这是一篇来自已证抗体库的有关小鼠 H2-Q1 (H2-Q1) 的综述,是根据58篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合H2-Q1 抗体。
H2-Q1 同义词: H-2Q1; H2-D1; Q1; Q1b; Q1d; Q1k; Qa-1; Qa1; Qed-1

BioLegend
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 1:200; 图 s5c
BioLegendH2-Q1抗体(BioLegend, 114713)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5c). J Immunother Cancer (2021) ncbi
小鼠 单克隆(AF6-88.5)
BioLegendH2-Q1抗体(BioLegend, AF6-88.5)被用于. Nature (2020) ncbi
小鼠 单克隆(KH95)
BioLegendH2-Q1抗体(BioLegend, KH95)被用于. Nature (2020) ncbi
小鼠 单克隆(25-D1.16)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendH2-Q1抗体(Biolegend, 141604)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Q1抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠
BioLegendH2-Q1抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
小鼠 单克隆(25-D1.16)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendH2-Q1抗体(BioLegend, 141607)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2019) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendH2-Q1抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendH2-Q1抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendH2-Q1抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Q1抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 4a). JCI Insight (2018) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendH2-Q1抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). JCI Insight (2018) ncbi
小鼠 单克隆(AF6-88.5)
BioLegendH2-Q1抗体(Biolegend, 116517)被用于. elife (2018) ncbi
小鼠 单克隆(25-D1.16)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
BioLegendH2-Q1抗体(Biolegend, 141605)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). elife (2018) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegendH2-Q1抗体(Biolegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). Science (2018) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendH2-Q1抗体(Biolegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cancer Immunol Immunother (2019) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendH2-Q1抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2019) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 2d
BioLegendH2-Q1抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 2d). PLoS ONE (2018) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 1:200; 图 s1a
BioLegendH2-Q1抗体(Biolegend, 34-1-2 S)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1a). Oncoimmunology (2018) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendH2-Q1抗体(Biolegend, 116507)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendH2-Q1抗体(BioLegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS Pathog (2016) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendH2-Q1抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS Pathog (2016) ncbi
小鼠 单克隆(KH114)
BioLegendH2-Q1抗体(BioLegend, 115106)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendH2-Q1抗体(BioLegend, 116508)被用于被用于流式细胞仪在小鼠样本上 (图 6b). PLoS ONE (2016) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 2
BioLegendH2-Q1抗体(Biolegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(25-D1.16)
  • 流式细胞仪; 小鼠; 图 3f
BioLegendH2-Q1抗体(BioLegend, 25-D1.16)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Oncotarget (2016) ncbi
小鼠 单克隆(25-D1.16)
  • 免疫印迹; 小鼠
BioLegendH2-Q1抗体(Biolegend, 141605)被用于被用于免疫印迹在小鼠样本上. J Vis Exp (2015) ncbi
小鼠 单克隆(KH95)
  • 流式细胞仪; 小鼠
BioLegendH2-Q1抗体(BioLegend, KH95)被用于被用于流式细胞仪在小鼠样本上. Blood (2014) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠
BioLegendH2-Q1抗体(Biolegend, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
赛默飞世尔
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔H2-Q1抗体(Invitrogen, 28-14-8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 1:50; 图 2c
赛默飞世尔H2-Q1抗体(eBioscience, 17-5957-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2c). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔H2-Q1抗体(eBioscience, 12-5958-80)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Sci Rep (2019) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔H2-Q1抗体(eBioscience, 28-14-8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2018) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔H2-Q1抗体(eBioscience, W6/32)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(W6/32)
  • 抑制或激活实验; 人类; 图 s2b
赛默飞世尔H2-Q1抗体(eBiosciences, w6/32)被用于被用于抑制或激活实验在人类样本上 (图 s2b). Nat Med (2018) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 图 e5c
赛默飞世尔H2-Q1抗体(eBiosciences, AF6-88.5.5.3)被用于被用于流式细胞仪在小鼠样本上 (图 e5c). Nature (2018) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 图 s2f
赛默飞世尔H2-Q1抗体(eBioscience, 17-5958)被用于被用于流式细胞仪在小鼠样本上 (图 s2f). Nat Med (2018) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔H2-Q1抗体(eBiosciences, 11-5958-80)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2017) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔H2-Q1抗体(eBiosciences, 34-1-2S)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Clin Invest (2017) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 1:50; 图 9a
赛默飞世尔H2-Q1抗体(eBioscience, SF1-1.1.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 9a). Infect Immun (2017) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔H2-Q1抗体(eBioscience, SF1-1.1)被用于被用于流式细胞仪在小鼠样本上 (图 s5). J Clin Invest (2017) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔H2-Q1抗体(eBioscience, SF1-1.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 图 s9a
赛默飞世尔H2-Q1抗体(eBiosciences, W6/32)被用于被用于流式细胞仪在人类样本上 (图 s9a). PLoS Pathog (2016) ncbi
小鼠 单克隆(AF6-88.5)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔H2-Q1抗体(eBioscience, AF6-88.5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2016) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 抑制或激活实验; 小鼠
赛默飞世尔H2-Q1抗体(eBioscience, SF1-1.1.1)被用于被用于抑制或激活实验在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠; 1:200; 图 9b
赛默飞世尔H2-Q1抗体(eBioscience, SF1-1.1.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 9b). PLoS Negl Trop Dis (2016) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔H2-Q1抗体(eBioscience, 48-5958-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(W6/32)
  • 流式细胞仪; 人类; 1:50; 图 s2j
赛默飞世尔H2-Q1抗体(ebioscience, W6/32)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s2j). Nat Med (2016) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠; 1:150; 图 s1
赛默飞世尔H2-Q1抗体(eBioscience, 34-1-2S)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 1:250; 图 3
赛默飞世尔H2-Q1抗体(eBioscience, 28-14-8)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(W6/32)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 4
赛默飞世尔H2-Q1抗体(Thermo Fisher Scientific, W6/32)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 4). Neurology (2016) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔H2-Q1抗体(eBioscience, 28-14-8)被用于被用于流式细胞仪在小鼠样本上 (图 3). Carbohydr Polym (2015) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Q1抗体(eBioscience, 28-14-8)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(28-14-8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔H2-Q1抗体(eBiosciences, 28-14-8)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Q1抗体(eBioscience, 17-5957-82)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 抑制或激活实验; 小鼠
赛默飞世尔H2-Q1抗体(eBioScience, SF1-1.1.1)被用于被用于抑制或激活实验在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔H2-Q1抗体(eBioscience, 11-5958-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上 (图 3). J Immunol (2014) ncbi
小鼠 单克隆(SF1-1.1.1)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Q1抗体(eBioscience, SF1-1.1.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Q1抗体(eBioscience, AF6-88.5.5.3)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(AF6-88.5.5.3)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Q1抗体(eBioscience, AF6-88.5.5.3)被用于被用于流式细胞仪在小鼠样本上. Br J Cancer (2014) ncbi
小鼠 单克隆(W6/32)
  • 免疫印迹; 人类
赛默飞世尔H2-Q1抗体(Zymed Laboratories, W6/32)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2011) ncbi
小鼠 单克隆(34-1-2S)
  • 流式细胞仪; 小鼠
赛默飞世尔H2-Q1抗体(eBioscience, 34-1-2S)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
小鼠 单克隆(28-14-8)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔H2-Q1抗体(eBioscience, 12-5999-81)被用于被用于免疫组化-石蜡切片在大鼠样本上. J Am Soc Nephrol (2006) ncbi
艾博抗(上海)贸易有限公司
大鼠 单克隆(ER-HR 52)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
艾博抗(上海)贸易有限公司H2-Q1抗体(Abcam, ER-HR 52)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). Mol Neurodegener (2018) ncbi
大鼠 单克隆(ER-HR 52)
  • 免疫组化-冰冻切片; 小鼠; 图 5g
艾博抗(上海)贸易有限公司H2-Q1抗体(Abcam, ab15681)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5g). Sci Rep (2016) ncbi
大鼠 单克隆(ER-HR 52)
  • 免疫细胞化学; 小鼠; 1:200; 图 s8e
艾博抗(上海)贸易有限公司H2-Q1抗体(Abcam, ER-HR52)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s8e). Nat Commun (2016) ncbi
文章列表
  1. Wu S, Xiao Y, Wei J, Xu X, Jin X, Hu X, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J Immunother Cancer. 2021;9: pubmed 出版商
  2. Bekeschus S, Clemen R, Nießner F, Sagwal S, Freund E, Schmidt A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Adv Sci (Weinh). 2020;7:1903438 pubmed 出版商
  3. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  4. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  5. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  6. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  7. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  8. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136 pubmed 出版商
  9. Arora H, Wilcox S, Johnson L, Munro L, Eyford B, Pfeifer C, et al. The ATP-Binding Cassette Gene ABCF1 Functions as an E2 Ubiquitin-Conjugating Enzyme Controlling Macrophage Polarization to Dampen Lethal Septic Shock. Immunity. 2019;50:418-431.e6 pubmed 出版商
  10. Bern M, Parikh B, Yang L, Beckman D, Poursine Laurent J, Yokoyama W. Inducible down-regulation of MHC class I results in natural killer cell tolerance. J Exp Med. 2019;216:99-116 pubmed 出版商
  11. Magallanes Puebla A, Espinosa Cueto P, López Marín L, Mancilla R. Mycobacterial glycolipid Di-O-acyl trehalose promotes a tolerogenic profile in dendritic cells. PLoS ONE. 2018;13:e0207202 pubmed 出版商
  12. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  13. Gejman R, Chang A, Jones H, DiKun K, Hakimi A, Schietinger A, et al. Rejection of immunogenic tumor clones is limited by clonal fraction. elife. 2018;7: pubmed 出版商
  14. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  15. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  16. Umezu D, Okada N, Sakoda Y, Adachi K, Ojima T, Yamaue H, et al. Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunol Immunother. 2019;68:201-211 pubmed 出版商
  17. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  18. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  19. Nardo G, Trolese M, Verderio M, Mariani A, De Paola M, Riva N, et al. Counteracting roles of MHCI and CD8+ T cells in the peripheral and central nervous system of ALS SOD1G93A mice. Mol Neurodegener. 2018;13:42 pubmed 出版商
  20. Wilson K, Liu H, Healey G, Vuong V, Ishido S, Herold M, et al. MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE. 2018;13:e0200540 pubmed 出版商
  21. Luo N, Formisano L, Gonzalez Ericsson P, Sanchez V, Dean P, Opalenik S, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106 pubmed 出版商
  22. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu Y, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24:724-730 pubmed 出版商
  23. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  24. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  25. Mathew N, Baumgartner F, Braun L, O Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24:282-291 pubmed 出版商
  26. Alloatti A, Rookhuizen D, Joannas L, Carpier J, Iborra S, Magalhaes J, et al. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med. 2017;214:2231-2241 pubmed 出版商
  27. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  28. Hauptmann M, Burkhardt N, Munderloh U, Kuehl S, Richardt U, Krasemann S, et al. GFPuv-Expressing Recombinant Rickettsia typhi: a Useful Tool for the Study of Pathogenesis and CD8+ T Cell Immunology in R. typhi Infection. Infect Immun. 2017;85: pubmed 出版商
  29. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  30. Bracamonte Baran W, Florentin J, Zhou Y, Jankowska Gan E, Haynes W, Zhong W, et al. Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proc Natl Acad Sci U S A. 2017;114:1099-1104 pubmed 出版商
  31. Swanson P, Hart G, Russo M, Nayak D, Yazew T, Pena M, et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog. 2016;12:e1006022 pubmed 出版商
  32. Tomic A, Varanasi P, Golemac M, Malic S, Riese P, Borst E, et al. Activation of Innate and Adaptive Immunity by a Recombinant Human Cytomegalovirus Strain Expressing an NKG2D Ligand. PLoS Pathog. 2016;12:e1006015 pubmed 出版商
  33. Shifrin N, Kissiov D, Ardolino M, Joncker N, Raulet D. Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. J Immunol. 2016;197:4127-4136 pubmed 出版商
  34. Collinson Pautz M, Slawin K, Levitt J, Spencer D. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity. PLoS ONE. 2016;11:e0164547 pubmed 出版商
  35. Huang M, Zhang W, Guo J, Wei X, Phiwpan K, Zhang J, et al. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation. Sci Rep. 2016;6:33612 pubmed 出版商
  36. Bernard Valnet R, Yshii L, Quériault C, Nguyen X, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113:10956-61 pubmed 出版商
  37. Saranchova I, Han J, Huang H, Fenninger F, Choi K, Munro L, et al. Discovery of a Metastatic Immune Escape Mechanism Initiated by the Loss of Expression of the Tumour Biomarker Interleukin-33. Sci Rep. 2016;6:30555 pubmed 出版商
  38. Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U, et al. Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells. PLoS Negl Trop Dis. 2016;10:e0004935 pubmed 出版商
  39. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  40. Wang Y, Hu C, Li J, You X, Gao F. Increased translocation of antigens to endosomes and TLR4 mediated endosomal recruitment of TAP contribute to nicotine augmented cross-presentation. Oncotarget. 2016;7:38451-38466 pubmed 出版商
  41. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  42. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  43. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  44. Uruha A, Noguchi S, Hayashi Y, Tsuburaya R, Yonekawa T, Nonaka I, et al. Hepatitis C virus infection in inclusion body myositis: A case-control study. Neurology. 2016;86:211-7 pubmed 出版商
  45. Pérez Girón J, Gómez Medina S, Lüdtke A, Munoz Fontela C. Intranasal Administration of Recombinant Influenza Vaccines in Chimeric Mouse Models to Study Mucosal Immunity. J Vis Exp. 2015;:e52803 pubmed 出版商
  46. Sun H, Zhang J, Chen F, Chen X, Zhou Z, Wang H. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr Polym. 2015;121:388-402 pubmed 出版商
  47. Wei H, Nash W, Makrigiannis A, Brown M. Impaired NK-cell education diminishes resistance to murine CMV infection. Eur J Immunol. 2014;44:3273-82 pubmed 出版商
  48. Rauen J, Kreer C, Paillard A, van Duikeren S, Benckhuijsen W, Camps M, et al. Enhanced cross-presentation and improved CD8+ T cell responses after mannosylation of synthetic long peptides in mice. PLoS ONE. 2014;9:e103755 pubmed 出版商
  49. Larsen J, Dall M, Antvorskov J, Weile C, Engkilde K, Josefsen K, et al. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion. Eur J Immunol. 2014;44:3056-67 pubmed 出版商
  50. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  51. Furugaki K, Cui L, Kunisawa Y, Osada K, Shinkai K, Tanaka M, et al. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS ONE. 2014;9:e101854 pubmed 出版商
  52. Ramakrishnan R, Tyurin V, Tuyrin V, Veglia F, Condamine T, Amoscato A, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192:2920-31 pubmed 出版商
  53. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  54. Gujar S, Clements D, Dielschneider R, Helson E, Marcato P, Lee P. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer. 2014;110:83-93 pubmed 出版商
  55. Oliveira C, Querido B, Sluijter M, de Groot A, van der Zee R, Rabelink M, et al. New role of signal peptide peptidase to liberate C-terminal peptides for MHC class I presentation. J Immunol. 2013;191:4020-8 pubmed 出版商
  56. Schneider C, Hudson A. The human herpesvirus-7 (HHV-7) U21 immunoevasin subverts NK-mediated cytoxicity through modulation of MICA and MICB. PLoS Pathog. 2011;7:e1002362 pubmed 出版商
  57. Kiesel J, Buchwald Z, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182:5477-87 pubmed 出版商
  58. Gupta S, Verfaillie C, Chmielewski D, Kren S, Eidman K, Connaire J, et al. Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol. 2006;17:3028-40 pubmed