttmann K, Muller J, Herde M, Dublin P, et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain. 2015;138:1208-22 pubmed 出版商
  353. Tokuda E, Watanabe S, Okawa E, Ono S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12:461-76 pubmed 出版商
  354. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  355. Thomas A, Palma J, Shea L. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release. 2015;204:1-10 pubmed 出版商
  356. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim J, Hsieh C, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci. 2015;35:3384-96 pubmed 出版商
  357. Hu P, Thinschmidt J, Caballero S, Adamson S, Cole L, Chan Ling T, et al. Loss of survival factors and activation of inflammatory cascades in brain sympathetic centers in type 1 diabetic mice. Am J Physiol Endocrinol Metab. 2015;308:E688-98 pubmed 出版商
  358. Chen Roetling J, Song W, Schipper H, Regan C, Regan R. Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage. Stroke. 2015;46:1093-8 pubmed 出版商
  359. Xu H, Rösler T, Carlsson T, de Andrade A, Fiala O, Höllerhage M, et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther. 2014;14:343-51 pubmed
  360. Porquet D, Andrés Benito P, Griñán Ferré C, Camins A, Ferrer I, Canudas A, et al. Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordr). 2015;37:9747 pubmed 出版商
  361. Spilsbury A, Miwa S, Attems J, Saretzki G. The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro. J Neurosci. 2015;35:1659-74 pubmed 出版商
  362. Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429-47 pubmed 出版商
  363. Orr A, Hsiao E, Wang M, Ho K, Kim D, Wang X, et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci. 2015;18:423-34 pubmed 出版商
  364. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  365. Bouyakdan K, Taïb B, Budry L, Zhao S, Rodaros D, Neess D, et al. A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes. J Neurochem. 2015;133:253-65 pubmed 出版商
  366. Nakano Y, Furube E, Morita S, Wanaka A, Nakashima T, Miyata S. Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain. J Neuroimmunol. 2015;278:144-58 pubmed 出版商
  367. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med. 2015;7:175-89 pubmed 出版商
  368. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  369. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  370. Dixon A, Philbert M. Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant. Toxicol In Vitro. 2015;29:564-74 pubmed 出版商
  371. Jendresen C, Cui H, Zhang X, Vlodavsky I, Nilsson L, Li J. Overexpression of heparanase lowers the amyloid burden in amyloid-β precursor protein transgenic mice. J Biol Chem. 2015;290:5053-64 pubmed 出版商
  372. Li Y, Korgaonkar A, Swietek B, Wang J, Elgammal F, Elkabes S, et al. Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury. Neurobiol Dis. 2015;74:240-53 pubmed 出版商
  373. Knerlich Lukoschus F, Krossa S, Krause J, Mehdorn H, Scheidig A, Held Feindt J. Impact of chemokines on the properties of spinal cord-derived neural progenitor cells in a rat spinal cord lesion model. J Neurosci Res. 2015;93:562-71 pubmed 出版商
  374. Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young S, et al. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest. 2015;125:263-74 pubmed 出版商
  375. Tao Cheng J, Pham A, Yang Y, Winters C, Gallant P, Reese T. Syntaxin 4 is concentrated on plasma membrane of astrocytes. Neuroscience. 2015;286:264-71 pubmed 出版商
  376. Yin J, Wu H, Dong Y, Zhang T, Wang J, Zhang Y, et al. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray. Front Neural Circuits. 2014;8:137 pubmed 出版商
  377. Zille M, Riabinska A, Terzi M, Balkaya M, Prinz V, Schmerl B, et al. Influence of pigment epithelium-derived factor on outcome after striatal cerebral ischemia in the mouse. PLoS ONE. 2014;9:e114595 pubmed 出版商
  378. Lazarus R, Buonora J, Jacobowitz D, Mueller G. Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences. Free Radic Biol Med. 2015;78:89-100 pubmed 出版商
  379. Ceber M, Mihmanli A, Kilic U, Sener U, Yuksek A, Durak M, et al. Changes in expression of Slit1 and its receptor Robo2 in trigeminal ganglion and inferior alveolar nerve following inferior alveolar nerve axotomy in adult rats: a pilot study. Int J Oral Maxillofac Surg. 2015;44:518-27 pubmed 出版商
  380. Lauretti E, di Meco A, Chu J, Praticò D. Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor. Neurobiol Aging. 2015;36:812-20 pubmed 出版商
  381. Sharaf A, Rahhal B, Spittau B, Roussa E. Localization of reelin signaling pathway components in murine midbrain and striatum. Cell Tissue Res. 2015;359:393-407 pubmed 出版商
  382. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  383. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  384. Nardai S, Dobolyi A, Pál G, Skopál J, Pintér N, Lakatos K, et al. Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neurol Neurosci. 2015;33:1-14 pubmed 出版商
  385. Fuentes Santamaría V, Alvarado J, López Muñoz D, Melgar Rojas P, Gabaldón Ull M, Juiz J. Glia-related mechanisms in the anteroventral cochlear nucleus of the adult rat in response to unilateral conductive hearing loss. Front Neurosci. 2014;8:319 pubmed 出版商
  386. Baek J, Schmidt E, Viceconte N, Strandgren C, Pernold K, Richard T, et al. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum Mol Genet. 2015;24:1305-21 pubmed 出版商
  387. Heng Y, Zhou B, Harris L, Harvey T, Smith A, Horne E, et al. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche. Cereb Cortex. 2015;25:3758-78 pubmed 出版商
  388. Tate M, Lindquist R, Nguyen T, Sanai N, Barkovich A, Huang E, et al. Postnatal growth of the human pons: a morphometric and immunohistochemical analysis. J Comp Neurol. 2015;523:449-62 pubmed 出版商
  389. Ashok A, Rai N, Tripathi S, Bandyopadhyay S. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci. 2015;143:64-80 pubmed 出版商
  390. Kaneko M, Noguchi T, Ikegami S, Sakurai T, Kakita A, Toyoshima Y, et al. Zinc transporters ZnT3 and ZnT6 are downregulated in the spinal cords of patients with sporadic amyotrophic lateral sclerosis. J Neurosci Res. 2015;93:370-9 pubmed 出版商
  391. Rajput P, Lyden P, Chen B, Lamb J, Pereira B, Lamb A, et al. Protease activated receptor-1 mediates cytotoxicity during ischemia using in vivo and in vitro models. Neuroscience. 2014;281:229-40 pubmed 出版商
  392. Zhang J, Sun X, Zheng S, Liu X, Jin J, Ren Y, et al. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane. PLoS ONE. 2014;9:e108646 pubmed 出版商
  393. Broom L, Jenner P, Rose S. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity. Exp Neurol. 2015;263:1-7 pubmed 出版商
  394. Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, et al. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 2015;24:296-311 pubmed 出版商
  395. Lee H, Kim K, Lim H, Choi M, Kim H, Ahn H, et al. Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model. J Cell Biochem. 2015;116:310-9 pubmed 出版商
  396. Berdugo Vega G, Arias Gil G, Rodriguez Niedenführ M, Davies D, Vázquez T, Pascual Font A. GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury. J Anat. 2014;225:492-501 pubmed 出版商
  397. Garraway S, Woller S, Huie J, Hartman J, Hook M, Miranda R, et al. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain. 2014;155:2344-59 pubmed 出版商
  398. Gruol D, Vo K, Bray J. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci. 2014;8:234 pubmed 出版商
  399. Fu H, Yang T, Xiao W, Fan L, Wu Y, Terrando N, et al. Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats. PLoS ONE. 2014;9:e106331 pubmed 出版商
  400. Zang Y, Chen S, Liao G, Zhu H, Wei X, Cui Y, et al. Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons. Brain Behav Immun. 2015;44:37-47 pubmed 出版商
  401. Chau M, Deveau T, Song M, Gu X, Chen D, Wei L. iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells. 2014;32:3075-87 pubmed 出版商
  402. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  403. Yarchoan M, Toledo J, Lee E, Arvanitakis Z, Kazi H, Han L, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol. 2014;128:679-89 pubmed 出版商
  404. Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, et al. Obesity- and aging-induced excess of central transforming growth factor-? potentiates diabetic development via an RNA stress response. Nat Med. 2014;20:1001-8 pubmed 出版商
  405. Kawase S, Kuwako K, Imai T, Renault Mihara F, Yaguchi K, Itohara S, et al. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev. 2014;23:2250-61 pubmed 出版商
  406. Hayakawa K, Okazaki R, Morioka K, Nakamura K, Tanaka S, Ogata T. Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury. J Neurosci Res. 2014;92:1647-58 pubmed 出版商
  407. Syhr K, Kallenborn Gerhardt W, Lu R, Olbrich K, Schmitz K, Männich J, et al. Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacol Biochem Behav. 2014;124:389-95 pubmed 出版商
  408. Makantasi P, Dermon C. Estradiol treatment decreases cell proliferation in the neurogenic zones of adult female zebrafish (Danio rerio) brain. Neuroscience. 2014;277:306-20 pubmed 出版商
  409. Torrado E, Gomes C, Santos G, Fernandes A, Brites D, Falcão A. Directing mouse embryonic neurosphere differentiation toward an enriched neuronal population. Int J Dev Neurosci. 2014;37:94-9 pubmed 出版商
  410. Ho T, Vessey K, Fletcher E. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience. 2014;277:55-71 pubmed 出版商
  411. Wijayatunge R, Chen L, Cha Y, Zannas A, Frank C, West A. The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival. Mol Cell Neurosci. 2014;61:187-200 pubmed 出版商
  412. Sandstrom R, Foret M, Grow D, Haugen E, Rhodes C, Cardona A, et al. Epigenetic regulation by chromatin activation mark H3K4me3 in primate progenitor cells within adult neurogenic niche. Sci Rep. 2014;4:5371 pubmed 出版商
  413. D cs K, Hegyi Z, Holl K, Kis G, Heged s K, Antal M. Selective axonal and glial distribution of monoacylglycerol lipase immunoreactivity in the superficial spinal dorsal horn of rodents. Brain Struct Funct. 2015;220:2625-37 pubmed 出版商
  414. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  415. Fallier Becker P, Vollmer J, Bauer H, Noell S, Wolburg H, Mack A. Onset of aquaporin-4 expression in the developing mouse brain. Int J Dev Neurosci. 2014;36:81-9 pubmed 出版商
  416. Inada C, Niu Y, Matsumoto K, Le X, Fujiwara H. Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int. 2014;75:39-47 pubmed 出版商
  417. Neher M, Rich M, Keene C, Weckbach S, Bolden A, Losacco J, et al. Deficiency of complement receptors CR2/CR1 in Cr2?/? mice reduces the extent of secondary brain damage after closed head injury. J Neuroinflammation. 2014;11:95 pubmed 出版商
  418. Cekanaviciute E, Dietrich H, Axtell R, Williams A, Egusquiza R, Wai K, et al. Astrocytic TGF-? signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. J Immunol. 2014;193:139-49 pubmed 出版商
  419. Cho S, Jeon J, Chun D, Yeo S, Kim I. Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 2014;357:563-9 pubmed 出版商
  420. Hamilton C, Navarro Martín L, Neufeld M, Basak A, Trudeau V. Early expression of aromatase and the membrane estrogen receptor GPER in neuromasts reveals a role for estrogens in the development of the frog lateral line system. Gen Comp Endocrinol. 2014;205:242-50 pubmed 出版商
  421. Singh R, Brewer M, Mashburn C, Lou D, Bondada V, Graham B, et al. Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies. J Biol Chem. 2014;289:19383-94 pubmed 出版商
  422. Oklinski M, Lim J, Choi H, Oklinska P, Skowronski M, Kwon T. Immunolocalization of Water Channel Proteins AQP1 and AQP4 in Rat Spinal Cord. J Histochem Cytochem. 2014;62:598-611 pubmed 出版商
  423. Ho V, Dallalzadeh L, Karathanasis N, Keles M, Vangala S, Grogan T, et al. GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons. Mol Cell Neurosci. 2014;61:1-12 pubmed 出版商
  424. Gruol D, Vo K, Bray J, Roberts A. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci. 2014;8:29 pubmed 出版商
  425. Stein L, Wozniak D, Dearborn J, Kubota S, Apte R, Izumi Y, et al. Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function. J Neurosci. 2014;34:5800-15 pubmed 出版商
  426. Okuda H, Tatsumi K, Horii Hayashi N, Morita S, Okuda Yamamoto A, Imaizumi K, et al. OASIS regulates chondroitin 6-O-sulfotransferase 1 gene transcription in the injured adult mouse cerebral cortex. J Neurochem. 2014;130:612-25 pubmed 出版商
  427. Camós S, Gubern C, Sobrado M, Rodriguez R, Romera V, Moro M, et al. The high-mobility group I-Y transcription factor is involved in cerebral ischemia and modulates the expression of angiogenic proteins. Neuroscience. 2014;269:112-30 pubmed 出版商
  428. Alfaro Cervello C, Cebrian Silla A, Soriano Navarro M, García Tárraga P, Matías Guiu J, Gomez Pinedo U, et al. The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human. J Comp Neurol. 2014;522:1800-17 pubmed 出版商
  429. Xu M, Yang L, Rong J, Ni Y, Gu W, Luo Y, et al. Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway. Glia. 2014;62:855-80 pubmed 出版商
  430. García Corzo L, Luna Sánchez M, Doerrier C, Ortiz F, Escames G, Acuna Castroviejo D, et al. Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta. 2014;1842:893-901 pubmed 出版商
  431. Haba R, Shintani N, Onaka Y, Kanoh T, Wang H, Takenaga R, et al. Central CRTH2, a second prostaglandin D2 receptor, mediates emotional impairment in the lipopolysaccharide and tumor-induced sickness behavior model. J Neurosci. 2014;34:2514-23 pubmed 出版商
  432. Deng Y, Xie D, Fang M, Zhu G, Chen C, Zeng H, et al. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. PLoS ONE. 2014;9:e87420 pubmed 出版商
  433. Karki P, Webb A, Smith K, Johnson J, Lee K, Son D, et al. Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol. 2014;34:1280-9 pubmed 出版商
  434. Hagiwara K, Obayashi T, Sakayori N, Yamanishi E, Hayashi R, Osumi N, et al. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells. PLoS ONE. 2014;9:e84072 pubmed 出版商
  435. Balu D, Takagi S, Puhl M, Benneyworth M, Coyle J. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol. 2014;34:419-35 pubmed 出版商
  436. Chou V, Ko N, Holman T, Manning Bog A. Gene-environment interaction models to unmask susceptibility mechanisms in Parkinson's disease. J Vis Exp. 2014;:e50960 pubmed 出版商
  437. Samaranch L, Sebastián W, Kells A, Salegio E, Heller G, Bringas J, et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther. 2014;22:329-337 pubmed 出版商
  438. Ahn J, Jang J, Choi J, Lee J, Oh S, Lee J, et al. GSK3?, but not GSK3?, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev. 2014;23:1121-33 pubmed 出版商
  439. Matsumoto Y, Kanamori A, Nakamura M, Takahashi T, Nakashima I, Negi A. Sera from patients with seropositive neuromyelitis optica spectral disorders caused the degeneration of rodent optic nerve. Exp Eye Res. 2014;119:61-9 pubmed 出版商
  440. Trabalza A, Eleftheriadou I, Sgourou A, Liao T, Patsali P, Lee H, et al. Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol. 2014;88:2877-90 pubmed 出版商
  441. Muirhead G, Dev K. The expression of neuronal sorting nexin 8 (SNX8) exacerbates abnormal cholesterol levels. J Mol Neurosci. 2014;53:125-34 pubmed 出版商
  442. Di Giovannantonio L, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, et al. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development. 2014;141:377-88 pubmed 出版商
  443. Gao X, Zhang J, Zhang J, Zou H, Liu J. Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol. 2014;34:257-68 pubmed 出版商
  444. Hoffmann S, Hos D, Küspert M, Lang R, Lovell Badge R, Wegner M, et al. Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes. Development. 2014;141:39-50 pubmed 出版商
  445. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  446. ElAli A, Theriault P, Prefontaine P, Rivest S. Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathol Commun. 2013;1:75 pubmed 出版商
  447. Yan Y, Zhang J, Wang K, Xu Y, Ren K, Zhang B, et al. Significant reduction of the GLUT3 level, but not GLUT1 level, was observed in the brain tissues of several scrapie experimental animals and scrapie-infected cell lines. Mol Neurobiol. 2014;49:991-1004 pubmed 出版商
  448. Lin C, Lee D, Chang H, Chiu I, Hsu C. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip. Anal Chem. 2013;85:11920-8 pubmed 出版商
  449. Hawkins K, Demars K, Singh J, Yang C, Cho H, Frankowski J, et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129:130-42 pubmed 出版商
  450. Robins S, Trudel E, Rotondi O, Liu X, Djogo T, Kryzskaya D, et al. Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS ONE. 2013;8:e78236 pubmed 出版商
  451. Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Abe H, et al. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol Lett. 2014;224:424-32 pubmed 出版商
  452. Petrova R, Garcia A, Joyner A. Titration of GLI3 repressor activity by sonic hedgehog signaling is critical for maintaining multiple adult neural stem cell and astrocyte functions. J Neurosci. 2013;33:17490-505 pubmed 出版商
  453. Dobolyi A, Ostergaard E, Bagó A, Doczi T, Palkovits M, Gal A, et al. Exclusive neuronal expression of SUCLA2 in the human brain. Brain Struct Funct. 2015;220:135-51 pubmed 出版商
  454. Tucker B, Mullins R, Streb L, Anfinson K, Eyestone M, Kaalberg E, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife. 2013;2:e00824 pubmed 出版商
  455. Tobias I, Brooks C, Teichroeb J, Betts D. Derivation and culture of canine embryonic stem cells. Methods Mol Biol. 2013;1074:69-83 pubmed 出版商
  456. Merres J, Höss J, Albrecht L, Kress E, Soehnlein O, Jansen S, et al. Role of the cathelicidin-related antimicrobial peptide in inflammation and mortality in a mouse model of bacterial meningitis. J Innate Immun. 2014;6:205-18 pubmed 出版商
  457. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  458. Sun X, Chen B, Duan L, Xia Y, Luo Z, Wang J, et al. The proform of glia cell line-derived neurotrophic factor: a potentially biologically active protein. Mol Neurobiol. 2014;49:234-50 pubmed 出版商
  459. Gong N, Li X, Xiao Q, Wang Y. Identification of a novel spinal dorsal horn astroglial D-amino acid oxidase-hydrogen peroxide pathway involved in morphine antinociceptive tolerance. Anesthesiology. 2014;120:962-75 pubmed 出版商
  460. Sahu S, Kauser H, Ray K, Kishore K, Kumar S, Panjwani U. Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus. Exp Neurol. 2013;248:470-81 pubmed 出版商
  461. Li H, Zhang N, Sun G, Ding S. Inhibition of the group I mGluRs reduces acute brain damage and improves long-term histological outcomes after photothrombosis-induced ischaemia. ASN Neuro. 2013;5:195-207 pubmed 出版商
  462. Prabhakar S, Goto J, Zhang X, Zuang X, Sena Esteves M, Bronson R, et al. Stochastic model of Tsc1 lesions in mouse brain. PLoS ONE. 2013;8:e64224 pubmed 出版商
  463. Bourque S, Kuny S, Reyes L, Davidge S, Sauve Y. Prenatal hypoxia is associated with long-term retinal dysfunction in rats. PLoS ONE. 2013;8:e61861 pubmed 出版商
  464. Li X, Xiao Z, Han J, Chen L, Xiao H, Ma F, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013;34:5107-16 pubmed 出版商
  465. Zemp F, Lun X, McKenzie B, Zhou H, Maxwell L, Sun B, et al. Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin. Neuro Oncol. 2013;15:904-20 pubmed 出版商
  466. Brana C, Frossard M, Pescini Gobert R, Martinier N, Boschert U, Seabrook T. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2014;40:564-78 pubmed 出版商
  467. Samaranch L, Salegio E, San Sebastián W, Kells A, Bringas J, Forsayeth J, et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther. 2013;24:526-32 pubmed 出版商
  468. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  469. Hemley S, Bilston L, Cheng S, Chan J, Stoodley M. Aquaporin-4 expression in post-traumatic syringomyelia. J Neurotrauma. 2013;30:1457-67 pubmed 出版商
  470. Wang L, Ohishi T, Akane H, Shiraki A, Itahashi M, Mitsumori K, et al. Reversible effect of developmental exposure to chlorpyrifos on late-stage neurogenesis in the hippocampal dentate gyrus in mouse offspring. Reprod Toxicol. 2013;38:25-36 pubmed 出版商
  471. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen K, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18:1225-34 pubmed 出版商
  472. Karasinska J, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit J, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445-55 pubmed 出版商
  473. Hung Y, Lai M, Tseng Y, Chou C, Lin Y. Monocyte chemoattractant protein-1 affects migration of hippocampal neural progenitors following status epilepticus in rats. J Neuroinflammation. 2013;10:11 pubmed 出版商
  474. Pranski E, Dalal N, Sanford C, Herskowitz J, Gearing M, Lazo C, et al. RING finger protein 11 (RNF11) modulates susceptibility to 6-OHDA-induced nigral degeneration and behavioral deficits through NF-?B signaling in dopaminergic cells. Neurobiol Dis. 2013;54:264-79 pubmed 出版商
  475. Phares T, Stohlman S, Hinton D, Bergmann C. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013;87:3382-92 pubmed 出版商
  476. Calu D, Kawa A, Marchant N, Navarre B, Henderson M, Chen B, et al. Optogenetic inhibition of dorsal medial prefrontal cortex attenuates stress-induced reinstatement of palatable food seeking in female rats. J Neurosci. 2013;33:214-26 pubmed 出版商
  477. Cao L, Li L, Lin D, Zuo Z. Isoflurane induces learning impairment that is mediated by interleukin 1? in rodents. PLoS ONE. 2012;7:e51431 pubmed 出版商
  478. Putkhao K, Kocerha J, Cho I, Yang J, Parnpai R, Chan A. Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington's disease. Stem Cells Dev. 2013;22:1198-205 pubmed 出版商
  479. Trabalza A, Georgiadis C, Eleftheriadou I, Hislop J, Ellison S, Karavassilis M, et al. Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther. 2013;20:723-32 pubmed 出版商
  480. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed 出版商
  481. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed 出版商
  482. Zhu X, Huang C, Li Q, Guo Q, Wang Y, He X, et al. Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI). Cell Mol Neurobiol. 2013;33:197-204 pubmed 出版商
  483. Ziebell J, Taylor S, Cao T, Harrison J, Lifshitz J. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflammation. 2012;9:247 pubmed 出版商
  484. Chen S, Tsai H, Hung T, Chen C, Lee C, Wu C, et al. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS ONE. 2012;7:e45763 pubmed 出版商
  485. Gerber A, Bale T. Antiinflammatory treatment ameliorates HPA stress axis dysfunction in a mouse model of stress sensitivity. Endocrinology. 2012;153:4830-7 pubmed
  486. Dixon K, Munro K, Boyd A, Bartlett P, Turnley A. Partial change in EphA4 knockout mouse phenotype: loss of diminished GFAP upregulation following spinal cord injury. Neurosci Lett. 2012;525:66-71 pubmed 出版商
  487. Pan H, Wang H, Wang X, Zhu L, Mao L. The absence of Nrf2 enhances NF-?B-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm. 2012;2012:217580 pubmed 出版商
  488. Desilva T, Borenstein N, Volpe J, Kinney H, Rosenberg P. Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol. 2012;520:3912-32 pubmed 出版商
  489. Skjolding A, Holst A, Broholm H, Laursen H, Juhler M. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol. 2013;39:179-91 pubmed 出版商
  490. Lutz S, Raine C, Brosnan C. Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice. J Neuroimmunol. 2012;245:8-14 pubmed 出版商
  491. Schira J, Gasis M, Estrada V, Hendricks M, Schmitz C, Trapp T, et al. Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. Brain. 2012;135:431-46 pubmed 出版商
  492. Lewitus D, Landers J, Branch J, Smith K, Callegari G, Kohn J, et al. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Adv Funct Mater. 2011;21:2624-2632 pubmed
  493. Jaerve A, Schiwy N, Schmitz C, Mueller H. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury. Exp Neurol. 2011;231:284-94 pubmed 出版商
  494. Zhao L, Ma W, Fariss R, Wong W. Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy. Am J Pathol. 2011;179:1265-77 pubmed 出版商
  495. Lewitus D, Smith K, Shain W, Bolikal D, Kohn J. The fate of ultrafast degrading polymeric implants in the brain. Biomaterials. 2011;32:5543-50 pubmed 出版商
  496. Chang C, Chen S, Lee T, Lee H, Chen S, Shyue S. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am J Pathol. 2011;178:1749-61 pubmed 出版商
  497. Lewitus D, Smith K, Shain W, Kohn J. Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomater. 2011;7:2483-91 pubmed 出版商
  498. Piskuric N, Vollmer C, Nurse C. Confocal immunofluorescence study of rat aortic body chemoreceptors and associated neurons in situ and in vitro. J Comp Neurol. 2011;519:856-73 pubmed 出版商
  499. Damm J, Luheshi G, Gerstberger R, Roth J, Rummel C. Spatiotemporal nuclear factor interleukin-6 expression in the rat brain during lipopolysaccharide-induced fever is linked to sustained hypothalamic inflammatory target gene induction. J Comp Neurol. 2011;519:480-505 pubmed 出版商
  500. Phares T, Marques C, Stohlman S, Hinton D, Bergmann C. Factors supporting intrathecal humoral responses following viral encephalomyelitis. J Virol. 2011;85:2589-98 pubmed 出版商
  501. Schwartz C, Cheng A, Mughal M, Mattson M, Yao P. Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. J Comp Neurol. 2010;518:3803-18 pubmed 出版商
  502. Yang H, Zhuo J, Chu J, Chinnici C, Pratico D. Amelioration of the Alzheimer's disease phenotype by absence of 12/15-lipoxygenase. Biol Psychiatry. 2010;68:922-9 pubmed 出版商
  503. DellaValle B, Hempel C, Kurtzhals J, Penkowa M. In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis. Glia. 2010;58:1220-7 pubmed 出版商
  504. Pang J, Gao F, Wu S. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina. J Comp Neurol. 2010;518:2456-74 pubmed 出版商
  505. VanBrocklin M, Robinson J, Lastwika K, Khoury J, Holmen S. Targeted delivery of NRASQ61R and Cre-recombinase to post-natal melanocytes induces melanoma in Ink4a/Arflox/lox mice. Pigment Cell Melanoma Res. 2010;23:531-41 pubmed 出版商
  506. Farioli Vecchioli S, Saraulli D, Costanzi M, Leonardi L, Cinà I, Micheli L, et al. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS ONE. 2009;4:e8339 pubmed 出版商
  507. Leonard B, Mastroeni D, Grover A, Liu Q, Yang K, Gao M, et al. Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. J Comp Neurol. 2009;515:269-94 pubmed 出版商
  508. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, et al. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies. J Neurosci. 2008;28:12255-67 pubmed 出版商
  509. Kawano J, Tanizawa Y, Shinoda K. Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system. J Comp Neurol. 2008;510:1-23 pubmed 出版商
  510. Hoff S, Zeller F, Von Weyhern C, Wegner M, Schemann M, Michel K, et al. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J Comp Neurol. 2008;509:356-71 pubmed 出版商
  511. Plachez C, Lindwall C, Sunn N, Piper M, Moldrich R, Campbell C, et al. Nuclear factor I gene expression in the developing forebrain. J Comp Neurol. 2008;508:385-401 pubmed 出版商
  512. Ahlemeyer B, Neubert I, Kovacs W, Baumgart Vogt E. Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J Comp Neurol. 2007;505:1-17 pubmed
  513. Blakqori G, Delhaye S, Habjan M, Blair C, S nchez Vargas I, Olson K, et al. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J Virol. 2007;81:4991-9 pubmed 出版商
  514. Brunet N, Tarabal O, Portero Otín M, Oppenheim R, Esquerda J, Caldero J. Survival and death of mature avian motoneurons in organotypic slice culture: trophic requirements for survival and different types of degeneration. J Comp Neurol. 2007;501:669-90 pubmed
  515. Horky L, Galimi F, Gage F, Horner P. Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol. 2006;498:525-38 pubmed
  516. Papay R, Gaivin R, Jha A, McCune D, McGrath J, Rodrigo M, et al. Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol. 2006;497:209-22 pubmed
  517. Talos D, Fishman R, Park H, Folkerth R, Follett P, Volpe J, et al. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol. 2006;497:42-60 pubmed
  518. Dedesma C, Chuang J, Alfinito P, Sung C. Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J Comp Neurol. 2006;496:773-86 pubmed
  519. Herber D, Maloney J, Roth L, Freeman M, Morgan D, Gordon M. Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Glia. 2006;53:382-91 pubmed
  520. Wicher G, Larsson M, Rask L, Aldskogius H. Low-density lipoprotein receptor-related protein (LRP)-2/megalin is transiently expressed in a subpopulation of neural progenitors in the embryonic mouse spinal cord. J Comp Neurol. 2005;492:123-31 pubmed
  521. Herber D, Roth L, Wilson D, Wilson N, Mason J, Morgan D, et al. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol. 2004;190:245-53 pubmed
  522. Apicelli A, Uhlmann E, Baldwin R, Ding H, Nagy A, Guha A, et al. Role of the Rap1 GTPase in astrocyte growth regulation. Glia. 2003;42:225-34 pubmed
  523. Uhlmann E, Apicelli A, Baldwin R, Burke S, Bajenaru M, Onda H, et al. Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/- cells. Oncogene. 2002;21:4050-9 pubmed
  524. Seitz A, Aglow E, Heber Katz E. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse. J Neurosci Res. 2002;67:337-45 pubmed
  525. Penkowa M, Carrasco J, Giralt M, Moos T, Hidalgo J. CNS wound healing is severely depressed in metallothionein I- and II-deficient mice. J Neurosci. 1999;19:2535-45 pubmed
  526. Satoh J, Yukitake M, Kuroda Y. Constitutive and heat-inducible expression of HSP105 in neurons and glial cells in culture. Neuroreport. 1998;9:2977-83 pubmed
  527. Haring H, Akamine B, Habermann R, Koziol J, del Zoppo G. Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol. 1996;55:236-45 pubmed