这是一篇来自已证抗体库的有关小鼠 H3c8的综述,是根据568篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合H3c8 抗体。
H3c8 同义词: H3.1-221; H3c1; H3c10; H3c11; Hist1h3g; M32460

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 6d
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab24684)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 5i
  • 免疫印迹; 小鼠; 图 s4a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab9048)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5i) 和 被用于免疫印迹在小鼠样本上 (图 s4a). Bone Res (2021) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab2621)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:1000 (图 2d). elife (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, EP959Y)被用于被用于免疫印迹在小鼠样本上 (图 2c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab2621)被用于被用于免疫印迹在人类样本上 (图 2g). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab2886)被用于被用于免疫印迹在人类样本上 (图 2g). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2k
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1191)被用于被用于免疫印迹在人类样本上 (图 2k). Nature (2019) ncbi
小鼠 单克隆(mAbcam12209)
  • ChIP-Seq; 人类; ; 图 3s3a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12209)被用于被用于ChIP-Seq在人类样本上浓度为 (图 3s3a). elife (2019) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; African green monkey; 1:1000; 图 3e2
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab177177)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:1000 (图 3e2). elife (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1191)被用于. Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab24684)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s6a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab24684)被用于被用于染色质免疫沉淀 在人类样本上 (图 s6a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab2621)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab2886)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3d
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab24684)被用于被用于免疫组化在小鼠样本上 (图 s3d) 和 被用于免疫印迹在小鼠样本上 (图 3b). EMBO Rep (2018) ncbi
domestic rabbit 多克隆
  • 其他; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1191)被用于被用于其他在小鼠样本上 (图 5d). J Biol Chem (2018) ncbi
小鼠 单克隆(mAbcam1012)
  • 免疫沉淀; 人类; 图 6b
艾博抗(上海)贸易有限公司 H3c8抗体(abcam, ab1012)被用于被用于免疫沉淀在人类样本上 (图 6b). Mol Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab24684)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; roundworm ; 1:2000; 图 s5a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab24684)被用于被用于免疫印迹在roundworm 样本上浓度为1:2000 (图 s5a). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; roundworm ; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab9048)被用于被用于免疫印迹在roundworm 样本上浓度为1:1000 (图 6a). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6b
艾博抗(上海)贸易有限公司 H3c8抗体(Millipore, ab2621)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b). Mol Immunol (2017) ncbi
小鼠 单克隆(mAbcam12209)
  • 免疫组化; 小鼠; 1:200; 图 s6w
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12209)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6w). Cell (2017) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化; 小鼠; 1:200; 图 s6u
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12179)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6u). Cell (2017) ncbi
小鼠 单克隆(mAbcam1012)
  • ChIP-Seq; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
小鼠 单克隆(mAbcam 6000)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab6000)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化; 小鼠; 1:500; 图 s1a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12179)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1a). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s4d
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1191)被用于被用于染色质免疫沉淀 在人类样本上 (图 s4d) 和 被用于免疫印迹在人类样本上 (图 2f). Nature (2016) ncbi
小鼠 单克隆(mAbcam12209)
  • 染色质免疫沉淀 ; 人类; 图 3c
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12209)被用于被用于染色质免疫沉淀 在人类样本上 (图 3c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1191)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Dis Model Mech (2016) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5c). BMC Biol (2016) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 拟南芥; 图 3
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在拟南芥样本上 (图 3). Epigenetics Chromatin (2016) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 仓鼠; 图 7
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在仓鼠样本上 (图 7). BMC Biotechnol (2016) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 非洲爪蛙; 图 s2
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在非洲爪蛙样本上 (图 s2). Cell Biosci (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 非洲爪蛙; 图 5
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab9048)被用于被用于染色质免疫沉淀 在非洲爪蛙样本上 (图 5). Cell Biosci (2016) ncbi
小鼠 单克隆(mAbcam 6000)
  • 免疫细胞化学; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab6000)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; Austrofundulus limnaeus; 1:200; 图 4
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab24684)被用于被用于免疫组化在Austrofundulus limnaeus样本上浓度为1:200 (图 4). J Exp Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, 9048)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(mAbcam1012)
  • ChIP-Seq; 人类; 图 2
  • 免疫细胞化学; 人类; 图 s2
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于ChIP-Seq在人类样本上 (图 2) 和 被用于免疫细胞化学在人类样本上 (图 s2). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab24684)被用于被用于免疫印迹在人类样本上 (图 5). Tumour Biol (2016) ncbi
小鼠 单克隆(mAbcam1012)
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于免疫印迹在人类样本上 (图 s3). Nature (2015) ncbi
小鼠 单克隆(mAbcam1012)
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2015) ncbi
小鼠 单克隆(mAbcam12209)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12209)被用于被用于免疫细胞化学在人类样本上. Hum Genet (2015) ncbi
小鼠 单克隆(mAbcam 6000)
  • 免疫印迹; 人类; 表 3
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab6000)被用于被用于免疫印迹在人类样本上 (表 3). elife (2015) ncbi
小鼠 单克隆(AH3-120)
  • ChIP-Seq; 人类; 图 2
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12179)被用于被用于ChIP-Seq在人类样本上 (图 2). Genes Dev (2015) ncbi
小鼠 单克隆(mAbcam1012)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于免疫印迹在人类样本上. Int J Biochem Cell Biol (2015) ncbi
小鼠 单克隆(mAbcam 6000)
  • 染色质免疫沉淀 ; 人类; 图 5
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab6000)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 小鼠; 图 1
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1). Methods Enzymol (2015) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 小鼠; 图 1, 2
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1, 2) 和 被用于免疫印迹在小鼠样本上 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 斑马鱼
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在斑马鱼样本上. J Immunol (2015) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 人类; 图 6
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, Ab1012)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Development (2015) ncbi
小鼠 单克隆(mAbcam12209)
  • 抑制或激活实验; 小鼠; 1:200
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12209)被用于被用于抑制或激活实验在小鼠样本上浓度为1:200 和 被用于免疫细胞化学在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 小鼠; 图 2
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(mAbcam1012)
  • 免疫细胞化学; 人类; 1:25
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, Ab1012)被用于被用于免疫细胞化学在人类样本上浓度为1:25. Cryobiology (2014) ncbi
小鼠 单克隆(mAbcam1012)
  • ChIP-Seq; 人类; 图 1
  • 染色质免疫沉淀 ; 人类; 图 s3
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于ChIP-Seq在人类样本上 (图 1) 和 被用于染色质免疫沉淀 在人类样本上 (图 s3). Nat Med (2014) ncbi
小鼠 单克隆(mAbcam1012)
  • ChIP-Seq; 人类
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于ChIP-Seq在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(mAbcam1012)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(mAbcam 6000)
  • ChIP-Seq; 小鼠; 图 4
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab6000)被用于被用于ChIP-Seq在小鼠样本上 (图 4). Genes Dev (2014) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在小鼠样本上. Gene (2014) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(mAbcam12209)
  • 免疫组化; 小鼠; 图 8a
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12209)被用于被用于免疫组化在小鼠样本上 (图 8a) 和 被用于免疫印迹在小鼠样本上 (图 7a). Biochem J (2014) ncbi
小鼠 单克隆(mAbcam12209)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 H3c8抗体(abcam, ab12209)被用于被用于免疫印迹在人类样本上浓度为1:1000. Radiat Oncol (2014) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab12179)被用于被用于染色质免疫沉淀 在人类样本上. BMC Cancer (2013) ncbi
小鼠 单克隆(mAbcam12209)
  • 染色质免疫沉淀 ; 人类
艾博抗(上海)贸易有限公司 H3c8抗体(Abacm, ab12209)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 酵母菌目; 20 ug
  • 免疫印迹; 酵母菌目
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在酵母菌目样本上浓度为20 ug 和 被用于免疫印迹在酵母菌目样本上. Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(mAbcam1012)
  • 染色质免疫沉淀 ; 小鼠
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, ab1012)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(mAbcam 6000)
  • 染色质免疫沉淀 ; 人类; 3-5 ug
艾博抗(上海)贸易有限公司 H3c8抗体(Abcam, 6000)被用于被用于染色质免疫沉淀 在人类样本上浓度为3-5 ug. Nucleic Acids Res (2006) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706S)被用于被用于免疫组化在小鼠样本上 (图 3i). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 1:125; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9751S)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:125 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; pigs ; 图 1i
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在pigs 样本上 (图 1i). PLoS Pathog (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 2650)被用于被用于免疫印迹在人类样本上 (图 3f). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 5b
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9677)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). JCI Insight (2021) ncbi
domestic rabbit 单克隆(C5B11)
  • ChIP-Seq; 人类; 图 2i, 6e
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9649)被用于被用于ChIP-Seq在人类样本上 (图 2i, 6e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9701S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 8173)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Neurooncol Adv (2021) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 图 2k
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9706S)被用于被用于免疫组化在小鼠样本上 (图 2k). EMBO J (2021) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:500; 图 3i
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3i). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 6c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9764S)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 6c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 小鼠; 1:50; 图 4h
  • 免疫印迹; 小鼠; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9649)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50 (图 4h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 小鼠; 1:50; 图 4g
  • 免疫印迹; 小鼠; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 8173)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4i
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4i). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 8173S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cancer Res (2021) ncbi
domestic rabbit 单克隆(D1A9)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 5326S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Res (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 人类; 图 3c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9751)被用于被用于ChIP-Seq在人类样本上 (图 3c). Cancer Res (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 图 3c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9733)被用于被用于ChIP-Seq在人类样本上 (图 3c). Cancer Res (2021) ncbi
domestic rabbit 单克隆(D5A7)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 4909)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:5000; 图 7h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signalling Technology, CST4499S)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7h). BMC Biol (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Tech, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1b). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 其他; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173T)被用于被用于其他在人类样本上 (图 5c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Pathol (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 图 4a, s1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在小鼠样本上 (图 4a, s1a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫印迹; 小鼠; 图 4a, s1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于免疫印迹在小鼠样本上 (图 4a, s1a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 4a, s1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 4a, s1a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5b). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2g). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(C75H12)
  • 染色质免疫沉淀 ; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 2901)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2f). Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6l
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6l). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 5j, 5m
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5j, 5m). J Cell Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化在小鼠样本上 (图 7g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 8173)被用于被用于免疫印迹在人类样本上 (图 6c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 3g, 3h, 3k
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3g, 3h, 3k). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D1A9)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 5326S)被用于被用于免疫细胞化学在小鼠样本上. Nature (2021) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9725BF)被用于被用于免疫细胞化学在小鼠样本上. Nature (2021) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9728BF)被用于被用于免疫细胞化学在小鼠样本上. Nature (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 s10a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733BF)被用于被用于免疫细胞化学在小鼠样本上 (图 s10a). Nature (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2d, 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9763)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2d, 5a). iScience (2021) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫印迹; 人类; 图 2d, 7e
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9751)被用于被用于免疫印迹在人类样本上 (图 2d, 7e). iScience (2021) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733)被用于被用于免疫印迹在人类样本上 (图 7e). iScience (2021) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 图 4c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫细胞化学在人类样本上 (图 4c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9649)被用于被用于免疫印迹在人类样本上浓度为1:1000. Front Oncol (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Front Oncol (2020) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 4e). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). elife (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠; 1:300; 图 3b
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9706S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 3b). elife (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9733)被用于被用于免疫组化在小鼠样本上 (图 4d). Cell Rep (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫组化在小鼠样本上. Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Antioxidants (Basel) (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Theranostics (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; roundworm ; 1:400; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫组化在roundworm 样本上浓度为1:400 (图 1b). elife (2020) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173S)被用于被用于免疫印迹在人类样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫组化在小鼠样本上 (图 6c). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 4e). J Clin Invest (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 人类; 图 4b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4b). Science (2020) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上. J Hematol Oncol (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s7h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s7h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 1:2000; 图 2c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3j
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 3j). J Cardiovasc Dev Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:400; 图 s8a
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 3377)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s8a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(6F12)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 5327)被用于被用于免疫细胞化学在人类样本上. Cell (2020) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; 人类; 1:3000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9725)被用于被用于免疫印迹在人类样本上浓度为1:3000. Nat Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 3e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3e). Nat Cell Biol (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; fruit fly ; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 5b). elife (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200; 图 s5-1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5-1b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signalling, 9701)被用于被用于免疫组化在小鼠样本上 (图 1c). Cell Death Differ (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1s1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 1s1a). elife (2020) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; fruit fly ; 1:100; 图 2e, s5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706L)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2e, s5a). PLoS Genet (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3d
  • 免疫细胞化学; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, C36B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3d) 和 被用于免疫细胞化学在人类样本上 (图 7). Clin Epigenetics (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 大鼠; 1:15; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于染色质免疫沉淀 在大鼠样本上浓度为1:15 (图 5b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 1:500; 图 4b, s6e, s6g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 3377S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b, s6e, s6g). Nature (2020) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 小鼠; 1:25; 图 s4b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在小鼠样本上浓度为1:25 (图 s4b). Cell Rep (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 其他; 淡水涡虫;真涡虫; 1:3000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D2C8)被用于被用于其他在淡水涡虫;真涡虫样本上浓度为1:3000. elife (2020) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s9h
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 3377T)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s9h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1d). Neurol Med Chir (Tokyo) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4e
赛信通(上海)生物试剂有限公司 H3c8抗体(cell signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 s5c, s6a, 5d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4620)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5c, s6a, 5d). Cell Rep (2019) ncbi
小鼠 单克隆(6F12)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 6F12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, C5B11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:500-1:2000; 图 5f, 6d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 5f, 6d). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f, 6c
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f, 6c). Genes Cancer (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Genes Cancer (2019) ncbi
domestic rabbit 单克隆(D1A9)
  • 免疫细胞化学; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 5326)被用于被用于免疫细胞化学在人类样本上 (图 s4a). Nature (2019) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫细胞化学; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 8173)被用于被用于免疫细胞化学在人类样本上 (图 s4a). Nature (2019) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 小鼠; ; 图 6s1b, 6s1c, 6s1d
  • 免疫印迹; 大鼠; ; 图 6s1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在小鼠样本上浓度为 (图 6s1b, 6s1c, 6s1d) 和 被用于免疫印迹在大鼠样本上浓度为 (图 6s1a). elife (2019) ncbi
domestic rabbit 单克隆(D5A7)
  • 流式细胞仪; 小鼠; 图 2n
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D5A7)被用于被用于流式细胞仪在小鼠样本上 (图 2n). Science (2019) ncbi
domestic rabbit 单克隆(C42D8)
  • 流式细胞仪; 小鼠; 图 2n
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C42D8)被用于被用于流式细胞仪在小鼠样本上 (图 2n). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 流式细胞仪; 小鼠; 图 2n
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C36B11)被用于被用于流式细胞仪在小鼠样本上 (图 2n). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9733)被用于被用于免疫细胞化学在小鼠样本上. Nature (2019) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 3f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 3f). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 1:50; 图 4i
  • 免疫印迹; 人类; 1:1000; 图 4a, 4c, 6a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:50 (图 4i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4c, 6a). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 5748)被用于被用于免疫印迹在人类样本上 (图 4f). EBioMedicine (2019) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 s5b
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 3638S)被用于被用于免疫印迹在人类样本上 (图 s5b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 非洲爪蛙; 图 3e
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733BF)被用于被用于ChIP-Seq在非洲爪蛙样本上 (图 3e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 鸡; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signalling, C36B11)被用于被用于ChIP-Seq在鸡样本上 (图 3a). Dev Biol (2020) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 2901)被用于被用于免疫印迹在小鼠样本上 (图 2e). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:250. Nature (2019) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫沉淀; 小鼠; 1:25; 图 13g
  • 免疫印迹; 小鼠; 1:1000; 图 s13c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫沉淀在小鼠样本上浓度为1:25 (图 13g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s13c). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫组化-石蜡切片; 小鼠; 图 s5h
赛信通(上海)生物试剂有限公司 H3c8抗体(cell signaling, 8173)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5h). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:500; 图 7b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701L)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 7b). Cell (2019) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; fruit fly ; 1:1000; 图 2s2e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706S)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 2s2e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:10; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:10 (图 3a). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9728)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9677)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1e). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s1h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 s1h). Cell (2019) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 ex4b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638S)被用于被用于免疫印迹在人类样本上 (图 ex4b). Nature (2019) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:300; 图 1n
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1n). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Sci Rep (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 1:200; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5b). Nucleic Acids Res (2019) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200; 图 2b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 122 ng/ml; 图 s13c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为122 ng/ml (图 s13c). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 e10j
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 e10j). Nature (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 小鼠; 1:200; 图 e10k
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 e10k) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nature (2019) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫印迹; 人类; 1:1000; 图 3d
  • ChIP-Seq; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d) 和 被用于ChIP-Seq在小鼠样本上 (图 3e). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signalling Technology, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). EMBO Mol Med (2019) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上 (图 4b). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在人类样本上 (图 6b). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 单克隆(C5B11)
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于. Cell (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:5000; 图 4s3d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4s3d). elife (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 9733)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 6c). Life Sci Alliance (2019) ncbi
domestic rabbit 单克隆(D18C8)
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9728)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D5A7)
  • ChIP-Seq; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4909)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 1:50; 图 6b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9727)被用于被用于其他在人类样本上浓度为1:50 (图 6b). elife (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; ; 图 4d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为 (图 4d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). Dev Biol (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 流式细胞仪; 小鼠; 1:50; 图 2c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 12158)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2c). elife (2019) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4658)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4620S)被用于被用于免疫印迹在人类样本上 (图 6c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s16c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9727)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s16c). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s4h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9733)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s4h). Science (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 s16c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s16c). Science (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733S)被用于被用于ChIP-Seq在大鼠样本上 (图 3e). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3a). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 图 4b
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733)被用于被用于免疫细胞化学在人类样本上 (图 4b). Life Sci Alliance (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫组化在小鼠样本上 (图 3f). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). PLoS ONE (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signalling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Cancer Lett (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 e5e
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在人类样本上 (图 e5e). Nature (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 6h). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, CST4499s)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Brain (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Brain (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:5000; 图 4i
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4i). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). J Cell Biol (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Front Immunol (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 s6d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733S)被用于被用于免疫细胞化学在小鼠样本上 (图 s6d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 1d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715S)被用于被用于免疫印迹在非洲爪蛙样本上 (图 1d). Cell (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50; 图 s1d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D2C8)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1d). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 6e). Oncogene (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 2b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 8f). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:5000; 图 4e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, C36B11)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4e). EMBO J (2019) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上 (图 5c). Blood (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:2500; 图 s6g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s6g). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1f). Nat Chem Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:2000 (图 1a). Nature (2018) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
  • 流式细胞仪; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C36B11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b) 和 被用于流式细胞仪在小鼠样本上 (图 5a). J Cell Biol (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:2000; 图 8g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8g). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2018) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9751)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 s2a). PLoS Biol (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9727)被用于被用于染色质免疫沉淀 在人类样本上 (图 4h). Oncogene (2018) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 4h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173)被用于被用于染色质免疫沉淀 在人类样本上 (图 4h). Oncogene (2018) ncbi
domestic rabbit 单克隆(D5E4)
  • ChIP-Seq; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173)被用于被用于ChIP-Seq在小鼠样本上 (图 4a). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D1A9)
  • ChIP-Seq; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 5326)被用于被用于ChIP-Seq在小鼠样本上 (图 4a). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在小鼠样本上 (图 3e). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在小鼠样本上 (图 3e). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Nat Neurosci (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Nat Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2e). Genes Dev (2018) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Science (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7d). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D4B9)
  • 免疫印迹; 人类; 1:1000; 图 s11c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 7627)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s11c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s11c). Nat Commun (2018) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 3638)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1e). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 s1h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫印迹在小鼠样本上 (图 s1h). Nature (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:10,000; 图 s2f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 4499S)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2f). elife (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于流式细胞仪在人类样本上 (图 s1). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751s)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5f). J Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 8a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3a). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Stem Cells (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9713)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9714)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 5c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 3638)被用于被用于免疫印迹在人类样本上 (图 8e). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 7b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173)被用于被用于染色质免疫沉淀 在人类样本上 (图 7b). Mol Cancer Res (2017) ncbi
domestic rabbit 单克隆(D5A7)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4909)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Cancer (2017) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫沉淀; 人类; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D5E4)被用于被用于免疫沉淀在人类样本上 (图 3a). J Biol Chem (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上 (图 1c). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D1A9)
  • 染色质免疫沉淀 ; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 5326)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(C64G9)
  • 染色质免疫沉淀 ; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9725)被用于被用于染色质免疫沉淀 在人类样本上 (图 s5). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
  • 免疫印迹; 大鼠; 1:1000; 图 2b, 3f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b, 3f). Brain Res (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 大鼠; 图 7c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9675)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 7c). Biol Sex Differ (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3458S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733)被用于被用于免疫印迹在人类样本上 (图 5b). Sci Rep (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(cell signalling, 96C10)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 9a
赛信通(上海)生物试剂有限公司 H3c8抗体(cell signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 9a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 7h
赛信通(上海)生物试剂有限公司 H3c8抗体(cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 7h). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在人类样本上 (图 1b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2k
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701 S)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2k). Sci Rep (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 图 S1A
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 6G3)被用于被用于免疫印迹在人类样本上 (图 S1A). Mol Cell (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 流式细胞仪; 人类; 1:750; 图 3b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 12158)被用于被用于流式细胞仪在人类样本上浓度为1:750 (图 3b). MBio (2017) ncbi
小鼠 单克隆(6F12)
  • 流式细胞仪; 人类; 1:400; 图 s6a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 5327)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 s6a). MBio (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 6
  • 免疫组化; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 H3c8抗体(cell signalling, C36B11)被用于被用于免疫细胞化学在小鼠样本上 (图 6), 被用于免疫组化在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3b). Biochim Biophys Acta Gene Regul Mech (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:50; 图 s1k
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1k). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9753)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9727)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4260)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 1:1000; 图 5D
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D2C8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5D). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, CST-9728s)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠; 1:2000; 图 s6c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, CST-9733s)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s6c). Cell Rep (2017) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751S)被用于被用于免疫印迹在人类样本上 (图 s5a). Nature (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 3377)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 H3c8抗体(cell signalling, 9649P)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Clin Invest (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9706)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b). Stem Cell Reports (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫细胞化学在人类样本上 (图 1a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Rep (2017) ncbi
domestic rabbit 单克隆(D18C8)
  • 其他; 人类; 1:900; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signal, 9728)被用于被用于其他在人类样本上浓度为1:900 (图 3). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(C64G9)
  • 其他; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signal, 9725)被用于被用于其他在人类样本上浓度为1:2000 (图 3). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 1:500; 图 s9
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signal, 9675)被用于被用于其他在人类样本上浓度为1:500 (图 s9). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(C5B11)
  • 其他; 人类; 1:2500; 图 s9
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signal, 9649)被用于被用于其他在人类样本上浓度为1:2500 (图 s9). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 其他; 人类; 1:2500; 图 3
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于其他在人类样本上浓度为1:2500 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 1:50; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signal, 9723)被用于被用于其他在人类样本上浓度为1:50 (图 3). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D5E4)
  • 其他; 人类; 1:500; 图 s9
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signal, 8173)被用于被用于其他在人类样本上浓度为1:500 (图 s9). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 st4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 st4). Nat Biotechnol (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 33770)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s6g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s6g). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4e). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 9f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 4499)被用于被用于免疫印迹在小鼠样本上 (图 9f). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化; 人类; 1:500; 图 3
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Tech, 2901)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上 (图 4a). Nat Genet (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701L)被用于被用于免疫细胞化学在人类样本上. Mol Cell Biol (2017) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在人类样本上 (图 s1). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9713)被用于被用于免疫印迹在小鼠样本上 (图 6h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 图 2f
  • 免疫印迹; 人类; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1e). Nat Med (2017) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在人类样本上 (图 s3b). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7b). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4620S)被用于被用于免疫印迹在人类样本上 (图 1b). Front Immunol (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 染色质免疫沉淀 ; 人类; 1:2000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signalling, 4499)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:2000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 2650)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5b). JCI Insight (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4a). Neural Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 s6b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 图 8h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在fruit fly 样本上 (图 8h). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:150; 图 4g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 4g). Nature (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 表 2
  • ChIP-Seq; 小鼠; 表 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在人类样本上 (表 2) 和 被用于ChIP-Seq在小鼠样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 人类; 表 2
  • ChIP-Seq; 小鼠; 表 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在人类样本上 (表 2) 和 被用于ChIP-Seq在小鼠样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 单克隆(D1A9)
  • ChIP-Seq; 小鼠; 表 2
  • ChIP-Seq; 人类; 表 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 5326)被用于被用于ChIP-Seq在小鼠样本上 (表 2) 和 被用于ChIP-Seq在人类样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 单克隆(D5E4)
  • ChIP-Seq; 人类; 表 2
  • ChIP-Seq; 小鼠; 表 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173)被用于被用于ChIP-Seq在人类样本上 (表 2) 和 被用于ChIP-Seq在小鼠样本上 (表 2). Epigenetics Chromatin (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). Epigenetics Chromatin (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signalling, 9701)被用于被用于免疫组化在小鼠样本上 (图 4a). Neural Dev (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; fruit fly ; 1:200; 图 2fs1h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3642S)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 2fs1h). elife (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; brewer's yeast; 图 s1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在brewer's yeast样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 s1d). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2016) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 人类; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2b). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9753)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9716)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling technology, 97535)被用于被用于染色质免疫沉淀 在人类样本上 (图 4e). J Steroid Biochem Mol Biol (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9716)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9715)被用于被用于免疫印迹在人类样本上 (图 2f). Nature (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Tech, 9715)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4d). Mol Carcinog (2017) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1b
  • ChIP-Seq; 小鼠; 1:40
  • 免疫细胞化学; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1b), 被用于ChIP-Seq在小鼠样本上浓度为1:40 和 被用于免疫细胞化学在小鼠样本上 (图 2f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D18C8)
  • ChIP-Seq; 小鼠; 1:40; 图 2i
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9728)被用于被用于ChIP-Seq在小鼠样本上浓度为1:40 (图 2i). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 流式细胞仪; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 5499)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 10f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, CST-9701)被用于被用于免疫组化在人类样本上 (图 10f). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 s1). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9708)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9715)被用于被用于免疫印迹在小鼠样本上 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 斑马鱼; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫组化在斑马鱼样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biomed Res Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701S)被用于被用于免疫细胞化学在人类样本上. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 人类; 图 1i
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于ChIP-Seq在人类样本上 (图 1i). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 5a). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(C64G9)
  • 染色质免疫沉淀 ; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9725)被用于被用于染色质免疫沉淀 在人类样本上 (图 5a). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 5b
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:200; 图 8a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 8a). Cell Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上 (图 6). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1A9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 5326)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 3d,4b,7b
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d,4b,7b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 2650)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3f). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 酶联免疫吸附测定; 人类; 1:1000; 图 s3
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000 (图 s3) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9728)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:3000; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9715S)被用于被用于免疫印迹在人类样本上 (图 6a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9701)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:300; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 1). EMBO Mol Med (2016) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于流式细胞仪在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 4499L)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 斑马鱼; 1:200; 图 s4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:200 (图 s4). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Tech, 9701)被用于被用于免疫组化在fruit fly 样本上 (图 s1). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715 s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 大鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706s)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s1h
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 s1h). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 小鼠; 1:50; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 染色质免疫沉淀 ; 人类; 图 2a
  • 免疫细胞化学; 人类; 1:2000; 图 s3c
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 2901)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a), 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s3c) 和 被用于免疫印迹在人类样本上 (图 1a). Science (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上 (图 1b). Science (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 3377)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 3s1). elife (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 鸡; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9727)被用于被用于ChIP-Seq在鸡样本上 (图 3). EMBO J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在小鼠样本上 (图 6c). Carcinogenesis (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377S)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4243S)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; fruit fly ; 图 s11b
  • 免疫细胞化学; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在fruit fly 样本上 (图 s11b) 和 被用于免疫细胞化学在小鼠样本上 (图 s6c). Science (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 大鼠; 图 10
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 10). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4243)被用于被用于免疫印迹在小鼠样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, CST3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3). Mol Endocrinol (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:25,000; 图 1d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4484)被用于被用于免疫印迹在人类样本上浓度为1:25,000 (图 1d). Science (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 7
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9701)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9701)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:3000; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). Front Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3e). J Mol Med (Berl) (2016) ncbi
domestic rabbit 单克隆(C64G9)
  • 染色质免疫沉淀 ; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9725)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Cell Rep (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9706)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Cerebellum (2017) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 3638)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 11a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:200; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 97015)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 s1). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:200; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 97015)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 s1). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, D2C8)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; fruit fly ; 表 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 2650)被用于被用于染色质免疫沉淀 在fruit fly 样本上 (表 1). Genom Data (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 表 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (表 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9753)被用于被用于免疫印迹在人类样本上 (表 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751S)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s1). Diabetes (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715L)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). EMBO J (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9715S)被用于被用于免疫印迹在人类样本上 (图 6d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9714)被用于被用于免疫细胞化学在人类样本上 (图 4). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9701)被用于被用于免疫细胞化学在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 非洲爪蛙; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在非洲爪蛙样本上 (图 4). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:2000; 图 5d
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5d). Stem Cells (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715S)被用于被用于染色质免疫沉淀 在小鼠样本上. J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3642)被用于被用于免疫印迹在人类样本上 (图 5b). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 s9c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9727)被用于被用于染色质免疫沉淀 在人类样本上 (图 s9c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D5E4)
  • ChIP-Seq; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, D5E4)被用于被用于ChIP-Seq在小鼠样本上 (图 3). Nat Genet (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫沉淀; 人类; 1:5000; 图 3b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 3377)被用于被用于免疫沉淀在人类样本上浓度为1:5000 (图 3b). Nat Chem Biol (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 小鼠; 图 4
  • 免疫细胞化学; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, C36B11)被用于被用于ChIP-Seq在小鼠样本上 (图 4), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). elife (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, C36B11)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7). Neoplasia (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9649)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7e). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3t
赛信通(上海)生物试剂有限公司 H3c8抗体(Merck Millipore, 9715)被用于被用于免疫印迹在人类样本上 (图 s3t). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 4
  • 免疫印迹; 人类; 图 4s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9675)被用于被用于ChIP-Seq在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4s1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9715)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9675S)被用于被用于免疫印迹在人类样本上 (图 2a). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 1:200; 图 s4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C36B11)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s4). Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signalling, 9727s)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4c). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4). Development (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上 (图 s5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C36B11)被用于被用于免疫组化在人类样本上 (图 2c). Genes Dev (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6c
  • 染色质免疫沉淀 ; 人类; 图 4a
  • 免疫印迹; 人类; 1:2000; 图 1c, 3a, 2c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6c), 被用于染色质免疫沉淀 在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1c, 3a, 2c). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s5
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9733)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s5) 和 被用于染色质免疫沉淀 在小鼠样本上 (图 3). BMC Biol (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 3
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Tech, cst-3377)被用于被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9701)被用于被用于免疫印迹在人类样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 4). Cancer Discov (2016) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹基因敲除验证; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Tech, 9733)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). Biol Proced Online (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751s)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 3). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在大鼠样本上 (图 1). Nat Neurosci (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638S)被用于被用于免疫印迹在小鼠样本上 (图 4). Front Oncol (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 4499P)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫组化-石蜡切片; fruit fly ; 1:200; 图 s1b
  • 免疫印迹; fruit fly ; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751S)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:200 (图 s1b) 和 被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 s1a). Biol Open (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4620)被用于被用于免疫印迹在小鼠样本上. Biochem J (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4658P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9715)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 8173)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Tech, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, C36B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Tumour Biol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signalling, 4499L)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 犬; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 3b). Nat Commun (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, cat# 9706S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. EMBO J (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫印迹; 人类; 图 6g
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于免疫印迹在人类样本上 (图 6g). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C36B11)被用于被用于染色质免疫沉淀 在小鼠样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, D1H2)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Pathol (2015) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:400; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 9706)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1600; 图 2a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 3377)被用于被用于免疫细胞化学在人类样本上浓度为1:1600 (图 2a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • ChIP-Seq; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751S)被用于被用于ChIP-Seq在小鼠样本上 (图 3a). BMC Biol (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9751)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s8). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s8). Nat Commun (2015) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicol Appl Pharmacol (2015) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 8173)被用于被用于免疫印迹在人类样本上 (图 5). Chem Biol (2015) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 9649P)被用于被用于免疫印迹在人类样本上 (图 5). Chem Biol (2015) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 小鼠; 1:1000; 图 s13
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9728)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s13). Genome Res (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 3465)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9649P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4658P)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Stem Cells Int (2015) ncbi
domestic rabbit 单克隆(3H1)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 3H1)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 6a,6b,6c,7b
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 6a,6b,6c,7b) 和 被用于免疫印迹在人类样本上 (图 7a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D54)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 4473)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2015) ncbi
小鼠 单克隆(6F12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(cst, 5327)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
  • 流式细胞仪; 人类; 图 s3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3) 和 被用于流式细胞仪在人类样本上 (图 s3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 大鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9751s)被用于被用于染色质免疫沉淀 在大鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 4f
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D2B12)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). Am J Pathol (2015) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9728S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Microsc Microanal (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4658S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Microsc Microanal (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, (D1H2)XP)被用于被用于免疫印迹在人类样本上 (图 7). Nucleic Acids Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9727 S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9725 S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9723 S)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • reverse phase protein lysate microarray; 人类; 表 s2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 3377S)被用于被用于reverse phase protein lysate microarray在人类样本上 (表 s2). Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 1:40; 图 8a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:40 (图 8a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 2901S)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 1185)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4658P)被用于被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C64G9)被用于被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫细胞化学; 人类; 图 7
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, C42D8)被用于被用于免疫细胞化学在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9728)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; newts; 1:200; 表 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 3377)被用于被用于免疫组化在newts样本上浓度为1:200 (表 1). Methods Mol Biol (2015) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Immunol Res (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Immunol Res (2015) ncbi
domestic rabbit 单克隆(D1A9)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 5326)被用于被用于染色质免疫沉淀 在人类样本上. Prostate (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9751)被用于被用于染色质免疫沉淀 在人类样本上. Prostate (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 5764)被用于被用于流式细胞仪在人类样本上浓度为1:50. Mutat Res Genet Toxicol Environ Mutagen (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
  • 染色质免疫沉淀 ; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6) 和 被用于染色质免疫沉淀 在人类样本上浓度为1:1000 (图 4). Nat Med (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000. Oncotarget (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Rejuvenation Res (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3). Ann Surg Oncol (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫组化在小鼠样本上浓度为1:100. Endocrinology (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751S)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:25000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:25000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(D15E8)
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 5427)被用于. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706S)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上 (图 4). Cancer Cell (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, #9751)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, #9733)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, #4499)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, #4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 酶联免疫吸附测定; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:20000
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 3638)被用于被用于免疫印迹在人类样本上浓度为1:20000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(D5E4)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 8173)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9728)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9733)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 3377P)被用于被用于流式细胞仪在人类样本上 (图 5c). Mol Pharm (2015) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D18C8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Med (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • ChIP-Seq; 人类; 1:50
  • 免疫组化-石蜡切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:800
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于ChIP-Seq在人类样本上浓度为1:50, 被用于免疫组化-石蜡切片在人类样本上浓度为1:500, 被用于免疫细胞化学在人类样本上浓度为1:800 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2014) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 96C10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Med (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:3000
  • 免疫印迹; 鸡
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 6G3)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:3000, 被用于免疫印迹在鸡样本上 和 被用于免疫印迹在人类样本上. PLoS Pathog (2014) ncbi
domestic rabbit 单克隆(D5E4)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 8173)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫组化; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C42D8)被用于被用于免疫组化在小鼠样本上 (图 5). Nat Commun (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 1:4000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signalling, 4620)被用于被用于免疫印迹在人类样本上浓度为1:4000. J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499P)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, #9706)被用于被用于免疫细胞化学在人类样本上. Stem Cells (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:800
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上浓度为1:800. Cancer Res (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9733)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 3). Blood (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 4499)被用于被用于免疫细胞化学在人类样本上. FEBS Lett (2014) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 2901)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Tech., 4499)被用于被用于免疫印迹在人类样本上 (图 s5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s1
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). Int J Biochem Cell Biol (2014) ncbi
domestic rabbit 单克隆(C64G9)
  • 免疫印迹; fruit fly ; 1:2000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling Technology, 9725)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. Mech Dev (2014) ncbi
domestic rabbit 单克隆(3H1)
  • 免疫印迹; fruit fly ; 1:2000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling Technology, 9717S)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. Mech Dev (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2014) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). elife (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). elife (2014) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). elife (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4620S)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9751S)被用于被用于染色质免疫沉淀 在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4658p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于染色质免疫沉淀 在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在人类样本上. Mol Cell Biochem (2014) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9649)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上. Clin Sci (Lond) (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫组化-石蜡切片; 大鼠; 0.07 ug/mL
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为0.07 ug/mL 和 被用于染色质免疫沉淀 在人类样本上. Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(C42D8)
  • 染色质免疫沉淀 ; 人类; 图 st13
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signaling, 9751)被用于被用于染色质免疫沉淀 在人类样本上 (图 st13). Nat Cell Biol (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Toxicol Sci (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Commun (2014) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). FASEB J (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). FASEB J (2014) ncbi
domestic rabbit 单克隆(C5B11)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9649)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
domestic rabbit 单克隆(C42D8)
  • 免疫组化-石蜡切片; 人类; 1:100
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9751)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cancer (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 4658)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9728)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫细胞化学; 人类; 1:500
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, C36B11)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Mol Biosyst (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在小鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3). PLoS Genet (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, C36B11)被用于被用于免疫印迹在小鼠样本上. Blood (2013) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, D1H2)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Virol (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technologies, 9706)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell signalling, 3377s)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C36B11)
  • 染色质免疫沉淀 ; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9733)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:50. Cell Death Dis (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Mol Cell Biol (2013) ncbi
domestic rabbit 单克隆(D18C8)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9728)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Neurobiol Dis (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Neurobiol Dis (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫细胞化学在人类样本上. Mol Oncol (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 6G3)被用于被用于免疫印迹在小鼠样本上. Leuk Res (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(6G3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:100. Front Neurosci (2012) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Comp Neurol (2012) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 3638)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2011) ncbi
domestic rabbit 单克隆(C5B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9649)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2011) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling Technology, 9706)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(6G3)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Comp Neurol (2011) ncbi
domestic rabbit 单克隆(C36B11)
  • 免疫印迹; 人类; 1:10000
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 9733)被用于被用于免疫印迹在人类样本上浓度为1:10000. Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(96C10)
  • 免疫印迹; 人类; 1:20000
赛信通(上海)生物试剂有限公司 H3c8抗体(CST, 3638)被用于被用于免疫印迹在人类样本上浓度为1:20000. Proc Natl Acad Sci U S A (2010) ncbi
小鼠 单克隆(6G3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 H3c8抗体(Cell Signaling, 9706)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 3). PLoS ONE (2009) ncbi
Cosmo Bio
小鼠 单克隆(MABI0304(CMA304))
  • 染色质免疫沉淀 ; 小鼠; 1:240; 图 s6
Cosmo Bio H3c8抗体(Cosmo Bio, MABI0004)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:240 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(MABI0323)
  • 染色质免疫沉淀 ; 小鼠; 1:240; 图 s6
Cosmo Bio H3c8抗体(Cosmo Bio, MABI0323)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:240 (图 s6). Nat Commun (2016) ncbi
文章列表
  1. Carroll P, Freie B, Cheng P, Kasinathan S, Gu H, Hedrich T, et al. The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. PLoS Biol. 2021;19:e3001085 pubmed 出版商
  2. Reddy N, Majidi S, Kong L, Nemera M, Ferguson C, Moore M, et al. CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum. Nat Commun. 2021;12:5702 pubmed 出版商
  3. Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, et al. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. PLoS Pathog. 2021;17:e1009940 pubmed 出版商
  4. Zheng Q, Li P, Zhou X, Qiang Y, Fan J, Lin Y, et al. Deficiency of the X-inactivation escaping gene KDM5C in clear cell renal cell carcinoma promotes tumorigenicity by reprogramming glycogen metabolism and inhibiting ferroptosis. Theranostics. 2021;11:8674-8691 pubmed 出版商
  5. Lo Cascio C, McNamara J, Melendez E, Lewis E, Dufault M, Sanai N, et al. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight. 2021;6: pubmed 出版商
  6. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  7. Cui M, Atmanli A, Morales M, Tan W, Chen K, Xiao X, et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021;12:5270 pubmed 出版商
  8. Keane L, Cheray M, Saidi D, Kirby C, Friess L, González Rodríguez P, et al. Inhibition of microglial EZH2 leads to anti-tumoral effects in pediatric diffuse midline gliomas. Neurooncol Adv. 2021;3:vdab096 pubmed 出版商
  9. da Silva F, Zhang K, Pinson A, Fatti E, Wilsch Bräuninger M, Herbst J, et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 2021;40:e108041 pubmed 出版商
  10. Zhang M, Wang J, Zhang K, Lu G, Liu Y, Ren K, et al. Ten-eleven translocation 1 mediated-DNA hydroxymethylation is required for myelination and remyelination in the mouse brain. Nat Commun. 2021;12:5091 pubmed 出版商
  11. Luo J, Lu C, Feng M, Dai L, Wang M, Qiu Y, et al. Cooperation between liver-specific mutations of pten and tp53 genetically induces hepatocarcinogenesis in zebrafish. J Exp Clin Cancer Res. 2021;40:262 pubmed 出版商
  12. Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y. Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 2021;12:779 pubmed 出版商
  13. Zhao Z, Szczepanski A, Tsuboyama N, Abdala Valencia H, Goo Y, Singer B, et al. PAX9 Determines Epigenetic State Transition and Cell Fate in Cancer. Cancer Res. 2021;81:4696-4708 pubmed 出版商
  14. Laliotis G, Chavdoula E, Paraskevopoulou M, Kaba A, La Ferlita A, Singh S, et al. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing. Nat Commun. 2021;12:4624 pubmed 出版商
  15. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  16. Lu C, Liu Z, Klement J, Yang D, Merting A, Poschel D, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9: pubmed 出版商
  17. Lei H, Wang Z, Jiang D, Liu F, Liu M, Lei X, et al. CRISPR screening identifies CDK12 as a conservative vulnerability of prostate cancer. Cell Death Dis. 2021;12:740 pubmed 出版商
  18. Jiao L, Eickhoff R, Egners A, Jumpertz S, Roth J, Erdem M, et al. Deletion of mTOR in liver epithelial cells enhances hepatic metastasis of colon cancer. J Pathol. 2021;255:270-284 pubmed 出版商
  19. Wei Y, Chen J, Xu X, Li F, Wu K, Jiang Y, et al. Restoration of H3k27me3 Modification Epigenetically Silences Cry1 Expression and Sensitizes Leptin Signaling to Reduce Obesity-Related Properties. Adv Sci (Weinh). 2021;8:2004319 pubmed 出版商
  20. Dong F, Chen M, Jiang L, Shen Z, Ma L, Han C, et al. PRMT5 Is Involved in Spermatogonial Stem Cells Maintenance by Regulating Plzf Expression via Modulation of Lysine Histone Modifications. Front Cell Dev Biol. 2021;9:673258 pubmed 出版商
  21. Lasierra Losada M, Pauler M, Vandamme N, Goossens S, Berx G, Leppkes M, et al. Pancreas morphogenesis and homeostasis depends on tightly regulated Zeb1 levels in epithelial cells. Cell Death Discov. 2021;7:138 pubmed 出版商
  22. Fang Y, Tang Y, Zhang Y, Pan Y, Jia J, Sun Z, et al. The H3K36me2 methyltransferase NSD1 modulates H3K27ac at active enhancers to safeguard gene expression. Nucleic Acids Res. 2021;49:6281-6295 pubmed 出版商
  23. Shao R, Zhang Z, Xu Z, Ouyang H, Wang L, Ouyang H, et al. H3K36 methyltransferase NSD1 regulates chondrocyte differentiation for skeletal development and fracture repair. Bone Res. 2021;9:30 pubmed 出版商
  24. Xu P, Borges R, Fillatre J, de Oliveira Melo M, Cheng T, Thisse B, et al. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun. 2021;12:3277 pubmed 出版商
  25. Goswami S, Balasubramanian I, D Agostino L, Bandyopadhyay S, Patel R, Avasthi S, et al. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297:100848 pubmed 出版商
  26. Wojnarowicz P, Escolano M, Huang Y, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58 pubmed 出版商
  27. Qin M, Han F, Wu J, Gao F, Li Y, Yan D, et al. KDM6B promotes ESCC cell proliferation and metastasis by facilitating C/EBPβ transcription. BMC Cancer. 2021;21:559 pubmed 出版商
  28. Tien J, Chugh S, Goodrum A, Cheng Y, Mannan R, Zhang Y, et al. AGO2 promotes tumor progression in KRAS-driven mouse models of non-small cell lung cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  29. Hu J, Wang J, Li C, Shang Y. Fructose-1,6-bisphosphatase aggravates oxidative stress-induced apoptosis in asthma by suppressing the Nrf2 pathway. J Cell Mol Med. 2021;25:5001-5014 pubmed 出版商
  30. Chen B, Wang P, Liang X, Jiang C, Ge Y, Dworkin L, et al. Permissive effect of GSK3β on profibrogenic plasticity of renal tubular cells in progressive chronic kidney disease. Cell Death Dis. 2021;12:432 pubmed 出版商
  31. Koeniger A, Brichkina A, Nee I, Dempwolff L, Hupfer A, Galperin I, et al. Activation of Cilia-Independent Hedgehog/GLI1 Signaling as a Novel Concept for Neuroblastoma Therapy. Cancers (Basel). 2021;13: pubmed 出版商
  32. Martínez Gutiérrez A, Fernández Duran I, Marazuela Duque A, Simonet N, Yousef I, Martínez Rovira I, et al. Shikimic acid protects skin cells from UV-induced senescence through activation of the NAD+-dependent deacetylase SIRT1. Aging (Albany NY). 2021;13:12308-12333 pubmed 出版商
  33. Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122 pubmed 出版商
  34. Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature. 2021;590:344-350 pubmed 出版商
  35. Singh S, Abu Zaid A, Lin W, Low J, Abdolvahabi A, Jin H, et al. 17-DMAG dually inhibits Hsp90 and histone lysine demethylases in alveolar rhabdomyosarcoma. iScience. 2021;24:101996 pubmed 出版商
  36. Krzeptowski W, Chudy P, Sokołowski G, Zukowska M, Kusienicka A, Seretny A, et al. Proximity Ligation Assay Detection of Protein-DNA Interactions-Is There a Link between Heme Oxygenase-1 and G-quadruplexes?. Antioxidants (Basel). 2021;10: pubmed 出版商
  37. Fang M, Zhang M, Wang Y, Wei F, Wu J, Mou X, et al. Long Noncoding RNA AFAP1-AS1 Is a Critical Regulator of Nasopharyngeal Carcinoma Tumorigenicity. Front Oncol. 2020;10:601055 pubmed 出版商
  38. Pavlova N, King B, Josselsohn R, Violante S, Macera V, Vardhana S, et al. Translation in amino-acid-poor environments is limited by tRNAGln charging. elife. 2020;9: pubmed 出版商
  39. Bao Y, Oguz G, Lee W, Lee P, Ghosh K, Li J, et al. EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun. 2020;11:5878 pubmed 出版商
  40. Sanders S, Hernandez L, Soh H, Karnam S, Walikonis R, Tzingounis A, et al. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment. elife. 2020;9: pubmed 出版商
  41. Fomicheva M, Macara I. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. elife. 2020;9: pubmed 出版商
  42. Wilson M, Reske J, Holladay J, Neupane S, Ngo J, Cuthrell N, et al. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep. 2020;33:108366 pubmed 出版商
  43. Carullo G, Mazzotta S, Koch A, Hartmann K, Friedrich O, Gilbert D, et al. New Oleoyl Hybrids of Natural Antioxidants: Synthesis and In Vitro Evaluation as Inducers of Apoptosis in Colorectal Cancer Cells. Antioxidants (Basel). 2020;9: pubmed 出版商
  44. Yi D, Nguyen H, Dinh J, Viscarra J, Xie Y, Lin F, et al. Dot1l interacts with Zc3h10 to activate Ucp1 and other thermogenic genes. elife. 2020;9: pubmed 出版商
  45. Hu J, Wang H, Li X, Liu Y, Mi Y, Kong H, et al. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder. Theranostics. 2020;10:9702-9720 pubmed 出版商
  46. Wang X, Ellenbecker M, Hickey B, Day N, Osterli E, Terzo M, et al. Antagonistic control of Caenorhabditis elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2. elife. 2020;9: pubmed 出版商
  47. Huang F, Sun J, Chen W, He X, Zhu Y, Dong H, et al. HDAC4 inhibition disrupts TET2 function in high-risk MDS and AML. Aging (Albany NY). 2020;12:16759-16774 pubmed 出版商
  48. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  49. Bhaskar A, Kumar S, Khan M, Singh A, Dwivedi V, Nandicoori V. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. elife. 2020;9: pubmed 出版商
  50. Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R, et al. Huntington's disease alters human neurodevelopment. Science. 2020;369:787-793 pubmed 出版商
  51. Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, et al. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol. 2020;13:77 pubmed 出版商
  52. Perkail S, Andricovich J, Kai Y, Tzatsos A. BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice. Nat Commun. 2020;11:3018 pubmed 出版商
  53. Wang Z, Millard C, Lin C, Gurnett J, Wu M, Lee K, et al. Diverse nucleosome site-selectivity among histone deacetylase complexes. elife. 2020;9: pubmed 出版商
  54. Chakrabarti M, Al Sammarraie N, Gebere M, Bhattacharya A, Chopra S, Johnson J, et al. Transforming Growth Factor Beta3 is Required for Cardiovascular Development. J Cardiovasc Dev Dis. 2020;7: pubmed 出版商
  55. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  56. Nielsen C, Zhang T, Barisic M, Kalitsis P, Hudson D. Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc Natl Acad Sci U S A. 2020;117:12131-12142 pubmed 出版商
  57. Nava M, Miroshnikova Y, Biggs L, Whitefield D, Metge F, Boucas J, et al. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell. 2020;181:800-817.e22 pubmed 出版商
  58. Park D, Cheng J, McGrath J, Lim M, Cushman C, Swanson S, et al. Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis. Nat Cell Biol. 2020;22:603-615 pubmed 出版商
  59. Wang C, Spradling A. An abundant quiescent stem cell population in Drosophila Malpighian tubules protects principal cells from kidney stones. elife. 2020;9: pubmed 出版商
  60. Niethamer T, Stabler C, Leach J, Zepp J, Morley M, Babu A, et al. Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. elife. 2020;9: pubmed 出版商
  61. Sanz Gómez N, de Pedro I, Ortigosa B, Santamaria D, Malumbres M, de Carcer G, et al. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ. 2020;27:2451-2467 pubmed 出版商
  62. Wutz G, Ladurner R, St Hilaire B, Stocsits R, Nagasaka K, Pignard B, et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. elife. 2020;9: pubmed 出版商
  63. Singh M, Jensen M, Lasser M, Huber E, Yusuff T, Pizzo L, et al. NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genet. 2020;16:e1008590 pubmed 出版商
  64. Liu C, Yang Q, Zhu Q, Lu X, Li M, Hou T, et al. CBP mediated DOT1L acetylation confers DOT1L stability and promotes cancer metastasis. Theranostics. 2020;10:1758-1776 pubmed 出版商
  65. Hoffmann F, Niebel D, Aymans P, Ferring Schmitt S, Dietrich D, Landsberg J. H3K27me3 and EZH2 expression in melanoma: relevance for melanoma progression and response to immune checkpoint blockade. Clin Epigenetics. 2020;12:24 pubmed 出版商
  66. Torres Mejía E, Trumbach D, Kleeberger C, Dornseifer U, Orschmann T, Bäcker T, et al. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep. 2020;10:1984 pubmed 出版商
  67. Coccia E, Planells Ferrer L, Badillos Rodríguez R, Pascual M, Segura M, Fernández Hernández R, et al. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis. 2020;11:82 pubmed 出版商
  68. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676-681 pubmed 出版商
  69. Rhodes J, Feldmann A, Hernández Rodríguez B, Díaz N, Brown J, Fursova N, et al. Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in Embryonic Stem Cells. Cell Rep. 2020;30:820-835.e10 pubmed 出版商
  70. Karge A, Bonar N, Wood S, Petersen C. tec-1 kinase negatively regulates regenerative neurogenesis in planarians. elife. 2020;9: pubmed 出版商
  71. Laukoter S, Beattie R, Pauler F, Amberg N, Nakayama K, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nat Commun. 2020;11:195 pubmed 出版商
  72. Enomoto T, Aoki M, Hamasaki M, Abe H, Nonaka M, Inoue T, et al. Midline Glioma in Adults: Clinicopathological, Genetic, and Epigenetic Analysis. Neurol Med Chir (Tokyo). 2020;60:136-146 pubmed 出版商
  73. Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn Ng I, et al. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv. 2019;5:eaax2705 pubmed 出版商
  74. Senigl F, Maman Y, Dinesh R, Alinikula J, Seth R, Pecnova L, et al. Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Rep. 2019;29:3902-3915.e8 pubmed 出版商
  75. Perri A, Agosti V, Olivo E, Concolino A, Angelis M, Tammè L, et al. Histone proteomics reveals novel post-translational modifications in breast cancer. Aging (Albany NY). 2019;11:11722-11755 pubmed 出版商
  76. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  77. Santos Barriopedro I, Li Y, Bahl S, Seto E. HDAC8 affects MGMT levels in glioblastoma cell lines via interaction with the proteasome receptor ADRM1. Genes Cancer. 2019;10:119-133 pubmed 出版商
  78. Wu S, Turner K, Nguyen N, Raviram R, Erb M, Santini J, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575:699-703 pubmed 出版商
  79. Currais A, Huang L, Goldberg J, Petrascheck M, Ates G, Pinto Duarte A, et al. Elevating acetyl-CoA levels reduces aspects of brain aging. elife. 2019;8: pubmed 出版商
  80. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  81. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  82. Zhang L, Tian S, Pei M, Zhao M, Wang L, Jiang Y, et al. Crosstalk between histone modification and DNA methylation orchestrates the epigenetic regulation of the costimulatory factors, Tim‑3 and galectin‑9, in cervical cancer. Oncol Rep. 2019;42:2655-2669 pubmed 出版商
  83. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575-580 pubmed 出版商
  84. Dremel S, DeLuca N. Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off. elife. 2019;8: pubmed 出版商
  85. Liu D, Wu L, Wu Y, Wei X, Wang W, Zhang S, et al. Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. Aging (Albany NY). 2019;11:8982-8997 pubmed 出版商
  86. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  87. Miyazaki T, Zhao Z, Ichihara Y, Yoshino D, Imamura T, Sawada K, et al. Mechanical regulation of bone homeostasis through p130Cas-mediated alleviation of NF-κB activity. Sci Adv. 2019;5:eaau7802 pubmed 出版商
  88. Kuznetsov J, Agüero T, Owens D, Kurtenbach S, Field M, Durante M, et al. BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers. Sci Adv. 2019;5:eaax1738 pubmed 出版商
  89. Tambalo M, Anwar M, Ahmed M, Streit A. Enhancer activation by FGF signalling during otic induction. Dev Biol. 2020;457:69-82 pubmed 出版商
  90. Weinberg D, Papillon Cavanagh S, Chen H, Yue Y, Chen X, Rajagopalan K, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 2019;573:281-286 pubmed 出版商
  91. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  92. Xu B, Lang L, Li S, Guo J, Wang J, Yang H, et al. Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure. Biomolecules. 2019;9: pubmed 出版商
  93. Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun. 2019;10:3882 pubmed 出版商
  94. Cheng C, Biton M, Haber A, Gunduz N, Eng G, Gaynor L, et al. Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell. 2019;178:1115-1131.e15 pubmed 出版商
  95. Hudry B, de Goeij E, Mineo A, Gaspar P, Hadjieconomou D, Studd C, et al. Sex Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. Cell. 2019;178:901-918.e16 pubmed 出版商
  96. Abdusselamoglu M, Eroglu E, Burkard T, Knoblich J. The transcription factor odd-paired regulates temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop. elife. 2019;8: pubmed 出版商
  97. Jin J, Ravindran P, Di Meo D, Püschel A. Igf1R/InsR function is required for axon extension and corpus callosum formation. PLoS ONE. 2019;14:e0219362 pubmed 出版商
  98. Piunti A, Smith E, Morgan M, Ugarenko M, Khaltyan N, Helmin K, et al. CATACOMB: An endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci Adv. 2019;5:eaax2887 pubmed 出版商
  99. Rossaert E, Pollari E, Jaspers T, Van Helleputte L, Jarpe M, Van Damme P, et al. Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol Commun. 2019;7:107 pubmed 出版商
  100. Jain A, Agostini L, McCarthy G, Chand S, Ramirez A, Nevler A, et al. Poly (ADP) ribose glycohydrolase can be effectively targeted in pancreatic cancer. Cancer Res. 2019;: pubmed 出版商
  101. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  102. Parolia A, Cieslik M, Chu S, Xiao L, Ouchi T, Zhang Y, et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature. 2019;: pubmed 出版商
  103. Quilichini E, Fabre M, Dirami T, Stedman A, De Vas M, Ozguc O, et al. Pancreatic ductal deletion of Hnf1b disrupts exocrine homeostasis, leads to pancreatitis and facilitates tumorigenesis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  104. Lüscher Firzlaff J, Chatain N, Kuo C, Braunschweig T, Bochynska A, Ullius A, et al. Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Sci Rep. 2019;9:8262 pubmed 出版商
  105. Traynor S, Møllegaard N, Jørgensen M, Brückmann N, Pedersen C, Terp M, et al. Remodeling and destabilization of chromosome 1 pericentromeric heterochromatin by SSX proteins. Nucleic Acids Res. 2019;47:6668-6684 pubmed 出版商
  106. Gupta D, Dembele L, Voorberg van der Wel A, Roma G, Yip A, Chuenchob V, et al. The Plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development. elife. 2019;8: pubmed 出版商
  107. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  108. Qiu J, Villa M, Sanin D, Buck M, O Sullivan D, Ching R, et al. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27:2063-2074.e5 pubmed 出版商
  109. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  110. Eckert M, Coscia F, Chryplewicz A, Chang J, Hernandez K, Pan S, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;: pubmed 出版商
  111. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  112. Fursova N, Blackledge N, Nakayama M, Ito S, Koseki Y, Farcas A, et al. Synergy between Variant PRC1 Complexes Defines Polycomb-Mediated Gene Repression. Mol Cell. 2019;74:1020-1036.e8 pubmed 出版商
  113. Zhang H, Wang J, Wang Y, Gao C, Gu Y, Huang J, et al. Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3β/Nrf2 Signaling Pathway and Inhibiting the NF-κB Signaling Pathway in 5/6 Nephrectomized Rats. Oxid Med Cell Longev. 2019;2019:2853534 pubmed 出版商
  114. Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L, Tombline G, et al. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell. 2019;177:622-638.e22 pubmed 出版商
  115. Greenberg M, Teissandier A, Walter M, Noordermeer D, Bourc his D. Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naïve pluripotency. elife. 2019;8: pubmed 出版商
  116. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  117. Wang Y, Brady K, Caiello B, Ackerson S, Stewart J. Human CST suppresses origin licensing and promotes AND-1/Ctf4 chromatin association. Life Sci Alliance. 2019;2: pubmed 出版商
  118. Lavarone E, Barbieri C, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10:1679 pubmed 出版商
  119. Gonzalo Gil E, Rapuano P, Ikediobi U, Leibowitz R, Mehta S, Coskun A, et al. Transcriptional down-regulation of ccr5 in a subset of HIV+ controllers and their family members. elife. 2019;8: pubmed 出版商
  120. Lin C, Hsu Y, Huang Y, Shih Y, Wang C, Chiang W, et al. A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction. EMBO Mol Med. 2019;11: pubmed 出版商
  121. El Brolosy M, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;: pubmed 出版商
  122. Rajderkar S, Mann J, Panaretos C, Yumoto K, Li H, Mishina Y, et al. Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev Biol. 2019;450:101-114 pubmed 出版商
  123. Lima Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun. 2019;10:1436 pubmed 出版商
  124. Sinclair L, Howden A, Brenes A, Spinelli L, Hukelmann J, Macintyre A, et al. Antigen receptor control of methionine metabolism in T cells. elife. 2019;8: pubmed 出版商
  125. Li H, Petersen S, García Mariscal A, Brakebusch C. Negative Regulation of p53-Induced Senescence by N-WASP Is Crucial for DMBA/TPA-Induced Skin Tumor Formation. Cancer Res. 2019;79:2167-2181 pubmed 出版商
  126. Wei X, Guo J, Li Q, Jia Q, Jing Q, Li Y, et al. Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Sci Adv. 2019;5:eaau7887 pubmed 出版商
  127. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  128. Farrelly L, Thompson R, Zhao S, Lepack A, Lyu Y, Bhanu N, et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature. 2019;567:535-539 pubmed 出版商
  129. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  130. Lee J, Dindorf J, Eberhardt M, Lai X, Ostalecki C, Koliha N, et al. Innate extracellular vesicles from melanoma patients suppress β-catenin in tumor cells by miRNA-34a. Life Sci Alliance. 2019;2: pubmed 出版商
  131. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434-2450.e6 pubmed 出版商
  132. Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim B, et al. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS ONE. 2019;14:e0212017 pubmed 出版商
  133. Alfano L, Caporaso A, Altieri A, Dell Aquila M, Landi C, Bini L, et al. Depletion of the RNA binding protein HNRNPD impairs homologous recombination by inhibiting DNA-end resection and inducing R-loop accumulation. Nucleic Acids Res. 2019;47:4068-4085 pubmed 出版商
  134. Nassa G, Salvati A, Tarallo R, Gigantino V, Alexandrova E, Memoli D, et al. Inhibition of histone methyltransferase DOT1L silences ERα gene and blocks proliferation of antiestrogen-resistant breast cancer cells. Sci Adv. 2019;5:eaav5590 pubmed 出版商
  135. Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, et al. Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett. 2019;449:87-98 pubmed 出版商
  136. Garcia Bermudez J, Baudrier L, Bayraktar E, Shen Y, La K, Guarecuco R, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature. 2019;567:118-122 pubmed 出版商
  137. Wei J, Kishton R, Angel M, Conn C, Dalla Venezia N, Marcel V, et al. Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Mol Cell. 2019;73:1162-1173.e5 pubmed 出版商
  138. Guo J, Dai X, Laurent B, Zheng N, Gan W, Zhang J, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21:226-237 pubmed 出版商
  139. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  140. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  141. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  142. Gómez Fernández P, Urtasun A, Paton A, Paton J, Borrego F, Dersh D, et al. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Front Immunol. 2018;9:2934 pubmed 出版商
  143. May J, Kouri F, Hurley L, Liu J, Tommasini Ghelfi S, Ji Y, et al. IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv. 2019;5:eaat0456 pubmed 出版商
  144. Żylicz J, Bousard A, Zumer K, Dossin F, Mohammad E, da Rocha S, et al. The Implication of Early Chromatin Changes in X Chromosome Inactivation. Cell. 2019;176:182-197.e23 pubmed 出版商
  145. Sparks J, Chistol G, Gao A, Raschle M, Larsen N, Mann M, et al. The CMG Helicase Bypasses DNA-Protein Cross-Links to Facilitate Their Repair. Cell. 2019;176:167-181.e21 pubmed 出版商
  146. Liddiard K, Ruis B, Kan Y, Cleal K, Ashelford K, Hendrickson E, et al. DNA Ligase 1 is an essential mediator of sister chromatid telomere fusions in G2 cell cycle phase. Nucleic Acids Res. 2019;47:2402-2424 pubmed 出版商
  147. Pan W, Moroishi T, Koo J, Guan K. Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene. 2019;38:2595-2610 pubmed 出版商
  148. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  149. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362: pubmed 出版商
  150. Yang L, Song L, Liu X, Bai L, Li G. KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system. EMBO Rep. 2018;19: pubmed 出版商
  151. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  152. Tischler J, Gruhn W, Reid J, Allgeyer E, Buettner F, Marr C, et al. Metabolic regulation of pluripotency and germ cell fate through α-ketoglutarate. EMBO J. 2019;38: pubmed 出版商
  153. Godfrey T, Wildman B, Beloti M, Kemper A, Ferraz E, Roy B, et al. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem. 2018;293:17646-17660 pubmed 出版商
  154. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  155. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  156. Liszczak G, Diehl K, Dann G, Muir T. Acetylation blocks DNA damage-induced chromatin ADP-ribosylation. Nat Chem Biol. 2018;14:837-840 pubmed 出版商
  157. Schrank B, Aparicio T, Li Y, Chang W, Chait B, Gundersen G, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559:61-66 pubmed 出版商
  158. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  159. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  160. Lu J, Liu L, Zheng M, Li X, Wu A, Wu Q, et al. MEKK2 and MEKK3 suppress Hedgehog pathway-dependent medulloblastoma by inhibiting GLI1 function. Oncogene. 2018;37:3864-3878 pubmed 出版商
  161. Fujimoto M, Takii R, Katiyar A, Srivastava P, Nakai A. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA. Mol Cell Biol. 2018;38: pubmed 出版商
  162. McBrayer S, Olenchock B, DiNatale G, Shi D, Khanal J, Jennings R, et al. Autochthonous tumors driven by Rb1 loss have an ongoing requirement for the RBP2 histone demethylase. Proc Natl Acad Sci U S A. 2018;115:E3741-E3748 pubmed 出版商
  163. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  164. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  165. Chen Z, Gao Y, Yao L, Liu Y, Huang L, Yan Z, et al. LncFZD6 initiates Wnt/β-catenin and liver TIC self-renewal through BRG1-mediated FZD6 transcriptional activation. Oncogene. 2018;37:3098-3112 pubmed 出版商
  166. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33:512-526.e8 pubmed 出版商
  167. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  168. Titone R, Zhu M, Robertson D. Insulin mediates de novo nuclear accumulation of the IGF-1/insulin Hybrid Receptor in corneal epithelial cells. Sci Rep. 2018;8:4378 pubmed 出版商
  169. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  170. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  171. Bogdan D, Falcone J, Kanjiya M, Park S, Carbonetti G, Studholme K, et al. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem. 2018;293:5295-5306 pubmed 出版商
  172. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  173. Pleiner T, Bates M, Gorlich D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol. 2018;217:1143-1154 pubmed 出版商
  174. Oldrini B, Hsieh W, Erdjument Bromage H, Codega P, Carro M, Curiel García A, et al. EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun. 2017;8:2035 pubmed 出版商
  175. Wu Y, Zhang Z, Cenciarini M, Proietti C, Amasino M, Hong T, et al. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ERα-GREB1 Transcriptional Axis. Cancer Res. 2018;78:671-684 pubmed 出版商
  176. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  177. Matson J, Dumitru R, Coryell P, Baxley R, Chen W, Twaroski K, et al. Rapid DNA replication origin licensing protects stem cell pluripotency. elife. 2017;6: pubmed 出版商
  178. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  179. Wang B, Fu X, Zhu M, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol. 2017;9:338-349 pubmed 出版商
  180. Shen Y, Kapfhamer D, Minnella A, Kim J, Won S, Chen Y, et al. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun. 2017;8:624 pubmed 出版商
  181. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  182. Wang Y, Zhang J, Su Y, Shen Y, Jiang D, Hou Y, et al. G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun. 2017;8:274 pubmed 出版商
  183. Wanet A, Caruso M, Domelevo Entfellner J, Najar M, Fattaccioli A, Demazy C, et al. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells. 2017;35:2184-2197 pubmed 出版商
  184. Krapivinsky G, Krapivinsky L, Renthal N, Santa Cruz A, Manasian Y, Clapham D. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc Natl Acad Sci U S A. 2017;114:E7092-E7100 pubmed 出版商
  185. Patne K, Rakesh R, Arya V, Chanana U, Sethy R, Swer P, et al. BRG1 and SMARCAL1 transcriptionally co-regulate DROSHA, DGCR8 and DICER in response to doxorubicin-induced DNA damage. Biochim Biophys Acta Gene Regul Mech. 2017;1860:936-951 pubmed 出版商
  186. Walter K, Goodman M, Singhal H, Hall J, Li T, Holloran S, et al. Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer. Mol Cancer Res. 2017;15:1331-1340 pubmed 出版商
  187. Bleuyard J, Fournier M, Nakato R, Couturier A, Katou Y, Ralf C, et al. MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proc Natl Acad Sci U S A. 2017;114:7671-7676 pubmed 出版商
  188. Schecher S, Walter B, Falkenstein M, Macher Goeppinger S, Stenzel P, Krümpelmann K, et al. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer. Int J Cancer. 2017;141:1643-1653 pubmed 出版商
  189. Tikhanovich I, Zhao J, Bridges B, Kumer S, Roberts B, Weinman S. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300. J Biol Chem. 2017;292:13333-13344 pubmed 出版商
  190. Mahajan K, Malla P, Lawrence H, Chen Z, Kumar Sinha C, Malik R, et al. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer. Cancer Cell. 2017;31:790-803.e8 pubmed 出版商
  191. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  192. Bourgeois C, Satou R, Prieto M. HDAC9 is an epigenetic repressor of kidney angiotensinogen establishing a sex difference. Biol Sex Differ. 2017;8:18 pubmed 出版商
  193. Almeida L, Neto M, Sousa L, Tannous M, Curti C, Leopoldino A. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation. Oncotarget. 2017;8:26802-26818 pubmed 出版商
  194. Zhu X, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, et al. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem. 2017;292:9409-9419 pubmed 出版商
  195. Wang X, Wang R, Luo M, Li C, Wang H, Huan C, et al. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget. 2017;8:33197-33213 pubmed 出版商
  196. François C, Petit F, Giton F, Gougeon A, Ravel C, Magre S, et al. A novel action of follicle-stimulating hormone in the ovary promotes estradiol production without inducing excessive follicular growth before puberty. Sci Rep. 2017;7:46222 pubmed 出版商
  197. Yan Y, Zhao W, Huang Y, Tong H, Xia Y, Jiang Q, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276 pubmed 出版商
  198. Jha K, Tripurani S, Johnson G. TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis. J Cell Sci. 2017;130:1835-1844 pubmed 出版商
  199. Shin C, Ito Y, Ichikawa S, Tokunaga M, Sakata Sogawa K, Tanaka T. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci Rep. 2017;7:46097 pubmed 出版商
  200. Luo D, de Morrée A, Boutet S, Quach N, Natu V, Rustagi A, et al. Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci U S A. 2017;114:E3071-E3080 pubmed 出版商
  201. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  202. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  203. Bohnacker T, Prota A, Beaufils F, Burke J, Melone A, Inglis A, et al. Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat Commun. 2017;8:14683 pubmed 出版商
  204. Sgourdou P, Mishra Gorur K, Saotome I, Henagariu O, Tuysuz B, Campos C, et al. Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep. 2017;7:43708 pubmed 出版商
  205. Wyatt H, Laister R, Martin S, Arrowsmith C, West S. The SMX DNA Repair Tri-nuclease. Mol Cell. 2017;65:848-860.e11 pubmed 出版商
  206. Nguyen K, Das B, Dobrowolski C, Karn J. Multiple Histone Lysine Methyltransferases Are Required for the Establishment and Maintenance of HIV-1 Latency. MBio. 2017;8: pubmed 出版商
  207. Gherardi S, Ripoche D, Mikaelian I, Chanal M, Teinturier R, Goehrig D, et al. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification. Biochim Biophys Acta Gene Regul Mech. 2017;1860:427-437 pubmed 出版商
  208. Amendola P, Zaghet N, Ramalho J, Vilstrup Johansen J, Boxem M, Salcini A. JMJD-5/KDM8 regulates H3K36me2 and is required for late steps of homologous recombination and genome integrity. PLoS Genet. 2017;13:e1006632 pubmed 出版商
  209. Shi Z, Lee K, Yang D, Amin S, Verma N, Li Q, et al. Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell. 2017;20:675-688.e6 pubmed 出版商
  210. Chen S, Jing Y, Kang X, Yang L, Wang D, Zhang W, et al. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res. 2017;45:1144-1158 pubmed 出版商
  211. Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, et al. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res. 2017;45:4532-4549 pubmed 出版商
  212. Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y, et al. CRL4DCAF8 Ubiquitin Ligase Targets Histone H3K79 and Promotes H3K9 Methylation in the Liver. Cell Rep. 2017;18:1499-1511 pubmed 出版商
  213. Zhao D, Lu X, Wang G, Lan Z, Liao W, Li J, et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature. 2017;542:484-488 pubmed 出版商
  214. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  215. Wu N, Jia D, Bates B, Basom R, Eberhart C, MacPherson D. A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence. J Clin Invest. 2017;127:888-898 pubmed 出版商
  216. Zaqout S, Bessa P, Kramer N, Stoltenburg Didinger G, Kaindl A. CDK5RAP2 Is Required to Maintain the Germ Cell Pool during Embryonic Development. Stem Cell Reports. 2017;8:198-204 pubmed 出版商
  217. Yamauchi M, Shibata A, Suzuki K, Suzuki M, Niimi A, Kondo H, et al. Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1. Sci Rep. 2017;7:41812 pubmed 出版商
  218. Mondello P, Derenzini E, Asgari Z, Philip J, Brea E, SESHAN V, et al. Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget. 2017;8:14017-14028 pubmed 出版商
  219. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  220. He Y, Selvaraju S, Curtin M, Jakob C, Zhu H, Comess K, et al. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol. 2017;13:389-395 pubmed 出版商
  221. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  222. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  223. Tagal V, Wei S, Zhang W, Brekken R, Posner B, Peyton M, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun. 2017;8:14098 pubmed 出版商
  224. Nakazawa H, Chang K, Shinozaki S, Yasukawa T, Ishimaru K, Yasuhara S, et al. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53. PLoS ONE. 2017;12:e0170391 pubmed 出版商
  225. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  226. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  227. Safina A, Cheney P, Pal M, Brodsky L, Ivanov A, Kirsanov K, et al. FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Res. 2017;45:1925-1945 pubmed 出版商
  228. Wu H, Gordon J, Whitfield T, Tai P, Van Wijnen A, Stein J, et al. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochim Biophys Acta Gene Regul Mech. 2017;1860:438-449 pubmed 出版商
  229. Li C, Chang L, Chen Z, Liu Z, Wang Y, Ye Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int J Mol Med. 2017;39:347-356 pubmed 出版商
  230. Wheaton K, Sarkari F, Stanly Johns B, Davarinejad H, Egorova O, Kaustov L, et al. UbE2E1/UBCH6 Is a Critical in Vivo E2 for the PRC1-catalyzed Ubiquitination of H2A at Lys-119. J Biol Chem. 2017;292:2893-2902 pubmed 出版商
  231. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  232. Fitter S, Matthews M, Martin S, Xie J, Ooi S, Walkley C, et al. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol. 2017;37: pubmed 出版商
  233. Papillon Cavanagh S, Lu C, Gayden T, Mikael L, Bechet D, Karamboulas C, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 2017;49:180-185 pubmed 出版商
  234. Fantini D, Huang S, Asara J, Bagchi S, Raychaudhuri P. Chromatin association of XRCC5/6 in the absence of DNA damage depends on the XPE gene product DDB2. Mol Biol Cell. 2017;28:192-200 pubmed 出版商
  235. Sierra Potchanant E, Cerabona D, Sater Z, He Y, Sun Z, Gehlhausen J, et al. INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol. 2017;37: pubmed 出版商
  236. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  237. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  238. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  239. Göllner S, Oellerich T, Agrawal Singh S, Schenk T, Klein H, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23:69-78 pubmed 出版商
  240. Keller M, Paul P, Rabaglia M, Stapleton D, Schueler K, Broman A, et al. The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets. PLoS Genet. 2016;12:e1006466 pubmed 出版商
  241. Neeli I, Radic M. Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones. Front Immunol. 2016;7:528 pubmed
  242. Endorf E, Qing H, Aono J, Terami N, Doyon G, Hyzny E, et al. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes. Arterioscler Thromb Vasc Biol. 2017;37:301-311 pubmed 出版商
  243. Zhu P, Wang Y, Wu J, Huang G, Liu B, Ye B, et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun. 2016;7:13608 pubmed 出版商
  244. Svoboda L, Bailey N, Van Noord R, Krook M, Harris A, Cramer C, et al. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget. 2017;8:458-471 pubmed 出版商
  245. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  246. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  247. Kim W, Khan S, Gvozdenovic Jeremic J, Kim Y, Dahlman J, Kim H, et al. Hippo signaling interactions with Wnt/?-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest. 2017;127:137-152 pubmed 出版商
  248. Sengupta S, Rath U, Yao C, Zavortink M, Wang C, Girton J, et al. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS ONE. 2016;11:e0166829 pubmed 出版商
  249. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  250. Busby M, Xue C, Li C, Farjoun Y, Gienger E, Yofe I, et al. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq. Epigenetics Chromatin. 2016;9:49 pubmed
  251. Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, et al. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med. 2016;8:1421-1437 pubmed 出版商
  252. Pazienza V, Panebianco C, Rappa F, Memoli D, Borghesan M, Cannito S, et al. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin. 2016;9:45 pubmed
  253. Fukuda A, Mitani A, Miyashita T, Sado T, Umezawa A, Akutsu H. Maintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice. PLoS Genet. 2016;12:e1006375 pubmed 出版商
  254. Junge H, Yung A, Goodrich L, Chen Z. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord. Neural Dev. 2016;11:19 pubmed
  255. Dey N, Ramesh P, Chugh M, Mandal S, Mandal L. Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila. elife. 2016;5: pubmed 出版商
  256. Desfossés Baron K, Hammond Martel I, Simoneau A, Sellam A, Roberts S, Wurtele H. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae. Sci Rep. 2016;6:36013 pubmed 出版商
  257. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  258. Ren K, Zhang W, Chen X, Ma Y, Dai Y, Fan Y, et al. An Epigenetic Compound Library Screen Identifies BET Inhibitors That Promote HSV-1 and -2 Replication by Bridging P-TEFb to Viral Gene Promoters through BRD4. PLoS Pathog. 2016;12:e1005950 pubmed 出版商
  259. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  260. Huang T, Alvarez A, Pangeni R, Horbinski C, Lu S, Kim S, et al. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun. 2016;7:12885 pubmed 出版商
  261. Bridges K, Chen X, Liu H, Rock C, Buchholz T, Shumway S, et al. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Oncotarget. 2016;7:71660-71672 pubmed 出版商
  262. Wu R, Wang Z, Zhang H, Gan H, Zhang Z. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res. 2017;45:169-180 pubmed 出版商
  263. Cortes D, Robledo Arratia Y, Hernández Martinez R, Escobedo Ávila I, Bargas J, Velasco I. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells. Front Cell Neurosci. 2016;10:217 pubmed 出版商
  264. Ow J, Palanichamy Kala M, Rao V, Choi M, Bharathy N, Taneja R. G9a inhibits MEF2C activity to control sarcomere assembly. Sci Rep. 2016;6:34163 pubmed 出版商
  265. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  266. Jayapal S, Ang H, Wang C, Bisteau X, Caldez M, Xuan G, et al. Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle. 2016;15:3070-3081 pubmed
  267. Patrick N, Griggs C, Icenogle A, Gilpatrick M, Kadiyala V, Jaime Frias R, et al. Class I lysine deacetylases promote glucocorticoid-induced transcriptional repression through functional interaction with LSD1. J Steroid Biochem Mol Biol. 2017;167:1-13 pubmed 出版商
  268. Matsukawa K, Hashimoto T, Matsumoto T, Ihara R, Chihara T, Miura M, et al. Familial Amyotrophic Lateral Sclerosis-linked Mutations in Profilin 1 Exacerbate TDP-43-induced Degeneration in the Retina of Drosophila melanogaster through an Increase in the Cytoplasmic Localization of TDP-43. J Biol Chem. 2016;291:23464-23476 pubmed
  269. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  270. Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu W, et al. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 2016;538:118-122 pubmed 出版商
  271. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  272. Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, et al. Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016;12:e1006279 pubmed 出版商
  273. Duggan S, Behan F, Kirca M, Zaheer A, McGarrigle S, Reynolds J, et al. The characterization of an intestine-like genomic signature maintained during Barrett's-associated adenocarcinogenesis reveals an NR5A2-mediated promotion of cancer cell survival. Sci Rep. 2016;6:32638 pubmed 出版商
  274. Bassi D, Zhang J, Renner C, Klein Szanto A. Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth. Mol Carcinog. 2017;56:1182-1188 pubmed 出版商
  275. Ueda T, Nakata Y, Nagamachi A, Yamasaki N, Kanai A, Sera Y, et al. Propagation of trimethylated H3K27 regulated by polycomb protein EED is required for embryogenesis, hematopoietic maintenance, and tumor suppression. Proc Natl Acad Sci U S A. 2016;113:10370-5 pubmed 出版商
  276. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  277. Hong X, Liu W, Song R, Shah J, Feng X, Tsang C, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855-8869 pubmed
  278. Guturi K, Bohgaki M, Bohgaki T, Srikumar T, Ng D, Kumareswaran R, et al. RNF168 and USP10 regulate topoisomerase IIα function via opposing effects on its ubiquitylation. Nat Commun. 2016;7:12638 pubmed 出版商
  279. Gallardo Montejano V, Saxena G, Kusminski C, Yang C, McAfee J, Hahner L, et al. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1?/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat Commun. 2016;7:12723 pubmed 出版商
  280. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed 出版商
  281. Li L, Liu H, Wang C, Liu X, Hu F, Xie N, et al. Overexpression of ?-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. Biomed Res Int. 2016;2016:5378567 pubmed 出版商
  282. Moreno A, Carrington J, Albergante L, Al Mamun M, Haagensen E, Komseli E, et al. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A. 2016;113:E5757-64 pubmed 出版商
  283. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  284. Ramakrishnan S, Ku S, Ciamporcero E, Miles K, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617 pubmed 出版商
  285. Platt J, Salama R, Smythies J, Choudhry H, Davies J, Hughes J, et al. Capture-C reveals preformed chromatin interactions between HIF-binding sites and distant promoters. EMBO Rep. 2016;17:1410-1421 pubmed
  286. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  287. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  288. Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N, Betz T, et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun. 2016;7:12237 pubmed 出版商
  289. Tanaka G, Inoue K, Shimizu T, Akimoto K, Kubota K. Dual pharmacological inhibition of glutathione and thioredoxin systems synergizes to kill colorectal carcinoma stem cells. Cancer Med. 2016;5:2544-57 pubmed 出版商
  290. Dhamad A, Zhou Z, Zhou J, Du Y. Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ER?) and Biochemical Characterization of the ER?-Hsp70 Interaction. PLoS ONE. 2016;11:e0160312 pubmed 出版商
  291. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  292. Wang Y, Sun H, Wang J, Wang H, Meng L, Xu C, et al. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis. 2016;7:e2316 pubmed 出版商
  293. Wang C, Yin M, Wu W, Dong L, Wang S, Lu Y, et al. Taiman acts as a coactivator of Yorkie in the Hippo pathway to promote tissue growth and intestinal regeneration. Cell Discov. 2016;2:16006 pubmed 出版商
  294. Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J, Zhu H, et al. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochim Biophys Acta. 2016;1862:2004-14 pubmed 出版商
  295. Merry C, McMahon S, Forrest M, Bartels C, Saiakhova A, Bartel C, et al. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget. 2016;7:53230-53244 pubmed 出版商
  296. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  297. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  298. Gygli P, Chang J, Gokozan H, Catacutan F, Schmidt T, Kaya B, et al. Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging (Albany NY). 2016;8:1540-70 pubmed 出版商
  299. Naito M, Mori M, Inagawa M, Miyata K, Hashimoto N, Tanaka S, et al. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. PLoS Genet. 2016;12:e1006167 pubmed 出版商
  300. Kawano S, Grassian A, Tsuda M, Knutson S, Warholic N, Kuznetsov G, et al. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma. PLoS ONE. 2016;11:e0158888 pubmed 出版商
  301. Alver T, Lavelle T, Longva A, Øy G, Hovig E, Bøe S. MITF depletion elevates expression levels of ERBB3 receptor and its cognate ligand NRG1-beta in melanoma. Oncotarget. 2016;7:55128-55140 pubmed 出版商
  302. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  303. Gao X, Lin S, Ren F, Li J, Chen J, Yao C, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun. 2016;7:11960 pubmed 出版商
  304. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  305. Badal S, Wang Y, Long J, Corcoran D, CHANG B, Truong L, et al. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun. 2016;7:12076 pubmed 出版商
  306. Itahana Y, Zhang J, Göke J, Vardy L, Han R, Iwamoto K, et al. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells. Sci Rep. 2016;6:28112 pubmed 出版商
  307. Chung H, Park J, Lee N, Kim H, Jang C. Phosphorylation of Astrin Regulates Its Kinetochore Function. J Biol Chem. 2016;291:17579-92 pubmed 出版商
  308. Ono H, Basson M, Ito H. P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget. 2016;7:51301-51310 pubmed 出版商
  309. Engel K, Rudelius M, Slawska J, Jacobs L, Ahangarian Abhari B, Altmann B, et al. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 2016;8:851-62 pubmed 出版商
  310. Bott L, Salomons F, Maric D, Liu Y, Merry D, Fischbeck K, et al. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex. Sci Rep. 2016;6:27703 pubmed 出版商
  311. Deaton A, Gómez Rodríguez M, Mieczkowski J, Tolstorukov M, Kundu S, Sadreyev R, et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. elife. 2016;5: pubmed 出版商
  312. Rowald K, Mantovan M, Passos J, Buccitelli C, Mardin B, Korbel J, et al. Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth. Cell Rep. 2016;15:2679-91 pubmed 出版商
  313. Zhang J, Jiang Z, Liu X, Meng A. Eph/ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development. 2016;143:2603-15 pubmed 出版商
  314. Bergstralh D, Lovegrove H, Kujawiak I, Dawney N, Zhu J, Cooper S, et al. Pins is not required for spindle orientation in the Drosophila wing disc. Development. 2016;143:2573-81 pubmed 出版商
  315. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed 出版商
  316. Park W, Kim H, Kang D, Ryu J, Choi K, Lee G, et al. Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. BMC Cancer. 2016;16:358 pubmed 出版商
  317. Kirita Y, Kami D, Ishida R, Adachi T, Tamagaki K, Matoba S, et al. Preserved Nephrogenesis Following Partial Nephrectomy in Early Neonates. Sci Rep. 2016;6:26792 pubmed 出版商
  318. Zhu P, Wang Y, Huang G, Ye B, Liu B, Wu J, et al. lnc-?-Catm elicits EZH2-dependent ?-catenin stabilization and sustains liver CSC self-renewal. Nat Struct Mol Biol. 2016;23:631-9 pubmed 出版商
  319. Brosh R, Hrynyk I, Shen J, Waghray A, Zheng N, Lemischka I. A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun. 2016;7:11742 pubmed 出版商
  320. Fang D, Gan H, Lee J, Han J, Wang Z, Riester S, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science. 2016;352:1344-8 pubmed 出版商
  321. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  322. Leggere J, Saito Y, Darnell R, Tessier Lavigne M, Junge H, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. elife. 2016;5: pubmed 出版商
  323. Romanello M, Schiavone D, Frey A, Sale J. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J. 2016;35:1452-64 pubmed 出版商
  324. Kobayashi E, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624 pubmed 出版商
  325. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  326. Zeng L, Cai C, Li S, Wang W, Li Y, Chen J, et al. Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells. PLoS Genet. 2016;12:e1006055 pubmed 出版商
  327. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  328. Pal S, Graves H, Ohsawa R, Huang T, Wang P, Harmacek L, et al. The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS ONE. 2016;11:e0155409 pubmed 出版商
  329. Lu C, Jain S, Hoelper D, Bechet D, Molden R, Ran L, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science. 2016;352:844-9 pubmed 出版商
  330. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  331. Ting W, Yang J, Kuo C, Xiao Z, Lu X, Yeh Y, et al. Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts. Oncotarget. 2016;7:39017-39025 pubmed 出版商
  332. Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7:34785-99 pubmed 出版商
  333. Terakawa J, Rocchi A, Serna V, Bottinger E, Graff J, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol. 2016;30:783-95 pubmed 出版商
  334. Matsushima H, Mori T, Ito F, Yamamoto T, Akiyama M, Kokabu T, et al. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer. Oncotarget. 2016;7:34131-48 pubmed 出版商
  335. Shema E, Jones D, Shoresh N, Donohue L, Ram O, Bernstein B. Single-molecule decoding of combinatorially modified nucleosomes. Science. 2016;352:717-21 pubmed 出版商
  336. Chaudhary S, Madhukrishna B, Adhya A, Keshari S, Mishra S. Overexpression of caspase 7 is ER? dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip). Oncogenesis. 2016;5:e219 pubmed 出版商
  337. Huang C, Lee C, Yang S, Chien C, Huang C, Yang R, et al. Upregulation of the growth arrest-specific-2 in recurrent colorectal cancers, and its susceptibility to chemotherapy in a model cell system. Biochim Biophys Acta. 2016;1862:1345-53 pubmed 出版商
  338. He D, Xiang J, Li B, Liu H. The dynamic behavior of Ect2 in response to DNA damage. Sci Rep. 2016;6:24504 pubmed 出版商
  339. Hobbs R, Batazzi A, Han M, Coulombe P. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. 2016;35:5653-5662 pubmed 出版商
  340. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  341. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  342. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  343. Huang C, Cheng J, Bawa Khalfe T, Yao X, Chin Y, Yeh E. SUMOylated ORC2 Recruits a Histone Demethylase to Regulate Centromeric Histone Modification and Genomic Stability. Cell Rep. 2016;15:147-157 pubmed 出版商
  344. Wefers A, Lindner S, Schulte J, Schüller U. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum. Cerebellum. 2017;16:122-131 pubmed 出版商
  345. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117 pubmed 出版商
  346. Perez R, Shen H, Duan L, Kim R, Kim T, Park N, et al. Modeling the Etiology of p53-mutated Cancer Cells. J Biol Chem. 2016;291:10131-47 pubmed 出版商
  347. Upadhyay M, Martino Cortez Y, Wong Deyrup S, Tavares L, Schowalter S, Flora P, et al. Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila. PLoS Genet. 2016;12:e1005918 pubmed 出版商
  348. Xiao J, Duan Q, Wang Z, Yan W, Sun H, Xue P, et al. Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon. Oncotarget. 2016;7:24483-94 pubmed 出版商
  349. Galán M, Varona S, Orriols M, Rodríguez J, Aguiló S, Dilmé J, et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech. 2016;9:541-52 pubmed 出版商
  350. Elnfati A, Iles D, Miller D. Nucleosomal chromatin in the mature sperm of Drosophila melanogaster. Genom Data. 2016;7:175-7 pubmed 出版商
  351. Qiu Z, Elsayed Z, Peterkin V, Alkatib S, Bennett D, Landry J. Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expression. BMC Biol. 2016;14:18 pubmed 出版商
  352. Richarson A, Scott D, Zagnitko O, Aza Blanc P, Chang C, Russler Germain D. Registered report: IDH mutation impairs histone demethylation and results in a block to cell differentiation. elife. 2016;5:e10860 pubmed 出版商
  353. Zhao H, Wang H, Bauzon F, Lu Z, Fu H, Cui J, et al. Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis. J Biol Chem. 2016;291:10201-9 pubmed 出版商
  354. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  355. Dhawan S, Dirice E, Kulkarni R, Bhushan A. Inhibition of TGF-β Signaling Promotes Human Pancreatic β-Cell Replication. Diabetes. 2016;65:1208-18 pubmed 出版商
  356. Wu J, Chi L, Chen Z, Lu X, Xiao S, Zhang G, et al. Functional analysis of the TMPRSS2:ERG fusion gene in cisplatin‑induced cell death. Mol Med Rep. 2016;13:3173-80 pubmed 出版商
  357. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  358. Liu N, Avramova Z. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis. Epigenetics Chromatin. 2016;9:8 pubmed 出版商
  359. Ladurner R, Kreidl E, Ivanov M, Ekker H, Idarraga Amado M, Busslinger G, et al. Sororin actively maintains sister chromatid cohesion. EMBO J. 2016;35:635-53 pubmed 出版商
  360. Wei J, Xiong Z, Lee J, Cheng J, Duffney L, Matas E, et al. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J Neurosci. 2016;36:2119-30 pubmed 出版商
  361. Chuang T, Lee K, Lou Y, Lu C, Tarn W. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement. J Biol Chem. 2016;291:8565-74 pubmed 出版商
  362. Baron A, von Schubert C, Cubizolles F, Siemeister G, Hitchcock M, Mengel A, et al. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. elife. 2016;5: pubmed 出版商
  363. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  364. Aparicio T, Baer R, Gottesman M, Gautier J. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J Cell Biol. 2016;212:399-408 pubmed 出版商
  365. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X, et al. Expression of Ferritin Light Chain (FTL) Is Elevated in Glioblastoma, and FTL Silencing Inhibits Glioblastoma Cell Proliferation via the GADD45/JNK Pathway. PLoS ONE. 2016;11:e0149361 pubmed 出版商
  366. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  367. Liao K, Guo M, Niu F, Yang L, Callen S, Buch S. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J Neuroinflammation. 2016;13:33 pubmed 出版商
  368. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  369. Cui Q, Yang S, Ye P, Tian E, Sun G, Zhou J, et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nat Commun. 2016;7:10637 pubmed 出版商
  370. Bandopadhayay P, Ramkissoon L, Jain P, Bergthold G, Wala J, Zeid R, et al. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet. 2016;48:273-82 pubmed 出版商
  371. Mo F, Zhuang X, Liu X, Yao P, Qin B, Su Z, et al. Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol. 2016;12:226-32 pubmed 出版商
  372. Walter M, Teissandier A, Pérez Palacios R, Bourc his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. elife. 2016;5: pubmed 出版商
  373. Misuraca K, Hu G, Barton K, Chung A, Becher O. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia. 2016;18:60-70 pubmed 出版商
  374. Heo J, Kim W, Choi K, Bae S, Jeong J, Kim K. XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget. 2016;7:5118-30 pubmed 出版商
  375. Veith N, Ziehr H, MacLeod R, Reamon Buettner S. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. BMC Biotechnol. 2016;16:6 pubmed 出版商
  376. Tamaoki K, Okada R, Ishihara A, Shiojiri N, Mochizuki K, Goda T, et al. Morphological, biochemical, transcriptional and epigenetic responses to fasting and refeeding in intestine of Xenopus laevis. Cell Biosci. 2016;6:2 pubmed 出版商
  377. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  378. Soo Lee N, Jin Chung H, Kim H, Yun Lee S, Ji J, Seo Y, et al. TRAIP/RNF206 is required for recruitment of RAP80 to sites of DNA damage. Nat Commun. 2016;7:10463 pubmed 出版商
  379. Minnich M, Tagoh H, Bönelt P, Axelsson E, Fischer M, Cebolla B, et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nat Immunol. 2016;17:331-43 pubmed 出版商
  380. Taniue K, Kurimoto A, Sugimasa H, Nasu E, Takeda Y, Iwasaki K, et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A. 2016;113:1273-8 pubmed 出版商
  381. Chen N, Uddin B, Voit R, Schiebel E. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A. 2016;113:990-5 pubmed 出版商
  382. Terranova Barberio M, Roca M, Zotti A, Leone A, Bruzzese F, Vitagliano C, et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715-31 pubmed 出版商
  383. Conery A, Centore R, Neiss A, Keller P, Joshi S, Spillane K, et al. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife. 2016;5: pubmed 出版商
  384. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  385. Benitz S, Regel I, Reinhard T, Popp A, Schäffer I, Raulefs S, et al. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells. Oncotarget. 2016;7:11424-33 pubmed 出版商
  386. Zhang P, Li G, Deng Z, Liu L, Chen L, Tang J, et al. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res. 2016;44:3629-42 pubmed 出版商
  387. Toledo R, Qin Y, Cheng Z, Gao Q, Iwata S, Silva G, et al. Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res. 2016;22:2301-10 pubmed 出版商
  388. Hessmann E, Zhang J, Chen N, Hasselluhn M, Liou G, Storz P, et al. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation. Stem Cells Int. 2016;2016:5272498 pubmed 出版商
  389. Paladino D, Yue P, Furuya H, Acoba J, Rosser C, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 2016;7:7253-67 pubmed 出版商
  390. Toni L, Padilla P. Developmentally arrested Austrofundulus limnaeus embryos have changes in post-translational modifications of histone H3. J Exp Biol. 2016;219:544-52 pubmed 出版商
  391. García V, Lara Chica M, Cantarero I, Sterner O, Calzado M, Muñoz E. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget. 2016;7:4490-506 pubmed 出版商
  392. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  393. Abu Odeh M, Hereema N, Aqeilan R. WWOX modulates the ATR-mediated DNA damage checkpoint response. Oncotarget. 2016;7:4344-55 pubmed 出版商
  394. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  395. Tiedemann R, Hlady R, Hanavan P, Lake D, Tibes R, Lee J, et al. Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget. 2016;7:1927-46 pubmed 出版商
  396. Grandy R, Whitfield T, Wu H, Fitzgerald M, VanOudenhove J, Zaidi S, et al. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Mol Cell Biol. 2016;36:615-27 pubmed 出版商
  397. Wassef M, Rodilla V, Teissandier A, Zeitouni B, Gruel N, Sadacca B, et al. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 2015;29:2547-62 pubmed 出版商
  398. Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, et al. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun. 2015;6:10068 pubmed 出版商
  399. Cai L, Wang Z, Liu D. Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression. Tumour Biol. 2016;37:6359-69 pubmed 出版商
  400. Sengupta D, Byrum S, Avaritt N, Davis L, Shields B, Mahmoud F, et al. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma. Mol Cell Proteomics. 2016;15:765-75 pubmed 出版商
  401. Zemke M, Draganova K, Klug A, Schöler A, Zurkirchen L, Gay M, et al. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biol. 2015;13:103 pubmed 出版商
  402. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380-94 pubmed 出版商
  403. Hernando H, Gelato K, Lesche R, Beckmann G, Koehr S, Otto S, et al. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes. Mol Cancer Ther. 2016;15:287-98 pubmed 出版商
  404. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  405. Grassian A, Scales T, Knutson S, Kuntz K, McCarthy N, Lowe C, et al. A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality. Biol Proced Online. 2015;17:15 pubmed 出版商
  406. Laumet G, Garriga J, Chen S, Zhang Y, Li D, Smith T, et al. G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition. Nat Neurosci. 2015;18:1746-55 pubmed 出版商
  407. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed 出版商
  408. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  409. Amlie Wolf A, Ryvkin P, Tong R, Dragomir I, Suh E, Xu Y, et al. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS ONE. 2015;10:e0141836 pubmed 出版商
  410. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527:249-53 pubmed 出版商
  411. Tarayrah L, Li Y, Gan Q, Chen X. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity. Biol Open. 2015;4:1518-27 pubmed 出版商
  412. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  413. Meyer S, Krebs S, Thirion C, Blum H, Krause S, Pfaffl M. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells. PLoS ONE. 2015;10:e0139520 pubmed 出版商
  414. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  415. Lu S, Yang Y, Du Y, Cao L, Li M, Shen C, et al. The transcription factor c-Fos coordinates with histone lysine-specific demethylase 2A to activate the expression of cyclooxygenase-2. Oncotarget. 2015;6:34704-17 pubmed 出版商
  416. Matsuda S, Adachi J, Ihara M, Tanuma N, Shima H, Kakizuka A, et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res. 2016;44:636-47 pubmed 出版商
  417. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  418. Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget. 2015;6:32410-25 pubmed 出版商
  419. Jardé T, Kass L, Staples M, Lescesen H, Carne P, Oliva K, et al. ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer. PLoS ONE. 2015;10:e0138336 pubmed 出版商
  420. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  421. Kim S, Yang W, Min Y, Ko Y, Yoon S. The role of the polycomb repressive complex pathway in T and NK cell lymphoma: biological and prognostic implications. Tumour Biol. 2016;37:2037-47 pubmed 出版商
  422. Paret C, Simon P, Vormbrock K, Bender C, Kölsch A, Breitkreuz A, et al. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer. Oncotarget. 2015;6:25356-67 pubmed 出版商
  423. Tuncay H, Brinkmann B, Steinbacher T, Schürmann A, Gerke V, Iden S, et al. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat Commun. 2015;6:8128 pubmed 出版商
  424. Shimada M, Dumitrache L, Russell H, McKinnon P. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J. 2015;34:2465-80 pubmed 出版商
  425. Torres M, Pandita R, Kulak O, Kumar R, Formstecher E, Horikoshi N, et al. Role of the Exocyst Complex Component Sec6/8 in Genomic Stability. Mol Cell Biol. 2015;35:3633-45 pubmed 出版商
  426. Carmona Mora P, Widagdo J, Tomasetig F, Canales C, Cha Y, Lee W, et al. The nuclear localization pattern and interaction partners of GTF2IRD1 demonstrate a role in chromatin regulation. Hum Genet. 2015;134:1099-115 pubmed 出版商
  427. Bravo M, Nicolini F, Starowicz K, Barroso S, Calés C, Aguilera A, et al. Polycomb RING1A- and RING1B-dependent histone H2A monoubiquitylation at pericentromeric regions promotes S-phase progression. J Cell Sci. 2015;128:3660-71 pubmed 出版商
  428. Meraviglia V, Azzimato V, Colussi C, Florio M, Binda A, Panariti A, et al. Acetylation mediates Cx43 reduction caused by electrical stimulation. J Mol Cell Cardiol. 2015;87:54-64 pubmed 出版商
  429. Kang S, Kim S, Chai J, Kim S, Won K, Lee Y, et al. Transcriptomic Profiling and H3K27me3 Distribution Reveal Both Demethylase-Dependent and Independent Regulation of Developmental Gene Transcription in Cell Differentiation. PLoS ONE. 2015;10:e0135276 pubmed 出版商
  430. Kanfer G, Courtheoux T, Peterka M, Meier S, Soste M, Melnik A, et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun. 2015;6:8015 pubmed 出版商
  431. Guo Y, Zheng Y. Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell. 2015;26:3379-89 pubmed 出版商
  432. Nezich C, Wang C, Fogel A, Youle R. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015;210:435-50 pubmed 出版商
  433. McCleland M, Soukup T, Liu S, Esensten J, De Sousa E Melo F, Yaylaoglu M, et al. Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis. J Pathol. 2015;237:508-19 pubmed 出版商
  434. Evans B, Griner E. Registered report: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. elife. 2015;4:e07420 pubmed 出版商
  435. Namachivayam K, Mohankumar K, Arbach D, Jagadeeswaran R, Jain S, Natarajan V, et al. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE. 2015;10:e0134003 pubmed 出版商
  436. Alekseyenko A, Walsh E, Wang X, Grayson A, Hsi P, Kharchenko P, et al. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 2015;29:1507-23 pubmed 出版商
  437. Massey A. Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE. 2015;10:e0134306 pubmed 出版商
  438. Sin H, Kartashov A, Hasegawa K, Barski A, Namekawa S. Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biol. 2015;13:53 pubmed 出版商
  439. Yoon J, Sudo K, Kuroda M, Kato M, Lee I, Han J, et al. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nat Commun. 2015;6:7600 pubmed 出版商
  440. Tyler C, Hafez A, Solomon E, Allan A. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain. Toxicol Appl Pharmacol. 2015;288:40-51 pubmed 出版商
  441. Montgomery D, Sorum A, Guasch L, Nicklaus M, Meier J. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors. Chem Biol. 2015;22:1030-1039 pubmed 出版商
  442. Fei Q, Yang X, Jiang H, Wang Q, Yu Y, Yu Y, et al. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res. 2015;25:1325-35 pubmed 出版商
  443. Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D, et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun. 2015;6:7668 pubmed 出版商
  444. Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015;6:7505 pubmed 出版商
  445. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed 出版商
  446. Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6:22361-74 pubmed
  447. Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, et al. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med. 2015;7:1048-62 pubmed 出版商
  448. Gunes A, Iscan E, Topel H, Avci S, Gumustekin M, Erdal E, et al. Heparin treatment increases thioredoxin interacting protein expression in hepatocellular carcinoma cells. Int J Biochem Cell Biol. 2015;65:169-81 pubmed 出版商
  449. Kotomura N, Harada N, Ishihara S. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene. PLoS ONE. 2015;10:e0128282 pubmed 出版商
  450. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11:1446-57 pubmed 出版商
  451. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  452. Ohira M, Iwasaki Y, Tanaka C, Kuroki M, Matsuo N, Kitamura T, et al. A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo. Biochim Biophys Acta. 2015;1850:1676-84 pubmed 出版商
  453. Nishioka C, Ikezoe T, Yang J, Yokoyama A. Tetraspanin Family Member, CD82, Regulates Expression of EZH2 via Inactivation of p38 MAPK Signaling in Leukemia Cells. PLoS ONE. 2015;10:e0125017 pubmed 出版商
  454. Zhang Y, Laumet G, Chen S, Hittelman W, Pan H. Pannexin-1 Up-regulation in the Dorsal Root Ganglion Contributes to Neuropathic Pain Development. J Biol Chem. 2015;290:14647-55 pubmed 出版商
  455. Milev M, Hasaj B, Saint Dic D, Snounou S, Zhao Q, Sacher M. TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment. J Cell Biol. 2015;209:221-34 pubmed 出版商
  456. Chen H, Huang W, Yang L, Lin C. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol. 2015;185:1487-99 pubmed 出版商
  457. Spurlock C, Tossberg J, Guo Y, Collier S, Crooke P, Aune T. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat Commun. 2015;6:6932 pubmed 出版商
  458. Huang X, Shen M, Wang L, Yu F, Wu W, Liu H. Effects of tributyltin chloride on developing mouse oocytes and preimplantation embryos. Microsc Microanal. 2015;21:358-67 pubmed 出版商
  459. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  460. Fan H, Zhang H, Pascuzzi P, Andrisani O. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene. 2016;35:715-26 pubmed 出版商
  461. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  462. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  463. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  464. Carlson S, Moore K, Sankaran S, Reynoird N, Elias J, Gozani O. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme. J Biol Chem. 2015;290:12040-7 pubmed 出版商
  465. Xie W, Pariollaud M, Wixted W, Chitnis N, Fornwald J, Truong M, et al. Identification and characterization of PERK activators by phenotypic screening and their effects on NRF2 activation. PLoS ONE. 2015;10:e0119738 pubmed 出版商
  466. Hendriks I, Treffers L, Verlaan de Vries M, Olsen J, Vertegaal A. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. Cell Rep. 2015;10:1778-1791 pubmed 出版商
  467. Poirier J, Gardner E, Connis N, Moreira A, de Stanchina E, Hann C, et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene. 2015;34:5869-78 pubmed 出版商
  468. Simon H, ODELBERG S. Assessing cardiomyocyte proliferative capacity in the newt heart and primary culture. Methods Mol Biol. 2015;1290:227-40 pubmed 出版商
  469. Bardhan K, Paschall A, Yang D, Chen M, Simon P, Bhutia Y, et al. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer. Cancer Immunol Res. 2015;3:795-805 pubmed 出版商
  470. Yang S, Zhang J, Zhang Y, Wan X, Zhang C, Huang X, et al. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation. Prostate. 2015;75:936-46 pubmed 出版商
  471. Cheung J, Dickinson D, Moss J, Schuler M, Spellman R, Heard P. Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen. 2015;777:7-16 pubmed 出版商
  472. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  473. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602-14 pubmed
  474. Takahashi J, Kumar V, Nakashe P, Koike N, Huang H, Green C, et al. ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals. Methods Enzymol. 2015;551:285-321 pubmed 出版商
  475. Lee E, Kim S, Cho K. Reconstituted High-Density Lipoprotein Containing Human Growth Hormone-1 Shows Potent Tissue Regeneration Activity with Enhancement of Anti-Oxidant and Anti-Atherosclerotic Activities. Rejuvenation Res. 2015;18:245-56 pubmed 出版商
  476. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  477. Hsiao S, Chen M, Chen C, Chien M, Hua K, Hsiao M, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1556-65 pubmed 出版商
  478. Kim S, Ebbert K, Cordeiro M, Romero M, Zhu J, Serna V, et al. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology. 2015;156:1464-76 pubmed 出版商
  479. Wijeweera A, Haj M, Feldman A, Pnueli L, Luo Z, Melamed P. Gonadotropin gene transcription is activated by menin-mediated effects on the chromatin. Biochim Biophys Acta. 2015;1849:328-41 pubmed 出版商
  480. de Oliveira S, Boudinot P, Calado Ã, Mulero V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 2015;194:1523-33 pubmed 出版商
  481. Matsuda Y, Kobayashi Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M. Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep. 2015;5:7701 pubmed 出版商
  482. Wang W, Visavadiya N, Pandya J, Nelson P, Sullivan P, Springer J. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84-93 pubmed 出版商
  483. Watson M, Hedley D. Whole blood measurement of histone modifications linked to the epigenetic regulation of gene expression. Curr Protoc Cytom. 2015;71:6.36.1-9 pubmed 出版商
  484. Hasegawa H, Ishibashi K, Kubota S, Yamaguchi C, Yuki R, Nakajo H, et al. Cdk1-mediated phosphorylation of human ATF7 at Thr-51 and Thr-53 promotes cell-cycle progression into M phase. PLoS ONE. 2014;9:e116048 pubmed 出版商
  485. Hill R, Kuijper S, Lindsey J, Petrie K, Schwalbe E, Barker K, et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015;27:72-84 pubmed 出版商
  486. Naganuma K, Hatta M, Ikebe T, Yamazaki J. Epigenetic alterations of the keratin 13 gene in oral squamous cell carcinoma. BMC Cancer. 2014;14:988 pubmed 出版商
  487. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  488. Ulanet D, Couto K, Jha A, Choe S, Wang A, Woo H, et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS ONE. 2014;9:e115144 pubmed 出版商
  489. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  490. Knutson S, Warholic N, Johnston L, Klaus C, Wigle T, Iwanowicz D, et al. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas. PLoS ONE. 2014;9:e111840 pubmed 出版商
  491. Huh Y, Sherley J. Decreased H3K27 and H3K4 trimethylation on mortal chromosomes in distributed stem cells. Cell Death Dis. 2014;5:e1554 pubmed 出版商
  492. Naik A, Hawwari A, Krangel M. Specification of Vδ and Vα usage by Tcra/Tcrd locus V gene segment promoters. J Immunol. 2015;194:790-4 pubmed 出版商
  493. Luense S, Denner P, Fernández Montalván A, Hartung I, Husemann M, Stresemann C, et al. Quantification of histone H3 Lys27 trimethylation (H3K27me3) by high-throughput microscopy enables cellular large-scale screening for small-molecule EZH2 inhibitors. J Biomol Screen. 2015;20:190-201 pubmed 出版商
  494. Peterson E, Menon V, Gatti L, Kipping R, Dewasinghe D, Perego P, et al. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm. 2015;12:287-97 pubmed 出版商
  495. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20:1394-6 pubmed 出版商
  496. Eifler M, Uecker R, Weisbach H, Bogdanow B, Richter E, König L, et al. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog. 2014;10:e1004514 pubmed 出版商
  497. Suzuki A, Makinoshima H, Wakaguri H, Esumi H, Sugano S, Kohno T, et al. Aberrant transcriptional regulations in cancers: genome, transcriptome and epigenome analysis of lung adenocarcinoma cell lines. Nucleic Acids Res. 2014;42:13557-72 pubmed 出版商
  498. Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K, et al. Histone Methyltransferase hSETD1A Is a Novel Regulator of Metastasis in Breast Cancer. Mol Cancer Res. 2015;13:461-9 pubmed 出版商
  499. Shi X, Zhang Z, Zhan X, Cao M, Satoh T, Akira S, et al. An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nat Commun. 2014;5:5425 pubmed 出版商
  500. Santos G, da Silva A, Feldman L, Ventura G, Vassetzky Y, de Moura Gallo C. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem. 2015;116:533-41 pubmed 出版商
  501. Zhuang C, Sheng C, Shin W, Wu Y, Li J, Yao J, et al. A novel drug discovery strategy: mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. Oncotarget. 2014;5:10830-9 pubmed
  502. Kim K, Ossipova O, Sokol S. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674-85 pubmed 出版商
  503. Kawasumi M, Bradner J, Tolliday N, Thibodeau R, Sloan H, Brummond K, et al. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity. Cancer Res. 2014;74:7534-45 pubmed 出版商
  504. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13-21 pubmed 出版商
  505. Xu S, Tong M, Huang J, Zhang Y, Qiao Y, Weng W, et al. TRIB2 inhibits Wnt/β-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, β-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 2014;588:4334-41 pubmed 出版商
  506. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed 出版商
  507. Saloura V, Cho H, Kiyotani K, Alachkar H, Zuo Z, Nakakido M, et al. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res. 2015;13:293-304 pubmed 出版商
  508. Quan J, Adelmant G, Marto J, Look A, Yusufzai T. The chromatin remodeling factor CHD5 is a transcriptional repressor of WEE1. PLoS ONE. 2014;9:e108066 pubmed 出版商
  509. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed 出版商
  510. Herranz D, Ambesi Impiombato A, Palomero T, Schnell S, Belver L, Wendorff A, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130-7 pubmed 出版商
  511. Wanet A, Remacle N, Najar M, Sokal E, Arnould T, Najimi M, et al. Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol. 2014;54:174-85 pubmed 出版商
  512. Matsumoto K, Suzuki A, Wakaguri H, Sugano S, Suzuki Y. Construction of mate pair full-length cDNAs libraries and characterization of transcriptional start sites and termination sites. Nucleic Acids Res. 2014;42:e125 pubmed 出版商
  513. Mungamuri S, Wang S, Manfredi J, Gu W, Aaronson S. Ash2L enables P53-dependent apoptosis by favoring stable transcription pre-initiation complex formation on its pro-apoptotic target promoters. Oncogene. 2015;34:2461-70 pubmed 出版商
  514. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed 出版商
  515. Pezic D, Manakov S, Sachidanandam R, Aravin A. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev. 2014;28:1410-28 pubmed 出版商
  516. Tai P, Wu H, Gordon J, Whitfield T, Barutcu A, Van Wijnen A, et al. Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region. Gene. 2014;550:1-9 pubmed 出版商
  517. Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, et al. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis. 2014;35:1901-10 pubmed 出版商
  518. Kumar P P, Emechebe U, Smith R, Franklin S, Moore B, Yandell M, et al. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. elife. 2014;3: pubmed 出版商
  519. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  520. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  521. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  522. Tong Q, He S, Xie F, Mochizuki K, Liu Y, Mochizuki I, et al. Ezh2 regulates transcriptional and posttranslational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice. J Immunol. 2014;192:5012-22 pubmed 出版商
  523. Seki M, Masaki H, Arauchi T, Nakauchi H, Sugano S, Suzuki Y. A comparison of the rest complex binding patterns in embryonic stem cells and epiblast stem cells. PLoS ONE. 2014;9:e95374 pubmed 出版商
  524. Elhammali A, Ippolito J, Collins L, Crowley J, Marasa J, Piwnica Worms D. A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov. 2014;4:828-39 pubmed 出版商
  525. Ray S, Li H, Metzger E, Schüle R, Leiter A. CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol. 2014;34:2308-17 pubmed 出版商
  526. Tafrova J, Tafrov S. Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo. Mol Cell Biochem. 2014;392:259-72 pubmed 出版商
  527. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  528. Zeng Z, Shen L, Li X, Luo T, Wei X, Zhang J, et al. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (Lond). 2014;127:435-48 pubmed 出版商
  529. Knutson S, Kawano S, Minoshima Y, Warholic N, Huang K, Xiao Y, et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther. 2014;13:842-54 pubmed 出版商
  530. Hwang W, Jiang J, Yang S, Huang T, Lan H, Teng H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268-80 pubmed 出版商
  531. Muenyi C, Trivedi A, Helm C, States J. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci. 2014;139:74-82 pubmed 出版商
  532. Arnandis T, Ferrer Vicens I, Torres L, García C, García Trevijano E, Zaragoza R, et al. Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J. 2014;459:355-68 pubmed 出版商
  533. Cao Q, Wang X, Zhao M, Yang R, Malik R, Qiao Y, et al. The central role of EED in the orchestration of polycomb group complexes. Nat Commun. 2014;5:3127 pubmed 出版商
  534. Maroschik B, Gürtler A, Kramer A, Rößler U, Gomolka M, Hornhardt S, et al. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines. Radiat Oncol. 2014;9:15 pubmed 出版商
  535. Schröder Heurich B, Wieland B, Lavin M, Schindler D, Dork T. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis. FASEB J. 2014;28:1331-41 pubmed 出版商
  536. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-? signaling. J Biol Chem. 2014;289:2072-83 pubmed 出版商
  537. Hast B, Cloer E, Goldfarb D, Li H, Siesser P, Yan F, et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res. 2014;74:808-17 pubmed 出版商
  538. Sulahian R, Casey F, Shen J, Qian Z, Shin H, Ogino S, et al. An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene. 2014;33:5637-48 pubmed 出版商
  539. Wagner M, Koslowski M, Paret C, Schmidt M, Tureci O, Sahin U. NCOA3 is a selective co-activator of estrogen receptor ?-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. BMC Cancer. 2013;13:570 pubmed 出版商
  540. Chen Y, Kao S, Wang H, Yang M. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer. 2013;119:4259-67 pubmed 出版商
  541. Subbanna S, Nagre N, Shivakumar M, Umapathy N, Psychoyos D, Basavarajappa B. Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Neuroscience. 2014;258:422-32 pubmed 出版商
  542. Liu Y, Platchek M, Kement B, Bee W, Truong M, Zeng X, et al. A novel approach applying a chemical biology strategy in phenotypic screening reveals pathway-selective regulators of histone 3 K27 tri-methylation. Mol Biosyst. 2014;10:251-7 pubmed 出版商
  543. Tümer E, Bröer A, Balkrishna S, Jülich T, Broer S. Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks. J Biol Chem. 2013;288:33813-23 pubmed 出版商
  544. Luebben S, Kawabata T, Akre M, Lee W, Johnson C, O Sullivan M, et al. Helq acts in parallel to Fancc to suppress replication-associated genome instability. Nucleic Acids Res. 2013;41:10283-97 pubmed 出版商
  545. Subramanian V, Mazumder A, Surface L, Butty V, Fields P, Alwan A, et al. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet. 2013;9:e1003725 pubmed 出版商
  546. Lee S, Phipson B, Hyland C, Leong H, Allan R, Lun A, et al. Polycomb repressive complex 2 (PRC2) suppresses E?-myc lymphoma. Blood. 2013;122:2654-63 pubmed 出版商
  547. Copeland A, Altamura L, Van Deusen N, Schmaljohn C. Nuclear relocalization of polyadenylate binding protein during rift valley fever virus infection involves expression of the NSs gene. J Virol. 2013;87:11659-69 pubmed 出版商
  548. Voss M, Campbell K, Saranzewa N, Campbell D, Hastie C, Peggie M, et al. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with ?-tubulin. Cell Cycle. 2013;12:2876-87 pubmed 出版商
  549. Tan E, Caro S, Potnis A, Lanza C, Slawson C. O-linked N-acetylglucosamine cycling regulates mitotic spindle organization. J Biol Chem. 2013;288:27085-99 pubmed 出版商
  550. Lauffer B, Mintzer R, Fong R, Mukund S, Tam C, Zilberleyb I, et al. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem. 2013;288:26926-43 pubmed 出版商
  551. Dai C, Sun F, Zhu C, Hu X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors. PLoS ONE. 2013;8:e63054 pubmed 出版商
  552. Huang S, Scruggs A, Donaghy J, Horowitz J, Zaslona Z, Przybranowski S, et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 2013;4:e621 pubmed 出版商
  553. Zhou P, Wang Z, Yuan X, Zhou C, Liu L, Wan X, et al. Mixed lineage leukemia 5 (MLL5) protein regulates cell cycle progression and E2F1-responsive gene expression via association with host cell factor-1 (HCF-1). J Biol Chem. 2013;288:17532-43 pubmed 出版商
  554. Tong K, Kwan K. Common partner Smad-independent canonical bone morphogenetic protein signaling in the specification process of the anterior rhombic lip during cerebellum development. Mol Cell Biol. 2013;33:1925-37 pubmed 出版商
  555. Subbanna S, Shivakumar M, Umapathy N, Saito M, Mohan P, Kumar A, et al. G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain. Neurobiol Dis. 2013;54:475-85 pubmed 出版商
  556. Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7:484-96 pubmed 出版商
  557. Qi W, Spier C, Liu X, Agarwal A, Cooke L, Persky D, et al. Alisertib (MLN8237) an investigational agent suppresses Aurora A and B activity, inhibits proliferation, promotes endo-reduplication and induces apoptosis in T-NHL cell lines supporting its importance in PTCL treatment. Leuk Res. 2013;37:434-9 pubmed 出版商
  558. Blakemore L, Boes C, Cordell R, Manson M. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage. Carcinogenesis. 2013;34:351-60 pubmed 出版商
  559. Maltby V, Martin B, Brind Amour J, Chruscicki A, McBurney K, Schulze J, et al. Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2012;109:18505-10 pubmed 出版商
  560. Makeyev A, Enkhmandakh B, Hong S, Joshi P, Shin D, Bayarsaihan D. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues. PLoS ONE. 2012;7:e44443 pubmed 出版商
  561. Farioli Vecchioli S, Micheli L, Saraulli D, Ceccarelli M, Cannas S, Scardigli R, et al. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone. Front Neurosci. 2012;6:124 pubmed 出版商
  562. Wu F, Sapkota D, Li R, Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol. 2012;520:952-69 pubmed 出版商
  563. Zhao J, Yue W, Zhu M, Du M. AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem. 2011;286:16426-34 pubmed 出版商
  564. Eckler M, McKenna W, Taghvaei S, McConnell S, Chen B. Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity. J Comp Neurol. 2011;519:1829-46 pubmed 出版商
  565. Wang B, Lufkin T, Rubenstein J. Dlx6 regulates molecular properties of the striatum and central nucleus of the amygdala. J Comp Neurol. 2011;519:2320-34 pubmed 出版商
  566. Sneeringer C, Scott M, Kuntz K, Knutson S, Pollock R, Richon V, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A. 2010;107:20980-5 pubmed 出版商
  567. Farioli Vecchioli S, Saraulli D, Costanzi M, Leonardi L, Cinà I, Micheli L, et al. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS ONE. 2009;4:e8339 pubmed 出版商
  568. Donati G, Imbriano C, Mantovani R. Dynamic recruitment of transcription factors and epigenetic changes on the ER stress response gene promoters. Nucleic Acids Res. 2006;34:3116-27 pubmed