这是一篇来自已证抗体库的有关小鼠 H2-Bl的综述,是根据84篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合H2-Bl 抗体。
H2-Bl 同义词: H2-B1; H2-Bl-like; H2-D1; H2-K1

BioLegend
小鼠 单克隆(28-8-6)
  • 流式细胞仪; 小鼠; 1:100
BioLegend H2-Bl抗体(Biolegend, 114605)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2022) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠
BioLegend H2-Bl抗体(Biolegend, 116517)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2022) ncbi
小鼠 单克隆(28-8-6)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend H2-Bl抗体(Biolegend, 114613)被用于被用于流式细胞仪在小鼠样本上 (图 6e). iScience (2022) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 s6b
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 3a, 3b, 4b
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3b, 4b). J Immunother Cancer (2022) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 3a, 3b, 4b
BioLegend H2-Bl抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 3a, 3b, 4b). J Immunother Cancer (2022) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 1:100; 图 s4b
BioLegend H2-Bl抗体(BioLegend, 114706)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4b). Cell Rep (2022) ncbi
小鼠 单克隆(AF6-88.5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6l
BioLegend H2-Bl抗体(Biolegend, 116502)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6l). Nat Commun (2022) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 1:50; 图 5d, s6s
BioLegend H2-Bl抗体(Biolegend, 114713)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5d, s6s). Nat Commun (2022) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 1:40; 图 4b, s7c
BioLegend H2-Bl抗体(BioLegend, 116511)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 4b, s7c). J Immunother Cancer (2022) ncbi
小鼠 单克隆(28-8-6)
  • 流式细胞仪; 小鼠; 1:200
BioLegend H2-Bl抗体(BioLegend, 114605)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 1:200; 图 s5c
BioLegend H2-Bl抗体(BioLegend, 114713)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5c). J Immunother Cancer (2021) ncbi
小鼠 单克隆(28-8-6)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
BioLegend H2-Bl抗体(Biolegend, 28-8-6)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(AF6-88.5)
  • 抑制或激活实验; 小鼠; 图 2d
  • 流式细胞仪; 小鼠; 图 2c
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于抑制或激活实验在小鼠样本上 (图 2d) 和 被用于流式细胞仪在小鼠样本上 (图 2c). J Immunother Cancer (2021) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend H2-Bl抗体(Biolegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Immunother Cancer (2021) ncbi
小鼠 单克隆(28-8-6)
  • 流式细胞仪; 小鼠; 图 6h
BioLegend H2-Bl抗体(Biolegend, 114614)被用于被用于流式细胞仪在小鼠样本上 (图 6h). Sci Rep (2021) ncbi
小鼠 单克隆(28-8-6)
BioLegend H2-Bl抗体(BioLegend, 28-8-6)被用于. Nature (2020) ncbi
小鼠 单克隆(KH95)
BioLegend H2-Bl抗体(BioLegend, KH95)被用于. Nature (2020) ncbi
小鼠 单克隆(AF6-88.5)
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于. Nature (2020) ncbi
小鼠 单克隆(SF1-1.1)
  • 流式细胞仪; 小鼠; 1:100; 图 5e
BioLegend H2-Bl抗体(BioLegend, 116608)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5e). Nature (2019) ncbi
小鼠 单克隆(34-2-12)
  • 流式细胞仪; 小鼠; 1:100; 图 e9c
BioLegend H2-Bl抗体(BioLegend, 110608)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e9c). Nature (2019) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 1:100; 图 e9c
BioLegend H2-Bl抗体(BioLegend, 114507)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e9c). Nature (2019) ncbi
小鼠 单克隆(36-7-5)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend H2-Bl抗体(BioLegend, 114907)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2020) ncbi
小鼠 单克隆(25-D1.16)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend H2-Bl抗体(Biolegend, 141604)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell (2019) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 3h
BioLegend H2-Bl抗体(Biolegend, 114507)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Oncoimmunology (2019) ncbi
小鼠 单克隆(28-8-6)
  • mass cytometry; 小鼠; 图 3, s2
BioLegend H2-Bl抗体(Biolegend, 114602)被用于被用于mass cytometry在小鼠样本上 (图 3, s2). Science (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
小鼠 单克隆(25-D1.16)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend H2-Bl抗体(BioLegend, 141607)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2019) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend H2-Bl抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend H2-Bl抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 4a). JCI Insight (2018) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). JCI Insight (2018) ncbi
小鼠 单克隆(25-D1.16)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
BioLegend H2-Bl抗体(Biolegend, 141605)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). elife (2018) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend H2-Bl抗体(Biolegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). Science (2018) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend H2-Bl抗体(Biolegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cancer Immunol Immunother (2019) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend H2-Bl抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 2d). PLoS ONE (2018) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend H2-Bl抗体(BioLegend, 28-14-8)被用于被用于流式细胞仪在小鼠样本上 (图 2d). PLoS ONE (2018) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 1:200; 图 s1a
BioLegend H2-Bl抗体(Biolegend, 34-1-2 S)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1a). Oncoimmunology (2018) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend H2-Bl抗体(Biolegend, 116507)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
小鼠 单克隆(28-8-6)
  • 免疫组化; 小鼠; 图 s3c
BioLegend H2-Bl抗体(Biolegend, 114603)被用于被用于免疫组化在小鼠样本上 (图 s3c). Cell Stem Cell (2017) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend H2-Bl抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS Pathog (2016) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend H2-Bl抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS Pathog (2016) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend H2-Bl抗体(BioLegend, 116508)被用于被用于流式细胞仪在小鼠样本上 (图 6b). PLoS ONE (2016) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend H2-Bl抗体(Biolegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(SF1-1.1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend H2-Bl抗体(BioLegend, SF 1-1.1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cancer Immunol Immunother (2016) ncbi
小鼠 单克隆(25-D1.16)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend H2-Bl抗体(BioLegend, 25-D1.16)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Oncotarget (2016) ncbi
小鼠 单克隆(28-8-6)
  • 流式细胞仪; 小鼠; 图 2
BioLegend H2-Bl抗体(Biolegend, 114612)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
BioLegend H2-Bl抗体(BioLegend, 28-14-8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(SF1-1.1)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend H2-Bl抗体(Biolegend, SF1-1.1)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Transpl Immunol (2015) ncbi
小鼠 单克隆(25-D1.16)
  • 免疫印迹; 小鼠
BioLegend H2-Bl抗体(Biolegend, 141605)被用于被用于免疫印迹在小鼠样本上. J Vis Exp (2015) ncbi
小鼠 单克隆(28-8-6)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend H2-Bl抗体(BioLegend, 28-8-6)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Exp Med (2015) ncbi
小鼠 单克隆(36-7-5)
  • 流式细胞仪; 小鼠
  • 流式细胞仪; 仓鼠
BioLegend H2-Bl抗体(Biolegend, 36-7-5)被用于被用于流式细胞仪在小鼠样本上 和 被用于流式细胞仪在仓鼠样本上. Cancer Immunol Immunother (2015) ncbi
小鼠 单克隆(SF1-1.1)
  • 流式细胞仪; 人类; 图 s1
BioLegend H2-Bl抗体(Biolegend, 116616)被用于被用于流式细胞仪在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠
BioLegend H2-Bl抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上. Blood (2014) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠
BioLegend H2-Bl抗体(Biolegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
赛默飞世尔
小鼠 单克隆(5041.16.1)
  • 流式细胞仪; 人类; 图 2d
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔 H2-Bl抗体(Invitrogen, MA5-17999)被用于被用于流式细胞仪在人类样本上 (图 2d) 和 被用于流式细胞仪在小鼠样本上 (图 7b). Nat Commun (2022) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
赛默飞世尔 H2-Bl抗体(eBioscience, 11-5958-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). EMBO Mol Med (2022) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s10d
赛默飞世尔 H2-Bl抗体(Thermo Fisher, AF6-88.5.5.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s10d). Sci Rep (2021) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 人类; 图 s2d
赛默飞世尔 H2-Bl抗体(Thermo-Fisher, MA5-11723)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在人类样本上 (图 s2d). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 H2-Bl抗体(Invitrogen, 28-14-8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 1:50; 图 2c
赛默飞世尔 H2-Bl抗体(eBioscience, 17-5957-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2c). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 H2-Bl抗体(eBioscience, 12-5958-80)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Sci Rep (2019) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 H2-Bl抗体(eBioscience, 28-14-8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2018) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 H2-Bl抗体(eBioscience, W6/32)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(W6/32)
  • 抑制或激活实验; 人类; 图 s2b
赛默飞世尔 H2-Bl抗体(eBiosciences, w6/32)被用于被用于抑制或激活实验在人类样本上 (图 s2b). Nat Med (2018) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 图 e5c
赛默飞世尔 H2-Bl抗体(eBiosciences, AF6-88.5.5.3)被用于被用于流式细胞仪在小鼠样本上 (图 e5c). Nature (2018) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 图 s2f
赛默飞世尔 H2-Bl抗体(eBioscience, 17-5958)被用于被用于流式细胞仪在小鼠样本上 (图 s2f). Nat Med (2018) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 H2-Bl抗体(eBiosciences, 11-5958-80)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2017) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 H2-Bl抗体(eBiosciences, 34-1-2S)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Clin Invest (2017) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 1:50; 图 9a
赛默飞世尔 H2-Bl抗体(eBioscience, SF1-1.1.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 9a). Infect Immun (2017) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 H2-Bl抗体(eBioscience, SF1-1.1)被用于被用于流式细胞仪在小鼠样本上 (图 s5). J Clin Invest (2017) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 H2-Bl抗体(eBioscience, SF1-1.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 s9a
赛默飞世尔 H2-Bl抗体(eBiosciences, W6/32)被用于被用于流式细胞仪在人类样本上 (图 s9a). PLoS Pathog (2016) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 抑制或激活实验; 小鼠
赛默飞世尔 H2-Bl抗体(eBioscience, SF1-1.1.1)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 1:200; 图 9b
赛默飞世尔 H2-Bl抗体(eBioscience, SF1-1.1.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 9b). PLoS Negl Trop Dis (2016) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 1:50; 图 s2j
赛默飞世尔 H2-Bl抗体(ebioscience, W6/32)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2j). Nat Med (2016) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 1:150; 图 s1
赛默飞世尔 H2-Bl抗体(eBioscience, 34-1-2S)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 1:250; 图 3
赛默飞世尔 H2-Bl抗体(eBioscience, 28-14-8)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(W6/32)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 4
赛默飞世尔 H2-Bl抗体(Thermo Fisher Scientific, W6/32)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 4). Neurology (2016) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 H2-Bl抗体(eBioscience, 28-14-8)被用于被用于流式细胞仪在小鼠样本上 (图 3). Carbohydr Polym (2015) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠
赛默飞世尔 H2-Bl抗体(eBioscience, 28-14-8)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 H2-Bl抗体(eBiosciences, 28-14-8)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 H2-Bl抗体(eBioscience, 17-5957-82)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 抑制或激活实验; 小鼠
赛默飞世尔 H2-Bl抗体(eBioScience, SF1-1.1.1)被用于被用于抑制或激活实验在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 H2-Bl抗体(eBioscience, 11-5958-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上 (图 3). J Immunol (2014) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 H2-Bl抗体(eBioscience, SF1-1.1.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 H2-Bl抗体(eBioscience, AF6-88.5.5.3)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠
赛默飞世尔 H2-Bl抗体(eBioscience, AF6-88.5.5.3)被用于被用于流式细胞仪在小鼠样本上. Br J Cancer (2014) ncbi
小鼠 单克隆(W6/32)
  • 免疫印迹; 人类
赛默飞世尔 H2-Bl抗体(Zymed Laboratories, W6/32)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2011) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠
赛默飞世尔 H2-Bl抗体(eBioscience, 34-1-2S)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
小鼠 单克隆(28-14-8)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔 H2-Bl抗体(eBioscience, 12-5999-81)被用于被用于免疫组化-石蜡切片在大鼠样本上. J Am Soc Nephrol (2006) ncbi
艾博抗(上海)贸易有限公司
大鼠 单克隆(ER-HR 52)
  • 免疫组化; 小鼠; 1:100; 图 5f
艾博抗(上海)贸易有限公司 H2-Bl抗体(Abcam, ab15681)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5f). EMBO Mol Med (2022) ncbi
大鼠 单克隆(ER-HR 52)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
艾博抗(上海)贸易有限公司 H2-Bl抗体(Abcam, ER-HR 52)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). Mol Neurodegener (2018) ncbi
大鼠 单克隆(ER-HR 52)
  • 免疫组化-冰冻切片; 小鼠; 图 5g
艾博抗(上海)贸易有限公司 H2-Bl抗体(Abcam, ab15681)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5g). Sci Rep (2016) ncbi
大鼠 单克隆(ER-HR 52)
  • 免疫细胞化学; 小鼠; 1:200; 图 s8e
艾博抗(上海)贸易有限公司 H2-Bl抗体(Abcam, ER-HR52)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s8e). Nat Commun (2016) ncbi
文章列表
  1. Tran N, Ferreira L, Alvarez Moya B, Buttiglione V, Ferrini B, Zordan P, et al. Continuous sensing of IFNα by hepatic endothelial cells shapes a vascular antimetastatic barrier. elife. 2022;11: pubmed 出版商
  2. Regev O, Kizner M, Roncato F, Dadiani M, Saini M, Castro Giner F, et al. ICAM-1 on Breast Cancer Cells Suppresses Lung Metastasis but Is Dispensable for Tumor Growth and Killing by Cytotoxic T Cells. Front Immunol. 2022;13:849701 pubmed 出版商
  3. Zhao X, Hu S, Zeng L, Liu X, Song Y, Zhang Y, et al. Irradiation combined with PD-L1-/- and autophagy inhibition enhances the antitumor effect of lung cancer via cGAS-STING-mediated T cell activation. iScience. 2022;25:104690 pubmed 出版商
  4. Lei X, Lin H, Wang J, Ou Z, Ruan Y, Sadagopan A, et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun. 2022;13:3882 pubmed 出版商
  5. Paldor M, Levkovitch Siany O, Eidelshtein D, Adar R, Enk C, Marmary Y, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med. 2022;14:e15653 pubmed 出版商
  6. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  7. Aiken T, Erbe A, Zebertavage L, Komjathy D, Feils A, Rodriguez M, et al. Mechanism of effective combination radio-immunotherapy against 9464D-GD2, an immunologically cold murine neuroblastoma. J Immunother Cancer. 2022;10: pubmed 出版商
  8. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  9. Xiong W, Gao X, Zhang T, Jiang B, Hu M, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700 pubmed 出版商
  10. Zhang Y, Huo F, Cao Q, Jia R, Huang Q, Wang Z, et al. FimH confers mannose-targeting ability to Bacillus Calmette-Guerin for improved immunotherapy in bladder cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  11. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14:e14502 pubmed 出版商
  12. Stoff M, Ebbecke T, Ciurkiewicz M, Pavasutthipaisit S, Mayer Lambertz S, St xf6 rk T, et al. C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep. 2021;11:23819 pubmed 出版商
  13. Malenica I, Adam J, Corgnac S, Mezquita L, Auclin E, Damei I, et al. Integrin-αV-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat Commun. 2021;12:5209 pubmed 出版商
  14. Wu S, Xiao Y, Wei J, Xu X, Jin X, Hu X, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J Immunother Cancer. 2021;9: pubmed 出版商
  15. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  16. Sánchez del Campo L, Martí Díaz R, Montenegro M, González Guerrero R, Hernández Caselles T, Martínez Barba E, et al. MITF induces escape from innate immunity in melanoma. J Exp Clin Cancer Res. 2021;40:117 pubmed 出版商
  17. Brownlie D, Doughty Shenton D, Yh Soong D, Nixon C, O Carragher N, M Carlin L, et al. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β. J Immunother Cancer. 2021;9: pubmed 出版商
  18. Wang Y, Mohseni M, Grauel A, Diez J, Guan W, Liang S, et al. SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms. Sci Rep. 2021;11:1399 pubmed 出版商
  19. Bekeschus S, Clemen R, Nießner F, Sagwal S, Freund E, Schmidt A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Adv Sci (Weinh). 2020;7:1903438 pubmed 出版商
  20. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  21. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  22. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  23. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  24. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  25. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  26. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  27. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  28. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  29. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136 pubmed 出版商
  30. Arora H, Wilcox S, Johnson L, Munro L, Eyford B, Pfeifer C, et al. The ATP-Binding Cassette Gene ABCF1 Functions as an E2 Ubiquitin-Conjugating Enzyme Controlling Macrophage Polarization to Dampen Lethal Septic Shock. Immunity. 2019;50:418-431.e6 pubmed 出版商
  31. Bern M, Parikh B, Yang L, Beckman D, Poursine Laurent J, Yokoyama W. Inducible down-regulation of MHC class I results in natural killer cell tolerance. J Exp Med. 2019;216:99-116 pubmed 出版商
  32. Magallanes Puebla A, Espinosa Cueto P, López Marín L, Mancilla R. Mycobacterial glycolipid Di-O-acyl trehalose promotes a tolerogenic profile in dendritic cells. PLoS ONE. 2018;13:e0207202 pubmed 出版商
  33. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  34. Gejman R, Chang A, Jones H, DiKun K, Hakimi A, Schietinger A, et al. Rejection of immunogenic tumor clones is limited by clonal fraction. elife. 2018;7: pubmed 出版商
  35. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  36. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  37. Umezu D, Okada N, Sakoda Y, Adachi K, Ojima T, Yamaue H, et al. Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunol Immunother. 2019;68:201-211 pubmed 出版商
  38. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  39. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  40. Nardo G, Trolese M, Verderio M, Mariani A, De Paola M, Riva N, et al. Counteracting roles of MHCI and CD8+ T cells in the peripheral and central nervous system of ALS SOD1G93A mice. Mol Neurodegener. 2018;13:42 pubmed 出版商
  41. Wilson K, Liu H, Healey G, Vuong V, Ishido S, Herold M, et al. MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE. 2018;13:e0200540 pubmed 出版商
  42. Luo N, Formisano L, Gonzalez Ericsson P, Sanchez V, Dean P, Opalenik S, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106 pubmed 出版商
  43. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu Y, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24:724-730 pubmed 出版商
  44. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  45. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  46. Mathew N, Baumgartner F, Braun L, O Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24:282-291 pubmed 出版商
  47. Alloatti A, Rookhuizen D, Joannas L, Carpier J, Iborra S, Magalhaes J, et al. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med. 2017;214:2231-2241 pubmed 出版商
  48. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  49. Hauptmann M, Burkhardt N, Munderloh U, Kuehl S, Richardt U, Krasemann S, et al. GFPuv-Expressing Recombinant Rickettsia typhi: a Useful Tool for the Study of Pathogenesis and CD8+ T Cell Immunology in R. typhi Infection. Infect Immun. 2017;85: pubmed 出版商
  50. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  51. Bracamonte Baran W, Florentin J, Zhou Y, Jankowska Gan E, Haynes W, Zhong W, et al. Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proc Natl Acad Sci U S A. 2017;114:1099-1104 pubmed 出版商
  52. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  53. Swanson P, Hart G, Russo M, Nayak D, Yazew T, Pena M, et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog. 2016;12:e1006022 pubmed 出版商
  54. Tomic A, Varanasi P, Golemac M, Malic S, Riese P, Borst E, et al. Activation of Innate and Adaptive Immunity by a Recombinant Human Cytomegalovirus Strain Expressing an NKG2D Ligand. PLoS Pathog. 2016;12:e1006015 pubmed 出版商
  55. Collinson Pautz M, Slawin K, Levitt J, Spencer D. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity. PLoS ONE. 2016;11:e0164547 pubmed 出版商
  56. Huang M, Zhang W, Guo J, Wei X, Phiwpan K, Zhang J, et al. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation. Sci Rep. 2016;6:33612 pubmed 出版商
  57. Bernard Valnet R, Yshii L, Quériault C, Nguyen X, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113:10956-61 pubmed 出版商
  58. Saranchova I, Han J, Huang H, Fenninger F, Choi K, Munro L, et al. Discovery of a Metastatic Immune Escape Mechanism Initiated by the Loss of Expression of the Tumour Biomarker Interleukin-33. Sci Rep. 2016;6:30555 pubmed 出版商
  59. Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U, et al. Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells. PLoS Negl Trop Dis. 2016;10:e0004935 pubmed 出版商
  60. Terracina K, Graham L, Payne K, Manjili M, Baek A, Damle S, et al. DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunol Immunother. 2016;65:1061-73 pubmed 出版商
  61. Wang Y, Hu C, Li J, You X, Gao F. Increased translocation of antigens to endosomes and TLR4 mediated endosomal recruitment of TAP contribute to nicotine augmented cross-presentation. Oncotarget. 2016;7:38451-38466 pubmed 出版商
  62. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  63. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  64. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  65. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  66. Uruha A, Noguchi S, Hayashi Y, Tsuburaya R, Yonekawa T, Nonaka I, et al. Hepatitis C virus infection in inclusion body myositis: A case-control study. Neurology. 2016;86:211-7 pubmed 出版商
  67. Li Z, Xu X, Weiss I, Jacobson O, Murphy P. Pre-treatment of allogeneic bone marrow recipients with the CXCR4 antagonist AMD3100 transiently enhances hematopoietic chimerism without promoting donor-specific skin allograft tolerance. Transpl Immunol. 2015;33:125-9 pubmed 出版商
  68. Pérez Girón J, Gómez Medina S, Lüdtke A, Munoz Fontela C. Intranasal Administration of Recombinant Influenza Vaccines in Chimeric Mouse Models to Study Mucosal Immunity. J Vis Exp. 2015;:e52803 pubmed 出版商
  69. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  70. Stermann A, Huebener N, Seidel D, Fest S, Eschenburg G, Stauder M, et al. Targeting of MYCN by means of DNA vaccination is effective against neuroblastoma in mice. Cancer Immunol Immunother. 2015;64:1215-27 pubmed 出版商
  71. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  72. Sun H, Zhang J, Chen F, Chen X, Zhou Z, Wang H. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr Polym. 2015;121:388-402 pubmed 出版商
  73. Wei H, Nash W, Makrigiannis A, Brown M. Impaired NK-cell education diminishes resistance to murine CMV infection. Eur J Immunol. 2014;44:3273-82 pubmed 出版商
  74. Rauen J, Kreer C, Paillard A, van Duikeren S, Benckhuijsen W, Camps M, et al. Enhanced cross-presentation and improved CD8+ T cell responses after mannosylation of synthetic long peptides in mice. PLoS ONE. 2014;9:e103755 pubmed 出版商
  75. Larsen J, Dall M, Antvorskov J, Weile C, Engkilde K, Josefsen K, et al. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion. Eur J Immunol. 2014;44:3056-67 pubmed 出版商
  76. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  77. Furugaki K, Cui L, Kunisawa Y, Osada K, Shinkai K, Tanaka M, et al. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS ONE. 2014;9:e101854 pubmed 出版商
  78. Ramakrishnan R, Tyurin V, Tuyrin V, Veglia F, Condamine T, Amoscato A, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192:2920-31 pubmed 出版商
  79. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  80. Gujar S, Clements D, Dielschneider R, Helson E, Marcato P, Lee P. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer. 2014;110:83-93 pubmed 出版商
  81. Oliveira C, Querido B, Sluijter M, de Groot A, van der Zee R, Rabelink M, et al. New role of signal peptide peptidase to liberate C-terminal peptides for MHC class I presentation. J Immunol. 2013;191:4020-8 pubmed 出版商
  82. Schneider C, Hudson A. The human herpesvirus-7 (HHV-7) U21 immunoevasin subverts NK-mediated cytoxicity through modulation of MICA and MICB. PLoS Pathog. 2011;7:e1002362 pubmed 出版商
  83. Kiesel J, Buchwald Z, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182:5477-87 pubmed 出版商
  84. Gupta S, Verfaillie C, Chmielewski D, Kren S, Eidman K, Connaire J, et al. Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol. 2006;17:3028-40 pubmed