这是一篇来自已证抗体库的有关小鼠 H3c2的综述,是根据593篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合H3c2 抗体。
H3c2 同义词: H3-53; Hist1h3b

赛默飞世尔
domestic rabbit 单克隆(G.299.10)
  • 其他; 人类; 1:100; 图 s7a
赛默飞世尔 H3c2抗体(Thermo Fisher, MA5-11198)被用于被用于其他在人类样本上浓度为1:100 (图 s7a). Nat Commun (2021) ncbi
domestic rabbit 重组(RM172)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛默飞世尔 H3c2抗体(Thermo-fisher scientific, MA5-24671)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Ann Med (2021) ncbi
domestic rabbit 重组(3H6L4)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 H3c2抗体(Thermo-fisher scientific, 701783)被用于被用于免疫印迹在人类样本上 (图 2a). Ann Med (2021) ncbi
domestic rabbit 重组(RM155)
  • 免疫印迹; 小鼠; 1:1000; 图 e5h
  • 免疫印迹; 人类; 1:1000; 图 e3e
赛默飞世尔 H3c2抗体(Thermo Fisher, MA5-24687)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e5h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 e3e). Nature (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1f
赛默飞世尔 H3c2抗体(Thermo Fisher, PA5-16195)被用于被用于免疫细胞化学在人类样本上 (图 s1f). Cell (2020) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
赛默飞世尔 H3c2抗体(生活技术, 49-1010)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5b
赛默飞世尔 H3c2抗体(Invitrogen, 491008)被用于被用于ChIP-Seq在人类样本上 (图 5b). Cancer Cell (2018) ncbi
小鼠 单克隆(865R2)
  • 免疫印迹; 人类; 1:500; 图 s8b
赛默飞世尔 H3c2抗体(Thermo Fisher, 865R2)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s8b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
赛默飞世尔 H3c2抗体(Invitrogen, PA5-17869)被用于. J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6c
赛默飞世尔 H3c2抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 6c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 1
赛默飞世尔 H3c2抗体(Invitrogen, 49-1005)被用于被用于ChIP-Seq在人类样本上 (图 1). Mol Biol Evol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3c
赛默飞世尔 H3c2抗体(生活技术, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔 H3c2抗体(Invitrogen, 49-1003)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔 H3c2抗体(Invitrogen, 49-1004)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔 H3c2抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3a
赛默飞世尔 H3c2抗体(Invitrogen, 49-1008)被用于被用于染色质免疫沉淀 在人类样本上 (图 3a). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 H3c2抗体(Thermo Fisher Scientific, PA5-17869)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 衣藻; 1:20,000; 图 s4
赛默飞世尔 H3c2抗体(Thermo Fisher Scientific, PA5-16183)被用于被用于免疫印迹在衣藻样本上浓度为1:20,000 (图 s4). elife (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
赛默飞世尔 H3c2抗体(Invitrogen, 49-1005)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Gene (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5
赛默飞世尔 H3c2抗体(Invitrogen, 49-1008)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Gene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛默飞世尔 H3c2抗体(Thermo Scientific, A15024)被用于被用于免疫印迹在人类样本上 (图 5). Tumour Biol (2016) ncbi
domestic rabbit 单克隆(J.924.2)
  • 免疫细胞化学; American tobacco; 1:200; 图 2
赛默飞世尔 H3c2抗体(Thermo Scientific, MA5-11195)被用于被用于免疫细胞化学在American tobacco样本上浓度为1:200 (图 2). Front Plant Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 H3c2抗体(Invitrogen, P7N49-1008)被用于. Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(E.960.2)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 H3c2抗体(Thermo Fisher Scientific, MA5-15150)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
小鼠 单克隆(865R2)
  • 染色质免疫沉淀 ; red rice
赛默飞世尔 H3c2抗体(Invitrogen, AHO1432)被用于被用于染色质免疫沉淀 在red rice 样本上. Nat Commun (2014) ncbi
domestic rabbit 单克隆(G.532.8)
  • 染色质免疫沉淀 ; 人类
赛默飞世尔 H3c2抗体(Thermo, MA511199)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司 H3c2抗体(Abcam, ab177184)被用于被用于免疫印迹在人类样本上 (图 1h). J Cell Biol (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:5000; 图 s5a
艾博抗(上海)贸易有限公司 H3c2抗体(Abcam, ab176921)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s5a). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 人类; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 2j
艾博抗(上海)贸易有限公司 H3c2抗体(Abcam, ab177184)被用于被用于免疫组化在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2j). Nat Commun (2020) ncbi
domestic rabbit 单克隆
  • ChIP-Seq; 小鼠; 图 5d
  • 染色质免疫沉淀 ; 人类; 图 4a
艾博抗(上海)贸易有限公司 H3c2抗体(Abcam, ab176882)被用于被用于ChIP-Seq在小鼠样本上 (图 5d) 和 被用于染色质免疫沉淀 在人类样本上 (图 4a). Nat Commun (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D5E4)
  • ChIP-Seq; 人类; 1:100; 图 s2d
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 8173)被用于被用于ChIP-Seq在人类样本上浓度为1:100 (图 s2d). Blood Cancer J (2022) ncbi
domestic rabbit 单克隆(D1A9)
  • ChIP-Seq; 人类; 1:50; 图 s2d
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 5326)被用于被用于ChIP-Seq在人类样本上浓度为1:50 (图 s2d). Blood Cancer J (2022) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Ther Oncolytics (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733BF)被用于被用于免疫细胞化学在人类样本上 (图 4a). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). EMBO J (2022) ncbi
domestic rabbit 单克隆(D1H2)
  • 其他; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于其他在人类样本上浓度为1:2000 (图 3a). Biomolecules (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 4a). iScience (2022) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 6j
  • 免疫细胞化学; 人类; 图 5f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 8173S)被用于被用于染色质免疫沉淀 在人类样本上 (图 6j) 和 被用于免疫细胞化学在人类样本上 (图 5f). J Hematol Oncol (2022) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:1500; 图 8a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 96C10)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 8a). elife (2022) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D2B12)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7c). J Exp Med (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 其他; 小鼠; 1:100; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于其他在小鼠样本上浓度为1:100 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D5A7)
  • 免疫印迹; 人类; 1:1000; 图 5e, s8b
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4909)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e, s8b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 其他; 小鼠; 图 s7i
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于其他在小鼠样本上 (图 s7i). Sci Adv (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 4j
  • 免疫印迹; 人类; 图 4c, 6e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 4j) 和 被用于免疫印迹在人类样本上 (图 4c, 6e). Clin Transl Med (2022) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:100; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signalling, 9706S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a). Explor Target Antitumor Ther (2022) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s2b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 4d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d). Cell Oncol (Dordr) (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 6f
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733s)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 6f). Br J Cancer (2022) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 6f
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 8173s)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 6f). Br J Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 图 2g
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9701S)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2g). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 9e
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4353)被用于被用于染色质免疫沉淀 在人类样本上 (图 9e). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173S)被用于被用于免疫印迹在人类样本上 (图 9a). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4620S)被用于被用于免疫印迹在人类样本上 (图 9a). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 4j). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 1:50; 图 8a
  • 免疫组化; 小鼠; 1:200; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733s)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50 (图 8a), 被用于免疫组化在小鼠样本上浓度为1:200 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). elife (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 1:50; 图 6a
  • 流式细胞仪; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上浓度为1:50 (图 6a) 和 被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 6c). elife (2022) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 6b). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 1:50; 图 6i
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9727)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 6i). Life Sci Alliance (2022) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706S)被用于被用于免疫组化在小鼠样本上 (图 3i). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 1:125; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9751S)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:125 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; pigs ; 图 1i
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在pigs 样本上 (图 1i). PLoS Pathog (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 2650)被用于被用于免疫印迹在人类样本上 (图 3f). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 5b
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9677)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). JCI Insight (2021) ncbi
domestic rabbit 单克隆(C5B11)
  • ChIP-Seq; 人类; 图 2i, 6e
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9649)被用于被用于ChIP-Seq在人类样本上 (图 2i, 6e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9701S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 8173)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Neurooncol Adv (2021) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 图 2k
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9706S)被用于被用于免疫组化在小鼠样本上 (图 2k). EMBO J (2021) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:500; 图 3i
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3i). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 6c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9764S)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 6c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 小鼠; 1:50; 图 4g
  • 免疫印迹; 小鼠; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 8173)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 小鼠; 1:50; 图 4h
  • 免疫印迹; 小鼠; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9649)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50 (图 4h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4i
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4i). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 8173S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cancer Res (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 人类; 图 3c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9751)被用于被用于ChIP-Seq在人类样本上 (图 3c). Cancer Res (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 图 3c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733)被用于被用于ChIP-Seq在人类样本上 (图 3c). Cancer Res (2021) ncbi
domestic rabbit 单克隆(D1A9)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 5326S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Res (2021) ncbi
domestic rabbit 单克隆(D5A7)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 4909)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:5000; 图 7h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signalling Technology, CST4499S)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7h). BMC Biol (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Tech, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1b). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 其他; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173T)被用于被用于其他在人类样本上 (图 5c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Pathol (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫印迹; 小鼠; 图 4a, s1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于免疫印迹在小鼠样本上 (图 4a, s1a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 4a, s1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 4a, s1a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 图 4a, s1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在小鼠样本上 (图 4a, s1a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5b). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2g). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(C75H12)
  • 染色质免疫沉淀 ; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 2901)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2f). Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6l
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6l). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 5j, 5m
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5j, 5m). J Cell Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化在小鼠样本上 (图 7g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 8173)被用于被用于免疫印迹在人类样本上 (图 6c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 3g, 3h, 3k
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3g, 3h, 3k). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200; 图 s6b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 6G3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6b). Dis Model Mech (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:200; 图 4h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499S)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4h). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:200; 图 4h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4658S)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4h). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, D5E4)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3d). Commun Biol (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 5l
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733S)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5l). NPJ Regen Med (2021) ncbi
domestic rabbit 单克隆(C64G9)
  • 染色质免疫沉淀 ; 小鼠; 图 5l
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9725S)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5l). NPJ Regen Med (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; 人类; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9725)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 1:1000; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9728)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a). Cell Stem Cell (2021) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 2g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701s)被用于被用于流式细胞仪在人类样本上 (图 2g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3i
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 3458)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3i). J Neurosci (2021) ncbi
domestic rabbit 单克隆(D5A7)
  • 染色质免疫沉淀 ; 人类; 图 6h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4909)被用于被用于染色质免疫沉淀 在人类样本上 (图 6h). Cell Rep (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 图 3c
  • 免疫印迹; 人类; 图 1h, 3b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733S)被用于被用于免疫组化在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 1h, 3b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4658S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nature (2021) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9728S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nature (2021) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 e2j
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 2901)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 e2j). Nature (2021) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9725S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nature (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 2d
  • 免疫组化; 人类; 1:200; 图 7f,
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701L)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2d) 和 被用于免疫组化在人类样本上浓度为1:200 (图 7f, ). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d, s5e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d, s5e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 s10a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733BF)被用于被用于免疫细胞化学在小鼠样本上 (图 s10a). Nature (2021) ncbi
domestic rabbit 单克隆(D1A9)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 5326S)被用于被用于免疫细胞化学在小鼠样本上. Nature (2021) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9725BF)被用于被用于免疫细胞化学在小鼠样本上. Nature (2021) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9728BF)被用于被用于免疫细胞化学在小鼠样本上. Nature (2021) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 图 1j
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫组化在小鼠样本上 (图 1j). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6d). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). iScience (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733)被用于被用于免疫印迹在人类样本上 (图 7e). iScience (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫印迹; 人类; 图 2d, 7e
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9751)被用于被用于免疫印迹在人类样本上 (图 2d, 7e). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2d, 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9763)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2d, 5a). iScience (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 图 4c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫细胞化学在人类样本上 (图 4c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 3d
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9649)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 3d). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 4b, 4e, 6c, 6g
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, 4e, 6c, 6g). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 4d). Biol Open (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上 (图 4d). Biol Open (2021) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Cerebellum (2021) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9649)被用于被用于免疫印迹在人类样本上浓度为1:1000. Front Oncol (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Front Oncol (2020) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). elife (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6b, 7d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b, 7d). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 4e). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). elife (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠; 1:300; 图 3b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9706S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 3b). elife (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫组化在小鼠样本上. Cell Rep (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733)被用于被用于免疫组化在小鼠样本上 (图 4d). Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Antioxidants (Basel) (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Theranostics (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; roundworm ; 1:400; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫组化在roundworm 样本上浓度为1:400 (图 1b). elife (2020) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173S)被用于被用于免疫印迹在人类样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 4e). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫组化在小鼠样本上 (图 6c). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 e7a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e7a). Nat Metab (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 人类; 图 4b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4b). Science (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上. J Hematol Oncol (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s7h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s7h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 1:2000; 图 2c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3j
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 3j). J Cardiovasc Dev Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:400; 图 s8a
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 3377)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s8a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(6F12)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 5327)被用于被用于免疫细胞化学在人类样本上. Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 3e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3e). Nat Cell Biol (2020) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; 人类; 1:3000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9725)被用于被用于免疫印迹在人类样本上浓度为1:3000. Nat Cell Biol (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; fruit fly ; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 5b). elife (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200; 图 s5-1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5-1b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signalling, 9701)被用于被用于免疫组化在小鼠样本上 (图 1c). Cell Death Differ (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1s1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 1s1a). elife (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; fruit fly ; 1:100; 图 2e, s5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706L)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2e, s5a). PLoS Genet (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3d
  • 免疫细胞化学; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, C36B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3d) 和 被用于免疫细胞化学在人类样本上 (图 7). Clin Epigenetics (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 大鼠; 1:15; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于染色质免疫沉淀 在大鼠样本上浓度为1:15 (图 5b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 1:500; 图 4b, s6e, s6g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 3377S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b, s6e, s6g). Nature (2020) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 小鼠; 1:25; 图 s4b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在小鼠样本上浓度为1:25 (图 s4b). Cell Rep (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 其他; 淡水涡虫;真涡虫; 1:3000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D2C8)被用于被用于其他在淡水涡虫;真涡虫样本上浓度为1:3000. elife (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s9h
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 3377T)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s9h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d). Neurol Med Chir (Tokyo) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4e
赛信通(上海)生物试剂有限公司 H3c2抗体(cell signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 s5c, s6a, 5d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4620)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5c, s6a, 5d). Cell Rep (2019) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, C5B11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(6F12)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 6F12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:500-1:2000; 图 5f, 6d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 5f, 6d). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Genes Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f, 6c
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f, 6c). Genes Cancer (2019) ncbi
domestic rabbit 单克隆(D1A9)
  • 免疫细胞化学; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 5326)被用于被用于免疫细胞化学在人类样本上 (图 s4a). Nature (2019) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫细胞化学; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 8173)被用于被用于免疫细胞化学在人类样本上 (图 s4a). Nature (2019) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 小鼠; ; 图 6s1b, 6s1c, 6s1d
  • 免疫印迹; 大鼠; ; 图 6s1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在小鼠样本上浓度为 (图 6s1b, 6s1c, 6s1d) 和 被用于免疫印迹在大鼠样本上浓度为 (图 6s1a). elife (2019) ncbi
domestic rabbit 单克隆(C42D8)
  • 流式细胞仪; 小鼠; 图 2n
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C42D8)被用于被用于流式细胞仪在小鼠样本上 (图 2n). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 流式细胞仪; 小鼠; 图 2n
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于流式细胞仪在小鼠样本上 (图 2n). Science (2019) ncbi
domestic rabbit 单克隆(D5A7)
  • 流式细胞仪; 小鼠; 图 2n
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D5A7)被用于被用于流式细胞仪在小鼠样本上 (图 2n). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9733)被用于被用于免疫细胞化学在小鼠样本上. Nature (2019) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 3f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 3f). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 4i
  • 免疫印迹; 人类; 1:1000; 图 4a, 4c, 6a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 4i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4c, 6a). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 5748)被用于被用于免疫印迹在人类样本上 (图 4f). EBioMedicine (2019) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 s5b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 3638S)被用于被用于免疫印迹在人类样本上 (图 s5b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 非洲爪蛙; 图 3e
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733BF)被用于被用于ChIP-Seq在非洲爪蛙样本上 (图 3e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 鸡; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signalling, C36B11)被用于被用于ChIP-Seq在鸡样本上 (图 3a). Dev Biol (2020) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 2901)被用于被用于免疫印迹在小鼠样本上 (图 2e). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:250. Nature (2019) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫沉淀; 小鼠; 1:25; 图 13g
  • 免疫印迹; 小鼠; 1:1000; 图 s13c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫沉淀在小鼠样本上浓度为1:25 (图 13g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s13c). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫组化-石蜡切片; 小鼠; 图 s5h
赛信通(上海)生物试剂有限公司 H3c2抗体(cell signaling, 8173)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5h). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:500; 图 7b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701L)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 7b). Cell (2019) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; fruit fly ; 1:1000; 图 2s2e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706S)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 2s2e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:10 (图 3a). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9728)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9677)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1e). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s1h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 s1h). Cell (2019) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 ex4b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638S)被用于被用于免疫印迹在人类样本上 (图 ex4b). Nature (2019) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:300; 图 1n
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1n). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Sci Rep (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 1:200; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5b). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s13c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 s13c). Science (2019) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 小鼠; 图 3e
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751T)被用于被用于ChIP-Seq在小鼠样本上 (图 3e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 e10j
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 e10j). Nature (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 1:200; 图 e10k
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 e10k) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signalling Technology, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). EMBO Mol Med (2019) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上 (图 4b). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在人类样本上 (图 6b). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 单克隆(C5B11)
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于. Cell (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:5000; 图 4s3d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4s3d). elife (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 9733)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 6c). Life Sci Alliance (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D18C8)
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9728)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D5A7)
  • ChIP-Seq; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4909)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 1:50; 图 6b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9727)被用于被用于其他在人类样本上浓度为1:50 (图 6b). elife (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; ; 图 4d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为 (图 4d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). Dev Biol (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4658)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4620S)被用于被用于免疫印迹在人类样本上 (图 6c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s16c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9727)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s16c). Science (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 s16c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s16c). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s4h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4h). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733S)被用于被用于ChIP-Seq在大鼠样本上 (图 3e). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3a). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 图 4b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733)被用于被用于免疫细胞化学在人类样本上 (图 4b). Life Sci Alliance (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫组化在小鼠样本上 (图 3f). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). PLoS ONE (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signalling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Cancer Lett (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 e5e
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在人类样本上 (图 e5e). Nature (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 6h). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, CST4499s)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Brain (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Brain (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:5000; 图 4i
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4i). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). J Cell Biol (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Front Immunol (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 s6d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733S)被用于被用于免疫细胞化学在小鼠样本上 (图 s6d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 1d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715S)被用于被用于免疫印迹在非洲爪蛙样本上 (图 1d). Cell (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50; 图 s1d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D2C8)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1d). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 6e). Oncogene (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 2b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 8f). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:5000; 图 4e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4e). EMBO J (2019) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上 (图 5c). Blood (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:2500; 图 s6g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s6g). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1f). Nat Chem Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:2000 (图 1a). Nature (2018) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
  • 流式细胞仪; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b) 和 被用于流式细胞仪在小鼠样本上 (图 5a). J Cell Biol (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:2000; 图 8g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8g). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2018) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9751)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 s2a). PLoS Biol (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9727)被用于被用于染色质免疫沉淀 在人类样本上 (图 4h). Oncogene (2018) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 4h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173)被用于被用于染色质免疫沉淀 在人类样本上 (图 4h). Oncogene (2018) ncbi
domestic rabbit 单克隆(D5E4)
  • ChIP-Seq; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173)被用于被用于ChIP-Seq在小鼠样本上 (图 4a). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D1A9)
  • ChIP-Seq; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 5326)被用于被用于ChIP-Seq在小鼠样本上 (图 4a). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 3e). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在小鼠样本上 (图 3e). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Nat Neurosci (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Nat Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2e). Genes Dev (2018) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Science (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7d). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s11c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s11c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D4B9)
  • 免疫印迹; 人类; 1:1000; 图 s11c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 7627)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11c). Nat Commun (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 3638)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1e). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 s1h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫印迹在小鼠样本上 (图 s1h). Nature (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:10,000; 图 s2f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 4499S)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2f). elife (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751s)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5f). J Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3a). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Stem Cells (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9714)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9713)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 3638)被用于被用于免疫印迹在人类样本上 (图 8e). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 7b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173)被用于被用于染色质免疫沉淀 在人类样本上 (图 7b). Mol Cancer Res (2017) ncbi
domestic rabbit 单克隆(D5A7)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4909)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Cancer (2017) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫沉淀; 人类; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D5E4)被用于被用于免疫沉淀在人类样本上 (图 3a). J Biol Chem (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上 (图 1c). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D1A9)
  • 染色质免疫沉淀 ; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 5326)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(C64G9)
  • 染色质免疫沉淀 ; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9725)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 2b, 3f
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b, 3f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Brain Res (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 大鼠; 图 7c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9675)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 7c). Biol Sex Differ (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3458S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733)被用于被用于免疫印迹在人类样本上 (图 5b). Sci Rep (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(cell signalling, 96C10)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 7h
赛信通(上海)生物试剂有限公司 H3c2抗体(cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 7h). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 9a
赛信通(上海)生物试剂有限公司 H3c2抗体(cell signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 9a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在人类样本上 (图 1b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2k
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701 S)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2k). Sci Rep (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 图 S1A
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 6G3)被用于被用于免疫印迹在人类样本上 (图 S1A). Mol Cell (2017) ncbi
小鼠 单克隆(6F12)
  • 流式细胞仪; 人类; 1:400; 图 s6a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 5327)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 s6a). MBio (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 6
  • 免疫组化; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 H3c2抗体(cell signalling, C36B11)被用于被用于免疫细胞化学在小鼠样本上 (图 6), 被用于免疫组化在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3b). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:50; 图 s1k
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1k). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4260)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9727)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9753)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 1:1000; 图 5D
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D2C8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5D). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, CST-9728s)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, CST-9733s)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751S)被用于被用于免疫印迹在人类样本上 (图 s5a). Nature (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 3377)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 H3c2抗体(cell signalling, 9649P)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Clin Invest (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9706)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b). Stem Cell Reports (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫细胞化学在人类样本上 (图 1a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 1:500; 图 s9
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signal, 9675)被用于被用于其他在人类样本上浓度为1:500 (图 s9). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(C64G9)
  • 其他; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signal, 9725)被用于被用于其他在人类样本上浓度为1:2000 (图 3). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 其他; 人类; 1:2500; 图 s9
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signal, 9649)被用于被用于其他在人类样本上浓度为1:2500 (图 s9). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D18C8)
  • 其他; 人类; 1:900; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signal, 9728)被用于被用于其他在人类样本上浓度为1:900 (图 3). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 1:50; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signal, 9723)被用于被用于其他在人类样本上浓度为1:50 (图 3). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 其他; 人类; 1:2500; 图 3
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于其他在人类样本上浓度为1:2500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D5E4)
  • 其他; 人类; 1:500; 图 s9
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signal, 8173)被用于被用于其他在人类样本上浓度为1:500 (图 s9). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 st4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 st4). Nat Biotechnol (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 33770)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s6g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s6g). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4e). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 9f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 4499)被用于被用于免疫印迹在小鼠样本上 (图 9f). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化; 人类; 1:500; 图 3
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Tech, 2901)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上 (图 4a). Nat Genet (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701L)被用于被用于免疫细胞化学在人类样本上. Mol Cell Biol (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在人类样本上 (图 s1). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9713)被用于被用于免疫印迹在小鼠样本上 (图 6h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 图 2f
  • 免疫印迹; 人类; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1e). Nat Med (2017) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在人类样本上 (图 s3b). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7b). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4620S)被用于被用于免疫印迹在人类样本上 (图 1b). Front Immunol (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 染色质免疫沉淀 ; 人类; 1:2000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signalling, 4499)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:2000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 2650)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5b). JCI Insight (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4a). Neural Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 s6b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 图 8h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在fruit fly 样本上 (图 8h). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:150; 图 4g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 4g). Nature (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 表 2
  • ChIP-Seq; 人类; 表 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (表 2) 和 被用于ChIP-Seq在人类样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 单克隆(D1A9)
  • ChIP-Seq; 人类; 表 2
  • ChIP-Seq; 小鼠; 表 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 5326)被用于被用于ChIP-Seq在人类样本上 (表 2) 和 被用于ChIP-Seq在小鼠样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 小鼠; 表 2
  • ChIP-Seq; 人类; 表 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在小鼠样本上 (表 2) 和 被用于ChIP-Seq在人类样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 单克隆(D5E4)
  • ChIP-Seq; 人类; 表 2
  • ChIP-Seq; 小鼠; 表 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173)被用于被用于ChIP-Seq在人类样本上 (表 2) 和 被用于ChIP-Seq在小鼠样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). Epigenetics Chromatin (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signalling, 9701)被用于被用于免疫组化在小鼠样本上 (图 4a). Neural Dev (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; fruit fly ; 1:200; 图 2fs1h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3642S)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 2fs1h). elife (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; brewer's yeast; 图 s1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在brewer's yeast样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 s1d). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2016) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 人类; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2b). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9753)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9716)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling technology, 97535)被用于被用于染色质免疫沉淀 在人类样本上 (图 4e). J Steroid Biochem Mol Biol (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9716)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9715)被用于被用于免疫印迹在人类样本上 (图 2f). Nature (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Tech, 9715)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). Mol Carcinog (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D18C8)
  • ChIP-Seq; 小鼠; 1:40; 图 2i
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9728)被用于被用于ChIP-Seq在小鼠样本上浓度为1:40 (图 2i). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 1:40
  • 免疫细胞化学; 小鼠; 图 2f
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上浓度为1:40, 被用于免疫细胞化学在小鼠样本上 (图 2f) 和 被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 流式细胞仪; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 5499)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 10f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, CST-9701)被用于被用于免疫组化在人类样本上 (图 10f). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 s1). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9708)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9715)被用于被用于免疫印迹在小鼠样本上 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 斑马鱼; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫组化在斑马鱼样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biomed Res Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701S)被用于被用于免疫细胞化学在人类样本上. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 人类; 图 1i
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在人类样本上 (图 1i). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 5a). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(C64G9)
  • 染色质免疫沉淀 ; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9725)被用于被用于染色质免疫沉淀 在人类样本上 (图 5a). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 5b
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:200; 图 8a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 8a). Cell Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 6). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 3d,4b,7b
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d,4b,7b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1A9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 5326)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 2650)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3f). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 酶联免疫吸附测定; 人类; 1:1000; 图 s3
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000 (图 s3) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9728)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:3000; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9715S)被用于被用于免疫印迹在人类样本上 (图 6a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9701)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:300; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 1). EMBO Mol Med (2016) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于流式细胞仪在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 4499L)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 斑马鱼; 1:200; 图 s4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:200 (图 s4). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Tech, 9701)被用于被用于免疫组化在fruit fly 样本上 (图 s1). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715 s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 大鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706s)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s1h
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 s1h). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 小鼠; 1:50; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 染色质免疫沉淀 ; 人类; 图 2a
  • 免疫细胞化学; 人类; 1:2000; 图 s3c
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 2901)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a), 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s3c) 和 被用于免疫印迹在人类样本上 (图 1a). Science (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1b). Science (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 3377)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 3s1). elife (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 鸡; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9727)被用于被用于ChIP-Seq在鸡样本上 (图 3). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上 (图 6c). Carcinogenesis (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377S)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4243S)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 s6c
  • 染色质免疫沉淀 ; fruit fly ; 图 s11b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在小鼠样本上 (图 s6c) 和 被用于染色质免疫沉淀 在fruit fly 样本上 (图 s11b). Science (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 大鼠; 图 10
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 10). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4243)被用于被用于免疫印迹在小鼠样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, CST3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3). Mol Endocrinol (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:25,000; 图 1d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4484)被用于被用于免疫印迹在人类样本上浓度为1:25,000 (图 1d). Science (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 7
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9701)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9701)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:3000; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). Front Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3e). J Mol Med (Berl) (2016) ncbi
domestic rabbit 单克隆(C64G9)
  • 染色质免疫沉淀 ; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9725)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Cell Rep (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9706)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Cerebellum (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 3638)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 11a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:200; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 97015)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 s1). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:200; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 97015)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 s1). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, D2C8)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; fruit fly ; 表 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 2650)被用于被用于染色质免疫沉淀 在fruit fly 样本上 (表 1). Genom Data (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 表 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (表 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9753)被用于被用于免疫印迹在人类样本上 (表 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751S)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s1). Diabetes (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715L)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). EMBO J (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9715S)被用于被用于免疫印迹在人类样本上 (图 6d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9714)被用于被用于免疫细胞化学在人类样本上 (图 4). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9701)被用于被用于免疫细胞化学在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在非洲爪蛙样本上 (图 4). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:2000; 图 5d
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5d). Stem Cells (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715S)被用于被用于染色质免疫沉淀 在小鼠样本上. J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3642)被用于被用于免疫印迹在人类样本上 (图 5b). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s9c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9727)被用于被用于染色质免疫沉淀 在人类样本上 (图 s9c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D5E4)
  • ChIP-Seq; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, D5E4)被用于被用于ChIP-Seq在小鼠样本上 (图 3). Nat Genet (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫沉淀; 人类; 1:5000; 图 3b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 3377)被用于被用于免疫沉淀在人类样本上浓度为1:5000 (图 3b). Nat Chem Biol (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 4
  • 免疫细胞化学; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, C36B11)被用于被用于ChIP-Seq在小鼠样本上 (图 4), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). elife (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, C36B11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7). Neoplasia (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9649)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7e). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3t
赛信通(上海)生物试剂有限公司 H3c2抗体(Merck Millipore, 9715)被用于被用于免疫印迹在人类样本上 (图 s3t). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4
  • 免疫印迹; 人类; 图 4s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9675)被用于被用于ChIP-Seq在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4s1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9675S)被用于被用于免疫印迹在人类样本上 (图 2a). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 1:200; 图 s4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s4). Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signalling, 9727s)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4c). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4). Development (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上 (图 s5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于免疫组化在人类样本上 (图 2c). Genes Dev (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6c
  • 染色质免疫沉淀 ; 人类; 图 4a
  • 免疫印迹; 人类; 1:2000; 图 1c, 3a, 2c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6c), 被用于染色质免疫沉淀 在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1c, 3a, 2c). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s5
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s5) 和 被用于染色质免疫沉淀 在小鼠样本上 (图 3). BMC Biol (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 3
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Tech, cst-3377)被用于被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 6). Cancer Discov (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹基因敲除验证; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Tech, 9733)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). Biol Proced Online (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751s)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 3). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在大鼠样本上 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638S)被用于被用于免疫印迹在小鼠样本上 (图 4). Front Oncol (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 4499P)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫组化-石蜡切片; fruit fly ; 1:200; 图 s1b
  • 免疫印迹; fruit fly ; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751S)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:200 (图 s1b) 和 被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 s1a). Biol Open (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4620)被用于被用于免疫印迹在小鼠样本上. Biochem J (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4658P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 8173)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Tech, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, C36B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Tumour Biol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signalling, 4499L)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 犬; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 3b). Nat Commun (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, cat# 9706S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. EMBO J (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫印迹; 人类; 图 6g
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于免疫印迹在人类样本上 (图 6g). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于染色质免疫沉淀 在小鼠样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, D1H2)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Pathol (2015) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:400; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 9706)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1600; 图 2a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 3377)被用于被用于免疫细胞化学在人类样本上浓度为1:1600 (图 2a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751S)被用于被用于ChIP-Seq在小鼠样本上 (图 3a). BMC Biol (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s8). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s8). Nat Commun (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicol Appl Pharmacol (2015) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 9649P)被用于被用于免疫印迹在人类样本上 (图 5). Chem Biol (2015) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 8173)被用于被用于免疫印迹在人类样本上 (图 5). Chem Biol (2015) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 小鼠; 1:1000; 图 s13
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9728)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s13). Genome Res (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 3465)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9649P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4658P)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Stem Cells Int (2015) ncbi
domestic rabbit 单克隆(3H1)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 3H1)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6a,6b,6c,7b
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 6a,6b,6c,7b) 和 被用于免疫印迹在人类样本上 (图 7a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D54)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 4473)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2015) ncbi
小鼠 单克隆(6F12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(cst, 5327)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
  • 流式细胞仪; 人类; 图 s3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3) 和 被用于流式细胞仪在人类样本上 (图 s3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 大鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9751s)被用于被用于染色质免疫沉淀 在大鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 4f
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D2B12)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). Am J Pathol (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4658S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Microsc Microanal (2015) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9728S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Microsc Microanal (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, (D1H2)XP)被用于被用于免疫印迹在人类样本上 (图 7). Nucleic Acids Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9727 S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9725 S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9723 S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • reverse phase protein lysate microarray; 人类; 表 s2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 3377S)被用于被用于reverse phase protein lysate microarray在人类样本上 (表 s2). Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 1:40; 图 8a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:40 (图 8a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 2901S)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4658P)被用于被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫细胞化学; 人类; 图 7
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, C42D8)被用于被用于免疫细胞化学在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C64G9)被用于被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9728)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; newts; 1:200; 表 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 3377)被用于被用于免疫组化在newts样本上浓度为1:200 (表 1). Methods Mol Biol (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Immunol Res (2015) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Immunol Res (2015) ncbi
domestic rabbit 单克隆(D1A9)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 5326)被用于被用于染色质免疫沉淀 在人类样本上. Prostate (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9751)被用于被用于染色质免疫沉淀 在人类样本上. Prostate (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 5764)被用于被用于流式细胞仪在人类样本上浓度为1:50. Mutat Res Genet Toxicol Environ Mutagen (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
  • 染色质免疫沉淀 ; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6) 和 被用于染色质免疫沉淀 在人类样本上浓度为1:1000 (图 4). Nat Med (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000. Oncotarget (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Rejuvenation Res (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3). Ann Surg Oncol (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫组化在小鼠样本上浓度为1:100. Endocrinology (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751S)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:25,000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:25,000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(D15E8)
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 5427)被用于. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706S)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上 (图 4). Cancer Cell (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, #9751)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, #9733)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, #4499)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, #4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 酶联免疫吸附测定; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:20,000
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 3638)被用于被用于免疫印迹在人类样本上浓度为1:20,000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9728)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 8173)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 3377P)被用于被用于流式细胞仪在人类样本上 (图 5c). Mol Pharm (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 96C10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Med (2014) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D18C8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Med (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 1:50
  • 免疫组化-石蜡切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:800
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在人类样本上浓度为1:50, 被用于免疫组化-石蜡切片在人类样本上浓度为1:500, 被用于免疫细胞化学在人类样本上浓度为1:800 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类
  • 免疫印迹; 鸡
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:3000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 6G3)被用于被用于免疫印迹在人类样本上, 被用于免疫印迹在鸡样本上 和 被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:3000. PLoS Pathog (2014) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 8173)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫组化; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C42D8)被用于被用于免疫组化在小鼠样本上 (图 5). Nat Commun (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 1:4000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signalling, 4620)被用于被用于免疫印迹在人类样本上浓度为1:4000. J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499P)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, #9706)被用于被用于免疫细胞化学在人类样本上. Stem Cells (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:800
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上浓度为1:800. Cancer Res (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 3). Blood (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 4499)被用于被用于免疫细胞化学在人类样本上. FEBS Lett (2014) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 2901)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Tech., 4499)被用于被用于免疫印迹在人类样本上 (图 s5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s1
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). Int J Biochem Cell Biol (2014) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; fruit fly ; 1:2000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling Technology, 9725)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. Mech Dev (2014) ncbi
domestic rabbit 单克隆(3H1)
  • 免疫印迹; fruit fly ; 1:2000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling Technology, 9717S)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. Mech Dev (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2014) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). elife (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). elife (2014) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). elife (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4620S)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9751S)被用于被用于染色质免疫沉淀 在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4658p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上. Mol Cell Biochem (2014) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9649)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上. Clin Sci (Lond) (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 大鼠; 0.07 ug/ml
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为0.07 ug/ml 和 被用于染色质免疫沉淀 在人类样本上. Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 st13
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 st13). Nat Cell Biol (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Toxicol Sci (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Commun (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). FASEB J (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). FASEB J (2014) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9649)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9751)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cancer (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 4658)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9728)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 1:500
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, C36B11)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Mol Biosyst (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在小鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). PLoS Genet (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上. Blood (2013) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, D1H2)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Virol (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technologies, 9706)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell signalling, 3377s)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50. Cell Death Dis (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Mol Cell Biol (2013) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9728)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Neurobiol Dis (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Neurobiol Dis (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在人类样本上. Mol Oncol (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 6G3)被用于被用于免疫印迹在小鼠样本上. Leuk Res (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:100. Front Neurosci (2012) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Comp Neurol (2012) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9649)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2011) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2011) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Comp Neurol (2011) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:10,000
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 9733)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:20,000
赛信通(上海)生物试剂有限公司 H3c2抗体(CST, 3638)被用于被用于免疫印迹在人类样本上浓度为1:20,000. Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 H3c2抗体(Cell Signaling, 9706)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 3). PLoS ONE (2009) ncbi
西格玛奥德里奇
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 小鼠; 1:100; 图 7b
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7b). Cell Rep (2022) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 H3c2抗体(Sigma, H9908)被用于被用于免疫组化在小鼠样本上浓度为1:1000. elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇 H3c2抗体(sigma, H0134)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 s6f
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H0913)被用于被用于染色质免疫沉淀 在人类样本上 (图 s6f). Sci Rep (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 1
西格玛奥德里奇 H3c2抗体(Sigma, H9908)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 1). Breast Cancer Res (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 图 7
西格玛奥德里奇 H3c2抗体(Sigma-Alrich, H9908)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Lab Invest (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 H3c2抗体(Sigma, H0164)被用于. Oxid Med Cell Longev (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; American tobacco; 1:200; 图 5
西格玛奥德里奇 H3c2抗体(Sigma, H9908)被用于被用于免疫细胞化学在American tobacco样本上浓度为1:200 (图 5). Front Plant Sci (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Development (2015) ncbi
小鼠 单克隆(AH3-120)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 H3c2抗体(Sigma Aldrich, H0913)被用于被用于免疫印迹在人类样本上浓度为1:500. Biotechnol Bioeng (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H0164)被用于. J Neurochem (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
西格玛奥德里奇 H3c2抗体(Sigma, H9908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). PLoS Genet (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:50; 图 5
西格玛奥德里奇 H3c2抗体(Sigma, HTA28)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 H3c2抗体(Sigma, H0164)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 H3c2抗体(Sigma, H0164)被用于. Development (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H0164)被用于. Neurobiol Aging (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 H3c2抗体(Sigma, H0164)被用于. Development (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇 H3c2抗体(Sigma, H0913)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cryobiology (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP; 图 2
西格玛奥德里奇 H3c2抗体(Sigma, H0913)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于染色质免疫沉淀 在人类样本上浓度为2-5 ug/ChIP (图 2). Nature (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在人类样本上. Am J Hum Genet (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; Planorbella trivolvis; 1:1000
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H9908)被用于被用于免疫细胞化学在Planorbella trivolvis样本上浓度为1:1000. BMC Dev Biol (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H9908)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Biol Reprod (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫印迹; 人类
西格玛奥德里奇 H3c2抗体(Sigma-Aldrich, H9908)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
文章列表
  1. Geng X, Wang C, Gao X, Chowdhury P, Weiss J, Villegas J, et al. GATA-3 is a proto-oncogene in T-cell lymphoproliferative neoplasms. Blood Cancer J. 2022;12:149 pubmed 出版商
  2. Fei X, Wu X, Dou Y, Sun K, Guo Q, Zhang L, et al. TRIM22 orchestrates the proliferation of GBMs and the benefits of TMZ by coordinating the modification and degradation of RIG-I. Mol Ther Oncolytics. 2022;26:413-428 pubmed 出版商
  3. Cai S, Hu T, Venkatesan M, Allam M, Schneider F, Ramalingam S, et al. Multiplexed protein profiling reveals spatial subcellular signaling networks. iScience. 2022;25:104980 pubmed 出版商
  4. Paulmann C, Spallek R, Karpiuk O, Heider M, Sch xe4 ffer I, Zecha J, et al. The OTUD6B-LIN28B-MYC axis determines the proliferative state in multiple myeloma. EMBO J. 2022;41:e110871 pubmed 出版商
  5. Pieger K, Schmitt V, Gauer C, Gie xdf l N, Prots I, Winner B, et al. Translocation of Distinct Alpha Synuclein Species from the Nucleus to Neuronal Processes during Neuronal Differentiation. Biomolecules. 2022;12: pubmed 出版商
  6. Gonzalez M, Naimo G, Anwar T, Paol xec A, Tekula S, Kim S, et al. EZH2 T367 phosphorylation activates p38 signaling through lysine methylation to promote breast cancer progression. iScience. 2022;25:104827 pubmed 出版商
  7. Zhang T, Xia W, Song X, Mao Q, Huang X, Chen B, et al. Super-enhancer hijacking LINC01977 promotes malignancy of early-stage lung adenocarcinoma addicted to the canonical TGF-β/SMAD3 pathway. J Hematol Oncol. 2022;15:114 pubmed 出版商
  8. Kosillo P, Ahmed K, Aisenberg E, Karalis V, Roberts B, Cragg S, et al. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. elife. 2022;11: pubmed 出版商
  9. Sie C, Kant R, Peter C, Muschaweckh A, Pfaller M, Nirschl L, et al. IL-24 intrinsically regulates Th17 cell pathogenicity in mice. J Exp Med. 2022;219: pubmed 出版商
  10. Zhang Y, Fang Y, Tang Y, Han S, Jia J, Wan X, et al. SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat Commun. 2022;13:3190 pubmed 出版商
  11. Ma L, Xie D, Luo M, Lin X, Nie H, Chen J, et al. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. Sci Adv. 2022;8:eabn1606 pubmed 出版商
  12. Xing H, Gao M, Wang Y, Zhang X, Shi J, Wang X, et al. Genome-wide gain-of-function screening identifies EZH2 mediating resistance to PI3Kα inhibitors in oesophageal squamous cell carcinoma. Clin Transl Med. 2022;12:e835 pubmed 出版商
  13. Jones S, Farr G, Nimmanon T, Ziliotto S, Gee J, Taylor K. The importance of targeting signalling mechanisms of the SLC39A family of zinc transporters to inhibit endocrine resistant breast cancer. Explor Target Antitumor Ther. 2022;3:224-239 pubmed 出版商
  14. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  15. Cyra M, Schulte M, Berthold R, Heinst L, Jansen E, Gr xfc newald I, et al. SS18-SSX drives CREB activation in synovial sarcoma. Cell Oncol (Dordr). 2022;45:399-413 pubmed 出版商
  16. Yan W, Han Q, Gong L, Zhan X, Li W, Guo Z, et al. MBD3 promotes hepatocellular carcinoma progression and metastasis through negative regulation of tumour suppressor TFPI2. Br J Cancer. 2022;: pubmed 出版商
  17. Xu D, Wang L, Yamada K, Baena Lopez L. Non-apoptotic activation of Drosophila caspase-2/9 modulates JNK signaling, the tumor microenvironment, and growth of wound-like tumors. Cell Rep. 2022;39:110718 pubmed 出版商
  18. Mauduit O, Aure M, Delcroix V, Basova L, Srivastava A, Umazume T, et al. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep. 2022;39:110663 pubmed 出版商
  19. Qu K, Wang C, Huang L, Qin X, Zhang K, Zhong Y, et al. TET1s deficiency exacerbates oscillatory shear flow-induced atherosclerosis. Int J Biol Sci. 2022;18:2163-2180 pubmed 出版商
  20. Jiang N, Xie B, Xiao W, Fan M, Xu S, Duan Y, et al. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun. 2022;13:1511 pubmed 出版商
  21. Guo T, Han X, He J, Feng J, Jing J, Jane x10d kov xe1 E, et al. KDM6B interacts with TFDP1 to activate P53 signaling in regulating mouse palatogenesis. elife. 2022;11: pubmed 出版商
  22. Lopes N, Boucherit N, Santamaria J, Provin N, Charaix J, Ferrier P, et al. Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages. elife. 2022;11: pubmed 出版商
  23. Wu Q, Shichino Y, Abe T, Suetsugu T, Omori A, Kiyonari H, et al. Selective translation of epigenetic modifiers affects the temporal pattern and differentiation of neural stem cells. Nat Commun. 2022;13:470 pubmed 出版商
  24. Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, et al. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance. 2022;5: pubmed 出版商
  25. Carroll P, Freie B, Cheng P, Kasinathan S, Gu H, Hedrich T, et al. The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. PLoS Biol. 2021;19:e3001085 pubmed 出版商
  26. Reddy N, Majidi S, Kong L, Nemera M, Ferguson C, Moore M, et al. CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum. Nat Commun. 2021;12:5702 pubmed 出版商
  27. Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, et al. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. PLoS Pathog. 2021;17:e1009940 pubmed 出版商
  28. Zheng Q, Li P, Zhou X, Qiang Y, Fan J, Lin Y, et al. Deficiency of the X-inactivation escaping gene KDM5C in clear cell renal cell carcinoma promotes tumorigenicity by reprogramming glycogen metabolism and inhibiting ferroptosis. Theranostics. 2021;11:8674-8691 pubmed 出版商
  29. Bakhoum M, Francis J, Agustinus A, Earlie E, Di Bona M, Abramson D, et al. Loss of polycomb repressive complex 1 activity and chromosomal instability drive uveal melanoma progression. Nat Commun. 2021;12:5402 pubmed 出版商
  30. Lo Cascio C, McNamara J, Melendez E, Lewis E, Dufault M, Sanai N, et al. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight. 2021;6: pubmed 出版商
  31. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  32. Cui M, Atmanli A, Morales M, Tan W, Chen K, Xiao X, et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021;12:5270 pubmed 出版商
  33. Keane L, Cheray M, Saidi D, Kirby C, Friess L, González Rodríguez P, et al. Inhibition of microglial EZH2 leads to anti-tumoral effects in pediatric diffuse midline gliomas. Neurooncol Adv. 2021;3:vdab096 pubmed 出版商
  34. da Silva F, Zhang K, Pinson A, Fatti E, Wilsch Bräuninger M, Herbst J, et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 2021;40:e108041 pubmed 出版商
  35. Zhang M, Wang J, Zhang K, Lu G, Liu Y, Ren K, et al. Ten-eleven translocation 1 mediated-DNA hydroxymethylation is required for myelination and remyelination in the mouse brain. Nat Commun. 2021;12:5091 pubmed 出版商
  36. Luo J, Lu C, Feng M, Dai L, Wang M, Qiu Y, et al. Cooperation between liver-specific mutations of pten and tp53 genetically induces hepatocarcinogenesis in zebrafish. J Exp Clin Cancer Res. 2021;40:262 pubmed 出版商
  37. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  38. Zhao Z, Szczepanski A, Tsuboyama N, Abdala Valencia H, Goo Y, Singer B, et al. PAX9 Determines Epigenetic State Transition and Cell Fate in Cancer. Cancer Res. 2021;81:4696-4708 pubmed 出版商
  39. Laliotis G, Chavdoula E, Paraskevopoulou M, Kaba A, La Ferlita A, Singh S, et al. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing. Nat Commun. 2021;12:4624 pubmed 出版商
  40. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  41. Lu C, Liu Z, Klement J, Yang D, Merting A, Poschel D, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9: pubmed 出版商
  42. Lei H, Wang Z, Jiang D, Liu F, Liu M, Lei X, et al. CRISPR screening identifies CDK12 as a conservative vulnerability of prostate cancer. Cell Death Dis. 2021;12:740 pubmed 出版商
  43. Jiao L, Eickhoff R, Egners A, Jumpertz S, Roth J, Erdem M, et al. Deletion of mTOR in liver epithelial cells enhances hepatic metastasis of colon cancer. J Pathol. 2021;255:270-284 pubmed 出版商
  44. Wei Y, Chen J, Xu X, Li F, Wu K, Jiang Y, et al. Restoration of H3k27me3 Modification Epigenetically Silences Cry1 Expression and Sensitizes Leptin Signaling to Reduce Obesity-Related Properties. Adv Sci (Weinh). 2021;8:2004319 pubmed 出版商
  45. Lasierra Losada M, Pauler M, Vandamme N, Goossens S, Berx G, Leppkes M, et al. Pancreas morphogenesis and homeostasis depends on tightly regulated Zeb1 levels in epithelial cells. Cell Death Discov. 2021;7:138 pubmed 出版商
  46. Fang Y, Tang Y, Zhang Y, Pan Y, Jia J, Sun Z, et al. The H3K36me2 methyltransferase NSD1 modulates H3K27ac at active enhancers to safeguard gene expression. Nucleic Acids Res. 2021;49:6281-6295 pubmed 出版商
  47. Xu P, Borges R, Fillatre J, de Oliveira Melo M, Cheng T, Thisse B, et al. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun. 2021;12:3277 pubmed 出版商
  48. Goswami S, Balasubramanian I, D Agostino L, Bandyopadhyay S, Patel R, Avasthi S, et al. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297:100848 pubmed 出版商
  49. Leon K, Buj R, Lesko E, Dahl E, Chen C, Tangudu N, et al. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A. J Cell Biol. 2021;220: pubmed 出版商
  50. Wojnarowicz P, Escolano M, Huang Y, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58 pubmed 出版商
  51. Al Abdulsalam E, Al Harithy R. Visfatin and global histone H3K9me levels in colon cancer. Ann Med. 2021;53:647-652 pubmed 出版商
  52. Qin M, Han F, Wu J, Gao F, Li Y, Yan D, et al. KDM6B promotes ESCC cell proliferation and metastasis by facilitating C/EBPβ transcription. BMC Cancer. 2021;21:559 pubmed 出版商
  53. Tien J, Chugh S, Goodrum A, Cheng Y, Mannan R, Zhang Y, et al. AGO2 promotes tumor progression in KRAS-driven mouse models of non-small cell lung cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  54. Hu J, Wang J, Li C, Shang Y. Fructose-1,6-bisphosphatase aggravates oxidative stress-induced apoptosis in asthma by suppressing the Nrf2 pathway. J Cell Mol Med. 2021;25:5001-5014 pubmed 出版商
  55. Chen B, Wang P, Liang X, Jiang C, Ge Y, Dworkin L, et al. Permissive effect of GSK3β on profibrogenic plasticity of renal tubular cells in progressive chronic kidney disease. Cell Death Dis. 2021;12:432 pubmed 出版商
  56. Koeniger A, Brichkina A, Nee I, Dempwolff L, Hupfer A, Galperin I, et al. Activation of Cilia-Independent Hedgehog/GLI1 Signaling as a Novel Concept for Neuroblastoma Therapy. Cancers (Basel). 2021;13: pubmed 出版商
  57. Martínez Gutiérrez A, Fernández Duran I, Marazuela Duque A, Simonet N, Yousef I, Martínez Rovira I, et al. Shikimic acid protects skin cells from UV-induced senescence through activation of the NAD+-dependent deacetylase SIRT1. Aging (Albany NY). 2021;13:12308-12333 pubmed 出版商
  58. Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122 pubmed 出版商
  59. Niborski L, Paces Fessy M, Ricci P, Bourgeois A, Magalh xe3 es P, Kuzma Kuzniarska M, et al. Hnf1b haploinsufficiency differentially affects developmental target genes in a new renal cysts and diabetes mouse model. Dis Model Mech. 2021;14: pubmed 出版商
  60. Rippe C, Morén B, Liu L, Stenkula K, Mustaniemi J, Wennström M, et al. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Sci Rep. 2021;11:5955 pubmed 出版商
  61. Ono K, Hata K, Nakamura E, Ishihara S, Kobayashi S, Nakanishi M, et al. Dmrt2 promotes transition of endochondral bone formation by linking Sox9 and Runx2. Commun Biol. 2021;4:326 pubmed 出版商
  62. Di Luca M, Fitzpatrick E, Burtenshaw D, Liu W, Helt J, Hakimjavadi R, et al. The calcium binding protein S100β marks hedgehog-responsive resident vascular stem cells within vascular lesions. NPJ Regen Med. 2021;6:10 pubmed 出版商
  63. Zheng F, Chen J, Zhang X, Wang Z, Chen J, Lin X, et al. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 2021;12:1341 pubmed 出版商
  64. Bressan R, Southgate B, Ferguson K, Blin C, Grant V, Alfazema N, et al. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell. 2021;28:877-893.e9 pubmed 出版商
  65. Li W, Gu X, Liu C, Shi Y, Wang P, Zhang N, et al. A synergetic effect of BARD1 mutations on tumorigenesis. Nat Commun. 2021;12:1243 pubmed 出版商
  66. Little J, McNeely K, Michel N, Bott C, Lettieri K, Hecht M, et al. Loss of Coiled-Coil Protein Cep55 Impairs Neural Stem Cell Abscission and Results in p53-Dependent Apoptosis in Developing Cortex. J Neurosci. 2021;41:3344-3365 pubmed 出版商
  67. Sela Y, Li J, Kuri P, Merrell A, Li N, Lengner C, et al. Dissecting phenotypic transitions in metastatic disease via photoconversion-based isolation. elife. 2021;10: pubmed 出版商
  68. Zhu C, Kim S, Mooradian A, Wang F, Li Z, Holohan S, et al. Cancer-associated exportin-6 upregulation inhibits the transcriptionally repressive and anticancer effects of nuclear profilin-1. Cell Rep. 2021;34:108749 pubmed 出版商
  69. Tang B, Sun R, Wang D, Sheng H, Wei T, Wang L, et al. ZMYND8 preferentially binds phosphorylated EZH2 to promote a PRC2-dependent to -independent function switch in hypoxia-inducible factor-activated cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  70. Yuan G, Flores N, Hausmann S, Lofgren S, Kharchenko V, Angulo Ibáñez M, et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature. 2021;590:504-508 pubmed 出版商
  71. McGuire J, Frieling J, Lo C, Li T, Muhammad A, Lawrence H, et al. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nat Commun. 2021;12:723 pubmed 出版商
  72. Lin H, Huang Y, Fustin J, Doi M, Chen H, Lai H, et al. Hyperpolyploidization of hepatocyte initiates preneoplastic lesion formation in the liver. Nat Commun. 2021;12:645 pubmed 出版商
  73. Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature. 2021;590:344-350 pubmed 出版商
  74. Quintero M, Liu S, Xia Y, Huang Y, Zou Y, Li G, et al. Cdk5rap3 is essential for intestinal Paneth cell development and maintenance. Cell Death Dis. 2021;12:131 pubmed 出版商
  75. Maddala R, Gao J, Mathias R, Lewis T, Arshavsky V, Levine A, et al. Absence of S100A4 in the mouse lens induces an aberrant retina-specific differentiation program and cataract. Sci Rep. 2021;11:2203 pubmed 出版商
  76. Singh S, Abu Zaid A, Lin W, Low J, Abdolvahabi A, Jin H, et al. 17-DMAG dually inhibits Hsp90 and histone lysine demethylases in alveolar rhabdomyosarcoma. iScience. 2021;24:101996 pubmed 出版商
  77. Krzeptowski W, Chudy P, Sokołowski G, Zukowska M, Kusienicka A, Seretny A, et al. Proximity Ligation Assay Detection of Protein-DNA Interactions-Is There a Link between Heme Oxygenase-1 and G-quadruplexes?. Antioxidants (Basel). 2021;10: pubmed 出版商
  78. Long Z, Deng L, Li C, He Q, He Y, Hu X, et al. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis. 2021;12:46 pubmed 出版商
  79. Qiao F, Law H, Krieger K, Clement E, Xiao Y, Buckley S, et al. Ctdp1 deficiency leads to early embryonic lethality in mice and defects in cell cycle progression in MEFs. Biol Open. 2021;10: pubmed 出版商
  80. Holdhof D, On J, Schoof M, G xf6 bel C, Sch xfc ller U. Simultaneous Brg1 Knockout and MYCN Overexpression in Cerebellar Granule Neuron Precursors Is Insufficient to Drive Tumor Formation but Temporarily Enhances their Proliferation and Delays their Migration. Cerebellum. 2021;20:410-419 pubmed 出版商
  81. Fang M, Zhang M, Wang Y, Wei F, Wu J, Mou X, et al. Long Noncoding RNA AFAP1-AS1 Is a Critical Regulator of Nasopharyngeal Carcinoma Tumorigenicity. Front Oncol. 2020;10:601055 pubmed 出版商
  82. Pavlova N, King B, Josselsohn R, Violante S, Macera V, Vardhana S, et al. Translation in amino-acid-poor environments is limited by tRNAGln charging. elife. 2020;9: pubmed 出版商
  83. Harro C, Perez Sanz J, Costich T, Payne K, Anadon C, Chaurio R, et al. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest. 2021;131: pubmed 出版商
  84. Bao Y, Oguz G, Lee W, Lee P, Ghosh K, Li J, et al. EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun. 2020;11:5878 pubmed 出版商
  85. Sanders S, Hernandez L, Soh H, Karnam S, Walikonis R, Tzingounis A, et al. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment. elife. 2020;9: pubmed 出版商
  86. Fomicheva M, Macara I. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. elife. 2020;9: pubmed 出版商
  87. Wilson M, Reske J, Holladay J, Neupane S, Ngo J, Cuthrell N, et al. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep. 2020;33:108366 pubmed 出版商
  88. Carullo G, Mazzotta S, Koch A, Hartmann K, Friedrich O, Gilbert D, et al. New Oleoyl Hybrids of Natural Antioxidants: Synthesis and In Vitro Evaluation as Inducers of Apoptosis in Colorectal Cancer Cells. Antioxidants (Basel). 2020;9: pubmed 出版商
  89. Hu J, Wang H, Li X, Liu Y, Mi Y, Kong H, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. Theranostics. 2020;10:9702-9720 pubmed 出版商
  90. Vatapalli R, Sagar V, Rodriguez Y, Zhao J, Unno K, Pamarthy S, et al. Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nat Commun. 2020;11:4153 pubmed 出版商
  91. Wang X, Ellenbecker M, Hickey B, Day N, Osterli E, Terzo M, et al. Antagonistic control of Caenorhabditis elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2. elife. 2020;9: pubmed 出版商
  92. Huang F, Sun J, Chen W, He X, Zhu Y, Dong H, et al. HDAC4 inhibition disrupts TET2 function in high-risk MDS and AML. Aging (Albany NY). 2020;12:16759-16774 pubmed 出版商
  93. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  94. Reilly S, Hung C, Ahmadian M, Zhao P, Keinan O, Gomez A, et al. Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nat Metab. 2020;2:620-634 pubmed 出版商
  95. Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R, et al. Huntington's disease alters human neurodevelopment. Science. 2020;369:787-793 pubmed 出版商
  96. Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, et al. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol. 2020;13:77 pubmed 出版商
  97. Perkail S, Andricovich J, Kai Y, Tzatsos A. BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice. Nat Commun. 2020;11:3018 pubmed 出版商
  98. Wang Z, Millard C, Lin C, Gurnett J, Wu M, Lee K, et al. Diverse nucleosome site-selectivity among histone deacetylase complexes. elife. 2020;9: pubmed 出版商
  99. Chakrabarti M, Al Sammarraie N, Gebere M, Bhattacharya A, Chopra S, Johnson J, et al. Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis. 2020;7: pubmed 出版商
  100. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  101. Nielsen C, Zhang T, Barisic M, Kalitsis P, Hudson D. Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc Natl Acad Sci U S A. 2020;117:12131-12142 pubmed 出版商
  102. Nava M, Miroshnikova Y, Biggs L, Whitefield D, Metge F, Boucas J, et al. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell. 2020;181:800-817.e22 pubmed 出版商
  103. Park D, Cheng J, McGrath J, Lim M, Cushman C, Swanson S, et al. Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis. Nat Cell Biol. 2020;22:603-615 pubmed 出版商
  104. Wang C, Spradling A. An abundant quiescent stem cell population in Drosophila Malpighian tubules protects principal cells from kidney stones. elife. 2020;9: pubmed 出版商
  105. Niethamer T, Stabler C, Leach J, Zepp J, Morley M, Babu A, et al. Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. elife. 2020;9: pubmed 出版商
  106. Sanz Gómez N, de Pedro I, Ortigosa B, Santamaria D, Malumbres M, de Carcer G, et al. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ. 2020;27:2451-2467 pubmed 出版商
  107. Wutz G, Ladurner R, St Hilaire B, Stocsits R, Nagasaka K, Pignard B, et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. elife. 2020;9: pubmed 出版商
  108. Singh M, Jensen M, Lasser M, Huber E, Yusuff T, Pizzo L, et al. NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genet. 2020;16:e1008590 pubmed 出版商
  109. Hoffmann F, Niebel D, Aymans P, Ferring Schmitt S, Dietrich D, Landsberg J. H3K27me3 and EZH2 expression in melanoma: relevance for melanoma progression and response to immune checkpoint blockade. Clin Epigenetics. 2020;12:24 pubmed 出版商
  110. Viscarra J, Wang Y, Nguyen H, Choi Y, Sul H. Histone demethylase JMJD1C is phosphorylated by mTOR to activate de novo lipogenesis. Nat Commun. 2020;11:796 pubmed 出版商
  111. Torres Mejía E, Trumbach D, Kleeberger C, Dornseifer U, Orschmann T, Bäcker T, et al. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep. 2020;10:1984 pubmed 出版商
  112. Coccia E, Planells Ferrer L, Badillos Rodríguez R, Pascual M, Segura M, Fernández Hernández R, et al. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis. 2020;11:82 pubmed 出版商
  113. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676-681 pubmed 出版商
  114. Rhodes J, Feldmann A, Hernández Rodríguez B, Díaz N, Brown J, Fursova N, et al. Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in Embryonic Stem Cells. Cell Rep. 2020;30:820-835.e10 pubmed 出版商
  115. Karge A, Bonar N, Wood S, Petersen C. tec-1 kinase negatively regulates regenerative neurogenesis in planarians. elife. 2020;9: pubmed 出版商
  116. Laukoter S, Beattie R, Pauler F, Amberg N, Nakayama K, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nat Commun. 2020;11:195 pubmed 出版商
  117. Enomoto T, Aoki M, Hamasaki M, Abe H, Nonaka M, Inoue T, et al. Midline Glioma in Adults: Clinicopathological, Genetic, and Epigenetic Analysis. Neurol Med Chir (Tokyo). 2020;60:136-146 pubmed 出版商
  118. Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn Ng I, et al. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv. 2019;5:eaax2705 pubmed 出版商
  119. Senigl F, Maman Y, Dinesh R, Alinikula J, Seth R, Pecnova L, et al. Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Rep. 2019;29:3902-3915.e8 pubmed 出版商
  120. Perri A, Agosti V, Olivo E, Concolino A, Angelis M, Tammè L, et al. Histone proteomics reveals novel post-translational modifications in breast cancer. Aging (Albany NY). 2019;11:11722-11755 pubmed 出版商
  121. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  122. Santos Barriopedro I, Li Y, Bahl S, Seto E. HDAC8 affects MGMT levels in glioblastoma cell lines via interaction with the proteasome receptor ADRM1. Genes Cancer. 2019;10:119-133 pubmed 出版商
  123. Wu S, Turner K, Nguyen N, Raviram R, Erb M, Santini J, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575:699-703 pubmed 出版商
  124. Currais A, Huang L, Goldberg J, Petrascheck M, Ates G, Pinto Duarte A, et al. Elevating acetyl-CoA levels reduces aspects of brain aging. elife. 2019;8: pubmed 出版商
  125. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  126. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  127. Zhang L, Tian S, Pei M, Zhao M, Wang L, Jiang Y, et al. Crosstalk between histone modification and DNA methylation orchestrates the epigenetic regulation of the costimulatory factors, Tim‑3 and galectin‑9, in cervical cancer. Oncol Rep. 2019;42:2655-2669 pubmed 出版商
  128. Liu D, Wu L, Wu Y, Wei X, Wang W, Zhang S, et al. Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. Aging (Albany NY). 2019;11:8982-8997 pubmed 出版商
  129. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  130. Miyazaki T, Zhao Z, Ichihara Y, Yoshino D, Imamura T, Sawada K, et al. Mechanical regulation of bone homeostasis through p130Cas-mediated alleviation of NF-κB activity. Sci Adv. 2019;5:eaau7802 pubmed 出版商
  131. Kuznetsov J, Agüero T, Owens D, Kurtenbach S, Field M, Durante M, et al. BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers. Sci Adv. 2019;5:eaax1738 pubmed 出版商
  132. Tambalo M, Anwar M, Ahmed M, Streit A. Enhancer activation by FGF signalling during otic induction. Dev Biol. 2020;457:69-82 pubmed 出版商
  133. Weinberg D, Papillon Cavanagh S, Chen H, Yue Y, Chen X, Rajagopalan K, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 2019;573:281-286 pubmed 出版商
  134. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  135. Xu B, Lang L, Li S, Guo J, Wang J, Yang H, et al. Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure. Biomolecules. 2019;9: pubmed 出版商
  136. Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun. 2019;10:3882 pubmed 出版商
  137. Cheng C, Biton M, Haber A, Gunduz N, Eng G, Gaynor L, et al. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell. 2019;178:1115-1131.e15 pubmed 出版商
  138. Hudry B, de Goeij E, Mineo A, Gaspar P, Hadjieconomou D, Studd C, et al. Sex Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. Cell. 2019;178:901-918.e16 pubmed 出版商
  139. Abdusselamoglu M, Eroglu E, Burkard T, Knoblich J. The transcription factor odd-paired regulates temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop. elife. 2019;8: pubmed 出版商
  140. Jin J, Ravindran P, Di Meo D, Püschel A. Igf1R/InsR function is required for axon extension and corpus callosum formation. PLoS ONE. 2019;14:e0219362 pubmed 出版商
  141. Piunti A, Smith E, Morgan M, Ugarenko M, Khaltyan N, Helmin K, et al. CATACOMB: An endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci Adv. 2019;5:eaax2887 pubmed 出版商
  142. Rossaert E, Pollari E, Jaspers T, Van Helleputte L, Jarpe M, Van Damme P, et al. Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol Commun. 2019;7:107 pubmed 出版商
  143. Jain A, Agostini L, McCarthy G, Chand S, Ramirez A, Nevler A, et al. Poly (ADP) ribose glycohydrolase can be effectively targeted in pancreatic cancer. Cancer Res. 2019;: pubmed 出版商
  144. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  145. Parolia A, Cieslik M, Chu S, Xiao L, Ouchi T, Zhang Y, et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature. 2019;: pubmed 出版商
  146. Quilichini E, Fabre M, Dirami T, Stedman A, De Vas M, Ozguc O, et al. Pancreatic ductal deletion of Hnf1b disrupts exocrine homeostasis, leads to pancreatitis and facilitates tumorigenesis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  147. Lüscher Firzlaff J, Chatain N, Kuo C, Braunschweig T, Bochynska A, Ullius A, et al. Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Sci Rep. 2019;9:8262 pubmed 出版商
  148. Traynor S, Møllegaard N, Jørgensen M, Brückmann N, Pedersen C, Terp M, et al. Remodeling and destabilization of chromosome 1 pericentromeric heterochromatin by SSX proteins. Nucleic Acids Res. 2019;47:6668-6684 pubmed 出版商
  149. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  150. Qiu J, Villa M, Sanin D, Buck M, O Sullivan D, Ching R, et al. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27:2063-2074.e5 pubmed 出版商
  151. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  152. Eckert M, Coscia F, Chryplewicz A, Chang J, Hernandez K, Pan S, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;: pubmed 出版商
  153. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  154. Fursova N, Blackledge N, Nakayama M, Ito S, Koseki Y, Farcas A, et al. Synergy between Variant PRC1 Complexes Defines Polycomb-Mediated Gene Repression. Mol Cell. 2019;74:1020-1036.e8 pubmed 出版商
  155. Zhang H, Wang J, Wang Y, Gao C, Gu Y, Huang J, et al. Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3β/Nrf2 Signaling Pathway and Inhibiting the NF-κB Signaling Pathway in 5/6 Nephrectomized Rats. Oxid Med Cell Longev. 2019;2019:2853534 pubmed 出版商
  156. Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, Tombline G, et al. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell. 2019;177:622-638.e22 pubmed 出版商
  157. Greenberg M, Teissandier A, Walter M, Noordermeer D, Bourc his D. Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naïve pluripotency. elife. 2019;8: pubmed 出版商
  158. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  159. Wang Y, Brady K, Caiello B, Ackerson S, Stewart J. Human CST suppresses origin licensing and promotes AND-1/Ctf4 chromatin association. Life Sci Alliance. 2019;2: pubmed 出版商
  160. Lavarone E, Barbieri C, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10:1679 pubmed 出版商
  161. Gonzalo Gil E, Rapuano P, Ikediobi U, Leibowitz R, Mehta S, Coskun A, et al. Transcriptional down-regulation of ccr5 in a subset of HIV+ controllers and their family members. elife. 2019;8: pubmed 出版商
  162. Lin C, Hsu Y, Huang Y, Shih Y, Wang C, Chiang W, et al. A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction. EMBO Mol Med. 2019;11: pubmed 出版商
  163. El Brolosy M, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;: pubmed 出版商
  164. Rajderkar S, Mann J, Panaretos C, Yumoto K, Li H, Mishina Y, et al. Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev Biol. 2019;450:101-114 pubmed 出版商
  165. Lima Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun. 2019;10:1436 pubmed 出版商
  166. Li H, Petersen S, García Mariscal A, Brakebusch C. Negative Regulation of p53-Induced Senescence by N-WASP Is Crucial for DMBA/TPA-Induced Skin Tumor Formation. Cancer Res. 2019;79:2167-2181 pubmed 出版商
  167. Wei X, Guo J, Li Q, Jia Q, Jing Q, Li Y, et al. Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Sci Adv. 2019;5:eaau7887 pubmed 出版商
  168. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  169. Farrelly L, Thompson R, Zhao S, Lepack A, Lyu Y, Bhanu N, et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature. 2019;567:535-539 pubmed 出版商
  170. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  171. Lee J, Dindorf J, Eberhardt M, Lai X, Ostalecki C, Koliha N, et al. Innate extracellular vesicles from melanoma patients suppress β-catenin in tumor cells by miRNA-34a. Life Sci Alliance. 2019;2: pubmed 出版商
  172. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  173. Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim B, et al. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS ONE. 2019;14:e0212017 pubmed 出版商
  174. Alfano L, Caporaso A, Altieri A, Dell Aquila M, Landi C, Bini L, et al. Depletion of the RNA binding protein HNRNPD impairs homologous recombination by inhibiting DNA-end resection and inducing R-loop accumulation. Nucleic Acids Res. 2019;47:4068-4085 pubmed 出版商
  175. Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, et al. Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett. 2019;449:87-98 pubmed 出版商
  176. Garcia Bermudez J, Baudrier L, Bayraktar E, Shen Y, La K, Guarecuco R, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature. 2019;567:118-122 pubmed 出版商
  177. Wei J, Kishton R, Angel M, Conn C, Dalla Venezia N, Marcel V, et al. Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Mol Cell. 2019;73:1162-1173.e5 pubmed 出版商
  178. Guo J, Dai X, Laurent B, Zheng N, Gan W, Zhang J, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21:226-237 pubmed 出版商
  179. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  180. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  181. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  182. Gómez Fernández P, Urtasun A, Paton A, Paton J, Borrego F, Dersh D, et al. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Front Immunol. 2018;9:2934 pubmed 出版商
  183. May J, Kouri F, Hurley L, Liu J, Tommasini Ghelfi S, Ji Y, et al. IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv. 2019;5:eaat0456 pubmed 出版商
  184. Żylicz J, Bousard A, Zumer K, Dossin F, Mohammad E, da Rocha S, et al. The Implication of Early Chromatin Changes in X Chromosome Inactivation. Cell. 2019;176:182-197.e23 pubmed 出版商
  185. Sparks J, Chistol G, Gao A, Raschle M, Larsen N, Mann M, et al. The CMG Helicase Bypasses DNA-Protein Cross-Links to Facilitate Their Repair. Cell. 2019;176:167-181.e21 pubmed 出版商
  186. Liddiard K, Ruis B, Kan Y, Cleal K, Ashelford K, Hendrickson E, et al. DNA Ligase 1 is an essential mediator of sister chromatid telomere fusions in G2 cell cycle phase. Nucleic Acids Res. 2019;47:2402-2424 pubmed 出版商
  187. Pan W, Moroishi T, Koo J, Guan K. Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene. 2019;38:2595-2610 pubmed 出版商
  188. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  189. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362: pubmed 出版商
  190. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  191. Tischler J, Gruhn W, Reid J, Allgeyer E, Buettner F, Marr C, et al. Metabolic regulation of pluripotency and germ cell fate through α-ketoglutarate. EMBO J. 2019;38: pubmed 出版商
  192. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  193. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018;34:411-426.e19 pubmed 出版商
  194. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  195. Liszczak G, Diehl K, Dann G, Muir T. Acetylation blocks DNA damage-induced chromatin ADP-ribosylation. Nat Chem Biol. 2018;14:837-840 pubmed 出版商
  196. Schrank B, Aparicio T, Li Y, Chang W, Chait B, Gundersen G, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559:61-66 pubmed 出版商
  197. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  198. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  199. Lu J, Liu L, Zheng M, Li X, Wu A, Wu Q, et al. MEKK2 and MEKK3 suppress Hedgehog pathway-dependent medulloblastoma by inhibiting GLI1 function. Oncogene. 2018;37:3864-3878 pubmed 出版商
  200. McBrayer S, Olenchock B, DiNatale G, Shi D, Khanal J, Jennings R, et al. Autochthonous tumors driven by Rb1 loss have an ongoing requirement for the RBP2 histone demethylase. Proc Natl Acad Sci U S A. 2018;115:E3741-E3748 pubmed 出版商
  201. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  202. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  203. Chen Z, Gao Y, Yao L, Liu Y, Huang L, Yan Z, et al. LncFZD6 initiates Wnt/β-catenin and liver TIC self-renewal through BRG1-mediated FZD6 transcriptional activation. Oncogene. 2018;37:3098-3112 pubmed 出版商
  204. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33:512-526.e8 pubmed 出版商
  205. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  206. Titone R, Zhu M, Robertson D. Insulin mediates de novo nuclear accumulation of the IGF-1/insulin Hybrid Receptor in corneal epithelial cells. Sci Rep. 2018;8:4378 pubmed 出版商
  207. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  208. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  209. Bogdan D, Falcone J, Kanjiya M, Park S, Carbonetti G, Studholme K, et al. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem. 2018;293:5295-5306 pubmed 出版商
  210. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  211. Zhu B, Chen S, Wang H, Yin C, Han C, Peng C, et al. The protective role of DOT1L in UV-induced melanomagenesis. Nat Commun. 2018;9:259 pubmed 出版商
  212. Pleiner T, Bates M, Gorlich D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol. 2018;217:1143-1154 pubmed 出版商
  213. Oldrini B, Hsieh W, Erdjument Bromage H, Codega P, Carro M, Curiel García A, et al. EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun. 2017;8:2035 pubmed 出版商
  214. Welty S, Teng Y, Liang Z, Zhao W, Sanders L, Greenamyre J, et al. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. J Biol Chem. 2018;293:1353-1362 pubmed 出版商
  215. Wu Y, Zhang Z, Cenciarini M, Proietti C, Amasino M, Hong T, et al. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ERα-GREB1 Transcriptional Axis. Cancer Res. 2018;78:671-684 pubmed 出版商
  216. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  217. Matson J, Dumitru R, Coryell P, Baxley R, Chen W, Twaroski K, et al. Rapid DNA replication origin licensing protects stem cell pluripotency. elife. 2017;6: pubmed 出版商
  218. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  219. Wang B, Fu X, Zhu M, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol. 2017;9:338-349 pubmed 出版商
  220. Shen Y, Kapfhamer D, Minnella A, Kim J, Won S, Chen Y, et al. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun. 2017;8:624 pubmed 出版商
  221. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  222. Wang Y, Zhang J, Su Y, Shen Y, Jiang D, Hou Y, et al. G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun. 2017;8:274 pubmed 出版商
  223. Wanet A, Caruso M, Domelevo Entfellner J, Najar M, Fattaccioli A, Demazy C, et al. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells. 2017;35:2184-2197 pubmed 出版商
  224. Krapivinsky G, Krapivinsky L, Renthal N, Santa Cruz A, Manasian Y, Clapham D. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc Natl Acad Sci U S A. 2017;114:E7092-E7100 pubmed 出版商
  225. Patne K, Rakesh R, Arya V, Chanana U, Sethy R, Swer P, et al. BRG1 and SMARCAL1 transcriptionally co-regulate DROSHA, DGCR8 and DICER in response to doxorubicin-induced DNA damage. Biochim Biophys Acta Gene Regul Mech. 2017;1860:936-951 pubmed 出版商
  226. Walter K, Goodman M, Singhal H, Hall J, Li T, Holloran S, et al. Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer. Mol Cancer Res. 2017;15:1331-1340 pubmed 出版商
  227. Bleuyard J, Fournier M, Nakato R, Couturier A, Katou Y, Ralf C, et al. MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proc Natl Acad Sci U S A. 2017;114:7671-7676 pubmed 出版商
  228. Schecher S, Walter B, Falkenstein M, Macher Goeppinger S, Stenzel P, Krümpelmann K, et al. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer. Int J Cancer. 2017;141:1643-1653 pubmed 出版商
  229. Tikhanovich I, Zhao J, Bridges B, Kumer S, Roberts B, Weinman S. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300. J Biol Chem. 2017;292:13333-13344 pubmed 出版商
  230. Mahajan K, Malla P, Lawrence H, Chen Z, Kumar Sinha C, Malik R, et al. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer. Cancer Cell. 2017;31:790-803.e8 pubmed 出版商
  231. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  232. Bourgeois C, Satou R, Prieto M. HDAC9 is an epigenetic repressor of kidney angiotensinogen establishing a sex difference. Biol Sex Differ. 2017;8:18 pubmed 出版商
  233. Almeida L, Neto M, Sousa L, Tannous M, Curti C, Leopoldino A. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation. Oncotarget. 2017;8:26802-26818 pubmed 出版商
  234. Zhu X, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, et al. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem. 2017;292:9409-9419 pubmed 出版商
  235. Wang X, Wang R, Luo M, Li C, Wang H, Huan C, et al. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget. 2017;8:33197-33213 pubmed 出版商
  236. François C, Petit F, Giton F, Gougeon A, Ravel C, Magre S, et al. A novel action of follicle-stimulating hormone in the ovary promotes estradiol production without inducing excessive follicular growth before puberty. Sci Rep. 2017;7:46222 pubmed 出版商
  237. Yan Y, Zhao W, Huang Y, Tong H, Xia Y, Jiang Q, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276 pubmed 出版商
  238. Jha K, Tripurani S, Johnson G. TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis. J Cell Sci. 2017;130:1835-1844 pubmed 出版商
  239. Shin C, Ito Y, Ichikawa S, Tokunaga M, Sakata Sogawa K, Tanaka T. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci Rep. 2017;7:46097 pubmed 出版商
  240. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  241. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  242. Bohnacker T, Prota A, Beaufils F, Burke J, Melone A, Inglis A, et al. Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat Commun. 2017;8:14683 pubmed 出版商
  243. Sgourdou P, Mishra Gorur K, Saotome I, Henagariu O, Tuysuz B, Campos C, et al. Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep. 2017;7:43708 pubmed 出版商
  244. Wyatt H, Laister R, Martin S, Arrowsmith C, West S. The SMX DNA Repair Tri-nuclease. Mol Cell. 2017;65:848-860.e11 pubmed 出版商
  245. Nguyen K, Das B, Dobrowolski C, Karn J. Multiple Histone Lysine Methyltransferases Are Required for the Establishment and Maintenance of HIV-1 Latency. MBio. 2017;8: pubmed 出版商
  246. Gherardi S, Ripoche D, Mikaelian I, Chanal M, Teinturier R, Goehrig D, et al. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification. Biochim Biophys Acta Gene Regul Mech. 2017;1860:427-437 pubmed 出版商
  247. Shi Z, Lee K, Yang D, Amin S, Verma N, Li Q, et al. Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell. 2017;20:675-688.e6 pubmed 出版商
  248. Chen S, Jing Y, Kang X, Yang L, Wang D, Zhang W, et al. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res. 2017;45:1144-1158 pubmed 出版商
  249. Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, et al. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res. 2017;45:4532-4549 pubmed 出版商
  250. Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y, et al. CRL4DCAF8 Ubiquitin Ligase Targets Histone H3K79 and Promotes H3K9 Methylation in the Liver. Cell Rep. 2017;18:1499-1511 pubmed 出版商
  251. Zhao D, Lu X, Wang G, Lan Z, Liao W, Li J, et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature. 2017;542:484-488 pubmed 出版商
  252. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  253. Wu N, Jia D, Bates B, Basom R, Eberhart C, MacPherson D. A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence. J Clin Invest. 2017;127:888-898 pubmed 出版商
  254. Zaqout S, Bessa P, Kramer N, Stoltenburg Didinger G, Kaindl A. CDK5RAP2 Is Required to Maintain the Germ Cell Pool during Embryonic Development. Stem Cell Reports. 2017;8:198-204 pubmed 出版商
  255. Yamauchi M, Shibata A, Suzuki K, Suzuki M, Niimi A, Kondo H, et al. Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1. Sci Rep. 2017;7:41812 pubmed 出版商
  256. Mondello P, Derenzini E, Asgari Z, Philip J, Brea E, SESHAN V, et al. Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget. 2017;8:14017-14028 pubmed 出版商
  257. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  258. He Y, Selvaraju S, Curtin M, Jakob C, Zhu H, Comess K, et al. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol. 2017;13:389-395 pubmed 出版商
  259. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  260. Tagal V, Wei S, Zhang W, Brekken R, Posner B, Peyton M, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun. 2017;8:14098 pubmed 出版商
  261. Nakazawa H, Chang K, Shinozaki S, Yasukawa T, Ishimaru K, Yasuhara S, et al. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53. PLoS ONE. 2017;12:e0170391 pubmed 出版商
  262. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  263. Safina A, Cheney P, Pal M, Brodsky L, Ivanov A, Kirsanov K, et al. FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Res. 2017;45:1925-1945 pubmed 出版商
  264. Li C, Chang L, Chen Z, Liu Z, Wang Y, Ye Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int J Mol Med. 2017;39:347-356 pubmed 出版商
  265. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  266. Fitter S, Matthews M, Martin S, Xie J, Ooi S, Walkley C, et al. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol. 2017;37: pubmed 出版商
  267. Papillon Cavanagh S, Lu C, Gayden T, Mikael L, Bechet D, Karamboulas C, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 2017;49:180-185 pubmed 出版商
  268. Fantini D, Huang S, Asara J, Bagchi S, Raychaudhuri P. Chromatin association of XRCC5/6 in the absence of DNA damage depends on the XPE gene product DDB2. Mol Biol Cell. 2017;28:192-200 pubmed 出版商
  269. Sierra Potchanant E, Cerabona D, Sater Z, He Y, Sun Z, Gehlhausen J, et al. INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol. 2017;37: pubmed 出版商
  270. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  271. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  272. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  273. Göllner S, Oellerich T, Agrawal Singh S, Schenk T, Klein H, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23:69-78 pubmed 出版商
  274. Keller M, Paul P, Rabaglia M, Stapleton D, Schueler K, Broman A, et al. The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets. PLoS Genet. 2016;12:e1006466 pubmed 出版商
  275. Neeli I, Radic M. Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones. Front Immunol. 2016;7:528 pubmed
  276. Endorf E, Qing H, Aono J, Terami N, Doyon G, Hyzny E, et al. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes. Arterioscler Thromb Vasc Biol. 2017;37:301-311 pubmed 出版商
  277. Zhu P, Wang Y, Wu J, Huang G, Liu B, Ye B, et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun. 2016;7:13608 pubmed 出版商
  278. Svoboda L, Bailey N, Van Noord R, Krook M, Harris A, Cramer C, et al. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget. 2017;8:458-471 pubmed 出版商
  279. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  280. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  281. Kim W, Khan S, Gvozdenovic Jeremic J, Kim Y, Dahlman J, Kim H, et al. Hippo signaling interactions with Wnt/?-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest. 2017;127:137-152 pubmed 出版商
  282. Sengupta S, Rath U, Yao C, Zavortink M, Wang C, Girton J, et al. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS ONE. 2016;11:e0166829 pubmed 出版商
  283. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  284. Busby M, Xue C, Li C, Farjoun Y, Gienger E, Yofe I, et al. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq. Epigenetics Chromatin. 2016;9:49 pubmed
  285. Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, et al. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med. 2016;8:1421-1437 pubmed 出版商
  286. Pazienza V, Panebianco C, Rappa F, Memoli D, Borghesan M, Cannito S, et al. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin. 2016;9:45 pubmed
  287. Junge H, Yung A, Goodrich L, Chen Z. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord. Neural Dev. 2016;11:19 pubmed
  288. Dey N, Ramesh P, Chugh M, Mandal S, Mandal L. Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila. elife. 2016;5: pubmed 出版商
  289. Desfossés Baron K, Hammond Martel I, Simoneau A, Sellam A, Roberts S, Wurtele H. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae. Sci Rep. 2016;6:36013 pubmed 出版商
  290. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  291. Ren K, Zhang W, Chen X, Ma Y, Dai Y, Fan Y, et al. An Epigenetic Compound Library Screen Identifies BET Inhibitors That Promote HSV-1 and -2 Replication by Bridging P-TEFb to Viral Gene Promoters through BRD4. PLoS Pathog. 2016;12:e1005950 pubmed 出版商
  292. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  293. Huang T, Alvarez A, Pangeni R, Horbinski C, Lu S, Kim S, et al. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun. 2016;7:12885 pubmed 出版商
  294. Bridges K, Chen X, Liu H, Rock C, Buchholz T, Shumway S, et al. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Oncotarget. 2016;7:71660-71672 pubmed 出版商
  295. Wu R, Wang Z, Zhang H, Gan H, Zhang Z. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res. 2017;45:169-180 pubmed 出版商
  296. Cortes D, Robledo Arratia Y, Hernández Martinez R, Escobedo Ávila I, Bargas J, Velasco I. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells. Front Cell Neurosci. 2016;10:217 pubmed 出版商
  297. Ow J, Palanichamy Kala M, Rao V, Choi M, Bharathy N, Taneja R. G9a inhibits MEF2C activity to control sarcomere assembly. Sci Rep. 2016;6:34163 pubmed 出版商
  298. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  299. Jayapal S, Ang H, Wang C, Bisteau X, Caldez M, Xuan G, et al. Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle. 2016;15:3070-3081 pubmed
  300. Patrick N, Griggs C, Icenogle A, Gilpatrick M, Kadiyala V, Jaime Frias R, et al. Class I lysine deacetylases promote glucocorticoid-induced transcriptional repression through functional interaction with LSD1. J Steroid Biochem Mol Biol. 2017;167:1-13 pubmed 出版商
  301. Park Y, Nnamani M, Maziarz J, Wagner G. Cis-Regulatory Evolution of Forkhead Box O1 (FOXO1), a Terminal Selector Gene for Decidual Stromal Cell Identity. Mol Biol Evol. 2016;33:3161-3169 pubmed
  302. Matsukawa K, Hashimoto T, Matsumoto T, Ihara R, Chihara T, Miura M, et al. Familial Amyotrophic Lateral Sclerosis-linked Mutations in Profilin 1 Exacerbate TDP-43-induced Degeneration in the Retina of Drosophila melanogaster through an Increase in the Cytoplasmic Localization of TDP-43. J Biol Chem. 2016;291:23464-23476 pubmed
  303. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  304. Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu W, et al. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 2016;538:118-122 pubmed 出版商
  305. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  306. Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, et al. Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016;12:e1006279 pubmed 出版商
  307. Duggan S, Behan F, Kirca M, Zaheer A, McGarrigle S, Reynolds J, et al. The characterization of an intestine-like genomic signature maintained during Barrett's-associated adenocarcinogenesis reveals an NR5A2-mediated promotion of cancer cell survival. Sci Rep. 2016;6:32638 pubmed 出版商
  308. Bassi D, Zhang J, Renner C, Klein Szanto A. Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth. Mol Carcinog. 2017;56:1182-1188 pubmed 出版商
  309. Ueda T, Nakata Y, Nagamachi A, Yamasaki N, Kanai A, Sera Y, et al. Propagation of trimethylated H3K27 regulated by polycomb protein EED is required for embryogenesis, hematopoietic maintenance, and tumor suppression. Proc Natl Acad Sci U S A. 2016;113:10370-5 pubmed 出版商
  310. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  311. Hong X, Liu W, Song R, Shah J, Feng X, Tsang C, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855-8869 pubmed
  312. Guturi K, Bohgaki M, Bohgaki T, Srikumar T, Ng D, Kumareswaran R, et al. RNF168 and USP10 regulate topoisomerase IIα function via opposing effects on its ubiquitylation. Nat Commun. 2016;7:12638 pubmed 出版商
  313. Gallardo Montejano V, Saxena G, Kusminski C, Yang C, McAfee J, Hahner L, et al. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1?/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat Commun. 2016;7:12723 pubmed 出版商
  314. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed 出版商
  315. Li L, Liu H, Wang C, Liu X, Hu F, Xie N, et al. Overexpression of ?-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. Biomed Res Int. 2016;2016:5378567 pubmed 出版商
  316. Krook M, Hawkins A, Patel R, Lucas D, Van Noord R, Chugh R, et al. A bivalent promoter contributes to stress-induced plasticity of CXCR4 in Ewing sarcoma. Oncotarget. 2016;7:61775-61788 pubmed 出版商
  317. Moreno A, Carrington J, Albergante L, Al Mamun M, Haagensen E, Komseli E, et al. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A. 2016;113:E5757-64 pubmed 出版商
  318. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  319. Ramakrishnan S, Ku S, Ciamporcero E, Miles K, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617 pubmed 出版商
  320. Platt J, Salama R, Smythies J, Choudhry H, Davies J, Hughes J, et al. Capture-C reveals preformed chromatin interactions between HIF-binding sites and distant promoters. EMBO Rep. 2016;17:1410-1421 pubmed
  321. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  322. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  323. Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N, Betz T, et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun. 2016;7:12237 pubmed 出版商
  324. Tanaka G, Inoue K, Shimizu T, Akimoto K, Kubota K. Dual pharmacological inhibition of glutathione and thioredoxin systems synergizes to kill colorectal carcinoma stem cells. Cancer Med. 2016;5:2544-57 pubmed 出版商
  325. Dhamad A, Zhou Z, Zhou J, Du Y. Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ER?) and Biochemical Characterization of the ER?-Hsp70 Interaction. PLoS ONE. 2016;11:e0160312 pubmed 出版商
  326. Sengupta D, Deb M, Rath S, Kar S, Parbin S, Pradhan N, et al. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp Cell Res. 2016;346:176-87 pubmed 出版商
  327. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  328. Wang Y, Sun H, Wang J, Wang H, Meng L, Xu C, et al. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis. 2016;7:e2316 pubmed 出版商
  329. Wang C, Yin M, Wu W, Dong L, Wang S, Lu Y, et al. Taiman acts as a coactivator of Yorkie in the Hippo pathway to promote tissue growth and intestinal regeneration. Cell Discov. 2016;2:16006 pubmed 出版商
  330. Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J, Zhu H, et al. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochim Biophys Acta. 2016;1862:2004-14 pubmed 出版商
  331. Merry C, McMahon S, Forrest M, Bartels C, Saiakhova A, Bartel C, et al. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget. 2016;7:53230-53244 pubmed 出版商
  332. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  333. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  334. Gygli P, Chang J, Gokozan H, Catacutan F, Schmidt T, Kaya B, et al. Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging (Albany NY). 2016;8:1540-70 pubmed 出版商
  335. Naito M, Mori M, Inagawa M, Miyata K, Hashimoto N, Tanaka S, et al. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. PLoS Genet. 2016;12:e1006167 pubmed 出版商
  336. Kawano S, Grassian A, Tsuda M, Knutson S, Warholic N, Kuznetsov G, et al. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma. PLoS ONE. 2016;11:e0158888 pubmed 出版商
  337. Alver T, Lavelle T, Longva A, Øy G, Hovig E, Bøe S. MITF depletion elevates expression levels of ERBB3 receptor and its cognate ligand NRG1-beta in melanoma. Oncotarget. 2016;7:55128-55140 pubmed 出版商
  338. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  339. Gao X, Lin S, Ren F, Li J, Chen J, Yao C, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun. 2016;7:11960 pubmed 出版商
  340. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  341. Badal S, Wang Y, Long J, Corcoran D, CHANG B, Truong L, et al. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun. 2016;7:12076 pubmed 出版商
  342. Chung H, Park J, Lee N, Kim H, Jang C. Phosphorylation of Astrin Regulates Its Kinetochore Function. J Biol Chem. 2016;291:17579-92 pubmed 出版商
  343. Ono H, Basson M, Ito H. P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget. 2016;7:51301-51310 pubmed 出版商
  344. Engel K, Rudelius M, Slawska J, Jacobs L, Ahangarian Abhari B, Altmann B, et al. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 2016;8:851-62 pubmed 出版商
  345. Bott L, Salomons F, Maric D, Liu Y, Merry D, Fischbeck K, et al. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex. Sci Rep. 2016;6:27703 pubmed 出版商
  346. Deaton A, Gómez Rodríguez M, Mieczkowski J, Tolstorukov M, Kundu S, Sadreyev R, et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. elife. 2016;5: pubmed 出版商
  347. Rowald K, Mantovan M, Passos J, Buccitelli C, Mardin B, Korbel J, et al. Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth. Cell Rep. 2016;15:2679-91 pubmed 出版商
  348. Zhang J, Jiang Z, Liu X, Meng A. Eph/ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development. 2016;143:2603-15 pubmed 出版商
  349. Bergstralh D, Lovegrove H, Kujawiak I, Dawney N, Zhu J, Cooper S, et al. Pins is not required for spindle orientation in the Drosophila wing disc. Development. 2016;143:2573-81 pubmed 出版商
  350. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed 出版商
  351. Park W, Kim H, Kang D, Ryu J, Choi K, Lee G, et al. Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. BMC Cancer. 2016;16:358 pubmed 出版商
  352. Kirita Y, Kami D, Ishida R, Adachi T, Tamagaki K, Matoba S, et al. Preserved Nephrogenesis Following Partial Nephrectomy in Early Neonates. Sci Rep. 2016;6:26792 pubmed 出版商
  353. Zhu P, Wang Y, Huang G, Ye B, Liu B, Wu J, et al. lnc-?-Catm elicits EZH2-dependent ?-catenin stabilization and sustains liver CSC self-renewal. Nat Struct Mol Biol. 2016;23:631-9 pubmed 出版商
  354. Brosh R, Hrynyk I, Shen J, Waghray A, Zheng N, Lemischka I. A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun. 2016;7:11742 pubmed 出版商
  355. Fang D, Gan H, Lee J, Han J, Wang Z, Riester S, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science. 2016;352:1344-8 pubmed 出版商
  356. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  357. Leggere J, Saito Y, Darnell R, Tessier Lavigne M, Junge H, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. elife. 2016;5: pubmed 出版商
  358. Romanello M, Schiavone D, Frey A, Sale J. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J. 2016;35:1452-64 pubmed 出版商
  359. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  360. Zeng L, Cai C, Li S, Wang W, Li Y, Chen J, et al. Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells. PLoS Genet. 2016;12:e1006055 pubmed 出版商
  361. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  362. Pal S, Graves H, Ohsawa R, Huang T, Wang P, Harmacek L, et al. The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS ONE. 2016;11:e0155409 pubmed 出版商
  363. Lu C, Jain S, Hoelper D, Bechet D, Molden R, Ran L, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science. 2016;352:844-9 pubmed 出版商
  364. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  365. Ting W, Yang J, Kuo C, Xiao Z, Lu X, Yeh Y, et al. Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts. Oncotarget. 2016;7:39017-39025 pubmed 出版商
  366. Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7:34785-99 pubmed 出版商
  367. Terakawa J, Rocchi A, Serna V, Bottinger E, Graff J, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol. 2016;30:783-95 pubmed 出版商
  368. Matsushima H, Mori T, Ito F, Yamamoto T, Akiyama M, Kokabu T, et al. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer. Oncotarget. 2016;7:34131-48 pubmed 出版商
  369. Shema E, Jones D, Shoresh N, Donohue L, Ram O, Bernstein B. Single-molecule decoding of combinatorially modified nucleosomes. Science. 2016;352:717-21 pubmed 出版商
  370. Chaudhary S, Madhukrishna B, Adhya A, Keshari S, Mishra S. Overexpression of caspase 7 is ER? dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip). Oncogenesis. 2016;5:e219 pubmed 出版商
  371. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed 出版商
  372. He D, Xiang J, Li B, Liu H. The dynamic behavior of Ect2 in response to DNA damage. Sci Rep. 2016;6:24504 pubmed 出版商
  373. Wang Q, Xue L, Zhang X, Bu S, Zhu X, Lai D. Autophagy protects ovarian cancer-associated fibroblasts against oxidative stress. Cell Cycle. 2016;15:1376-85 pubmed 出版商
  374. Hobbs R, Batazzi A, Han M, Coulombe P. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. 2016;35:5653-5662 pubmed 出版商
  375. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  376. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  377. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  378. Huang C, Cheng J, Bawa Khalfe T, Yao X, Chin Y, Yeh E. SUMOylated ORC2 Recruits a Histone Demethylase to Regulate Centromeric Histone Modification and Genomic Stability. Cell Rep. 2016;15:147-157 pubmed 出版商
  379. Wefers A, Lindner S, Schulte J, Schüller U. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum. Cerebellum. 2017;16:122-131 pubmed 出版商
  380. Huang Y, Chen S, Liu R, Chen Y, Lin C, Huang C, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94:1025-37 pubmed 出版商
  381. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117 pubmed 出版商
  382. Perez R, Shen H, Duan L, Kim R, Kim T, Park N, et al. Modeling the Etiology of p53-mutated Cancer Cells. J Biol Chem. 2016;291:10131-47 pubmed 出版商
  383. Upadhyay M, Martino Cortez Y, Wong Deyrup S, Tavares L, Schowalter S, Flora P, et al. Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila. PLoS Genet. 2016;12:e1005918 pubmed 出版商
  384. Xiao J, Duan Q, Wang Z, Yan W, Sun H, Xue P, et al. Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon. Oncotarget. 2016;7:24483-94 pubmed 出版商
  385. Li Y, Liu D, López Paz C, OLSON B, Umen J. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. elife. 2016;5:e10767 pubmed 出版商
  386. Elnfati A, Iles D, Miller D. Nucleosomal chromatin in the mature sperm of Drosophila melanogaster. Genom Data. 2016;7:175-7 pubmed 出版商
  387. Richarson A, Scott D, Zagnitko O, Aza Blanc P, Chang C, Russler Germain D. Registered report: IDH mutation impairs histone demethylation and results in a block to cell differentiation. elife. 2016;5:e10860 pubmed 出版商
  388. Zhao H, Wang H, Bauzon F, Lu Z, Fu H, Cui J, et al. Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis. J Biol Chem. 2016;291:10201-9 pubmed 出版商
  389. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  390. Dhawan S, Dirice E, Kulkarni R, Bhushan A. Inhibition of TGF-β Signaling Promotes Human Pancreatic β-Cell Replication. Diabetes. 2016;65:1208-18 pubmed 出版商
  391. Wu J, Chi L, Chen Z, Lu X, Xiao S, Zhang G, et al. Functional analysis of the TMPRSS2:ERG fusion gene in cisplatin‑induced cell death. Mol Med Rep. 2016;13:3173-80 pubmed 出版商
  392. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  393. Ladurner R, Kreidl E, Ivanov M, Ekker H, Idarraga Amado M, Busslinger G, et al. Sororin actively maintains sister chromatid cohesion. EMBO J. 2016;35:635-53 pubmed 出版商
  394. Wei J, Xiong Z, Lee J, Cheng J, Duffney L, Matas E, et al. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J Neurosci. 2016;36:2119-30 pubmed 出版商
  395. Chuang T, Lee K, Lou Y, Lu C, Tarn W. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement. J Biol Chem. 2016;291:8565-74 pubmed 出版商
  396. Baron A, von Schubert C, Cubizolles F, Siemeister G, Hitchcock M, Mengel A, et al. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. elife. 2016;5: pubmed 出版商
  397. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  398. Aparicio T, Baer R, Gottesman M, Gautier J. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J Cell Biol. 2016;212:399-408 pubmed 出版商
  399. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X, et al. Expression of Ferritin Light Chain (FTL) Is Elevated in Glioblastoma, and FTL Silencing Inhibits Glioblastoma Cell Proliferation via the GADD45/JNK Pathway. PLoS ONE. 2016;11:e0149361 pubmed 出版商
  400. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  401. Liao K, Guo M, Niu F, Yang L, Callen S, Buch S. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J Neuroinflammation. 2016;13:33 pubmed 出版商
  402. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  403. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed 出版商
  404. Cui Q, Yang S, Ye P, Tian E, Sun G, Zhou J, et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nat Commun. 2016;7:10637 pubmed 出版商
  405. Bandopadhayay P, Ramkissoon L, Jain P, Bergthold G, Wala J, Zeid R, et al. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet. 2016;48:273-82 pubmed 出版商
  406. Mo F, Zhuang X, Liu X, Yao P, Qin B, Su Z, et al. Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol. 2016;12:226-32 pubmed 出版商
  407. Powell E, Shao J, Yuan Y, Chen H, Cai S, Echeverria G, et al. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res. 2016;18:13 pubmed 出版商
  408. Walter M, Teissandier A, Pérez Palacios R, Bourc his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. elife. 2016;5: pubmed 出版商
  409. Misuraca K, Hu G, Barton K, Chung A, Becher O. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia. 2016;18:60-70 pubmed 出版商
  410. Heo J, Kim W, Choi K, Bae S, Jeong J, Kim K. XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget. 2016;7:5118-30 pubmed 出版商
  411. Deb M, Sengupta D, Kar S, Rath S, Roy S, Das G, et al. Epigenetic drift towards histone modifications regulates CAV1 gene expression in colon cancer. Gene. 2016;581:75-84 pubmed 出版商
  412. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  413. Soo Lee N, Jin Chung H, Kim H, Yun Lee S, Ji J, Seo Y, et al. TRAIP/RNF206 is required for recruitment of RAP80 to sites of DNA damage. Nat Commun. 2016;7:10463 pubmed 出版商
  414. Minnich M, Tagoh H, Bönelt P, Axelsson E, Fischer M, Cebolla B, et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nat Immunol. 2016;17:331-43 pubmed 出版商
  415. Taniue K, Kurimoto A, Sugimasa H, Nasu E, Takeda Y, Iwasaki K, et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A. 2016;113:1273-8 pubmed 出版商
  416. Chen N, Uddin B, Voit R, Schiebel E. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A. 2016;113:990-5 pubmed 出版商
  417. Terranova Barberio M, Roca M, Zotti A, Leone A, Bruzzese F, Vitagliano C, et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715-31 pubmed 出版商
  418. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed 出版商
  419. Benitz S, Regel I, Reinhard T, Popp A, Schäffer I, Raulefs S, et al. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells. Oncotarget. 2016;7:11424-33 pubmed 出版商
  420. Zhang P, Li G, Deng Z, Liu L, Chen L, Tang J, et al. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res. 2016;44:3629-42 pubmed 出版商
  421. Toledo R, Qin Y, Cheng Z, Gao Q, Iwata S, Silva G, et al. Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res. 2016;22:2301-10 pubmed 出版商
  422. Hessmann E, Zhang J, Chen N, Hasselluhn M, Liou G, Storz P, et al. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation. Stem Cells Int. 2016;2016:5272498 pubmed 出版商
  423. Paladino D, Yue P, Furuya H, Acoba J, Rosser C, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 2016;7:7253-67 pubmed 出版商
  424. García V, Lara Chica M, Cantarero I, Sterner O, Calzado M, Muñoz E. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget. 2016;7:4490-506 pubmed 出版商
  425. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  426. Abu Odeh M, Hereema N, Aqeilan R. WWOX modulates the ATR-mediated DNA damage checkpoint response. Oncotarget. 2016;7:4344-55 pubmed 出版商
  427. Connor A, Kelley P, Tempero R. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis. Lab Invest. 2016;96:270-82 pubmed 出版商
  428. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  429. Wassef M, Rodilla V, Teissandier A, Zeitouni B, Gruel N, Sadacca B, et al. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 2015;29:2547-62 pubmed 出版商
  430. Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, et al. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun. 2015;6:10068 pubmed 出版商
  431. Cai L, Wang Z, Liu D. Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression. Tumour Biol. 2016;37:6359-69 pubmed 出版商
  432. Sengupta D, Byrum S, Avaritt N, Davis L, Shields B, Mahmoud F, et al. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma. Mol Cell Proteomics. 2016;15:765-75 pubmed 出版商
  433. Zemke M, Draganova K, Klug A, Schöler A, Zurkirchen L, Gay M, et al. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biol. 2015;13:103 pubmed 出版商
  434. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380-94 pubmed 出版商
  435. Hernando H, Gelato K, Lesche R, Beckmann G, Koehr S, Otto S, et al. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes. Mol Cancer Ther. 2016;15:287-98 pubmed 出版商
  436. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  437. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed 出版商
  438. Grassian A, Scales T, Knutson S, Kuntz K, McCarthy N, Lowe C, et al. A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality. Biol Proced Online. 2015;17:15 pubmed 出版商
  439. Laumet G, Garriga J, Chen S, Zhang Y, Li D, Smith T, et al. G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition. Nat Neurosci. 2015;18:1746-55 pubmed 出版商
  440. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed 出版商
  441. Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Front Plant Sci. 2015;6:846 pubmed 出版商
  442. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  443. Amlie Wolf A, Ryvkin P, Tong R, Dragomir I, Suh E, Xu Y, et al. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS ONE. 2015;10:e0141836 pubmed 出版商
  444. Tarayrah L, Li Y, Gan Q, Chen X. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity. Biol Open. 2015;4:1518-27 pubmed 出版商
  445. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  446. Meyer S, Krebs S, Thirion C, Blum H, Krause S, Pfaffl M. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells. PLoS ONE. 2015;10:e0139520 pubmed 出版商
  447. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  448. Matsuda S, Adachi J, Ihara M, Tanuma N, Shima H, Kakizuka A, et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res. 2016;44:636-47 pubmed 出版商
  449. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  450. Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget. 2015;6:32410-25 pubmed 出版商
  451. Jardé T, Kass L, Staples M, Lescesen H, Carne P, Oliva K, et al. ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer. PLoS ONE. 2015;10:e0138336 pubmed 出版商
  452. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  453. Kim S, Yang W, Min Y, Ko Y, Yoon S. The role of the polycomb repressive complex pathway in T and NK cell lymphoma: biological and prognostic implications. Tumour Biol. 2016;37:2037-47 pubmed 出版商
  454. Paret C, Simon P, Vormbrock K, Bender C, Kölsch A, Breitkreuz A, et al. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer. Oncotarget. 2015;6:25356-67 pubmed 出版商
  455. Tuncay H, Brinkmann B, Steinbacher T, Schürmann A, Gerke V, Iden S, et al. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat Commun. 2015;6:8128 pubmed 出版商
  456. Shimada M, Dumitrache L, Russell H, McKinnon P. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J. 2015;34:2465-80 pubmed 出版商
  457. Torres M, Pandita R, Kulak O, Kumar R, Formstecher E, Horikoshi N, et al. Role of the Exocyst Complex Component Sec6/8 in Genomic Stability. Mol Cell Biol. 2015;35:3633-45 pubmed 出版商
  458. Bravo M, Nicolini F, Starowicz K, Barroso S, Calés C, Aguilera A, et al. Polycomb RING1A- and RING1B-dependent histone H2A monoubiquitylation at pericentromeric regions promotes S-phase progression. J Cell Sci. 2015;128:3660-71 pubmed 出版商
  459. Meraviglia V, Azzimato V, Colussi C, Florio M, Binda A, Panariti A, et al. Acetylation mediates Cx43 reduction caused by electrical stimulation. J Mol Cell Cardiol. 2015;87:54-64 pubmed 出版商
  460. Kang S, Kim S, Chai J, Kim S, Won K, Lee Y, et al. Transcriptomic Profiling and H3K27me3 Distribution Reveal Both Demethylase-Dependent and Independent Regulation of Developmental Gene Transcription in Cell Differentiation. PLoS ONE. 2015;10:e0135276 pubmed 出版商
  461. Kanfer G, Courtheoux T, Peterka M, Meier S, Soste M, Melnik A, et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun. 2015;6:8015 pubmed 出版商
  462. Guo Y, Zheng Y. Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell. 2015;26:3379-89 pubmed 出版商
  463. Nezich C, Wang C, Fogel A, Youle R. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015;210:435-50 pubmed 出版商
  464. McCleland M, Soukup T, Liu S, Esensten J, De Sousa E Melo F, Yaylaoglu M, et al. Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis. J Pathol. 2015;237:508-19 pubmed 出版商
  465. Namachivayam K, Mohankumar K, Arbach D, Jagadeeswaran R, Jain S, Natarajan V, et al. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE. 2015;10:e0134003 pubmed 出版商
  466. Massey A. Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE. 2015;10:e0134306 pubmed 出版商
  467. Sin H, Kartashov A, Hasegawa K, Barski A, Namekawa S. Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biol. 2015;13:53 pubmed 出版商
  468. Yoon J, Sudo K, Kuroda M, Kato M, Lee I, Han J, et al. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nat Commun. 2015;6:7600 pubmed 出版商
  469. Tyler C, Hafez A, Solomon E, Allan A. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain. Toxicol Appl Pharmacol. 2015;288:40-51 pubmed 出版商
  470. Montgomery D, Sorum A, Guasch L, Nicklaus M, Meier J. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors. Chem Biol. 2015;22:1030-1039 pubmed 出版商
  471. Fei Q, Yang X, Jiang H, Wang Q, Yu Y, Yu Y, et al. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res. 2015;25:1325-35 pubmed 出版商
  472. Fimiani C, Goina E, Mallamaci A. Upregulating endogenous genes by an RNA-programmable artificial transactivator. Nucleic Acids Res. 2015;43:7850-64 pubmed 出版商
  473. Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D, et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun. 2015;6:7668 pubmed 出版商
  474. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  475. Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015;6:7505 pubmed 出版商
  476. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed 出版商
  477. Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6:22361-74 pubmed
  478. Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, et al. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med. 2015;7:1048-62 pubmed 出版商
  479. Kotomura N, Harada N, Ishihara S. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene. PLoS ONE. 2015;10:e0128282 pubmed 出版商
  480. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11:1446-57 pubmed 出版商
  481. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed 出版商
  482. Singh P, Konar A, Kumar A, Srivas S, Thakur M. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem. 2015;134:642-51 pubmed 出版商
  483. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  484. Yin Y, Castro A, Hoekstra M, Yan T, Kanakamedala A, Dehner L, et al. Fibroblast Growth Factor 9 Regulation by MicroRNAs Controls Lung Development and Links DICER1 Loss to the Pathogenesis of Pleuropulmonary Blastoma. PLoS Genet. 2015;11:e1005242 pubmed 出版商
  485. Ohira M, Iwasaki Y, Tanaka C, Kuroki M, Matsuo N, Kitamura T, et al. A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochim Biophys Acta. 2015;1850:1676-84 pubmed 出版商
  486. Nishioka C, Ikezoe T, Yang J, Yokoyama A. Tetraspanin Family Member, CD82, Regulates Expression of EZH2 via Inactivation of p38 MAPK Signaling in Leukemia Cells. PLoS ONE. 2015;10:e0125017 pubmed 出版商
  487. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  488. Zhang Y, Laumet G, Chen S, Hittelman W, Pan H. Pannexin-1 Up-regulation in the Dorsal Root Ganglion Contributes to Neuropathic Pain Development. J Biol Chem. 2015;290:14647-55 pubmed 出版商
  489. Milev M, Hasaj B, Saint Dic D, Snounou S, Zhao Q, Sacher M. TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment. J Cell Biol. 2015;209:221-34 pubmed 出版商
  490. Chen H, Huang W, Yang L, Lin C. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol. 2015;185:1487-99 pubmed 出版商
  491. Huang X, Shen M, Wang L, Yu F, Wu W, Liu H. Effects of tributyltin chloride on developing mouse oocytes and preimplantation embryos. Microsc Microanal. 2015;21:358-67 pubmed 出版商
  492. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  493. Fan H, Zhang H, Pascuzzi P, Andrisani O. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene. 2016;35:715-26 pubmed 出版商
  494. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  495. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  496. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  497. Carlson S, Moore K, Sankaran S, Reynoird N, Elias J, Gozani O. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme. J Biol Chem. 2015;290:12040-7 pubmed 出版商
  498. Hendriks I, Treffers L, Verlaan de Vries M, Olsen J, Vertegaal A. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. Cell Rep. 2015;10:1778-1791 pubmed 出版商
  499. Poirier J, Gardner E, Connis N, Moreira A, de Stanchina E, Hann C, et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene. 2015;34:5869-78 pubmed 出版商
  500. Simon H, ODELBERG S. Assessing cardiomyocyte proliferative capacity in the newt heart and primary culture. Methods Mol Biol. 2015;1290:227-40 pubmed 出版商
  501. Bardhan K, Paschall A, Yang D, Chen M, Simon P, Bhutia Y, et al. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer. Cancer Immunol Res. 2015;3:795-805 pubmed 出版商
  502. Yang S, Zhang J, Zhang Y, Wan X, Zhang C, Huang X, et al. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation. Prostate. 2015;75:936-46 pubmed 出版商
  503. Cheung J, Dickinson D, Moss J, Schuler M, Spellman R, Heard P. Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen. 2015;777:7-16 pubmed 出版商
  504. Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, et al. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun. 2015;6:6366 pubmed 出版商
  505. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  506. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602-14 pubmed
  507. Lee E, Kim S, Cho K. Reconstituted High-Density Lipoprotein Containing Human Growth Hormone-1 Shows Potent Tissue Regeneration Activity with Enhancement of Anti-Oxidant and Anti-Atherosclerotic Activities. Rejuvenation Res. 2015;18:245-56 pubmed 出版商
  508. Sun S, Ling S, Qiu J, Albuquerque C, Zhou Y, Tokunaga S, et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun. 2015;6:6171 pubmed 出版商
  509. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  510. Hsiao S, Chen M, Chen C, Chien M, Hua K, Hsiao M, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1556-65 pubmed 出版商
  511. Kim S, Ebbert K, Cordeiro M, Romero M, Zhu J, Serna V, et al. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology. 2015;156:1464-76 pubmed 出版商
  512. Matsuda Y, Kobayashi Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M. Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep. 2015;5:7701 pubmed 出版商
  513. Jacob V, Chernyavskaya Y, Chen X, Tan P, Kent B, Hoshida Y, et al. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development. 2015;142:510-21 pubmed 出版商
  514. Wang W, Visavadiya N, Pandya J, Nelson P, Sullivan P, Springer J. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84-93 pubmed 出版商
  515. Watson M, Hedley D. Whole blood measurement of histone modifications linked to the epigenetic regulation of gene expression. Curr Protoc Cytom. 2015;71:6.36.1-9 pubmed 出版商
  516. Hasegawa H, Ishibashi K, Kubota S, Yamaguchi C, Yuki R, Nakajo H, et al. Cdk1-mediated phosphorylation of human ATF7 at Thr-51 and Thr-53 promotes cell-cycle progression into M phase. PLoS ONE. 2014;9:e116048 pubmed 出版商
  517. Hill R, Kuijper S, Lindsey J, Petrie K, Schwalbe E, Barker K, et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015;27:72-84 pubmed 出版商
  518. Naganuma K, Hatta M, Ikebe T, Yamazaki J. Epigenetic alterations of the keratin 13 gene in oral squamous cell carcinoma. BMC Cancer. 2014;14:988 pubmed 出版商
  519. Ulanet D, Couto K, Jha A, Choe S, Wang A, Woo H, et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS ONE. 2014;9:e115144 pubmed 出版商
  520. Smith B, Vance C, Scotter E, Troakes C, Wong C, Topp S, et al. Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol Aging. 2015;36:1602.e17-27 pubmed 出版商
  521. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  522. Knutson S, Warholic N, Johnston L, Klaus C, Wigle T, Iwanowicz D, et al. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas. PLoS ONE. 2014;9:e111840 pubmed 出版商
  523. Lee J, Peng Y, Lin W, Parrish J. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development. 2015;142:162-73 pubmed 出版商
  524. Luense S, Denner P, Fernández Montalván A, Hartung I, Husemann M, Stresemann C, et al. Quantification of histone H3 Lys27 trimethylation (H3K27me3) by high-throughput microscopy enables cellular large-scale screening for small-molecule EZH2 inhibitors. J Biomol Screen. 2015;20:190-201 pubmed 出版商
  525. Peterson E, Menon V, Gatti L, Kipping R, Dewasinghe D, Perego P, et al. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm. 2015;12:287-97 pubmed 出版商
  526. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20:1394-6 pubmed 出版商
  527. Eifler M, Uecker R, Weisbach H, Bogdanow B, Richter E, König L, et al. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog. 2014;10:e1004514 pubmed 出版商
  528. Fink D, Connor A, Kelley P, Steele M, Hollingsworth M, Tempero R. Nerve growth factor regulates neurolymphatic remodeling during corneal inflammation and resolution. PLoS ONE. 2014;9:e112737 pubmed 出版商
  529. Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K, et al. Histone Methyltransferase hSETD1A Is a Novel Regulator of Metastasis in Breast Cancer. Mol Cancer Res. 2015;13:461-9 pubmed 出版商
  530. Shi X, Zhang Z, Zhan X, Cao M, Satoh T, Akira S, et al. An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nat Commun. 2014;5:5425 pubmed 出版商
  531. Ambavaram M, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, et al. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun. 2014;5:5302 pubmed 出版商
  532. Santos G, da Silva A, Feldman L, Ventura G, Vassetzky Y, de Moura Gallo C. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem. 2015;116:533-41 pubmed 出版商
  533. Zhuang C, Sheng C, Shin W, Wu Y, Li J, Yao J, et al. A novel drug discovery strategy: mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. Oncotarget. 2014;5:10830-9 pubmed
  534. Kim K, Ossipova O, Sokol S. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674-85 pubmed 出版商
  535. Kawasumi M, Bradner J, Tolliday N, Thibodeau R, Sloan H, Brummond K, et al. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity. Cancer Res. 2014;74:7534-45 pubmed 出版商
  536. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13-21 pubmed 出版商
  537. Xu S, Tong M, Huang J, Zhang Y, Qiao Y, Weng W, et al. TRIB2 inhibits Wnt/β-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, β-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 2014;588:4334-41 pubmed 出版商
  538. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed 出版商
  539. Saloura V, Cho H, Kiyotani K, Alachkar H, Zuo Z, Nakakido M, et al. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res. 2015;13:293-304 pubmed 出版商
  540. Quan J, Adelmant G, Marto J, Look A, Yusufzai T. The chromatin remodeling factor CHD5 is a transcriptional repressor of WEE1. PLoS ONE. 2014;9:e108066 pubmed 出版商
  541. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed 出版商
  542. Wanet A, Remacle N, Najar M, Sokal E, Arnould T, Najimi M, et al. Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol. 2014;54:174-85 pubmed 出版商
  543. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed 出版商
  544. Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, et al. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis. 2014;35:1901-10 pubmed 出版商
  545. Kumar P P, Emechebe U, Smith R, Franklin S, Moore B, Yandell M, et al. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. elife. 2014;3: pubmed 出版商
  546. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  547. Chen Y, Chen J, Yu J, Yang G, Temple E, Harbinski F, et al. Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition. J Biol Chem. 2014;289:18914-27 pubmed 出版商
  548. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  549. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  550. Tong Q, He S, Xie F, Mochizuki K, Liu Y, Mochizuki I, et al. Ezh2 regulates transcriptional and posttranslational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice. J Immunol. 2014;192:5012-22 pubmed 出版商
  551. Elhammali A, Ippolito J, Collins L, Crowley J, Marasa J, Piwnica Worms D. A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov. 2014;4:828-39 pubmed 出版商
  552. Ray S, Li H, Metzger E, Schüle R, Leiter A. CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol. 2014;34:2308-17 pubmed 出版商
  553. Tafrova J, Tafrov S. Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo. Mol Cell Biochem. 2014;392:259-72 pubmed 出版商
  554. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  555. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  556. Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry B, et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet. 2014;94:547-58 pubmed 出版商
  557. Zeng Z, Shen L, Li X, Luo T, Wei X, Zhang J, et al. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (Lond). 2014;127:435-48 pubmed 出版商
  558. Glebov K, Voronezhskaya E, Khabarova M, Ivashkin E, Nezlin L, Ponimaskin E. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC Dev Biol. 2014;14:14 pubmed 出版商
  559. Knutson S, Kawano S, Minoshima Y, Warholic N, Huang K, Xiao Y, et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther. 2014;13:842-54 pubmed 出版商
  560. Hwang W, Jiang J, Yang S, Huang T, Lan H, Teng H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268-80 pubmed 出版商
  561. Muenyi C, Trivedi A, Helm C, States J. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci. 2014;139:74-82 pubmed 出版商
  562. Cao Q, Wang X, Zhao M, Yang R, Malik R, Qiao Y, et al. The central role of EED in the orchestration of polycomb group complexes. Nat Commun. 2014;5:3127 pubmed 出版商
  563. Schröder Heurich B, Wieland B, Lavin M, Schindler D, Dork T. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis. FASEB J. 2014;28:1331-41 pubmed 出版商
  564. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-? signaling. J Biol Chem. 2014;289:2072-83 pubmed 出版商
  565. Hast B, Cloer E, Goldfarb D, Li H, Siesser P, Yan F, et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res. 2014;74:808-17 pubmed 出版商
  566. Sulahian R, Casey F, Shen J, Qian Z, Shin H, Ogino S, et al. An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene. 2014;33:5637-48 pubmed 出版商
  567. Chen Y, Kao S, Wang H, Yang M. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer. 2013;119:4259-67 pubmed 出版商
  568. Subbanna S, Nagre N, Shivakumar M, Umapathy N, Psychoyos D, Basavarajappa B. Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Neuroscience. 2014;258:422-32 pubmed 出版商
  569. Liu Y, Platchek M, Kement B, Bee W, Truong M, Zeng X, et al. A novel approach applying a chemical biology strategy in phenotypic screening reveals pathway-selective regulators of histone 3 K27 tri-methylation. Mol Biosyst. 2014;10:251-7 pubmed 出版商
  570. Tümer E, Bröer A, Balkrishna S, Jülich T, Broer S. Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks. J Biol Chem. 2013;288:33813-23 pubmed 出版商
  571. Douglas N, Arora R, Chen C, Sauer M, Papaioannou V. Investigating the role of tbx4 in the female germline in mice. Biol Reprod. 2013;89:148 pubmed 出版商
  572. Luebben S, Kawabata T, Akre M, Lee W, Johnson C, O Sullivan M, et al. Helq acts in parallel to Fancc to suppress replication-associated genome instability. Nucleic Acids Res. 2013;41:10283-97 pubmed 出版商
  573. Subramanian V, Mazumder A, Surface L, Butty V, Fields P, Alwan A, et al. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet. 2013;9:e1003725 pubmed 出版商
  574. Lee S, Phipson B, Hyland C, Leong H, Allan R, Lun A, et al. Polycomb repressive complex 2 (PRC2) suppresses E?-myc lymphoma. Blood. 2013;122:2654-63 pubmed 出版商
  575. Copeland A, Altamura L, Van Deusen N, Schmaljohn C. Nuclear relocalization of polyadenylate binding protein during rift valley fever virus infection involves expression of the NSs gene. J Virol. 2013;87:11659-69 pubmed 出版商
  576. Voss M, Campbell K, Saranzewa N, Campbell D, Hastie C, Peggie M, et al. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with ?-tubulin. Cell Cycle. 2013;12:2876-87 pubmed 出版商
  577. Tan E, Caro S, Potnis A, Lanza C, Slawson C. O-linked N-acetylglucosamine cycling regulates mitotic spindle organization. J Biol Chem. 2013;288:27085-99 pubmed 出版商
  578. Lauffer B, Mintzer R, Fong R, Mukund S, Tam C, Zilberleyb I, et al. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem. 2013;288:26926-43 pubmed 出版商
  579. Dai C, Sun F, Zhu C, Hu X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors. PLoS ONE. 2013;8:e63054 pubmed 出版商
  580. Huang S, Scruggs A, Donaghy J, Horowitz J, Zaslona Z, Przybranowski S, et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 2013;4:e621 pubmed 出版商
  581. Tong K, Kwan K. Common partner Smad-independent canonical bone morphogenetic protein signaling in the specification process of the anterior rhombic lip during cerebellum development. Mol Cell Biol. 2013;33:1925-37 pubmed 出版商
  582. Subbanna S, Shivakumar M, Umapathy N, Saito M, Mohan P, Kumar A, et al. G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain. Neurobiol Dis. 2013;54:475-85 pubmed 出版商
  583. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7:484-96 pubmed 出版商
  584. Lau P, Cheung P. Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity. Nucleic Acids Res. 2013;41:e49 pubmed 出版商
  585. Qi W, Spier C, Liu X, Agarwal A, Cooke L, Persky D, et al. Alisertib (MLN8237) an investigational agent suppresses Aurora A and B activity, inhibits proliferation, promotes endo-reduplication and induces apoptosis in T-NHL cell lines supporting its importance in PTCL treatment. Leuk Res. 2013;37:434-9 pubmed 出版商
  586. Blakemore L, Boes C, Cordell R, Manson M. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage. Carcinogenesis. 2013;34:351-60 pubmed 出版商
  587. Farioli Vecchioli S, Micheli L, Saraulli D, Ceccarelli M, Cannas S, Scardigli R, et al. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone. Front Neurosci. 2012;6:124 pubmed 出版商
  588. Wu F, Sapkota D, Li R, Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol. 2012;520:952-69 pubmed 出版商
  589. Zhao J, Yue W, Zhu M, Du M. AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem. 2011;286:16426-34 pubmed 出版商
  590. Eckler M, McKenna W, Taghvaei S, McConnell S, Chen B. Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity. J Comp Neurol. 2011;519:1829-46 pubmed 出版商
  591. Wang B, Lufkin T, Rubenstein J. Dlx6 regulates molecular properties of the striatum and central nucleus of the amygdala. J Comp Neurol. 2011;519:2320-34 pubmed 出版商
  592. Sneeringer C, Scott M, Kuntz K, Knutson S, Pollock R, Richon V, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A. 2010;107:20980-5 pubmed 出版商
  593. Farioli Vecchioli S, Saraulli D, Costanzi M, Leonardi L, Cinà I, Micheli L, et al. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS ONE. 2009;4:e8339 pubmed 出版商