这是一篇来自已证抗体库的有关小鼠 H3 3B的综述,是根据106篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合H3 3B 抗体。
H3 3B 同义词: 9430068D06Rik; H3-3a; H3-3b; H3.3B

艾博抗(上海)贸易有限公司
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, 14955)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Commun Biol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1l, s1h
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1l, s1h). Clin Transl Med (2021) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 6d
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上 (图 6d). Development (2021) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上. Sci Adv (2021) ncbi
domestic rabbit 单克隆(EPR17899)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab176840)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:4000; 图 6d
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫细胞化学在小鼠样本上浓度为1:4000 (图 6d). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 5d, e5d
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5d, e5d). Nat Cancer (2021) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 大鼠; 1:2500; 图 7b
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2500 (图 7b). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(E191)
  • 染色质免疫沉淀 ; 人类; 图 2c
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab32388)被用于被用于染色质免疫沉淀 在人类样本上 (图 2c). Nat Commun (2021) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:300; 图 4a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, 14955)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4a). elife (2020) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于. Front Cell Dev Biol (2020) ncbi
大鼠 单克隆(HTA28)
  • 流式细胞仪; 人类; 1:300; 图 s6g
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 s6g). Science (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 人类; 1:300; 图 s10d
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s10d). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:50; 图 2s1a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫组化在fruit fly 样本上浓度为1:50 (图 2s1a). elife (2020) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 非洲爪蛙; 1:1000; 图 7h-7j
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, 14955)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:1000 (图 7h-7j). elife (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:500; 图 1s3a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1s3a). elife (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Front Mol Biosci (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:500; 图 7b
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7b). elife (2020) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2l
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2l). Nat Commun (2020) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类; 图 1j
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上 (图 1j). Sci Rep (2020) ncbi
domestic rabbit 单克隆(E173)
  • 免疫印迹; 人类; 图 s3d
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab32107)被用于被用于免疫印迹在人类样本上 (图 s3d). Autophagy (2019) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 2e
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 2e). elife (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; fruit fly ; 1:1000; 图 1a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:1000; 图 2f
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 2f). Cell Rep (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 非洲爪蛙; 1:100; 图 s3b
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:100 (图 s3b). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 1:1000; 图 3a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 3a). J Vis Exp (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 图 1a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫组化在fruit fly 样本上 (图 1a). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3k
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3k). Cell (2018) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 人类; 图 4??
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化在人类样本上 (图 4??). Oncogenesis (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). Development (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 s3e
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, AB10543)被用于被用于免疫组化在小鼠样本上 (图 s3e). Cell (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 斑马鱼; 1:500; 图 2 s1B
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:500 (图 2 s1B). elife (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, Ab14955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4a). Front Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; 小鼠; 1:300; 图 2a
  • 免疫印迹; 大鼠; 1:1000; 图 s3K
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab32107)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s3K). Nat Commun (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类; 图 2b
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, Ab10543)被用于被用于免疫细胞化学在人类样本上 (图 2b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 6h
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6h). Nat Commun (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类; 1:1000; 图 7a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7a). Nat Commun (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 图 1j
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上 (图 1j). Nat Med (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s4c
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s4c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 小鼠; 1:180; 图 5a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, Ab14955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:180 (图 5a). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6d
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6d). Cancer Res (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E173)
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab32107)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Death Dis (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, 14955)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 s3b). Nat Neurosci (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; fruit fly ; 1:1000; 图 2
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab32107)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 图 1
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上 (图 1). Nat Neurosci (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 流式细胞仪; 小鼠; 图 7a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Mol Cell Biol (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; American tobacco; 1:200; 图 4
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, 14955)被用于被用于免疫组化在American tobacco样本上浓度为1:200 (图 4). Front Plant Sci (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 图 1i, j
艾博抗(上海)贸易有限公司H3 3B抗体(abcam, ab14955)被用于被用于免疫组化在小鼠样本上 (图 1i, j). elife (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:3000; 图 s13c
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 s13c). Nat Med (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上 (图 4). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(E191)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 e2
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab32388)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 e2). Nature (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:600; 图 5l
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 5l). PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类; 1:2000; 图 5
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Biochem (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:5000; 图 s7
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s7). Science (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 酶联免疫吸附测定; 人类
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, 14955)被用于被用于酶联免疫吸附测定在人类样本上. Theranostics (2015) ncbi
domestic rabbit 单克隆(E173)
  • 免疫细胞化学; 家羊; 1:500; 图 3a
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab32107)被用于被用于免疫细胞化学在家羊样本上浓度为1:500 (图 3a). Cell Reprogram (2015) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab32107)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Sci Rep (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 斑马鱼; 1:1000
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Development (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:5000; 图 2
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, 14955)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, AB10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Nat Neurosci (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(E191)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab32388)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上. Neural Dev (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Development (2013) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, ab5176)被用于. Dev Biol (2013) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司H3 3B抗体(Abcam, Ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Dev Biol (2012) ncbi
Active Motif
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7a
Active MotifH3 3B抗体(Active Motif, 39239)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Nature (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 3a
Active MotifH3 3B抗体(Active Motif, 39098)被用于被用于免疫组化在小鼠样本上 (图 3a). Radiat Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
Active MotifH3 3B抗体(Active Motif, 39239)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Clin Epigenetics (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:800; 图 2
Active MotifH3 3B抗体(ActiveMotif, 39239)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
Active MotifH3 3B抗体(Active Motif, 39239)被用于. Front Plant Sci (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(AH3-120)
  • 免疫印迹; 人类; 1:1000; 图 2g
圣克鲁斯生物技术H3 3B抗体(SANTA, sc-56616)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). Front Oncol (2021) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 4c
圣克鲁斯生物技术H3 3B抗体(Santa Cruz Biotechnology, sc-56616)被用于被用于染色质免疫沉淀 在人类样本上 (图 4c). Oxid Med Cell Longev (2017) ncbi
西格玛奥德里奇
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 小鼠; 1:100; 图 7b
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7b). Cell Rep (2022) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇H3 3B抗体(Sigma, H9908)被用于被用于免疫组化在小鼠样本上浓度为1:1000. elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇H3 3B抗体(sigma, H0134)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 s6f
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H0913)被用于被用于染色质免疫沉淀 在人类样本上 (图 s6f). Sci Rep (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 1
西格玛奥德里奇H3 3B抗体(Sigma, H9908)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 1). Breast Cancer Res (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 图 7
西格玛奥德里奇H3 3B抗体(Sigma-Alrich, H9908)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Lab Invest (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3 3B抗体(Sigma, H0164)被用于. Oxid Med Cell Longev (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; American tobacco; 1:200; 图 5
西格玛奥德里奇H3 3B抗体(Sigma, H9908)被用于被用于免疫细胞化学在American tobacco样本上浓度为1:200 (图 5). Front Plant Sci (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Development (2015) ncbi
小鼠 单克隆(AH3-120)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇H3 3B抗体(Sigma Aldrich, H0913)被用于被用于免疫印迹在人类样本上浓度为1:500. Biotechnol Bioeng (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H0164)被用于. J Neurochem (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
西格玛奥德里奇H3 3B抗体(Sigma, H9908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). PLoS Genet (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:50; 图 5
西格玛奥德里奇H3 3B抗体(Sigma, HTA28)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3 3B抗体(Sigma, H0164)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3 3B抗体(Sigma, H0164)被用于. Development (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H0164)被用于. Neurobiol Aging (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇H3 3B抗体(Sigma, H0164)被用于. Development (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇H3 3B抗体(Sigma, H0913)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cryobiology (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP; 图 2
西格玛奥德里奇H3 3B抗体(Sigma, H0913)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于染色质免疫沉淀 在人类样本上浓度为2-5 ug/ChIP (图 2). Nature (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在人类样本上. Am J Hum Genet (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; Planorbella trivolvis; 1:1000
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在Planorbella trivolvis样本上浓度为1:1000. BMC Dev Biol (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Biol Reprod (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫印迹; 人类
西格玛奥德里奇H3 3B抗体(Sigma-Aldrich, H9908)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
碧迪BD
大鼠 单克隆(HTA28)
  • 流式细胞仪; 人类; 图 3d
碧迪BDH3 3B抗体(BD, 558610)被用于被用于流式细胞仪在人类样本上 (图 3d). Cell Death Discov (2016) ncbi
大鼠 单克隆(HTA28)
  • 流式细胞仪; 小鼠
碧迪BDH3 3B抗体(BD Biosciences, 558217)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2010) ncbi
MBL International
  • 染色质免疫沉淀 ; 小鼠; 图 5a
MBL InternationalH3 3B抗体(MBL, MABI0305)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5a). Genes Cells (2017) ncbi
文章列表
  1. Bertrand Chapel A, Caligaris C, Fenouil T, Savary C, Aires S, Martel S, et al. SMAD2/3 mediate oncogenic effects of TGF-β in the absence of SMAD4. Commun Biol. 2022;5:1068 pubmed 出版商
  2. Mauduit O, Aure M, Delcroix V, Basova L, Srivastava A, Umazume T, et al. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep. 2022;39:110663 pubmed 出版商
  3. Xia R, Liu T, Li W, Xu X. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med. 2021;11:e383 pubmed 出版商
  4. Duboc V, Sulaiman F, Feneck E, Kucharska A, Bell D, Holder Espinasse M, et al. Tbx4 function during hindlimb development reveals a mechanism that explains the origins of proximal limb defects. Development. 2021;148: pubmed 出版商
  5. Kanellis D, Espinoza J, Zisi A, Sakkas E, Bartkova J, Katsori A, et al. The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. Sci Adv. 2021;7: pubmed 出版商
  6. Hanson M, Karkache I, Molstad D, Norton A, Mansky K, Bradley E. Phlpp1 is induced by estrogen in osteoclasts and its loss in Ctsk-expressing cells does not protect against ovariectomy-induced bone loss. PLoS ONE. 2021;16:e0251732 pubmed 出版商
  7. Al Zaeed N, Budai Z, Szondy Z, Sarang Z. TAM kinase signaling is indispensable for proper skeletal muscle regeneration in mice. Cell Death Dis. 2021;12:611 pubmed 出版商
  8. Wu S, Fukumoto T, Lin J, Nacarelli T, Wang Y, Ong D, et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat Cancer. 2021;2:189-200 pubmed 出版商
  9. Jin Q, Hu H, Yan S, Jin L, Pan Y, Li X, et al. lncRNA MIR22HG-Derived miR-22-5p Enhances the Radiosensitivity of Hepatocellular Carcinoma by Increasing Histone Acetylation Through the Inhibition of HDAC2 Activity. Front Oncol. 2021;11:572585 pubmed 出版商
  10. Sela Y, Li J, Kuri P, Merrell A, Li N, Lengner C, et al. Dissecting phenotypic transitions in metastatic disease via photoconversion-based isolation. elife. 2021;10: pubmed 出版商
  11. Yang D, Xu X, Wang X, Feng W, Shen X, Zhang J, et al. β-elemene promotes the senescence of glioma cells through regulating YAP-CDK6 signaling. Am J Cancer Res. 2021;11:370-388 pubmed
  12. Li J, Mahata B, Escobar M, Goell J, Wang K, Khemka P, et al. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat Commun. 2021;12:896 pubmed 出版商
  13. Atkins A, Xu M, Li M, Rogers N, Pryzhkova M, Jordan P. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. elife. 2020;9: pubmed 出版商
  14. Macri S, Di Poï N. Heterochronic Developmental Shifts Underlying Squamate Cerebellar Diversity Unveil the Key Features of Amniote Cerebellogenesis. Front Cell Dev Biol. 2020;8:593377 pubmed 出版商
  15. Zatulovskiy E, Zhang S, Berenson D, Topacio B, Skotheim J. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 2020;369:466-471 pubmed 出版商
  16. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster M. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;: pubmed 出版商
  17. Smith S, Davidson L, Rebeiz M. Evolutionary expansion of apical extracellular matrix is required for the elongation of cells in a novel structure. elife. 2020;9: pubmed 出版商
  18. Kakebeen A, Chitsazan A, Williams M, Saunders L, WILLS A. Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors. elife. 2020;9: pubmed 出版商
  19. Nelson B, Hodge R, Daza R, Tripathi P, Arnold S, Millen K, et al. Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches. elife. 2020;9: pubmed 出版商
  20. Zhang Y, Beketaev I, Segura A, Yu W, Xi Y, Chang J, et al. Contribution of Increased Expression of Yin Yang 2 to Development of Cardiomyopathy. Front Mol Biosci. 2020;7:35 pubmed 出版商
  21. Guven A, Kalebic N, Long K, Florio M, Vaid S, Brandl H, et al. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. elife. 2020;9: pubmed 出版商
  22. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  23. Aldaz P, Otaegi Ugartemendia M, Sáenz Antoñanzas A, Garcia Puga M, Moreno Valladares M, Flores J, et al. SOX9 promotes tumor progression through the axis BMI1-p21CIP. Sci Rep. 2020;10:357 pubmed 出版商
  24. Lin T, Chan H, Chen S, Sarvagalla S, Chen P, Coumar M, et al. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 2019;:1-18 pubmed 出版商
  25. Tang W, Martik M, Li Y, Bronner M. Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. elife. 2019;8: pubmed 出版商
  26. Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam C, Garg P, et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature. 2019;572:335-340 pubmed 出版商
  27. Curt J, Salmani B, Thor S. Anterior CNS expansion driven by brain transcription factors. elife. 2019;8: pubmed 出版商
  28. Gil Ranedo J, Gonzaga E, Jaworek K, Berger C, Bossing T, Barros C. STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation. Cell Rep. 2019;27:2921-2933.e5 pubmed 出版商
  29. Aztekin C, Hiscock T, Marioni J, Gurdon J, Simons B, Jullien J. Identification of a regeneration-organizing cell in the Xenopus tail. Science. 2019;364:653-658 pubmed 出版商
  30. Bennett S, Cobos S, Meykler M, Fallah M, Rana N, Chen K, et al. Characterizing Histone Post-translational Modification Alterations in Yeast Neurodegenerative Proteinopathy Models. J Vis Exp. 2019;: pubmed 出版商
  31. Suzuki T, Kikuguchi C, Nishijima S, Nagashima T, Takahashi A, Okada M, et al. Postnatal liver functional maturation requires Cnot complex-mediated decay of mRNAs encoding cell cycle and immature liver genes. Development. 2019;146: pubmed 出版商
  32. Chen X, Wanggou S, Bodalia A, Zhu M, Dong W, Fan J, et al. A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron. 2018;100:799-815.e7 pubmed 出版商
  33. Silva C, Peyre E, Adhikari M, Tielens S, Tanco S, Van Damme P, et al. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell. 2018;172:1063-1078.e19 pubmed 出版商
  34. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  35. Casoni F, Croci L, Bosone C, D Ambrosio R, Badaloni A, Gaudesi D, et al. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development. 2017;144:3686-3697 pubmed 出版商
  36. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed 出版商
  37. Jiang L, Yin M, Xu J, Jia M, Sun S, Wang X, et al. The Transcription Factor Bach1 Suppresses the Developmental Angiogenesis of Zebrafish. Oxid Med Cell Longev. 2017;2017:2143875 pubmed 出版商
  38. Sidhaye J, Norden C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. elife. 2017;6: pubmed 出版商
  39. Chen G, Nie S, Han C, Ma K, Xu Y, Zhang Z, et al. Antidyskinetic Effects of MEK Inhibitor Are Associated with Multiple Neurochemical Alterations in the Striatum of Hemiparkinsonian Rats. Front Neurosci. 2017;11:112 pubmed 出版商
  40. Zhang X, Li B, Rezaeian A, Xu X, Chou P, Jin G, et al. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nat Commun. 2017;8:14799 pubmed 出版商
  41. Ragni C, Diguet N, Le Garrec J, Novotova M, Resende T, Pop S, et al. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat Commun. 2017;8:14582 pubmed 出版商
  42. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  43. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  44. de Castro I, Budzak J, Di Giacinto M, Ligammari L, Gokhan E, Spanos C, et al. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun. 2017;8:14048 pubmed 出版商
  45. Herold N, Rudd S, Ljungblad L, Sanjiv K, Myrberg I, Paulin C, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med. 2017;23:256-263 pubmed 出版商
  46. Tanegashima K, Sato Miyata Y, Funakoshi M, Nishito Y, Aigaki T, Hara T. Epigenetic regulation of the glucose transporter gene Slc2a1 by ?-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells. 2017;22:71-83 pubmed 出版商
  47. Ibañez Rodriguez M, Noctor S, Muñoz E. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator. PLoS ONE. 2016;11:e0167063 pubmed 出版商
  48. Hansen R, Mund A, Poulsen S, Sandoval M, Klement K, Tsouroula K, et al. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nat Cell Biol. 2016;18:1357-1366 pubmed 出版商
  49. Lin W, FRANCIS J, Li H, Gao X, Pedamallu C, Ernst P, et al. Kmt2a cooperates with menin to suppress tumorigenesis in mouse pancreatic islets. Cancer Biol Ther. 2016;17:1274-1281 pubmed 出版商
  50. Day K, Lorenzatti Hiles G, Kozminsky M, Dawsey S, Paul A, Broses L, et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res. 2017;77:74-85 pubmed 出版商
  51. Otsuka K, Suzuki K. Differences in Radiation Dose Response between Small and Large Intestinal Crypts. Radiat Res. 2016;186:302-14 pubmed 出版商
  52. Doobin D, Kemal S, Dantas T, Vallee R. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun. 2016;7:12551 pubmed 出版商
  53. Chien J, Tsen S, Chien C, Liu H, Tung C, Lin C. ?TAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells. Cell Death Discov. 2016;2:16006 pubmed 出版商
  54. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  55. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  56. Huang Y, Chen S, Liu R, Chen Y, Lin C, Huang C, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94:1025-37 pubmed 出版商
  57. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  58. Brasa S, Mueller A, Jacquemont S, Hahne F, Rozenberg I, Peters T, et al. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome. Clin Epigenetics. 2016;8:15 pubmed 出版商
  59. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed 出版商
  60. Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño Roa L, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. elife. 2016;5: pubmed 出版商
  61. Bouge A, Parmentier M. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech. 2016;9:307-19 pubmed 出版商
  62. Powell E, Shao J, Yuan Y, Chen H, Cai S, Echeverria G, et al. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res. 2016;18:13 pubmed 出版商
  63. Carabalona A, Hu D, Vallee R. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci. 2016;19:253-62 pubmed 出版商
  64. Mir R, Bele A, Mirza S, Srivastava S, Olou A, Ammons S, et al. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression. Mol Cell Biol. 2015;36:886-99 pubmed 出版商
  65. Connor A, Kelley P, Tempero R. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis. Lab Invest. 2016;96:270-82 pubmed 出版商
  66. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed 出版商
  67. Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Front Plant Sci. 2015;6:846 pubmed 出版商
  68. Hehnly H, Canton D, Bucko P, Langeberg L, Ogier L, Gelman I, et al. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells. elife. 2015;4:e09384 pubmed 出版商
  69. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed 出版商
  70. Lovisa S, LeBleu V, Tampe B, Sugimoto H, Vadnagara K, Carstens J, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21:998-1009 pubmed 出版商
  71. Sadaie M, Dillon C, Narita M, Young A, Cairney C, Godwin L, et al. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell. 2015;26:2971-85 pubmed 出版商
  72. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  73. Alexandrova E, Yallowitz A, Li D, Xu S, Schulz R, Proia D, et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352-6 pubmed 出版商
  74. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed 出版商
  75. Singh P, Konar A, Kumar A, Srivas S, Thakur M. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem. 2015;134:642-51 pubmed 出版商
  76. Yin Y, Castro A, Hoekstra M, Yan T, Kanakamedala A, Dehner L, et al. Fibroblast Growth Factor 9 Regulation by MicroRNAs Controls Lung Development and Links DICER1 Loss to the Pathogenesis of Pleuropulmonary Blastoma. PLoS Genet. 2015;11:e1005242 pubmed 出版商
  77. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  78. Morchoisne Bolhy S, Geoffroy M, Bouhlel I, Alves A, Audugé N, Baudin X, et al. Intranuclear dynamics of the Nup107-160 complex. Mol Biol Cell. 2015;26:2343-56 pubmed 出版商
  79. Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, et al. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun. 2015;6:6366 pubmed 出版商
  80. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  81. Sun S, Ling S, Qiu J, Albuquerque C, Zhou Y, Tokunaga S, et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun. 2015;6:6171 pubmed 出版商
  82. Ochi T, Blackford A, Coates J, Jhujh S, Mehmood S, Tamura N, et al. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science. 2015;347:185-188 pubmed 出版商
  83. Jacob V, Chernyavskaya Y, Chen X, Tan P, Kent B, Hoshida Y, et al. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development. 2015;142:510-21 pubmed 出版商
  84. Pacaud R, Cheray M, Nadaradjane A, Vallette F, Cartron P. Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy. Theranostics. 2015;5:12-22 pubmed 出版商
  85. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  86. Smith B, Vance C, Scotter E, Troakes C, Wong C, Topp S, et al. Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol Aging. 2015;36:1602.e17-27 pubmed 出版商
  87. Lee J, Peng Y, Lin W, Parrish J. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development. 2015;142:162-73 pubmed 出版商
  88. Fink D, Connor A, Kelley P, Steele M, Hollingsworth M, Tempero R. Nerve growth factor regulates neurolymphatic remodeling during corneal inflammation and resolution. PLoS ONE. 2014;9:e112737 pubmed 出版商
  89. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep. 2014;4:6614 pubmed 出版商
  90. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed 出版商
  91. Seredick S, Hutchinson S, Van Ryswyk L, Talbot J, Eisen J. Lhx3 and Lhx4 suppress Kolmer-Agduhr interneuron characteristics within zebrafish axial motoneurons. Development. 2014;141:3900-9 pubmed 出版商
  92. Chan Y, West S. Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nat Commun. 2014;5:4844 pubmed 出版商
  93. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  94. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  95. Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry B, et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet. 2014;94:547-58 pubmed 出版商
  96. Glebov K, Voronezhskaya E, Khabarova M, Ivashkin E, Nezlin L, Ponimaskin E. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC Dev Biol. 2014;14:14 pubmed 出版商
  97. Aoshiba K, Tsuji T, Itoh M, Semba S, Yamaguchi K, Nakamura H, et al. A murine model of airway fibrosis induced by repeated naphthalene exposure. Exp Toxicol Pathol. 2014;66:169-77 pubmed 出版商
  98. Hammond S, Byrum S, Namjoshi S, Graves H, Dennehey B, Tackett A, et al. Mitotic phosphorylation of histone H3 threonine 80. Cell Cycle. 2014;13:440-52 pubmed 出版商
  99. Wu H, Balsbaugh J, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398-408 pubmed 出版商
  100. Douglas N, Arora R, Chen C, Sauer M, Papaioannou V. Investigating the role of tbx4 in the female germline in mice. Biol Reprod. 2013;89:148 pubmed 出版商
  101. Saurat N, Andersson T, Vasistha N, Molnár Z, Livesey F. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 2013;8:14 pubmed 出版商
  102. Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development. 2013;140:2310-20 pubmed 出版商
  103. Lau P, Cheung P. Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity. Nucleic Acids Res. 2013;41:e49 pubmed 出版商
  104. Gallagher S, Kofman A, Huszar J, Dannenberg J, Depinho R, Braun R, et al. Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol. 2013;373:83-94 pubmed 出版商
  105. Rothova M, Peterkova R, Tucker A. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol. 2012;366:244-54 pubmed 出版商
  106. Qin J, Van Buren D, Huang H, Zhong L, Mostoslavsky R, Akbarian S, et al. Chromatin protein L3MBTL1 is dispensable for development and tumor suppression in mice. J Biol Chem. 2010;285:27767-75 pubmed 出版商