这是一篇来自已证抗体库的有关小鼠 H2-Ab1 (H2-Ab1) 的综述,是根据427篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合H2-Ab1 抗体。
H2-Ab1 同义词: AI845868; Abeta; H-2Ab; H2-Ab; I-Abeta; IAb; Ia-2; Ia2; Rmcs1

BioLegend
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendH2-Ab1抗体(BioLegend, 107641)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). iScience (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化; 小鼠; 图 4a
BioLegendH2-Ab1抗体(Biolegend, 107613)被用于被用于免疫组化在小鼠样本上 (图 4a). Nat Commun (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegendH2-Ab1抗体(Biolegend, 107618)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). PLoS Pathog (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:400
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. J Immunother Cancer (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendH2-Ab1抗体(Biolegend, 107636)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell Death Dis (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s3b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3b). Nat Commun (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
BioLegendH2-Ab1抗体(Biolegend, 107622)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). Nat Commun (2021) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendH2-Ab1抗体(Biolegend, 116417)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Vaccines (Basel) (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS Pathog (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 3e
BioLegendH2-Ab1抗体(Biolegend, 107626)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3e). Aging Cell (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, 107622)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3i
BioLegendH2-Ab1抗体(BioLegend, 107605)被用于被用于流式细胞仪在小鼠样本上 (图 3i). Cell Death Dis (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s7c
BioLegendH2-Ab1抗体(Biolegend, 107605)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Nat Commun (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 6c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Front Immunol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendH2-Ab1抗体(Biolegend, 107621)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Cancer (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 人类; 图 3b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在人类样本上 (图 3b). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:1000; 图 2a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Nat Commun (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 图 s4b
BioLegendH2-Ab1抗体(BioLegend, M5.114. 15.2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4b). PLoS Pathog (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 人类; 图 s14b
BioLegendH2-Ab1抗体(BioLegend, 107635)被用于被用于流式细胞仪在人类样本上 (图 s14b). Commun Biol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:50; 图 6a
BioLegendH2-Ab1抗体(Bioloegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6a). Front Physiol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3a, s2b, s2c
BioLegendH2-Ab1抗体(Biolegend, 107614)被用于被用于流式细胞仪在小鼠样本上 (图 3a, s2b, s2c). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200
BioLegendH2-Ab1抗体(Biolegend, 107631)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Commun Biol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5f
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Front Immunol (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3a, 5e
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 5e). Sci Rep (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 6
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). Invest Ophthalmol Vis Sci (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1f
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, 107613)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:250
  • 免疫组化; 小鼠; 图 2a
BioLegendH2-Ab1抗体(Biolegend, 107607)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 和 被用于免疫组化在小鼠样本上 (图 2a). elife (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Sci Adv (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4c, 6s2e
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4c, 6s2e). elife (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s17
BioLegendH2-Ab1抗体(BioLegend, 107615)被用于被用于流式细胞仪在小鼠样本上 (图 s17). Nat Commun (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 1d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1d). Commun Biol (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1f, s2b
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1f, s2b). BMC Immunol (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Aging Cell (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 4 ug/ml; 图 s3a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为4 ug/ml (图 s3a). Science (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Virol (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
BioLegendH2-Ab1抗体(BioLegend, 107626)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). Nat Commun (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s6c, s9
BioLegendH2-Ab1抗体(Biolegend, 107631)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6c, s9). Nat Commun (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s20a
BioLegendH2-Ab1抗体(Biolegend, 107625)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s20a). Nat Commun (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Sci Adv (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • mass cytometry; 小鼠; 0.75 ug/ml; 图 5d
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于mass cytometry在小鼠样本上浓度为0.75 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3c, 5d, s3b, s7c
BioLegendH2-Ab1抗体(Biolegend, 107622)被用于被用于流式细胞仪在小鼠样本上 (图 3c, 5d, s3b, s7c). Cell Rep (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:500; 图 s2
BioLegendH2-Ab1抗体(BioLegend, 107635)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s2). Nature (2019) ncbi
小鼠 单克隆(KH74)
  • 流式细胞仪; 小鼠; 图 3d
BioLegendH2-Ab1抗体(BioLegend, 115305)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 e10a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 e10a). Nature (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2s2a
BioLegendH2-Ab1抗体(Biolegend, M5/114.14.2)被用于被用于流式细胞仪在小鼠样本上 (图 2s2a). elife (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s3h
BioLegendH2-Ab1抗体(BioLegend, 107622)被用于被用于流式细胞仪在小鼠样本上 (图 s3h). Nature (2019) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 s3h
BioLegendH2-Ab1抗体(BioLegend, 116420)被用于被用于流式细胞仪在小鼠样本上 (图 s3h). Nature (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3b, 4b
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3b, 4b). Biomolecules (2019) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 s6c
BioLegendH2-Ab1抗体(BioLegend, 116419)被用于被用于流式细胞仪在小鼠样本上 (图 s6c). Cell (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:400; 图 4d, 8h
BioLegendH2-Ab1抗体(Biolegend, 107622)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4d, 8h). Nat Commun (2019) ncbi
小鼠 单克隆(39-10-8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendH2-Ab1抗体(Biolegend, 115006)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendH2-Ab1抗体(BioLegend, 107637)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendH2-Ab1抗体(Biolegend, 107623)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Oncoimmunology (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 ex4o
BioLegendH2-Ab1抗体(BioLegend, 107608)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 ex4o). Nature (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendH2-Ab1抗体(BioLegend, 107636)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Immunity (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:800; 图 2a
BioLegendH2-Ab1抗体(BioLegend, 107622)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 2a). Nature (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegendH2-Ab1抗体(BioLegend, M5/114.152)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Clin Invest (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 7c
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 7c). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendH2-Ab1抗体(Biolegend, 107622)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5g
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5g). Science (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s3e
BioLegendH2-Ab1抗体(BioLegend, 107617)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Cell (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendH2-Ab1抗体(Biolegend, 107622)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 5 ug/ml; 图 s12
BioLegendH2-Ab1抗体(BioLegend, 107620)被用于被用于流式细胞仪在小鼠样本上浓度为5 ug/ml (图 s12). Science (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Ab1抗体(Biolegend, 107622)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Science (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 6s2
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6s2). elife (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Ab1抗体(Biolegend, M5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 1e, 2b
BioLegendH2-Ab1抗体(Biolegend, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 1e, 2b). Biochem Biophys Res Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
BioLegendH2-Ab1抗体(Biolegend, 107614)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). Neurochem Int (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s19b
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s19b). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2e
BioLegendH2-Ab1抗体(Biolegend, 107628)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cell Rep (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1
BioLegendH2-Ab1抗体(Biolegend, 107622)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:300; 图 s9a, s9b
BioLegendH2-Ab1抗体(BioLegend, M5/114)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s9a, s9b). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegendH2-Ab1抗体(BioLegend, M5/114.152)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). JCI Insight (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化; 小鼠; 图 3c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于免疫组化在小鼠样本上 (图 3c). J Immunol (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s3d
BioLegendH2-Ab1抗体(BioLegend, 107630)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Cell (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 1:400; 图 s3c
BioLegendH2-Ab1抗体(Biolegend, 116422)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3c). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s9b
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s9b). Science (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2e
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol Res (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 s4
BioLegendH2-Ab1抗体(Biolegend, 107645)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 s4). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Front Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendH2-Ab1抗体(Biolegend, M5/114.152)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Exp Med (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Ab1抗体(BioLegend, M5/114)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 人类; 图 s1a
BioLegendH2-Ab1抗体(Biolegend, 107630)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
小鼠 单克隆(AF6-120.1)
  • 免疫组化; 小鼠; 图 5f
BioLegendH2-Ab1抗体(Biolegend, 116406)被用于被用于免疫组化在小鼠样本上 (图 5f). J Clin Invest (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). J Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 s1a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1a). Oncoimmunology (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3g
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Nat Med (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Int J Obes (Lond) (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2e
BioLegendH2-Ab1抗体(Biolegend, 107628)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Mol Cell (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Ab1抗体(BioLegend, 107620)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS Pathog (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s3
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Eur J Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendH2-Ab1抗体(Biolegend, 107607)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s8a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s8a). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Metab (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:400; 图 s4a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s4a). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s2a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s2a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100; 图 4a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4a). Front Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
BioLegendH2-Ab1抗体(BioLegend, M5/ 114.15.2)被用于. Immunohorizons (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegendH2-Ab1抗体(BioLegend, 107631)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 1e
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 1e). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 9b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 9b). J Exp Med (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Exp Med (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 4c
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 4c) 和 被用于流式细胞仪在小鼠样本上 (图 4a). Exp Neurol (2018) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 s4d
BioLegendH2-Ab1抗体(Biolegend, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 s4d). Eur J Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). FASEB J (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 s6g
BioLegendH2-Ab1抗体(BD Biosciences, 107614)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6g). Nat Cell Biol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. Diabetologia (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Eur J Immunol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nat Med (2017) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendH2-Ab1抗体(biolegend, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s5b, s5d
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s5b, s5d). Nature (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immunology (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Immunol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s6
BioLegendH2-Ab1抗体(BioLegend, 107635)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Mol Cell (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3d). Sci Rep (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100; 图 S5
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 S5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3a
  • 免疫细胞化学; 小鼠; 图 6
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a) 和 被用于免疫细胞化学在小鼠样本上 (图 6). Methods Mol Biol (2017) ncbi
小鼠 单克隆(KH74)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Ab1抗体(BioLegend, KH74)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS ONE (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendH2-Ab1抗体(BioLegend, 107626)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:160; 图 5d
BioLegendH2-Ab1抗体(Biolegend, 107606)被用于被用于流式细胞仪在小鼠样本上浓度为1:160 (图 5d). Nat Commun (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Immunol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Immunol (2017) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 1:100; 图 s8
BioLegendH2-Ab1抗体(BioLegend, 116419)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cancer Res (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s2a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s2a). Nat Immunol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Exp Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2f
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Nature (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Immunol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Virol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Oncotarget (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s4e
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:800; 表 1
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (表 1). Nat Commun (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Oncogene (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2c
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). J Clin Invest (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s6b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Nat Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 3
BioLegendH2-Ab1抗体(BioLegend, 107614)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s3
BioLegendH2-Ab1抗体(Biolegend/Ozyme, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Science (2016) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendH2-Ab1抗体(Biolegend, 116416)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Virol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4k
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4k). Nature (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(KH74)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendH2-Ab1抗体(Biolegend, KH74)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Oncotarget (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2b, 1d
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b, 1d). Science (2016) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 s2f
BioLegendH2-Ab1抗体(Biolegend, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 s2f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Gastroenterology (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s12
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s12). Science (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 10k
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 10k). J Exp Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 人类; 1:20; 图 2
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Arterioscler Thromb Vasc Biol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Aging (Albany NY) (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2J
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2J). J Exp Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2
BioLegendH2-Ab1抗体(biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
小鼠 单克隆(KH74)
  • 流式细胞仪; 小鼠; 图 s2
BioLegendH2-Ab1抗体(BioLegend, 115303)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Med (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Mucosal Immunol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 2
BioLegendH2-Ab1抗体(Biolegend, 116417)被用于被用于流式细胞仪在小鼠样本上 (图 2). Oncoimmunology (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, 107635)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(Biolegend, (M5/114, 15, 2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, 107635)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4d
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Exp Med (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化; 小鼠; 图 4
BioLegendH2-Ab1抗体(BioLegend, 107621)被用于被用于免疫组化在小鼠样本上 (图 4). J Virol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:300; 图 2
BioLegendH2-Ab1抗体(Biolegend, 107622)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Vaccine (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
BioLegendH2-Ab1抗体(BioLegend, M5/114.152)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, 116422)被用于被用于流式细胞仪在小鼠样本上. Cardiovasc Res (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendH2-Ab1抗体(Biolegend, 116408)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Biochem Biophys Res Commun (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s4). J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 仓鼠; 图 7
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在仓鼠样本上 (图 7). J Virol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s5
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s5). PLoS Pathog (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 表 s3
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 图 5
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS Pathog (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2
BioLegendH2-Ab1抗体(Biolegend, 107626)被用于被用于流式细胞仪在小鼠样本上 (图 2). Shock (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
BioLegendH2-Ab1抗体(Biolegend, clone M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Eur J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5
BioLegendH2-Ab1抗体(Biolegend, M5/ 114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Heart Lung Transplant (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Pharmacol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3.26.3
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3.26.3). Curr Protoc Immunol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2015) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-石蜡切片; 小鼠; 1:100
BioLegendH2-Ab1抗体(BioLegend, clone M5/114.15.2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Development (2014) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(BioLegend, AF-6-120.1)被用于被用于流式细胞仪在小鼠样本上. Blood (2014) ncbi
大鼠 单克隆(M5/114.15.2)
BioLegendH2-Ab1抗体(BioLegend, 107627)被用于. J Neurosci (2014) ncbi
小鼠 单克隆(AF6-120.1)
BioLegendH2-Ab1抗体(BioLegend, AF6-120.1)被用于. J Exp Med (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(M5/114.15.2)
BioLegendH2-Ab1抗体(BioLegend, 107602)被用于. PLoS ONE (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Mol Cell Biol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
BioLegendH2-Ab1抗体(Biolegend, M5/114/15/2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4c
BioLegendH2-Ab1抗体(BioLegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Leukoc Biol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendH2-Ab1抗体(Biolegend, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). PLoS ONE (2013) ncbi
赛默飞世尔
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a, s1
赛默飞世尔H2-Ab1抗体(eBioscience, 47-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a, s1). Front Immunol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s10a
赛默飞世尔H2-Ab1抗体(eBioscience, 25-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 s10a). Front Immunol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Aging Dis (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔H2-Ab1抗体(Ebioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Immunol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1d, 3f
赛默飞世尔H2-Ab1抗体(eBioscience/Thermo Scientific, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1d, 3f). Mucosal Immunol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/11.415.2)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 0.05 ug/ml; 图 8b
赛默飞世尔H2-Ab1抗体(eBioscience, 48-5321-82)被用于被用于流式细胞仪在小鼠样本上浓度为0.05 ug/ml (图 8b). Basic Res Cardiol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Reprod Immunol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Mucosal Immunol (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:800; 图 2s1a
赛默飞世尔H2-Ab1抗体(eBioscience, 56-5321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 2s1a). elife (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:1200; 图 4s1
赛默飞世尔H2-Ab1抗体(eBioscience, 17-5321)被用于被用于流式细胞仪在小鼠样本上浓度为1:1200 (图 4s1). elife (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化; 小鼠; 1:250; 图 1b
赛默飞世尔H2-Ab1抗体(Thermofisher, 14-5321-82)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1b). Front Neurosci (2020) ncbi
小鼠 单克隆(eBioY-Ae (YAe, Y-Ae))
  • 流式细胞仪; 小鼠; 1:200; 图 3s1h
赛默飞世尔H2-Ab1抗体(eBioscience, eBioY-Ae)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3s1h). elife (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 人类; 1:100; 图 7b
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7b). Front Immunol (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:300; 图 s7a
赛默飞世尔H2-Ab1抗体(Invitrogen, 67-5321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s7a). Cell Res (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s9
赛默飞世尔H2-Ab1抗体(eBioscience, 25-5321-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s9). Nat Commun (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Acta Neuropathol (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:800; 图 s15c
赛默飞世尔H2-Ab1抗体(Thermo Fisher, 48-5321-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s15c). Nat Commun (2020) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
赛默飞世尔H2-Ab1抗体(eBioscience, 46532182)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). Nat Commun (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 e10
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 e10). Nature (2019) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔H2-Ab1抗体(Invitrogen, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Clin Invest (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:80; 图 s3g
赛默飞世尔H2-Ab1抗体(eBioscience, 47- 5321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 s3g). Nat Commun (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 0.13 ug/ml; 图 4f
赛默飞世尔H2-Ab1抗体(ThermoFisher Scientific, 47-5321-82)被用于被用于流式细胞仪在小鼠样本上浓度为0.13 ug/ml (图 4f). Science (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2f
赛默飞世尔H2-Ab1抗体(Thermo Fisher, 14-5321)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2f). FASEB J (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:300; 图 s3b
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3b). J Clin Invest (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2h
赛默飞世尔H2-Ab1抗体(eBioscience, 12-5321-81)被用于被用于流式细胞仪在小鼠样本上 (图 2h). Sci Rep (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4e, 4k, 4l
赛默飞世尔H2-Ab1抗体(eBioscience, 56-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 4e, 4k, 4l). Nature (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫印迹; 小鼠; 1:200; 图 s17a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s17a). Science (2019) ncbi
大鼠 单克隆(NIMR-4)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔H2-Ab1抗体(eBioscience, NIMR-4)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Immune Netw (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔H2-Ab1抗体(eBioscience, 47-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immunity (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Glia (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s5a, s5b
赛默飞世尔H2-Ab1抗体(eBioscience, 48-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 s5a, s5b). Cell Rep (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100; 图 5f
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5f). J Pathol (2019) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Ab1抗体(Thermo Fisher, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Diabetes Res (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Blood (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 ev2c
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 ev2c). EMBO J (2019) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔H2-Ab1抗体(Thermo Fisher, 56-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔H2-Ab1抗体(Thermo Fisher Scientific, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Clin Invest (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 s7i
赛默飞世尔H2-Ab1抗体(eBiosciences, 25-5321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7i). Nat Neurosci (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a) 和 被用于流式细胞仪在小鼠样本上 (图 3d). J Neuroinflammation (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔H2-Ab1抗体(eBioscience, 56-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Rep (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化; 小鼠; 1:50; 图 5e
赛默飞世尔H2-Ab1抗体(Biolegend, 14-5321-81)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5e). J Clin Invest (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 e5d
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 e5d). Nature (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:150; 图 s6a
赛默飞世尔H2-Ab1抗体(eBioscience, 17-5321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s6a). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔H2-Ab1抗体(Thermofisher Scientific, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Front Immunol (2018) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 1:400; 图 s4a
赛默飞世尔H2-Ab1抗体(eBioscience, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s4a). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). PLoS ONE (2018) ncbi
大鼠 单克隆(NIMR-4)
  • 流式细胞仪; 人类; 1:40; 图 4a
赛默飞世尔H2-Ab1抗体(eBioscience, 12-5322)被用于被用于流式细胞仪在人类样本上浓度为1:40 (图 4a). Stem Cell Res Ther (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫印迹; 小鼠; 图 5f
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于免疫印迹在小鼠样本上 (图 5f). Front Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 图 s1a
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔H2-Ab1抗体(eBiosciences, 11-5321-85)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1a) 和 被用于流式细胞仪在小鼠样本上 (图 1a). Cell (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:800; 图 1a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Immunol (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Science (2018) ncbi
小鼠 单克隆(eBioY-Ae (YAe, Y-Ae))
  • 流式细胞仪; 小鼠; 图 7c
赛默飞世尔H2-Ab1抗体(eBioscience, 13-5741-85)被用于被用于流式细胞仪在小鼠样本上 (图 7c). EMBO J (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 7c
赛默飞世尔H2-Ab1抗体(eBioscience, 56-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 7c). EMBO J (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s5c
赛默飞世尔H2-Ab1抗体(Thermo Fisher Scientific, 17-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). Cell (2018) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cancer Res (2018) ncbi
大鼠 单克隆(NIMR-4)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔H2-Ab1抗体(ebioscience, 12-5322)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cell Death Dis (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔H2-Ab1抗体(eBiosciences, 17-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Immunity (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Front Cell Infect Microbiol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔H2-Ab1抗体(eBiosciences, 12-5321-81)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Leukoc Biol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Int J Parasitol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 7d
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114/15/2)被用于被用于流式细胞仪在小鼠样本上 (图 7d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:50; 图 9a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 9a). Infect Immun (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:800; 图 s1a
赛默飞世尔H2-Ab1抗体(eBioscience, M5)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s1a). Nat Commun (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔H2-Ab1抗体(Affymetrix eBioscience, M5/114)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔H2-Ab1抗体(Ebioscience, 11-5321)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Sci Rep (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:500; 图 6c
赛默飞世尔H2-Ab1抗体(eBioscience, 48-5321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 6c). Nat Commun (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔H2-Ab1抗体(eBioscience, 125-5321)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Rep (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔H2-Ab1抗体(eBioscience, 17-5321)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Clin Invest (2017) ncbi
大鼠 单克隆(NIMR-4)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔H2-Ab1抗体(eBioscience, NIMR-4)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Cell Biol (2017) ncbi
小鼠 单克隆(eBioY-Ae (YAe, Y-Ae))
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔H2-Ab1抗体(eBioscience, eBio-YAe)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔H2-Ab1抗体(eBioscience, 48-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Methods Mol Biol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 s3
赛默飞世尔H2-Ab1抗体(eBiosciences, 46-5321-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3). J Clin Invest (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2017) ncbi
大鼠 单克隆(NIMR-4)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔H2-Ab1抗体(eBioscience, NIMR-4)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Prostate (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 2.5 ug/ml; 图 5
赛默飞世尔H2-Ab1抗体(eBioscience, 14-5321-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2.5 ug/ml (图 5). J Neuroinflammation (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 抑制或激活实验; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, 12-5321)被用于被用于抑制或激活实验在小鼠样本上. Opt Express (2016) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 2H
赛默飞世尔H2-Ab1抗体(eBioscience, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 2H). J Clin Invest (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔H2-Ab1抗体(ebioscience, 12-5321-81)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Front Immunol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 st2
赛默飞世尔H2-Ab1抗体(eBiosciences, 25-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5a
赛默飞世尔H2-Ab1抗体(eBioscience, 14-5321-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5a). Glia (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:300
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1j
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1j). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). J Exp Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:800; 表 1
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (表 1). Nat Commun (2016) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 9b
赛默飞世尔H2-Ab1抗体(eBioscience, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 9b). J Exp Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:800; 图 1a
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1a). PLoS ONE (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Clin Invest (2016) ncbi
大鼠 单克隆(NIMR-4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
赛默飞世尔H2-Ab1抗体(eBioscience, 11-5322-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). J Clin Invest (2016) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Ab1抗体(eBiosciences, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Leukoc Biol (2017) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Immunity (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔H2-Ab1抗体(eBioscience, 11-5321)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1-s1
赛默飞世尔H2-Ab1抗体(eBiosciences, 13-5321-85)被用于被用于流式细胞仪在小鼠样本上 (图 1-s1). elife (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化; 小鼠; 1:50; 图 5c
赛默飞世尔H2-Ab1抗体(Ebiosciences, 145321)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5c). Sci Rep (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔H2-Ab1抗体(eBioscience, M5-114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔H2-Ab1抗体(eBioscience, 12-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Leukemia (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:400; 图 s3
赛默飞世尔H2-Ab1抗体(eBioscience, 17-5321-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2i
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2i). JCI Insight (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Exp Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s7
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Cancer Immunol Immunother (2016) ncbi
小鼠 单克隆(eBioY-Ae (YAe, Y-Ae))
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔H2-Ab1抗体(eBioscience, eBioY-Ae)被用于被用于流式细胞仪在小鼠样本上 (图 1). Invest Ophthalmol Vis Sci (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔H2-Ab1抗体(eBioscience, 56-5321)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int J Mol Med (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Immunol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Ab1抗体(eBioscience, 56-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Microbes Infect (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Ab1抗体(eBioscience, 48-5321-80)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Neurosci (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔H2-Ab1抗体(eBiosciences, M5)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Immunol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔H2-Ab1抗体(eBioscience, 13-5321-81)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Lab Invest (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 表 s6
赛默飞世尔H2-Ab1抗体(eBiosciences, 56-5321-82)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
小鼠 单克隆(eBioY-Ae (YAe, Y-Ae))
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, eBioY-Ae)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2016) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔H2-Ab1抗体(eBiosciences, M5 1114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nat Med (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 图 s3
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2c, d
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 2c, d). Eur J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 图 s1
赛默飞世尔H2-Ab1抗体(eBioscience, 14-5321-32)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1). Brain Behav Immun (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔H2-Ab1抗体(eBioscience, 12-5321-83)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cancer Res (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫印迹; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, 48-5321-82)被用于被用于免疫印迹在小鼠样本上. J Vis Exp (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Nature (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15-12)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nature (2015) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, AF6?C120.1)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
小鼠 单克隆(eBioY-Ae (YAe, Y-Ae))
  • 流式细胞仪; 小鼠; 1:200; 图 5
赛默飞世尔H2-Ab1抗体(eBioscience, eBioY-Ae)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5). Nat Commun (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1f
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). PLoS ONE (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
  • 流式细胞仪; 人类
赛默飞世尔H2-Ab1抗体(eBioscience, 11- 5321-81)被用于被用于流式细胞仪在小鼠样本上 和 被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(eBioY-Ae (YAe, Y-Ae))
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔H2-Ab1抗体(eBioscience, YAe)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2015) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔H2-Ab1抗体(eBioscience, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Immunother Cancer (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Ab1抗体(eBioscience (Affymetrix), M5/144.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔H2-Ab1抗体(eBiosciences, M5-114)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1
  • 免疫组化; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1) 和 被用于免疫组化在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 S7
赛默飞世尔H2-Ab1抗体(eBioscience, 11-5332)被用于被用于流式细胞仪在小鼠样本上 (图 S7). Nat Biotechnol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. Hum Immunol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔H2-Ab1抗体(eBioscience, 11-5321-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Neuro Oncol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔H2-Ab1抗体(ebioscience, M5/114)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nat Commun (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114)被用于被用于免疫组化在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔H2-Ab1抗体(eBioscience, 114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Virol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Exp Hematol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔H2-Ab1抗体(eBiosciences, clone M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). Am J Respir Cell Mol Biol (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 人类
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, 48-5321-82)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Invest Ophthalmol Vis Sci (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛默飞世尔H2-Ab1抗体(eBioscience, 17-5321-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔H2-Ab1抗体(Ebioscience, 15-5321-82)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔H2-Ab1抗体(eBioscience, 12-5321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cell Transplant (2015) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Exp Med (2013) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. Diabetes (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(ebioscience, M5.114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔H2-Ab1抗体(eBioscience, 11-5321-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Med (2013) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2013) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Methods (2013) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 6b). PLoS ONE (2013) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔H2-Ab1抗体(e-Biosciences,, 11-5321-81)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔H2-Ab1抗体(eBioscience, 14-5321)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 人类
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/144.15.2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上. J Proteomics (2012) ncbi
小鼠 单克隆(28-16-8s)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(Caltag Medsystems, 28-16-8S)被用于被用于流式细胞仪在小鼠样本上. J Proteomics (2012) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.115.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2011) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2010) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
  • 免疫细胞化学; 小鼠; 图 7
赛默飞世尔H2-Ab1抗体(eBiosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1) 和 被用于免疫细胞化学在小鼠样本上 (图 7). Infect Immun (2010) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫印迹; 人类
赛默飞世尔H2-Ab1抗体(eBioscience, ME/114.15.2)被用于被用于免疫印迹在人类样本上. J Immunol (2009) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔H2-Ab1抗体(eBioscience, 11-5321-85)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2009) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2009) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔H2-Ab1抗体(eBioscience, 12-5321)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Cell Biol (2009) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫细胞化学; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于免疫细胞化学在小鼠样本上. Cell Host Microbe (2009) ncbi
小鼠 单克隆(28-16-8s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Ab1抗体(Caltag, 28-16-8S)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2008) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔H2-Ab1抗体(eBioscience, MS/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2008) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔H2-Ab1抗体(e-Bioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). Cancer Lett (2008) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/115.14.2)被用于被用于免疫组化在小鼠样本上. J Exp Med (2007) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(eBioscience, 114.15.2)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2007) ncbi
大鼠 单克隆(M5/114.15.2)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔H2-Ab1抗体(eBioscience, 12-5321-81)被用于被用于免疫组化-石蜡切片在大鼠样本上. J Am Soc Nephrol (2006) ncbi
小鼠 单克隆(28-16-8s)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔H2-Ab1抗体(Caltag, 28-16-8S)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2006) ncbi
大鼠 单克隆(M5/114.15.2)
  • 其他; 小鼠; 1:10
  • 流式细胞仪; 小鼠; 1:10
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114/15.2)被用于被用于其他在小鼠样本上浓度为1:10 和 被用于流式细胞仪在小鼠样本上浓度为1:10. Int Immunol (2005) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 5
  • 流式细胞仪; 人类
赛默飞世尔H2-Ab1抗体(eBioscience, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 5) 和 被用于流式细胞仪在人类样本上. J Immunol (2005) ncbi
小鼠 单克隆(28-16-8s)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(Caltag, 28-16-8S)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
小鼠 单克隆(28-16-8s)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Ab1抗体(Caltag, 28?C16?C8S)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2003) ncbi
小鼠 单克隆(28-16-8s)
  • 流式细胞仪; 小鼠; 图 1
  • 免疫组化; 小鼠; 图 2
赛默飞世尔H2-Ab1抗体(Caltag, 28-16-8S)被用于被用于流式细胞仪在小鼠样本上 (图 1) 和 被用于免疫组化在小鼠样本上 (图 2). Cell Immunol (2003) ncbi
美天旎
人类 单克隆(REA478)
  • 流式细胞仪; 小鼠; 图 2a
美天旎H2-Ab1抗体(Miltenyi Biotec Inc, REA478)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2018) ncbi
Tonbo Biosciences
rat 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 ds1a
Tonbo BiosciencesH2-Ab1抗体(Tonbo, 35-5321)被用于被用于流式细胞仪在小鼠样本上 (图 ds1a). Cell Rep (2021) ncbi
大鼠 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 1a
Tonbo BiosciencesH2-Ab1抗体(Tonbo, 80-5321)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell (2019) ncbi
rat 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 s1b
Tonbo BiosciencesH2-Ab1抗体(Tonbo Biosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Science (2018) ncbi
rat 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 1:200; 图 s4b
Tonbo BiosciencesH2-Ab1抗体(Tonbo Biosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4b). Nat Commun (2016) ncbi
rat 单克隆(M5/114.15.2)
  • 流式细胞仪; 小鼠; 图 4d
Tonbo BiosciencesH2-Ab1抗体(Tonbo Biosciences, M5/114.15.2)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Antimicrob Agents Chemother (2016) ncbi
碧迪BD
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 3c, 5d, s3b, s7c
碧迪BDH2-Ab1抗体(BD Biosciences, 553552)被用于被用于流式细胞仪在小鼠样本上 (图 3c, 5d, s3b, s7c). Cell Rep (2019) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDH2-Ab1抗体(BD Pharmingen, AF6-120.11)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠
碧迪BDH2-Ab1抗体(BD-Biosciences, 553551)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDH2-Ab1抗体(BD Bioscience, 553552)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 1:200; 图 s5
碧迪BDH2-Ab1抗体(BD Biosciences, AF6-120-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5). Nat Commun (2015) ncbi
小鼠 单克隆(KH74)
  • 流式细胞仪; 小鼠
碧迪BDH2-Ab1抗体(BD PharMingen, KH74)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2016) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDH2-Ab1抗体(BD Biosciences., AF6-120.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(AF6-120.1)
  • 流式细胞仪; 小鼠
碧迪BDH2-Ab1抗体(BD Pharmingen, AF6-120.1)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
文章列表
  1. Fearon A, Slabber C, Kuklin A, Bachofner M, Tortola L, Pohlmeier L, et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience. 2021;24:103143 pubmed 出版商
  2. Van Maldegem F, Valand K, Cole M, Patel H, Angelova M, Rana S, et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat Commun. 2021;12:5906 pubmed 出版商
  3. Snyder L, Doherty C, Mercer H, Denkers E. Induction of IL-12p40 and type 1 immunity by Toxoplasma gondii in the absence of the TLR-MyD88 signaling cascade. PLoS Pathog. 2021;17:e1009970 pubmed 出版商
  4. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  5. Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021;12:853 pubmed 出版商
  6. Yang C, Lei L, Collins J, Briones M, Ma L, Sturdevant G, et al. Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor. Nat Commun. 2021;12:5454 pubmed 出版商
  7. Ma M, Li G, Qi M, Jiang W, Zhou R. Inhibition of the Inflammasome Activity of NLRP3 Attenuates HDM-Induced Allergic Asthma. Front Immunol. 2021;12:718779 pubmed 出版商
  8. Félix I, Jokela H, Karhula J, Kotaja N, Savontaus E, Salmi M, et al. Single-Cell Proteomics Reveals the Defined Heterogeneity of Resident Macrophages in White Adipose Tissue. Front Immunol. 2021;12:719979 pubmed 出版商
  9. Petley E, Koay H, Henderson M, Sek K, Todd K, Keam S, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746 pubmed 出版商
  10. Guo L, Xie H, Zhang Z, Wang Z, Peng S, Niu Y, et al. Fusion Protein Vaccine Based on Ag85B and STEAP1 Induces a Protective Immune Response against Prostate Cancer. Vaccines (Basel). 2021;9: pubmed 出版商
  11. Hoffman R, Huang S, Chalasani G, Vallejo A. Disparate Recruitment and Retention of Plasmacytoid Dendritic Cells to The Small Intestinal Mucosa between Young and Aged Mice. Aging Dis. 2021;12:1183-1196 pubmed 出版商
  12. Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, et al. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog. 2021;17:e1009768 pubmed 出版商
  13. Funk K, Arutyunov A, Desai P, White J, Soung A, Rosen S, et al. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell. 2021;20:e13412 pubmed 出版商
  14. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  15. Petermann M, Orfanos Z, Sellau J, Gharaibeh M, Lotter H, Fleischer B, et al. CCR2 Deficiency Impairs Ly6Clo and Ly6Chi Monocyte Responses in Orientia tsutsugamushi Infection. Front Immunol. 2021;12:670219 pubmed 出版商
  16. Ortega Molina A, Lebrero Fernández C, Sanz A, Deleyto Seldas N, Plata Gómez A, Menéndez C, et al. Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36:109372 pubmed 出版商
  17. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  18. Al Zaeed N, Budai Z, Szondy Z, Sarang Z. TAM kinase signaling is indispensable for proper skeletal muscle regeneration in mice. Cell Death Dis. 2021;12:611 pubmed 出版商
  19. Nakatani T, Tsujimoto K, Park J, Jo T, Kimura T, Hayama Y, et al. The lysosomal Ragulator complex plays an essential role in leukocyte trafficking by activating myosin II. Nat Commun. 2021;12:3333 pubmed 出版商
  20. Okunuki Y, Tabor S, Lee M, Connor K. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol. 2021;12:680568 pubmed 出版商
  21. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  22. Oikonomou N, Schuijs M, Chatzigiagkos A, Androulidaki A, Aidinis V, Hammad H, et al. Airway epithelial cell necroptosis contributes to asthma exacerbation in a mouse model of house dust mite-induced allergic inflammation. Mucosal Immunol. 2021;14:1160-1171 pubmed 出版商
  23. Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch B, et al. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. Adv Sci (Weinh). 2021;8:2003395 pubmed 出版商
  24. Roca C, Burton O, Gergelits V, Prezzemolo T, Whyte C, Halpert R, et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12:2890 pubmed 出版商
  25. McElrath C, Espinosa V, Lin J, Peng J, Sridhar R, Dutta O, et al. Critical role of interferons in gastrointestinal injury repair. Nat Commun. 2021;12:2624 pubmed 出版商
  26. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  27. Lin T, Quellier D, Lamb J, Voisin T, Baral P, Bock F, et al. Pseudomonas aeruginosa-induced nociceptor activation increases susceptibility to infection. PLoS Pathog. 2021;17:e1009557 pubmed 出版商
  28. Frenis K, Helmstädter J, Ruan Y, Schramm E, Kalinovic S, Kröller Schön S, et al. Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Res Cardiol. 2021;116:31 pubmed 出版商
  29. Jang S, Economides K, Moniz R, Sia C, Lewis N, McCoy C, et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun Biol. 2021;4:497 pubmed 出版商
  30. Manrique Acevedo C, Padilla J, Naz H, Woodford M, Ghiarone T, Aroor A, et al. Mineralocorticoid Receptor in Myeloid Cells Mediates Angiotensin II-Induced Vascular Dysfunction in Female Mice. Front Physiol. 2021;12:588358 pubmed 出版商
  31. Zheng W, Song H, Luo Z, Wu H, Chen L, Wang Y, et al. Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  32. Chu A, Kok S, TSUI J, Lin M, Aguirre B, Wadehra M. Epithelial membrane protein 2 (Emp2) modulates innate immune cell population recruitment at the maternal-fetal interface. J Reprod Immunol. 2021;145:103309 pubmed 出版商
  33. Voisin M, Shrestha E, Rollet C, Nikain C, Josefs T, Mahe M, et al. Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice. Commun Biol. 2021;4:420 pubmed 出版商
  34. Chen J, Cao X, Li B, Zhao Z, Chen S, Lai S, et al. Warburg Effect Is a Cancer Immune Evasion Mechanism Against Macrophage Immunosurveillance. Front Immunol. 2020;11:621757 pubmed 出版商
  35. da Silva R, Elizondo D, Brandy N, Haddock N, Boddie T, de Oliveira L, et al. Leishmania donovani infection suppresses Allograft Inflammatory Factor-1 in monocytes and macrophages to inhibit inflammatory responses. Sci Rep. 2021;11:946 pubmed 出版商
  36. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  37. Gurley J, Gmyrek G, McClellan M, Hargis E, Hauck S, Dozmorov M, et al. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  38. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  39. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A. 2020;117:20159-20170 pubmed 出版商
  40. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  41. Bhaskar A, Kumar S, Khan M, Singh A, Dwivedi V, Nandicoori V. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. elife. 2020;9: pubmed 出版商
  42. Svensson M, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody K, et al. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Sci Adv. 2020;6:eaba4353 pubmed 出版商
  43. Manils J, Webb L, Howes A, Janzen J, Boeing S, Bowcock A, et al. CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. elife. 2020;9: pubmed 出版商
  44. Kim E, Woodruff M, Grigoryan L, Maier B, Lee S, Mandal P, et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. elife. 2020;9: pubmed 出版商
  45. Guyon C, Jmari N, Padonou F, Li Y, Ucar O, Fujikado N, et al. Aire-dependent genes undergo Clp1-mediated 3'UTR shortening associated with higher transcript stability in the thymus. elife. 2020;9: pubmed 出版商
  46. LeBlang C, Medalla M, Nicoletti N, Hays E, Zhao J, Shattuck J, et al. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci. 2020;14:285 pubmed 出版商
  47. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  48. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  49. Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol. 2020;11:366 pubmed 出版商
  50. Wuggenig P, Kaya B, Melhem H, Ayata C, Hruz P, Sayan A, et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol. 2020;3:130 pubmed 出版商
  51. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  52. Clark D, Brazina S, Yang F, Hu D, Hsieh C, Niemi E, et al. Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell. 2020;19:e13112 pubmed 出版商
  53. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  54. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  55. Forbester J, Clement M, Wellington D, Yeung A, Dimonte S, Marsden M, et al. IRF5 Promotes Influenza Virus-Induced Inflammatory Responses in Human Induced Pluripotent Stem Cell-Derived Myeloid Cells and Murine Models. J Virol. 2020;94: pubmed 出版商
  56. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  57. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  58. Williams G, Marmion D, Schonhoff A, Jurkuvenaite A, Won W, Standaert D, et al. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 2020;139:855-874 pubmed 出版商
  59. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  60. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  61. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  62. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  63. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  64. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  65. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  66. Brown C, Gudjonson H, Pritykin Y, Deep D, Lavallée V, Mendoza A, et al. Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell. 2019;179:846-863.e24 pubmed 出版商
  67. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  68. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  69. Alspach E, Lussier D, Miceli A, Kizhvatov I, DuPage M, Luoma A, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574:696-701 pubmed 出版商
  70. Carpentier K, Davenport B, HAIST K, McCarthy M, May N, Robison A, et al. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. elife. 2019;8: pubmed 出版商
  71. Benechet A, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature. 2019;574:200-205 pubmed 出版商
  72. Lecocq Q, Zeven K, De Vlaeminck Y, Martens S, Massa S, Goyvaerts C, et al. Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use. Biomolecules. 2019;9: pubmed 出版商
  73. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  74. Wolf Y, Bartok O, Patkar S, Eli G, Cohen S, Litchfield K, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell. 2019;179:219-235.e21 pubmed 出版商
  75. Zhang F, Parayath N, Ene C, Stephan S, Koehne A, Coon M, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 2019;10:3974 pubmed 出版商
  76. Kodumudi K, Ramamoorthi G, Snyder C, Basu A, Jia Y, Awshah S, et al. Sequential Anti-PD1 Therapy Following Dendritic Cell Vaccination Improves Survival in a HER2 Mammary Carcinoma Model and Identifies a Critical Role for CD4 T Cells in Mediating the Response. Front Immunol. 2019;10:1939 pubmed 出版商
  77. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  78. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  79. Culemann S, Grüneboom A, Nicolás Ávila J, Weidner D, Lämmle K, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572:670-675 pubmed 出版商
  80. Liu D, Yin X, Olyha S, Nascimento M, Chen P, White T, et al. IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α+ Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity. 2019;: pubmed 出版商
  81. Kretschmann S, Herda S, Bruns H, Russ J, van der Meijden E, Schlötzer Schrehardt U, et al. Chaperone protein HSC70 regulates intercellular transfer of Y chromosome antigen DBY. J Clin Invest. 2019;129:2952-2963 pubmed 出版商
  82. Oh J, Iijima N, Song E, Lu P, Klein J, Jiang R, et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019;: pubmed 出版商
  83. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  84. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  85. Persson E, Verstraete K, Heyndrickx I, Gevaert E, Aegerter H, Percier J, et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science. 2019;364: pubmed 出版商
  86. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  87. Sharma N, Vacher J, Allison J. TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proc Natl Acad Sci U S A. 2019;116:10453-10462 pubmed 出版商
  88. Zhang J, Supakorndej T, Krambs J, Rao M, Abou Ezzi G, Ye R, et al. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest. 2019;129:2920-2931 pubmed 出版商
  89. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta S, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129:2251-2265 pubmed 出版商
  90. Mogilenko D, Haas J, L homme L, Fleury S, Quemener S, Levavasseur M, et al. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell. 2019;177:1201-1216.e19 pubmed 出版商
  91. Sugiura D, Maruhashi T, Okazaki I, Shimizu K, Maeda T, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364:558-566 pubmed 出版商
  92. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136 pubmed 出版商
  93. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  94. Uderhardt S, Martins A, Tsang J, Lämmermann T, Germain R. Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven Inflammatory Damage. Cell. 2019;177:541-555.e17 pubmed 出版商
  95. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  96. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  97. Chakarov S, Lim H, Tan L, Lim S, See P, Lum J, et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019;363: pubmed 出版商
  98. Grootjans J, Krupka N, Hosomi S, Matute J, Hanley T, Saveljeva S, et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science. 2019;363:993-998 pubmed 出版商
  99. Lavoie S, Conway K, Lassen K, Jijon H, Pan H, Chun E, et al. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. elife. 2019;8: pubmed 出版商
  100. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  101. Chopin M, Lun A, Zhan Y, Schreuder J, Coughlan H, D Amico A, et al. Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity. 2019;50:77-90.e5 pubmed 出版商
  102. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  103. Shishido T, Kohyama M, Nakai W, Matsumoto M, Miyata H, Suenaga T, et al. Invariant chain p41 mediates production of soluble MHC class II molecules. Biochem Biophys Res Commun. 2018;: pubmed 出版商
  104. Al Mamun A, Yu H, Mirza M, Romana S, McCullough L, Liu F. Myeloid cell IRF4 signaling protects neonatal brains from hypoxic ischemic encephalopathy. Neurochem Int. 2019;127:148-157 pubmed 出版商
  105. Normand S, Waldschmitt N, Neerincx A, Martinez Torres R, Chauvin C, Couturier Maillard A, et al. Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens. Nat Commun. 2018;9:5338 pubmed 出版商
  106. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  107. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  108. Benmerzoug S, Rose S, Bounab B, Gosset D, Duneau L, Chenuet P, et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018;9:5226 pubmed 出版商
  109. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  110. Uccellini M, Garcia Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep. 2018;25:2784-2796.e3 pubmed 出版商
  111. Sorrelle N, Ganguly D, Dominguez A, Zhang Y, Huang H, Dahal L, et al. Improved Multiplex Immunohistochemistry for Immune Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded Tissues. J Immunol. 2019;202:292-299 pubmed 出版商
  112. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  113. Ushio A, Arakaki R, Otsuka K, Yamada A, Tsunematsu T, Kudo Y, et al. CCL22-Producing Resident Macrophages Enhance T Cell Response in Sjögren's Syndrome. Front Immunol. 2018;9:2594 pubmed 出版商
  114. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  115. Paschalis E, Lei F, Zhou C, Kapoulea V, Dana R, Chodosh J, et al. Permanent neuroglial remodeling of the retina following infiltration of CSF1R inhibition-resistant peripheral monocytes. Proc Natl Acad Sci U S A. 2018;115:E11359-E11368 pubmed 出版商
  116. Casagrande F, de Souza Ferreira S, Nunes F, Romera L, Dos Santos S, Tessaro F, et al. Insulin Modulates Paracoccidioides brasiliensis-Induced Inflammation by Restoring the Populations of NK Cells, Dendritic Cells, and B Lymphocytes in Lungs. J Diabetes Res. 2018;2018:6209694 pubmed 出版商
  117. Wilgenburg B, Loh L, Chen Z, Pediongco T, Wang H, Shi M, et al. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun. 2018;9:4706 pubmed 出版商
  118. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  119. Choi H, Suwanpradid J, Kim I, Staats H, Haniffa M, Macleod A, et al. Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science. 2018;362: pubmed 出版商
  120. Bhagwandin C, Ashbeck E, Whalen M, Bandola Simon J, Roche P, Szajman A, et al. The E3 ubiquitin ligase MARCH1 regulates glucose-tolerance and lipid storage in a sex-specific manner. PLoS ONE. 2018;13:e0204898 pubmed 出版商
  121. Cabron A, El Azzouzi K, Boss M, Arnold P, Schwarz J, Rosas M, et al. Structural and Functional Analyses of the Shedding Protease ADAM17 in HoxB8-Immortalized Macrophages and Dendritic-like Cells. J Immunol. 2018;201:3106-3118 pubmed 出版商
  122. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  123. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  124. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  125. Qu J, Li L, Xie H, Zhang X, Yang Q, Qiu H, et al. TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res. 2018;2018:7519856 pubmed 出版商
  126. Adam L, Lopez Gonzalez M, Björk A, Pålsson S, Poux C, Wahren Herlenius M, et al. Early Resistance of Non-virulent Mycobacterial Infection in C57BL/6 Mice Is Associated With Rapid Up-Regulation of Antimicrobial Cathelicidin Camp. Front Immunol. 2018;9:1939 pubmed 出版商
  127. Giles D, Duncker P, Wilkinson N, Washnock Schmid J, Segal B. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J Clin Invest. 2018;128:5322-5334 pubmed 出版商
  128. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  129. Williams G, Schonhoff A, Jurkuvenaite A, Thome A, Standaert D, Harms A. Targeting of the class II transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinson's disease. J Neuroinflammation. 2018;15:244 pubmed 出版商
  130. Schrand B, Clark E, Levay A, Capote A, Martínez O, Brenneman R, et al. Hapten-mediated recruitment of polyclonal antibodies to tumors engenders antitumor immunity. Nat Commun. 2018;9:3348 pubmed 出版商
  131. Ko Y, Chan Y, Liu C, Liang J, Chuang T, Hsueh Y, et al. Blimp-1-Mediated Pathway Promotes Type I IFN Production in Plasmacytoid Dendritic Cells by Targeting to Interleukin-1 Receptor-Associated Kinase M. Front Immunol. 2018;9:1828 pubmed 出版商
  132. Qian G, Jiang W, Zou B, Feng J, Cheng X, Gu J, et al. LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma. J Exp Med. 2018;215:2397-2412 pubmed 出版商
  133. Wilson K, Liu H, Healey G, Vuong V, Ishido S, Herold M, et al. MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE. 2018;13:e0200540 pubmed 出版商
  134. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  135. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  136. Kirkling M, Cytlak U, Lau C, Lewis K, Resteu A, Khodadadi Jamayran A, et al. Notch Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells. Cell Rep. 2018;23:3658-3672.e6 pubmed 出版商
  137. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  138. Napolitano A, van der Veen A, Bunyan M, Borg A, Frith D, Howell S, et al. Cysteine-Reactive Free ISG15 Generates IL-1β-Producing CD8α+ Dendritic Cells at the Site of Infection. J Immunol. 2018;201:604-614 pubmed 出版商
  139. Luo N, Formisano L, Gonzalez Ericsson P, Sanchez V, Dean P, Opalenik S, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106 pubmed 出版商
  140. Montero Herradón S, García Ceca J, Zapata A. Altered Maturation of Medullary TEC in EphB-Deficient Thymi Is Recovered by RANK Signaling Stimulation. Front Immunol. 2018;9:1020 pubmed 出版商
  141. Yao Y, Huang W, Li X, Li X, Qian J, Han H, et al. Tespa1 Deficiency Dampens Thymus-Dependent B-Cell Activation and Attenuates Collagen-Induced Arthritis in Mice. Front Immunol. 2018;9:965 pubmed 出版商
  142. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  143. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  144. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  145. Kyung D, Sung H, Kim Y, Kim K, Cho S, Choi J, et al. Global transcriptome analysis identifies weight regain-induced activation of adaptive immune responses in white adipose tissue of mice. Int J Obes (Lond). 2018;42:755-764 pubmed 出版商
  146. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  147. Bellelli R, Borel V, Logan C, Svendsen J, Cox D, Nye E, et al. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell. 2018;70:707-721.e7 pubmed 出版商
  148. Gounder A, Yokoyama C, Jarjour N, Bricker T, Edelson B, Boon A. Interferon induced protein 35 exacerbates H5N1 influenza disease through the expression of IL-12p40 homodimer. PLoS Pathog. 2018;14:e1007001 pubmed 出版商
  149. Grist J, Marro B, Skinner D, Syage A, Worne C, Doty D, et al. Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment. Eur J Immunol. 2018;48:1199-1210 pubmed 出版商
  150. Singla B, Ghoshal P, Lin H, Wei Q, Dong Z, Csanyi G. PKCδ-Mediated Nox2 Activation Promotes Fluid-Phase Pinocytosis of Antigens by Immature Dendritic Cells. Front Immunol. 2018;9:537 pubmed 出版商
  151. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  152. Mencarelli A, Khameneh H, Fric J, Vacca M, El Daker S, Janela B, et al. Calcineurin-mediated IL-2 production by CD11chighMHCII+ myeloid cells is crucial for intestinal immune homeostasis. Nat Commun. 2018;9:1102 pubmed 出版商
  153. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  154. Yeh C, Nojima T, Kuraoka M, Kelsoe G. Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat Commun. 2018;9:928 pubmed 出版商
  155. Huang L, Nazarova E, Tan S, Liu Y, Russell D. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215:1135-1152 pubmed 出版商
  156. Metghalchi S, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS ONE. 2018;13:e0193737 pubmed 出版商
  157. Hong D, Ding J, Li O, He Q, Ke M, Zhu M, et al. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection. Stem Cell Res Ther. 2018;9:49 pubmed 出版商
  158. Panduro M, Benoist C, Mathis D. Treg cells limit IFN-? production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2018;115:E2585-E2593 pubmed 出版商
  159. Yang J, Cornelissen F, Papazian N, Reijmers R, Llorian M, Cupedo T, et al. IL-7-dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. J Exp Med. 2018;215:1069-1077 pubmed 出版商
  160. Zhu Y, Zhou J, Feng Y, Chen L, Zhang L, Yang F, et al. Control of Intestinal Inflammation, Colitis-Associated Tumorigenesis, and Macrophage Polarization by Fibrinogen-Like Protein 2. Front Immunol. 2018;9:87 pubmed 出版商
  161. Liang W, Mao S, Sun S, Li M, Li Z, Yu R, et al. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation. Front Immunol. 2018;9:78 pubmed 出版商
  162. King E, Mazor R, Cuburu N, Pastan I. Low-Dose Methotrexate Prevents Primary and Secondary Humoral Immune Responses and Induces Immune Tolerance to a Recombinant Immunotoxin. J Immunol. 2018;200:2038-2045 pubmed 出版商
  163. Böttcher J, Bonavita E, Chakravarty P, Blees H, Cabeza Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022-1037.e14 pubmed 出版商
  164. Soncin I, Sheng J, Chen Q, Foo S, Duan K, Lum J, et al. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat Commun. 2018;9:582 pubmed 出版商
  165. Kilgore A, Welsh S, Cheney E, Chitrakar A, Blain T, Kedl B, et al. IL-27p28 Production by XCR1+ Dendritic Cells and Monocytes Effectively Predicts Adjuvant-Elicited CD8+ T Cell Responses. Immunohorizons. 2018;2:1-11 pubmed 出版商
  166. Turner D, Goldklang M, Cvetkovski F, Paik D, Trischler J, Barahona J, et al. Biased Generation and In Situ Activation of Lung Tissue-Resident Memory CD4 T Cells in the Pathogenesis of Allergic Asthma. J Immunol. 2018;200:1561-1569 pubmed 出版商
  167. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  168. Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science. 2018;359:232-236 pubmed 出版商
  169. Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh J, et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 2018;37: pubmed 出版商
  170. Choi I, Wang Z, Ke Q, Hong M, Qian Y, Zhao X, et al. Signaling by the Epstein-Barr virus LMP1 protein induces potent cytotoxic CD4+ and CD8+ T cell responses. Proc Natl Acad Sci U S A. 2018;115:E686-E695 pubmed 出版商
  171. Lynch J, Werder R, Loh Z, Sikder M, Curren B, Zhang V, et al. Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a-mediated T reg expansion. J Exp Med. 2018;215:537-557 pubmed 出版商
  172. Hogstad B, Berres M, Chakraborty R, Tang J, Bigenwald C, Serasinghe M, et al. RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. J Exp Med. 2018;215:319-336 pubmed 出版商
  173. Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B, Warren Navia A, et al. Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells. Cell. 2018;172:517-533.e20 pubmed 出版商
  174. Harms A, Thome A, Yan Z, Schonhoff A, Williams G, Li X, et al. Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease. Exp Neurol. 2018;300:179-187 pubmed 出版商
  175. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  176. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  177. Purvis H, Clarke F, Jordan C, Blanco C, Cornish G, Dai X, et al. Protein tyrosine phosphatase PTPN22 regulates IL-1β dependent Th17 responses by modulating dectin-1 signaling in mice. Eur J Immunol. 2018;48:306-315 pubmed 出版商
  178. Dehn S, Thorp E. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J. 2018;32:254-264 pubmed 出版商
  179. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  180. Denzin L, Khan A, Virdis F, Wilks J, Kane M, Beilinson H, et al. Neutralizing Antibody Responses to Viral Infections Are Linked to the Non-classical MHC Class II Gene H2-Ob. Immunity. 2017;47:310-322.e7 pubmed 出版商
  181. Hannibal T, Schmidt Christensen A, Nilsson J, Fransén Pettersson N, Hansen L, Holmberg D. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia. 2017;60:2033-2041 pubmed 出版商
  182. Anderson D, Grajales Reyes G, Satpathy A, Vasquez Hueichucura C, Murphy T, Murphy K. Revisiting the specificity of the MHC class?II transactivator CIITA in classical murine dendritic cells in vivo. Eur J Immunol. 2017;47:1317-1323 pubmed 出版商
  183. Dunst J, Azzouz N, Liu X, Tsukita S, Seeberger P, Kamena F. Interaction between Plasmodium Glycosylphosphatidylinositol and the Host Protein Moesin Has No Implication in Malaria Pathology. Front Cell Infect Microbiol. 2017;7:183 pubmed 出版商
  184. Jinnohara T, Kanaya T, Hase K, Sakakibara S, Kato T, Tachibana N, et al. IL-22BP dictates characteristics of Peyer's patch follicle-associated epithelium for antigen uptake. J Exp Med. 2017;214:1607-1618 pubmed 出版商
  185. Minutti C, Jackson Jones L, Garcia Fojeda B, Knipper J, Sutherland T, Logan N, et al. Local amplifiers of IL-4R?-mediated macrophage activation promote repair in lung and liver. Science. 2017;356:1076-1080 pubmed 出版商
  186. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  187. Acharya N, Penukonda S, Shcheglova T, Hagymasi A, Basu S, Srivastava P. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc Natl Acad Sci U S A. 2017;114:5005-5010 pubmed 出版商
  188. Smith T, Moffett H, Stephan S, Opel C, Dumigan A, Jiang X, et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J Clin Invest. 2017;127:2176-2191 pubmed 出版商
  189. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  190. Shrestha B, You D, Saravia J, Siefker D, Jaligama S, Lee G, et al. IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection. J Leukoc Biol. 2017;102:153-161 pubmed 出版商
  191. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  192. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  193. van der Vlugt L, Obieglo K, Ozir Fazalalikhan A, Sparwasser T, Haeberlein S, Smits H. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol. 2017;47:545-554 pubmed 出版商
  194. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  195. Inoue T, Shinnakasu R, Ise W, Kawai C, Egawa T, Kurosaki T. The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J Exp Med. 2017;214:1181-1198 pubmed 出版商
  196. Briseño C, Gargaro M, Durai V, Davidson J, Theisen D, Anderson D, et al. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proc Natl Acad Sci U S A. 2017;114:3957-3962 pubmed 出版商
  197. Kogo H, Shimizu M, Negishi Y, Uchida E, Takahashi H. Suppression of murine tumour growth through CD8+ cytotoxic T lymphocytes via activated DEC-205+ dendritic cells by sequential administration of ?-galactosylceramide in vivo. Immunology. 2017;151:324-339 pubmed 出版商
  198. Hauptmann M, Burkhardt N, Munderloh U, Kuehl S, Richardt U, Krasemann S, et al. GFPuv-Expressing Recombinant Rickettsia typhi: a Useful Tool for the Study of Pathogenesis and CD8+ T Cell Immunology in R. typhi Infection. Infect Immun. 2017;85: pubmed 出版商
  199. Schuh E, Musumeci A, Thaler F, Laurent S, Ellwart J, Hohlfeld R, et al. Human Plasmacytoid Dendritic Cells Display and Shed B Cell Maturation Antigen upon TLR Engagement. J Immunol. 2017;198:3081-3088 pubmed 出版商
  200. Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715 pubmed 出版商
  201. Baranek T, Morello E, Valayer A, Aimar R, Bréa D, Henry C, et al. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol. 2017;8:123 pubmed 出版商
  202. Wang H, Mo L, Xiao X, An S, Liu X, Ba J, et al. Pplase of Dermatophagoides farinae promotes ovalbumin-induced airway allergy by modulating the functions of dendritic cells in a mouse model. Sci Rep. 2017;7:43322 pubmed 出版商
  203. Hartwig T, Montinaro A, von Karstedt S, Sevko A, Surinova S, Chakravarthy A, et al. The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Mol Cell. 2017;65:730-742.e5 pubmed 出版商
  204. Nicolas N, Michel V, Bhushan S, Wahle E, Hayward S, Ludlow H, et al. Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep. 2017;7:42391 pubmed 出版商
  205. Rossey I, Gilman M, Kabeche S, Sedeyn K, Wrapp D, Kanekiyo M, et al. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun. 2017;8:14158 pubmed 出版商
  206. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  207. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  208. Vander Lugt B, Riddell J, Khan A, Hackney J, Lesch J, DeVoss J, et al. Transcriptional determinants of tolerogenic and immunogenic states during dendritic cell maturation. J Cell Biol. 2017;216:779-792 pubmed 出版商
  209. Bracamonte Baran W, Florentin J, Zhou Y, Jankowska Gan E, Haynes W, Zhong W, et al. Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proc Natl Acad Sci U S A. 2017;114:1099-1104 pubmed 出版商
  210. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A. 2017;114:E540-E549 pubmed 出版商
  211. Yun T, Lee J, Shim D, Choi J, Cheong C. Isolation and Characterization of Aortic Dendritic Cells and Lymphocytes in Atherosclerosis. Methods Mol Biol. 2017;1559:419-437 pubmed 出版商
  212. Scott C, Bain C, Mowat A. Isolation and Identification of Intestinal Myeloid Cells. Methods Mol Biol. 2017;1559:223-239 pubmed 出版商
  213. Rombouts M, Cools N, Grootaert M, de Bakker F, Van Brussel I, Wouters A, et al. Long-Term Depletion of Conventional Dendritic Cells Cannot Be Maintained in an Atherosclerotic Zbtb46-DTR Mouse Model. PLoS ONE. 2017;12:e0169608 pubmed 出版商
  214. Xue N, Zhou Q, Ji M, Jin J, Lai F, Chen J, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep. 2017;7:39011 pubmed 出版商
  215. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  216. Griffiths K, Ahmed M, Das S, Gopal R, Horne W, Connell T, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016;7:13894 pubmed 出版商
  217. Yasuda T, Ura T, Taniguchi M, Yoshida H. Intradermal Delivery of Antigens Enhances Specific IgG and Diminishes IgE Production: Potential Use for Vaccination and Allergy Immunotherapy. PLoS ONE. 2016;11:e0167952 pubmed 出版商
  218. Herzig Y, Nevo S, Bornstein C, Brezis M, Ben Hur S, Shkedy A, et al. Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nat Immunol. 2017;18:161-172 pubmed 出版商
  219. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  220. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  221. Khameneh H, Ho A, Spreafico R, Derks H, Quek H, Mortellaro A. The Syk-NFAT-IL-2 Pathway in Dendritic Cells Is Required for Optimal Sterile Immunity Elicited by Alum Adjuvants. J Immunol. 2017;198:196-204 pubmed
  222. Man A, Gicheva N, Regoli M, Rowley G, De Cunto G, Wellner N, et al. CX3CR1+ Cell-Mediated Salmonella Exclusion Protects the Intestinal Mucosa during the Initial Stage of Infection. J Immunol. 2017;198:335-343 pubmed
  223. Monnerat G, Alarcón M, Vasconcellos L, Hochman Mendez C, Brasil G, Bassani R, et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344 pubmed 出版商
  224. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  225. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  226. Hidaka T, Ogawa E, Kobayashi E, Suzuki T, Funayama R, Nagashima T, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017;18:64-73 pubmed 出版商
  227. Sulek J, Robinson S, Petrossian A, Zhou S, Goliadze E, Manjili M, et al. Role of Epigenetic Modification and Immunomodulation in a Murine Prostate Cancer Model. Prostate. 2017;77:361-373 pubmed 出版商
  228. Khan S, Woodruff E, Trapecar M, Fontaine K, Ezaki A, Borbet T, et al. Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. J Exp Med. 2016;213:2913-2929 pubmed
  229. Le Blon D, Guglielmetti C, Hoornaert C, Quarta A, Daans J, Dooley D, et al. Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model. J Neuroinflammation. 2016;13:288 pubmed
  230. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  231. Tafteh R, Abraham L, Seo D, Lu H, Gold M, Chou K. Real-time 3D stabilization of a super-resolution microscope using an electrically tunable lens. Opt Express. 2016;24:22959-22970 pubmed 出版商
  232. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  233. Jirmo A, Daluege K, Happle C, Albrecht M, Dittrich A, Busse M, et al. IL-27 Is Essential for Suppression of Experimental Allergic Asthma by the TLR7/8 Agonist R848 (Resiquimod). J Immunol. 2016;197:4219-4227 pubmed
  234. Coleman C, Sisk J, Halasz G, Zhong J, Beck S, Matthews K, et al. CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome. J Virol. 2017;91: pubmed 出版商
  235. Smirnova T, Bonapace L, MacDonald G, Kondo S, Wyckoff J, Ebersbach H, et al. Serpin E2 promotes breast cancer metastasis by remodeling the tumor matrix and polarizing tumor associated macrophages. Oncotarget. 2016;7:82289-82304 pubmed 出版商
  236. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  237. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  238. Yashiro T, Hara M, Ogawa H, Okumura K, Nishiyama C. Critical Role of Transcription Factor PU.1 in the Function of the OX40L/TNFSF4 Promoter in Dendritic Cells. Sci Rep. 2016;6:34825 pubmed 出版商
  239. Guglielmetti C, Le Blon D, Santermans E, Salas Perdomo A, Daans J, De Vocht N, et al. Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia. 2016;64:2181-2200 pubmed 出版商
  240. Ippagunta S, Gangwar R, Finkelstein D, Vogel P, Pelletier S, Gingras S, et al. Keratinocytes contribute intrinsically to psoriasis upon loss of Tnip1 function. Proc Natl Acad Sci U S A. 2016;113:E6162-E6171 pubmed
  241. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  242. Bernard Valnet R, Yshii L, Quériault C, Nguyen X, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113:10956-61 pubmed 出版商
  243. Stock A, Hansen J, Sleeman M, McKenzie B, Wicks I. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease. J Exp Med. 2016;213:1983-98 pubmed 出版商
  244. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  245. Greco S, Torres Hernandez A, Kalabin A, Whiteman C, Rokosh R, Ravirala S, et al. Mincle Signaling Promotes Con A Hepatitis. J Immunol. 2016;197:2816-27 pubmed 出版商
  246. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  247. Kim K, Williams J, Wang Y, Ivanov S, Gilfillan S, Colonna M, et al. MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. J Exp Med. 2016;213:1951-9 pubmed 出版商
  248. Murakami S, Shahbazian D, Surana R, Zhang W, Chen H, Graham G, et al. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene. 2017;36:1232-1244 pubmed 出版商
  249. Kouwenberg M, Jacobs C, van der Vlag J, Hilbrands L. Allostimulatory Effects of Dendritic Cells with Characteristic Features of a Regulatory Phenotype. PLoS ONE. 2016;11:e0159986 pubmed 出版商
  250. Achuthan A, Cook A, Lee M, Saleh R, Khiew H, Chang M, et al. Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. J Clin Invest. 2016;126:3453-66 pubmed 出版商
  251. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  252. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  253. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  254. Boucard Jourdin M, Kugler D, Endale Ahanda M, This S, De Calisto J, Zhang A, et al. ?8 Integrin Expression and Activation of TGF-? by Intestinal Dendritic Cells Are Determined by Both Tissue Microenvironment and Cell Lineage. J Immunol. 2016;197:1968-78 pubmed 出版商
  255. Yoshioka D, Kajiwara C, Ishii Y, Umeki K, Hiramatsu K, Kadota J, et al. Efficacy of ?-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob Agents Chemother. 2016;60:6146-54 pubmed 出版商
  256. Schneider C, Nobs S, Heer A, Hirsch E, Penninger J, Siggs O, et al. Frontline Science: Coincidental null mutation of Csf2rα in a colony of PI3Kγ-/- mice causes alveolar macrophage deficiency and fatal respiratory viral infection. J Leukoc Biol. 2017;101:367-376 pubmed 出版商
  257. Xiao Y, Tang J, Guo H, Zhao Y, Tang R, Ouyang S, et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med. 2016;22:906-14 pubmed 出版商
  258. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  259. Wang S, Xia P, Chen Y, Huang G, Xiong Z, Liu J, et al. Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection. Immunity. 2016;45:131-44 pubmed 出版商
  260. Iwasaki Y, Sugita S, Mandai M, Yonemura S, Onishi A, Ito S, et al. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool. PLoS ONE. 2016;11:e0158282 pubmed 出版商
  261. Allison K, Sajti E, Collier J, Gosselin D, Troutman T, Stone E, et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. elife. 2016;5: pubmed 出版商
  262. Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella Branger D, Rougon G, et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 2016;6:26381 pubmed 出版商
  263. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  264. Nieves W, Hung L, Oniskey T, Boon L, Foretz M, Viollet B, et al. Myeloid-Restricted AMPK?1 Promotes Host Immunity and Protects against IL-12/23p40-Dependent Lung Injury during Hookworm Infection. J Immunol. 2016;196:4632-40 pubmed 出版商
  265. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  266. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  267. Harper I, Ali J, Harper S, Wlodek E, Alsughayyir J, Negus M, et al. Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant. Cell Rep. 2016;15:1214-27 pubmed 出版商
  268. Rialdi A, Campisi L, Zhao N, Lagda A, Pietzsch C, Ho J, et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science. 2016;352:aad7993 pubmed 出版商
  269. Hull T, Boddu R, Guo L, Tisher C, Traylor A, Patel B, et al. Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight. 2016;1:e85817 pubmed
  270. Anghelina D, Lam E, Falck Pedersen E. Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity. J Virol. 2016;90:5915-27 pubmed 出版商
  271. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  272. Llopiz D, Aranda F, Díaz Valdés N, Ruiz M, Infante S, Belsue V, et al. Vaccine-induced but not tumor-derived Interleukin-10 dictates the efficacy of Interleukin-10 blockade in therapeutic vaccination. Oncoimmunology. 2016;5:e1075113 pubmed
  273. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  274. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  275. Hua J, Stevenson W, Dohlman T, Inomata T, Tahvildari M, Calcagno N, et al. Graft Site Microenvironment Determines Dendritic Cell Trafficking Through the CCR7-CCL19/21 Axis. Invest Ophthalmol Vis Sci. 2016;57:1457-67 pubmed 出版商
  276. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  277. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  278. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  279. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  280. Xiao J, Shao L, Shen J, Jiang W, Feng Y, Zheng P, et al. Effects of ketanserin on experimental colitis in mice and macrophage function. Int J Mol Med. 2016;37:659-68 pubmed 出版商
  281. Howitt M, Lavoie S, Michaud M, Blum A, Tran S, Weinstock J, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329-33 pubmed 出版商
  282. Levit Zerdoun E, Becker M, Pohlmeyer R, Wilhelm I, Maity P, Rajewsky K, et al. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. J Immunol. 2016;196:2348-60 pubmed 出版商
  283. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  284. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  285. Naujoks J, Tabeling C, Dill B, Hoffmann C, Brown A, Kunze M, et al. IFNs Modify the Proteome of Legionella-Containing Vacuoles and Restrict Infection Via IRG1-Derived Itaconic Acid. PLoS Pathog. 2016;12:e1005408 pubmed 出版商
  286. Megías J, Martínez A, Yáñez A, Goodridge H, Gozalbo D, Gil M. TLR2, TLR4 and Dectin-1 signalling in hematopoietic stem and progenitor cells determines the antifungal phenotype of the macrophages they produce. Microbes Infect. 2016;18:354-63 pubmed 出版商
  287. Johnson D, Estrada M, Salgado R, Sanchez V, Doxie D, Opalenik S, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582 pubmed 出版商
  288. Foks A, Engelbertsen D, Kuperwaser F, Alberts Grill N, Gonen A, Witztum J, et al. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol. 2016;36:456-65 pubmed 出版商
  289. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  290. Scott C, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7:10321 pubmed 出版商
  291. Grabert K, Michoel T, Karavolos M, Clohisey S, Baillie J, Stevens M, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci. 2016;19:504-16 pubmed 出版商
  292. Tellier J, Shi W, Minnich M, Liao Y, Crawford S, Smyth G, et al. Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nat Immunol. 2016;17:323-30 pubmed 出版商
  293. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  294. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  295. Connor A, Kelley P, Tempero R. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis. Lab Invest. 2016;96:270-82 pubmed 出版商
  296. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  297. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  298. Arnold L, Perrin H, de Chanville C, Saclier M, Hermand P, Poupel L, et al. CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production. Nat Commun. 2015;6:8972 pubmed 出版商
  299. Malinova D, Fritzsche M, Nowosad C, Armer H, Munro P, Blundell M, et al. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts. J Leukoc Biol. 2016;99:699-710 pubmed 出版商
  300. Fontinha D, Lopes F, Marques S, Alenquer M, Simas J. Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells. PLoS ONE. 2015;10:e0142540 pubmed 出版商
  301. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  302. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  303. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  304. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  305. Thome A, Standaert D, Harms A. Fractalkine Signaling Regulates the Inflammatory Response in an α-Synuclein Model of Parkinson Disease. PLoS ONE. 2015;10:e0140566 pubmed 出版商
  306. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  307. Wu V, Smith A, You H, Nguyen T, Ferguson R, Taylor M, et al. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol. 2016;9:777-86 pubmed 出版商
  308. Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep. 2015;5:14871 pubmed 出版商
  309. Gonzalez N, Wennhold K, Balkow S, Kondo E, Bölck B, Weber T, et al. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology. 2015;4:e1038684 pubmed
  310. Buerger S, Herrmann V, Mundt S, Trautwein N, Groettrup M, Basler M. The Ubiquitin-like Modifier FAT10 Is Selectively Expressed in Medullary Thymic Epithelial Cells and Modifies T Cell Selection. J Immunol. 2015;195:4106-16 pubmed 出版商
  311. Lammers K, Chieppa M, Liu L, Liu S, Omatsu T, Janka Junttila M, et al. Gliadin Induces Neutrophil Migration via Engagement of the Formyl Peptide Receptor, FPR1. PLoS ONE. 2015;10:e0138338 pubmed 出版商
  312. Brasseit J, Althaus Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, et al. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol. 2016;9:689-701 pubmed 出版商
  313. Hanot Mambres D, Machelart A, Vanderwinden J, De Trez C, Ryffel B, Letesson J, et al. In Situ Characterization of Splenic Brucella melitensis Reservoir Cells during the Chronic Phase of Infection in Susceptible Mice. PLoS ONE. 2015;10:e0137835 pubmed 出版商
  314. Castillo V, Oñate M, Woehlbier U, Rozas P, Andreu C, Medinas D, et al. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration. PLoS ONE. 2015;10:e0136620 pubmed 出版商
  315. Martin Blondel G, Pignolet B, Tietz S, Yshii L, Gebauer C, Périnat T, et al. Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the α4β1-integrin. Eur J Immunol. 2015;45:3302-12 pubmed 出版商
  316. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  317. Ermert D, Shaughnessy J, Joeris T, Kaplan J, Pang C, Kurt Jones E, et al. Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors. PLoS Pathog. 2015;11:e1005043 pubmed 出版商
  318. Glennon E, Kaunzner U, Gagnidze K, McEwen B, Bulloch K. Pituitary dendritic cells communicate immune pathogenic signals. Brain Behav Immun. 2015;50:232-240 pubmed 出版商
  319. Kratochvill F, Gratz N, Qualls J, Van De Velde L, Chi H, Kovarik P, et al. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res. 2015;75:3054-64 pubmed 出版商
  320. Pérez Girón J, Gómez Medina S, Lüdtke A, Munoz Fontela C. Intranasal Administration of Recombinant Influenza Vaccines in Chimeric Mouse Models to Study Mucosal Immunity. J Vis Exp. 2015;:e52803 pubmed 出版商
  321. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  322. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed 出版商
  323. Teo T, Her Z, Tan J, Lum F, Lee W, Chan Y, et al. Caribbean and La Réunion Chikungunya Virus Isolates Differ in Their Capacity To Induce Proinflammatory Th1 and NK Cell Responses and Acute Joint Pathology. J Virol. 2015;89:7955-69 pubmed 出版商
  324. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson A, et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522:349-53 pubmed 出版商
  325. Xue J, Sharma V, Hsieh M, Chawla A, Murali R, Pandol S, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158 pubmed 出版商
  326. Carmi Y, Spitzer M, Linde I, Burt B, Prestwood T, Perlman N, et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature. 2015;521:99-104 pubmed 出版商
  327. Becker P, Hervouet C, Mason G, KWON S, Klavinskis L. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine. 2015;33:4691-8 pubmed 出版商
  328. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  329. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  330. Wan W, Liu Q, Lionakis M, Marino A, Anderson S, Swamydas M, et al. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res. 2015;106:478-87 pubmed 出版商
  331. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  332. Rozanski C, Utley A, Carlson L, Farren M, Murray M, Russell L, et al. CD28 Promotes Plasma Cell Survival, Sustained Antibody Responses, and BLIMP-1 Upregulation through Its Distal PYAP Proline Motif. J Immunol. 2015;194:4717-28 pubmed 出版商
  333. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  334. Kolan S, Boman A, Matozaki T, Lejon K, Oldenborg P. Lack of non-hematopoietic SIRPα signaling disturbs the splenic marginal zone architecture resulting in accumulation and displacement of marginal zone B cells. Biochem Biophys Res Commun. 2015;460:645-50 pubmed 出版商
  335. Wong E, Soni C, Chan A, Domeier P, Shwetank -, Abraham T, et al. B cell-intrinsic CD84 and Ly108 maintain germinal center B cell tolerance. J Immunol. 2015;194:4130-43 pubmed 出版商
  336. Watanabe S, Chan K, Wang J, Rivino L, Lok S, Vasudevan S. Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice. J Virol. 2015;89:5847-61 pubmed 出版商
  337. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  338. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  339. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  340. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  341. Stack G, Jones E, Marsden M, Stacey M, Snelgrove R, Lacaze P, et al. CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog. 2015;11:e1004641 pubmed 出版商
  342. Michelet X, Garg S, Wolf B, Tuli A, Ricciardi Castagnoli P, Brenner M. MHC class II presentation is controlled by the lysosomal small GTPase, Arl8b. J Immunol. 2015;194:2079-88 pubmed 出版商
  343. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  344. Karsten C, Laumonnier Y, Eurich B, Ender F, Bröker K, Roy S, et al. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. J Immunol. 2015;194:1841-55 pubmed 出版商
  345. Shindo Y, Unsinger J, Burnham C, Green J, Hotchkiss R. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015;43:334-43 pubmed 出版商
  346. Dewas C, Chen X, Honda T, Junttila I, Linton J, Udey M, et al. TSLP expression: analysis with a ZsGreen TSLP reporter mouse. J Immunol. 2015;194:1372-80 pubmed 出版商
  347. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  348. Evrard M, Chong S, Devi S, Chew W, Lee B, Poidinger M, et al. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol. 2015;97:611-9 pubmed 出版商
  349. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  350. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  351. Yin Y, Qin T, Wang X, Lin J, Yu Q, Yang Q. CpG DNA assists the whole inactivated H9N2 influenza virus in crossing the intestinal epithelial barriers via transepithelial uptake of dendritic cell dendrites. Mucosal Immunol. 2015;8:799-814 pubmed 出版商
  352. Kim J, Li W, Choi Y, Lewin S, Verbeke C, Dranoff G, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33:64-72 pubmed 出版商
  353. Hou J, Zhang Q, Fujino M, Cai S, Ito H, Takahashi K, et al. 5-Aminolevulinic acid with ferrous iron induces permanent cardiac allograft acceptance in mice via induction of regulatory cells. J Heart Lung Transplant. 2015;34:254-63 pubmed 出版商
  354. Cousens L, Najafian N, Martin W, De Groot A. Tregitope: Immunomodulation powerhouse. Hum Immunol. 2014;75:1139-46 pubmed 出版商
  355. Nakamura M, Shibata K, Hatano S, Sato T, Ohkawa Y, Yamada H, et al. A genome-wide analysis identifies a notch-RBP-Jκ-IL-7Rα axis that controls IL-17-producing γδ T cell homeostasis in mice. J Immunol. 2015;194:243-51 pubmed 出版商
  356. van Blijswijk J, Schraml B, Rogers N, Whitney P, Zelenay S, Acton S, et al. Altered lymph node composition in diphtheria toxin receptor-based mouse models to ablate dendritic cells. J Immunol. 2015;194:307-15 pubmed 出版商
  357. Lieber S, Scheer F, Finkernagel F, Meissner W, Giehl G, Brendel C, et al. The inverse agonist DG172 triggers a PPARβ/δ-independent myeloid lineage shift and promotes GM-CSF/IL-4-induced dendritic cell differentiation. Mol Pharmacol. 2015;87:162-73 pubmed 出版商
  358. Lee J, Dang X, Borboa A, Coimbra R, Baird A, Eliceiri B. Thrombin-processed Ecrg4 recruits myeloid cells and induces antitumorigenic inflammation. Neuro Oncol. 2015;17:685-96 pubmed 出版商
  359. McKinstry K, Strutt T, Bautista B, Zhang W, Kuang Y, Cooper A, et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun. 2014;5:5377 pubmed 出版商
  360. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  361. Jain R, Gray D. Isolation of thymic epithelial cells and analysis by flow cytometry. Curr Protoc Immunol. 2014;107:3.26.1-15 pubmed 出版商
  362. Morales D, Monte K, Sun L, Struckhoff J, Agapov E, Holtzman M, et al. Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J Virol. 2015;89:337-49 pubmed 出版商
  363. McDonnell A, Lesterhuis W, Khong A, Nowak A, Lake R, Currie A, et al. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur J Immunol. 2015;45:49-59 pubmed 出版商
  364. Becker A, Walcheck B, Bhattacharya D. ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors. Exp Hematol. 2015;43:44-52.e1-3 pubmed 出版商
  365. Å krnjug I, Guzmán C, Rueckert C, Ruecker C. Cyclic GMP-AMP displays mucosal adjuvant activity in mice. PLoS ONE. 2014;9:e110150 pubmed 出版商
  366. Xia H, Ren X, Bolte C, Ustiyan V, Zhang Y, Shah T, et al. Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol. 2015;52:611-21 pubmed 出版商
  367. Nagano T, Edamatsu H, Kobayashi K, Takenaka N, Yamamoto M, Sasaki N, et al. Phospholipase cε, an effector of ras and rap small GTPases, is required for airway inflammatory response in a mouse model of bronchial asthma. PLoS ONE. 2014;9:e108373 pubmed 出版商
  368. Tassi I, Claudio E, Wang H, Tang W, Ha H, Saret S, et al. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. J Immunol. 2014;193:4303-11 pubmed 出版商
  369. Cremasco V, Woodruff M, Onder L, Cupovic J, Nieves Bonilla J, Schildberg F, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973-81 pubmed 出版商
  370. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  371. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  372. Reeh K, Cardenas K, Bain V, Liu Z, LAURENT M, Manley N, et al. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development. 2014;141:2950-8 pubmed 出版商
  373. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  374. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  375. Madireddi S, Eun S, Lee S, Nemčovičová I, Mehta A, Zajonc D, et al. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med. 2014;211:1433-48 pubmed 出版商
  376. Moreno M, Bannerman P, Ma J, Guo F, Miers L, Soulika A, et al. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J Neurosci. 2014;34:8175-85 pubmed 出版商
  377. Weber G, Chousterman B, Hilgendorf I, Robbins C, Theurl I, Gerhardt L, et al. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J Exp Med. 2014;211:1243-56 pubmed 出版商
  378. Assi H, Espinosa J, Suprise S, SOFRONIEW M, Doherty R, Zamler D, et al. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM. PLoS ONE. 2014;9:e96318 pubmed 出版商
  379. Leppin K, Behrendt A, Reichard M, Stachs O, Guthoff R, Baltrusch S, et al. Diabetes mellitus leads to accumulation of dendritic cells and nerve fiber damage of the subbasal nerve plexus in the cornea. Invest Ophthalmol Vis Sci. 2014;55:3603-15 pubmed 出版商
  380. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  381. Sheng K, Herrero L, Taylor A, Hapel A, Mahalingam S. IL-3 and CSF-1 interact to promote generation of CD11c+ IL-10-producing macrophages. PLoS ONE. 2014;9:e95208 pubmed 出版商
  382. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  383. König S, Nitzki F, Uhmann A, Dittmann K, Theiss Suennemann J, Herrmann M, et al. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice. PLoS ONE. 2014;9:e93555 pubmed 出版商
  384. Martins K, Steffens J, Van Tongeren S, Wells J, Bergeron A, Dickson S, et al. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS ONE. 2014;9:e89735 pubmed 出版商
  385. Ramakrishnan R, Tyurin V, Tuyrin V, Veglia F, Condamine T, Amoscato A, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192:2920-31 pubmed 出版商
  386. Schneppenheim J, Hüttl S, Mentrup T, Lüllmann Rauch R, Rothaug M, Engelke M, et al. The intramembrane proteases signal Peptide peptidase-like 2a and 2b have distinct functions in vivo. Mol Cell Biol. 2014;34:1398-411 pubmed 出版商
  387. Weber B, Schuster S, Zysset D, Rihs S, Dickgreber N, Schürch C, et al. TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. PLoS Pathog. 2014;10:e1003900 pubmed 出版商
  388. Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10:e1003885 pubmed 出版商
  389. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  390. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  391. Xia S, Wei J, Wang J, Sun H, Zheng W, Li Y, et al. A requirement of dendritic cell-derived interleukin-27 for the tumor infiltration of regulatory T cells. J Leukoc Biol. 2014;95:733-742 pubmed
  392. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  393. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  394. Salem H, Trojanowski B, Fiedler K, Maier H, Schirmbeck R, Wagner M, et al. Long-term IKK2/NF-?B signaling in pancreatic ?-cells induces immune-mediated diabetes. Diabetes. 2014;63:960-75 pubmed 出版商
  395. Murphy K, Erickson J, Johnson C, Seiler C, Bedi J, Hu P, et al. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol. 2014;192:224-33 pubmed 出版商
  396. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  397. Satpathy A, Briseño C, Lee J, Ng D, Manieri N, Kc W, et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol. 2013;14:937-48 pubmed 出版商
  398. Stoilova B, Kowenz Leutz E, Scheller M, Leutz A. Lymphoid to myeloid cell trans-differentiation is determined by C/EBP? structure and post-translational modifications. PLoS ONE. 2013;8:e65169 pubmed 出版商
  399. Redecke V, Wu R, Zhou J, Finkelstein D, Chaturvedi V, High A, et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods. 2013;10:795-803 pubmed 出版商
  400. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  401. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  402. Donat U, Weibel S, Hess M, Stritzker J, Härtl B, Sturm J, et al. Preferential colonization of metastases by oncolytic vaccinia virus strain GLV-1h68 in a human PC-3 prostate cancer model in nude mice. PLoS ONE. 2012;7:e45942 pubmed 出版商
  403. Botelho F, Bauer C, Finch D, Nikota J, Zavitz C, Kelly A, et al. IL-1?/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PLoS ONE. 2011;6:e28457 pubmed 出版商
  404. Ferret Bernard S, Castro Borges W, Dowle A, Sanin D, Cook P, Turner J, et al. Plasma membrane proteomes of differentially matured dendritic cells identified by LC-MS/MS combined with iTRAQ labelling. J Proteomics. 2012;75:938-48 pubmed 出版商
  405. Ota N, Wong K, Valdez P, Zheng Y, Crellin N, Diehl L, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12:941-8 pubmed 出版商
  406. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  407. Charles E, Joshi S, Ash J, Fox B, Farris A, Bzik D, et al. CD4 T-cell suppression by cells from Toxoplasma gondii-infected retinas is mediated by surface protein PD-L1. Infect Immun. 2010;78:3484-92 pubmed 出版商
  408. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  409. Blache C, Adriouch S, Calbo S, Drouot L, Dulauroy S, Arnoult C, et al. Cutting edge: CD4-independent development of functional FoxP3+ regulatory T cells. J Immunol. 2009;183:4182-6 pubmed 出版商
  410. Carlow D, Gold M, Ziltener H. Lymphocytes in the peritoneum home to the omentum and are activated by resident dendritic cells. J Immunol. 2009;183:1155-65 pubmed 出版商
  411. Ellestad K, Tsutsui S, Noorbakhsh F, Warren K, Yong V, Pittman Q, et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol. 2009;183:298-309 pubmed 出版商
  412. Kiesel J, Buchwald Z, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182:5477-87 pubmed 出版商
  413. Tambuyzer B, Bergwerf I, De Vocht N, Reekmans K, Daans J, Jorens P, et al. Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation. Immunol Cell Biol. 2009;87:267-73 pubmed 出版商
  414. Blumenthal A, Kobayashi T, Pierini L, Banaei N, Ernst J, Miyake K, et al. RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins. Cell Host Microbe. 2009;5:35-46 pubmed 出版商
  415. Wells J, Cowled C, Farzaneh F, Noble A. Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol. 2008;181:3422-31 pubmed
  416. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商
  417. Ikehara Y, Shiuchi N, Kabata Ikehara S, Nakanishi H, Yokoyama N, Takagi H, et al. Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal phagocytic cells. Cancer Lett. 2008;260:137-45 pubmed
  418. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349-62 pubmed
  419. van der Marel A, Samsom J, Greuter M, van Berkel L, O Toole T, Kraal G, et al. Blockade of IDO inhibits nasal tolerance induction. J Immunol. 2007;179:894-900 pubmed
  420. Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott H, Matsumoto M, et al. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol. 2007;8:304-11 pubmed
  421. Gupta S, Verfaillie C, Chmielewski D, Kren S, Eidman K, Connaire J, et al. Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol. 2006;17:3028-40 pubmed
  422. Hewitson J, Jenkins G, Hamblin P, Mountford A. CD40/CD154 interactions are required for the optimal maturation of skin-derived APCs and the induction of helminth-specific IFN-gamma but not IL-4. J Immunol. 2006;177:3209-17 pubmed
  423. Sato K, Imai Y, Higashi N, Kumamoto Y, Mukaida N, Irimura T. Redistributions of macrophages expressing the macrophage galactose-type C-type lectin (MGL) during antigen-induced chronic granulation tissue formation. Int Immunol. 2005;17:559-68 pubmed
  424. Hoffmann P, Kench J, Vondracek A, Kruk E, Daleke D, Jordan M, et al. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol. 2005;174:1393-404 pubmed
  425. Jenkins S, Mountford A. Dendritic cells activated with products released by schistosome larvae drive Th2-type immune responses, which can be inhibited by manipulation of CD40 costimulation. Infect Immun. 2005;73:395-402 pubmed
  426. Morin J, Faideau B, Gagnerault M, Lepault F, Boitard C, Boudaly S. Passive transfer of flt-3L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin Exp Immunol. 2003;134:388-95 pubmed
  427. Morin J, Chimènes A, Boitard C, Berthier R, Boudaly S. Granulocyte-dendritic cell unbalance in the non-obese diabetic mice. Cell Immunol. 2003;223:13-25 pubmed