这是一篇来自已证抗体库的有关小鼠 H3f3a的综述,是根据243篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合H3f3a 抗体。
H3f3a 同义词: EyeLinc14; H3-3a; H3-3b; H3.3A

艾博抗(上海)贸易有限公司
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab10543)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Front Mol Biosci (2020) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 2e
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 2e) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. elife (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 黑腹果蝇; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab10543)被用于被用于免疫组化在黑腹果蝇样本上浓度为1:1000 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 黑腹果蝇; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab5176)被用于被用于免疫组化在黑腹果蝇样本上浓度为1:1000 (图 2f). Cell Rep (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 非洲爪蛙; 1:100; 图 s3b
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab10543)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:100 (图 s3b). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; S. cerevisiae; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab5176)被用于被用于免疫印迹在S. cerevisiae样本上浓度为1:1000 (图 3a). J Vis Exp (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 黑腹果蝇; 图 1a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab5176)被用于被用于免疫组化在黑腹果蝇样本上 (图 1a). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3k
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab5176)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3k). Cell (2018) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 人类; 图 4??
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化在人类样本上 (图 4??). Oncogenesis (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). Development (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 s3e
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, AB10543)被用于被用于免疫组化在小鼠样本上 (图 s3e). Cell (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-石蜡切片; 斑马鱼; 1:500; 图 2 s1B
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab10543)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:500 (图 2 s1B). elife (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, Ab14955)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4a). Front Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab5176)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; 小鼠; 1:300; 图 2a
  • 免疫印迹; 大鼠; 1:1000; 图 s3K
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab32107)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s3K). Nat Commun (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类; 图 2b
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, Ab10543)被用于被用于免疫细胞化学在人类样本上 (图 2b). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 6h
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab5176)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6h). Nat Commun (2017) ncbi
大鼠 单克隆(HTA28)
  • 免疫细胞化学; 人类; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab10543)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7a). Nat Commun (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 图 1j
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上 (图 1j). Nat Med (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s4c
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s4c). Nat Cell Biol (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 小鼠; 1:180; 图 5a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, Ab14955)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:180 (图 5a). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6d
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab5176)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6d). Cancer Res (2017) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E173)
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab32107)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Death Dis (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, 14955)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 s3b). Nat Neurosci (2016) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; 黑腹果蝇; 1:1000; 图 2
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab32107)被用于被用于免疫组化在黑腹果蝇样本上浓度为1:1000 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 大鼠; 图 1
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化在大鼠样本上 (图 1). Nat Neurosci (2016) ncbi
小鼠 单克隆(mAbcam 14955)
  • 流式细胞仪; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Mol Cell Biol (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; American tobacco; 1:200; 图 4
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, 14955)被用于被用于免疫组化在American tobacco样本上浓度为1:200 (图 4). Front Plant Sci (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 图 1i, j
艾博抗(上海)贸易有限公司 H3f3a抗体(abcam, ab14955)被用于被用于免疫组化在小鼠样本上 (图 1i, j). elife (2015) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:3000; 图 s13c
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 s13c). Nat Med (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上 (图 4). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(E191)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 e2
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab32388)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 e2). Nature (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 小鼠; 1:600; 图 5l
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 5l). PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类; 1:2000; 图 5
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Biochem (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:5000; 图 s7
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s7). Science (2015) ncbi
小鼠 单克隆(mAbcam 14955)
  • 酶联免疫吸附测定; 人类
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, 14955)被用于被用于酶联免疫吸附测定在人类样本上. Theranostics (2015) ncbi
domestic rabbit 单克隆(E173)
  • 免疫细胞化学; 家羊; 1:500; 图 3a
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab32107)被用于被用于免疫细胞化学在家羊样本上浓度为1:500 (图 3a). Cell Reprogram (2015) ncbi
domestic rabbit 单克隆(E173)
  • 免疫组化; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab32107)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Sci Rep (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化; 斑马鱼; 1:1000
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Development (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫印迹; 人类; 1:5000; 图 2
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, 14955)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2014) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, AB10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Nat Neurosci (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2014) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab14955)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(E191)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab32388)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab10543)被用于被用于免疫组化在小鼠样本上. Neural Dev (2013) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab10543)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Development (2013) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, ab5176)被用于. Dev Biol (2013) ncbi
小鼠 单克隆(mAbcam 14955)
  • 免疫组化-冰冻切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 H3f3a抗体(Abcam, Ab14955)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Dev Biol (2012) ncbi
Active Motif
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7a
Active Motif H3f3a抗体(Active Motif, 39239)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Nature (2019) ncbi
大鼠 单克隆(HTA28)
  • 免疫组化; 小鼠; 图 3a
Active Motif H3f3a抗体(Active Motif, 39098)被用于被用于免疫组化在小鼠样本上 (图 3a). Radiat Res (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4
Active Motif H3f3a抗体(Active Motif, 39239)被用于被用于染色质免疫沉淀 在人类样本上 (图 4). Clin Epigenetics (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:800; 图 2
Active Motif H3f3a抗体(ActiveMotif, 39239)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
Active Motif H3f3a抗体(Active Motif, 39239)被用于. Front Plant Sci (2015) ncbi
赛默飞世尔
domestic rabbit 单克隆(J.924.2)
  • 免疫细胞化学; American tobacco; 1:200; 图 2
赛默飞世尔 H3f3a抗体(Thermo Scientific, MA5-11195)被用于被用于免疫细胞化学在American tobacco样本上浓度为1:200 (图 2). Front Plant Sci (2015) ncbi
domestic rabbit 单克隆(E.960.2)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 H3f3a抗体(Thermo Fisher Scientific, MA5-15150)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
domestic rabbit 单克隆(G.532.8)
  • 染色质免疫沉淀 ; 人类
赛默飞世尔 H3f3a抗体(Thermo, MA511199)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2014) ncbi
Enzo Life Sciences
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
Enzo Life Sciences H3f3a抗体(Enzo, ADI-905-705)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
GeneTex
小鼠 单克隆(AH3-120)
  • 免疫组化; 小鼠
GeneTex H3f3a抗体(Genetex, GTX12179)被用于被用于免疫组化在小鼠样本上. Dev Biol (2008) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇 H3f3a抗体(sigma, H0134)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 s6f
西格玛奥德里奇 H3f3a抗体(Sigma-Aldrich, H0913)被用于被用于染色质免疫沉淀 在人类样本上 (图 s6f). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3f
西格玛奥德里奇 H3f3a抗体(Sigma-Aldrich, D5567)被用于被用于染色质免疫沉淀 在人类样本上 (图 3f). Sci Rep (2016) ncbi
小鼠 单克隆(APH3-64)
  • 其他; 人类; 图 st1
西格玛奥德里奇 H3f3a抗体(SIGMA, APH3-64)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(AH3-120)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 H3f3a抗体(Sigma Aldrich, H0913)被用于被用于免疫印迹在人类样本上浓度为1:500. Biotechnol Bioeng (2015) ncbi
小鼠 单克隆(AH3-120)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇 H3f3a抗体(Sigma, H0913)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cryobiology (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP; 图 2
西格玛奥德里奇 H3f3a抗体(Sigma, H0913)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于染色质免疫沉淀 在人类样本上浓度为2-5 ug/ChIP (图 2). Nature (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2C8)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s9h
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, 3377T)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s9h). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D5A7)
  • 流式细胞仪; 小鼠; 图 2n
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D5A7)被用于被用于流式细胞仪在小鼠样本上 (图 2n). Science (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s1h
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 s1h). Cell (2019) ncbi
domestic rabbit 单克隆(D5A7)
  • ChIP-Seq; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4909)被用于被用于ChIP-Seq在小鼠样本上 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4620S)被用于被用于免疫印迹在人类样本上 (图 6c). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 s16c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s16c). Science (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 e5e
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, 4499)被用于被用于免疫印迹在人类样本上 (图 e5e). Nature (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Mol Cell (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, CST4499s)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Brain (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:5000; 图 4i
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4i). elife (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Front Immunol (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:50; 图 s1d
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D2C8)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1d). Nucleic Acids Res (2019) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 1b). Science (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Science (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Nat Neurosci (2018) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Science (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7d). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s11c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s11c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1e
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 s1h
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫印迹在小鼠样本上 (图 s1h). Nature (2018) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:10,000; 图 s2f
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technologies, 4499S)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2f). elife (2017) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 1a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 1b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Stem Cells (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D5A7)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4909)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 2b, 3f
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b, 3f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Brain Res (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2e). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 1:1000; 图 5D
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D2C8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5D). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, 4499)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, 3377)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 33770)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499S)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4e
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4e). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 9f
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technologies, 4499)被用于被用于免疫印迹在小鼠样本上 (图 9f). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化; 人类; 1:500; 图 3
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Tech, 2901)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3) 和 被用于免疫印迹在人类样本上 (图 4a). Nat Genet (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫细胞化学在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4620S)被用于被用于免疫印迹在人类样本上 (图 1b). Front Immunol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 染色质免疫沉淀 ; 人类; 1:2000
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signalling, 4499)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:2000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 2650)被用于被用于染色质免疫沉淀 在人类样本上 (图 6b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 4499)被用于被用于免疫印迹在小鼠样本上 (图 5b). JCI Insight (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 s1d). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 流式细胞仪; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 5499)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 斑马鱼; 图 4
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫组化在斑马鱼样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Med (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 2650)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:3000; 图 5
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 4499L)被用于被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s1h
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 s1h). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 染色质免疫沉淀 ; 人类; 图 2a
  • 免疫细胞化学; 人类; 1:2000; 图 s3c
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 2901)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a), 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s3c) 和 被用于免疫印迹在人类样本上 (图 1a). Science (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 3377)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377S)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 s4
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 大鼠; 图 10
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 10). Autophagy (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, CST3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3). Mol Endocrinol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:3000; 图 5
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). Front Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3e). J Mol Med (Berl) (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, D2C8)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 黑腹果蝇; 表 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 2650)被用于被用于染色质免疫沉淀 在黑腹果蝇样本上 (表 1). Genom Data (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 表 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (表 1). elife (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:2000; 图 5d
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5d). Stem Cells (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫沉淀; 人类; 1:5000; 图 3b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 3377)被用于被用于免疫沉淀在人类样本上浓度为1:5000 (图 3b). Nat Chem Biol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上 (图 s5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 3
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Tech, cst-3377)被用于被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 2901)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Ther (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 4499P)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4620)被用于被用于免疫印迹在小鼠样本上. Biochem J (2016) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4658P)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Chem Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4620)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signalling, 4499L)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, D1H2)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1600; 图 2a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technologies, 3377)被用于被用于免疫细胞化学在人类样本上浓度为1:1600 (图 2a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4658P)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Stem Cells Int (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在人类样本上 (图 3). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(D54)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 4473)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 图 4f
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D2B12)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). Am J Pathol (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫细胞化学; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, 4658S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Microsc Microanal (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, (D1H2)XP)被用于被用于免疫印迹在人类样本上 (图 7). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • reverse phase protein lysate microarray; 人类; 表 s2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 3377S)被用于被用于reverse phase protein lysate microarray在人类样本上 (表 s2). Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 1:40; 图 8a
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technologies, 4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:40 (图 8a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 2901S)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4658P)被用于被用于免疫印迹在人类样本上 (图 6). Cell Rep (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; newts; 1:200; 表 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 3377)被用于被用于免疫组化在newts样本上浓度为1:200 (表 1). Methods Mol Biol (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 7). Cancer Immunol Res (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上浓度为1:2000. Oncotarget (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Rejuvenation Res (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 4499)被用于被用于免疫印迹在人类样本上 (图 3). Ann Surg Oncol (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫组化在小鼠样本上浓度为1:100. Endocrinology (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 大鼠; 1:25000
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在大鼠样本上浓度为1:25000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 人类; 2 ugs
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, #4620)被用于被用于染色质免疫沉淀 在人类样本上浓度为2 ugs. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, #4499)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫细胞化学在人类样本上. J Biomol Screen (2015) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signaling, 3377P)被用于被用于流式细胞仪在人类样本上 (图 5c). Mol Pharm (2015) ncbi
domestic rabbit 单克隆(D2B12)
  • 免疫印迹; 人类; 1:4000
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signalling, 4620)被用于被用于免疫印迹在人类样本上浓度为1:4000. J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, 4499P)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类; 1:800
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于流式细胞仪在人类样本上浓度为1:800. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(CST, 4499)被用于被用于免疫细胞化学在人类样本上. FEBS Lett (2014) ncbi
domestic rabbit 单克隆(C75H12)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 2901)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Mol Cancer Res (2015) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Tech., 4499)被用于被用于免疫印迹在人类样本上 (图 s5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, D2C8)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000; 图 s1
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). Int J Biochem Cell Biol (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4499)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D1H2)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4620S)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 3377)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4658p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499p)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在小鼠样本上. Clin Sci (Lond) (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Commun (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). FASEB J (2014) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4499)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
domestic rabbit 单克隆(D85B4)
  • 染色质免疫沉淀 ; 小鼠
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling Technology, 4658)被用于被用于染色质免疫沉淀 在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit 单克隆(D2B12)
  • 染色质免疫沉淀 ; 小鼠
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4620)被用于被用于染色质免疫沉淀 在小鼠样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(D1H2)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, D1H2)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Virol (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4658)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类; 1:1000
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell signalling, 3377s)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D85B4)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 4658)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Neurobiol Dis (2013) ncbi
domestic rabbit 单克隆(D2C8)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 H3f3a抗体(Cell Signaling, 3377)被用于被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
默克密理博中国 H3f3a抗体(Millipore, ABE419)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4f
默克密理博中国 H3f3a抗体(EMD Millipore, 07-690)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). J Virol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
默克密理博中国 H3f3a抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上 (图 2d). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 小鼠; 图 3a
默克密理博中国 H3f3a抗体(Millipore, 07-690)被用于被用于ChIP-Seq在小鼠样本上 (图 3a). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3c
默克密理博中国 H3f3a抗体(Millipore, ABE419)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3c). PLoS ONE (2017) ncbi
大鼠 单克隆(6C4A3)
  • 免疫印迹; 人类; 图 2f
默克密理博中国 H3f3a抗体(Millipore, MABE951)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Stem Cell (2017) ncbi
小鼠 单克隆(18E9.1)
  • 免疫印迹; 人类; 图 3a
  • ChIP-Seq; 小鼠; 图 st2
  • 免疫印迹; 小鼠; 图 3a
默克密理博中国 H3f3a抗体(Millipore, 05-1951)被用于被用于免疫印迹在人类样本上 (图 3a), 被用于ChIP-Seq在小鼠样本上 (图 st2) 和 被用于免疫印迹在小鼠样本上 (图 3a). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5b
默克密理博中国 H3f3a抗体(Upstate Biotechnology, 07-690)被用于被用于免疫印迹在人类样本上 (图 s5b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
默克密理博中国 H3f3a抗体(Merck Millipore, 07-690)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4c
默克密理博中国 H3f3a抗体(Calbiochem, 382159)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
默克密理博中国 H3f3a抗体(Merck Millipore, 07-690)被用于被用于免疫印迹在人类样本上 (图 5d). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1
默克密理博中国 H3f3a抗体(Millipore, 07-690)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
默克密理博中国 H3f3a抗体(Upstate Signaling Solutions, 07-690)被用于被用于免疫印迹在小鼠样本上 (图 3a). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3
默克密理博中国 H3f3a抗体(Millipore, 070-690)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). J Neurochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
默克密理博中国 H3f3a抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 s5
默克密理博中国 H3f3a抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s5). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
默克密理博中国 H3f3a抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2016) ncbi
小鼠 单克隆(18E9.1)
  • 免疫印迹; 人类; 1:15,000; 图 4a
默克密理博中国 H3f3a抗体(Millipore, 05-1951)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 4a). J Biol Chem (2015) ncbi
碧迪BD
大鼠 单克隆(HTA28)
  • 流式细胞仪; 人类; 图 3d
碧迪BD H3f3a抗体(BD, 558610)被用于被用于流式细胞仪在人类样本上 (图 3d). Cell Death Discov (2016) ncbi
大鼠 单克隆(HTA28)
  • 流式细胞仪; 小鼠
碧迪BD H3f3a抗体(BD Biosciences, 558217)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2010) ncbi
文章列表
  1. Zhang Y, Beketaev I, Segura A, Yu W, Xi Y, Chang J, et al. Contribution of Increased Expression of Yin Yang 2 to Development of Cardiomyopathy. Front Mol Biosci. 2020;7:35 pubmed 出版商
  2. Laukoter S, Beattie R, Pauler F, Amberg N, Nakayama K, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nat Commun. 2020;11:195 pubmed 出版商
  3. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  4. Liu D, Wu L, Wu Y, Wei X, Wang W, Zhang S, et al. Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. Aging (Albany NY). 2019;11:8982-8997 pubmed 出版商
  5. Tang W, Martik M, Li Y, Bronner M. Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. elife. 2019;8: pubmed 出版商
  6. Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam C, Garg P, et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature. 2019;572:335-340 pubmed 出版商
  7. Jain A, Agostini L, McCarthy G, Chand S, Ramirez A, Nevler A, et al. Poly (ADP) ribose glycohydrolase can be effectively targeted in pancreatic cancer. Cancer Res. 2019;: pubmed 出版商
  8. Curt J, Salmani B, Thor S. Anterior CNS expansion driven by brain transcription factors. elife. 2019;8: pubmed 出版商
  9. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  10. Gil Ranedo J, Gonzaga E, Jaworek K, Berger C, Bossing T, Barros C. STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation. Cell Rep. 2019;27:2921-2933.e5 pubmed 出版商
  11. Aztekin C, Hiscock T, Marioni J, Gurdon J, Simons B, Jullien J. Identification of a regeneration-organizing cell in the Xenopus tail. Science. 2019;364:653-658 pubmed 出版商
  12. Lavarone E, Barbieri C, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10:1679 pubmed 出版商
  13. Bennett S, Cobos S, Meykler M, Fallah M, Rana N, Chen K, et al. Characterizing Histone Post-translational Modification Alterations in Yeast Neurodegenerative Proteinopathy Models. J Vis Exp. 2019;: pubmed 出版商
  14. Wei X, Guo J, Li Q, Jia Q, Jing Q, Li Y, et al. Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Sci Adv. 2019;5:eaau7887 pubmed 出版商
  15. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  16. Garcia Bermudez J, Baudrier L, Bayraktar E, Shen Y, La K, Guarecuco R, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature. 2019;567:118-122 pubmed 出版商
  17. Suzuki T, Kikuguchi C, Nishijima S, Nagashima T, Takahashi A, Okada M, et al. Postnatal liver functional maturation requires Cnot complex-mediated decay of mRNAs encoding cell cycle and immature liver genes. Development. 2019;146: pubmed 出版商
  18. Wei J, Kishton R, Angel M, Conn C, Dalla Venezia N, Marcel V, et al. Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Mol Cell. 2019;73:1162-1173.e5 pubmed 出版商
  19. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  20. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  21. Gómez Fernández P, Urtasun A, Paton A, Paton J, Borrego F, Dersh D, et al. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Front Immunol. 2018;9:2934 pubmed 出版商
  22. May J, Kouri F, Hurley L, Liu J, Tommasini Ghelfi S, Ji Y, et al. IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv. 2019;5:eaat0456 pubmed 出版商
  23. Liddiard K, Ruis B, Kan Y, Cleal K, Ashelford K, Hendrickson E, et al. DNA Ligase 1 is an essential mediator of sister chromatid telomere fusions in G2 cell cycle phase. Nucleic Acids Res. 2019;47:2402-2424 pubmed 出版商
  24. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  25. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362: pubmed 出版商
  26. Chen X, Wanggou S, Bodalia A, Zhu M, Dong W, Fan J, et al. A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron. 2018;100:799-815.e7 pubmed 出版商
  27. Lu J, Liu L, Zheng M, Li X, Wu A, Wu Q, et al. MEKK2 and MEKK3 suppress Hedgehog pathway-dependent medulloblastoma by inhibiting GLI1 function. Oncogene. 2018;37:3864-3878 pubmed 出版商
  28. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  29. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  30. Silva C, Peyre E, Adhikari M, Tielens S, Tanco S, Van Damme P, et al. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell. 2018;172:1063-1078.e19 pubmed 出版商
  31. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  32. Deng H, Zeng J, Zhang T, Gong L, Zhang H, Cheung E, et al. Histone H3.3K27M Mobilizes Multiple Cancer/Testis (CT) Antigens in Pediatric Glioma. Mol Cancer Res. 2018;16:623-633 pubmed 出版商
  33. Bogdan D, Falcone J, Kanjiya M, Park S, Carbonetti G, Studholme K, et al. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem. 2018;293:5295-5306 pubmed 出版商
  34. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  35. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  36. Oldrini B, Hsieh W, Erdjument Bromage H, Codega P, Carro M, Curiel García A, et al. EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun. 2017;8:2035 pubmed 出版商
  37. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  38. Matson J, Dumitru R, Coryell P, Baxley R, Chen W, Twaroski K, et al. Rapid DNA replication origin licensing protects stem cell pluripotency. elife. 2017;6: pubmed 出版商
  39. Casoni F, Croci L, Bosone C, D Ambrosio R, Badaloni A, Gaudesi D, et al. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development. 2017;144:3686-3697 pubmed 出版商
  40. Wang Y, Zhang J, Su Y, Shen Y, Jiang D, Hou Y, et al. G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun. 2017;8:274 pubmed 出版商
  41. Wanet A, Caruso M, Domelevo Entfellner J, Najar M, Fattaccioli A, Demazy C, et al. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells. 2017;35:2184-2197 pubmed 出版商
  42. Lu F, Wiedmer A, Martin K, Wickramasinghe P, Kossenkov A, Lieberman P. Coordinate Regulation of TET2 and EBNA2 Controls the DNA Methylation State of Latent Epstein-Barr Virus. J Virol. 2017;91: pubmed 出版商
  43. Krapivinsky G, Krapivinsky L, Renthal N, Santa Cruz A, Manasian Y, Clapham D. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc Natl Acad Sci U S A. 2017;114:E7092-E7100 pubmed 出版商
  44. Bleuyard J, Fournier M, Nakato R, Couturier A, Katou Y, Ralf C, et al. MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proc Natl Acad Sci U S A. 2017;114:7671-7676 pubmed 出版商
  45. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  46. Utani K, Fu H, Jang S, Marks A, Smith O, Zhang Y, et al. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability. Nucleic Acids Res. 2017;45:7807-7824 pubmed 出版商
  47. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed 出版商
  48. Wang X, Wang R, Luo M, Li C, Wang H, Huan C, et al. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget. 2017;8:33197-33213 pubmed 出版商
  49. Shin C, Ito Y, Ichikawa S, Tokunaga M, Sakata Sogawa K, Tanaka T. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci Rep. 2017;7:46097 pubmed 出版商
  50. Sidhaye J, Norden C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. elife. 2017;6: pubmed 出版商
  51. Chen G, Nie S, Han C, Ma K, Xu Y, Zhang Z, et al. Antidyskinetic Effects of MEK Inhibitor Are Associated with Multiple Neurochemical Alterations in the Striatum of Hemiparkinsonian Rats. Front Neurosci. 2017;11:112 pubmed 出版商
  52. Endoh M, Endo T, Shinga J, Hayashi K, Farcas A, Ma K, et al. PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. elife. 2017;6: pubmed 出版商
  53. Zhang X, Li B, Rezaeian A, Xu X, Chou P, Jin G, et al. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nat Commun. 2017;8:14799 pubmed 出版商
  54. Ragni C, Diguet N, Le Garrec J, Novotova M, Resende T, Pop S, et al. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat Commun. 2017;8:14582 pubmed 出版商
  55. Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, et al. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res. 2017;45:4532-4549 pubmed 出版商
  56. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  57. He Y, Selvaraju S, Curtin M, Jakob C, Zhu H, Comess K, et al. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol. 2017;13:389-395 pubmed 出版商
  58. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  59. Marigil M, Martinez Vélez N, Dominguez P, Idoate M, Xipell E, Patino Garcia A, et al. Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System. PLoS ONE. 2017;12:e0170501 pubmed 出版商
  60. Tagal V, Wei S, Zhang W, Brekken R, Posner B, Peyton M, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun. 2017;8:14098 pubmed 出版商
  61. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  62. de Castro I, Budzak J, Di Giacinto M, Ligammari L, Gokhan E, Spanos C, et al. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun. 2017;8:14048 pubmed 出版商
  63. Safina A, Cheney P, Pal M, Brodsky L, Ivanov A, Kirsanov K, et al. FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Res. 2017;45:1925-1945 pubmed 出版商
  64. Li C, Chang L, Chen Z, Liu Z, Wang Y, Ye Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int J Mol Med. 2017;39:347-356 pubmed 出版商
  65. Fitter S, Matthews M, Martin S, Xie J, Ooi S, Walkley C, et al. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol. 2017;37: pubmed 出版商
  66. Papillon Cavanagh S, Lu C, Gayden T, Mikael L, Bechet D, Karamboulas C, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 2017;49:180-185 pubmed 出版商
  67. Herold N, Rudd S, Ljungblad L, Sanjiv K, Myrberg I, Paulin C, et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med. 2017;23:256-263 pubmed 出版商
  68. Fantini D, Huang S, Asara J, Bagchi S, Raychaudhuri P. Chromatin association of XRCC5/6 in the absence of DNA damage depends on the XPE gene product DDB2. Mol Biol Cell. 2017;28:192-200 pubmed 出版商
  69. Assadi G, Vesterlund L, Bonfiglio F, Mazzurana L, Cordeddu L, Schepis D, et al. Functional Analyses of the Crohn's Disease Risk Gene LACC1. PLoS ONE. 2016;11:e0168276 pubmed 出版商
  70. Zhu Z, Li C, Zeng Y, Ding J, Qu Z, Gu J, et al. PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs. Cell Stem Cell. 2017;20:274-289.e7 pubmed 出版商
  71. Neeli I, Radic M. Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones. Front Immunol. 2016;7:528 pubmed
  72. Zhu P, Wang Y, Wu J, Huang G, Liu B, Ye B, et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun. 2016;7:13608 pubmed 出版商
  73. Svoboda L, Bailey N, Van Noord R, Krook M, Harris A, Cramer C, et al. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget. 2017;8:458-471 pubmed 出版商
  74. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  75. Ibañez Rodriguez M, Noctor S, Muñoz E. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator. PLoS ONE. 2016;11:e0167063 pubmed 出版商
  76. Hansen R, Mund A, Poulsen S, Sandoval M, Klement K, Tsouroula K, et al. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nat Cell Biol. 2016;18:1357-1366 pubmed 出版商
  77. Lin W, FRANCIS J, Li H, Gao X, Pedamallu C, Ernst P, et al. Kmt2a cooperates with menin to suppress tumorigenesis in mouse pancreatic islets. Cancer Biol Ther. 2016;17:1274-1281 pubmed 出版商
  78. Day K, Lorenzatti Hiles G, Kozminsky M, Dawsey S, Paul A, Broses L, et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res. 2017;77:74-85 pubmed 出版商
  79. Schlierf A, Altmann E, Quancard J, Jefferson A, Assenberg R, Renatus M, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166 pubmed 出版商
  80. Ren K, Zhang W, Chen X, Ma Y, Dai Y, Fan Y, et al. An Epigenetic Compound Library Screen Identifies BET Inhibitors That Promote HSV-1 and -2 Replication by Bridging P-TEFb to Viral Gene Promoters through BRD4. PLoS Pathog. 2016;12:e1005950 pubmed 出版商
  81. Zhong J, Li X, Cai W, Wang Y, Dong S, Yang J, et al. TET1 modulates H4K16 acetylation by controlling auto-acetylation of hMOF to affect gene regulation and DNA repair function. Nucleic Acids Res. 2017;45:672-684 pubmed 出版商
  82. Murai J, Feng Y, Yu G, Ru Y, Tang S, Shen Y, et al. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget. 2016;7:76534-76550 pubmed 出版商
  83. Matsukawa K, Hashimoto T, Matsumoto T, Ihara R, Chihara T, Miura M, et al. Familial Amyotrophic Lateral Sclerosis-linked Mutations in Profilin 1 Exacerbate TDP-43-induced Degeneration in the Retina of Drosophila melanogaster through an Increase in the Cytoplasmic Localization of TDP-43. J Biol Chem. 2016;291:23464-23476 pubmed
  84. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  85. Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, et al. Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016;12:e1006279 pubmed 出版商
  86. Ueda T, Nakata Y, Nagamachi A, Yamasaki N, Kanai A, Sera Y, et al. Propagation of trimethylated H3K27 regulated by polycomb protein EED is required for embryogenesis, hematopoietic maintenance, and tumor suppression. Proc Natl Acad Sci U S A. 2016;113:10370-5 pubmed 出版商
  87. Otsuka K, Suzuki K. Differences in Radiation Dose Response between Small and Large Intestinal Crypts. Radiat Res. 2016;186:302-14 pubmed 出版商
  88. Doobin D, Kemal S, Dantas T, Vallee R. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun. 2016;7:12551 pubmed 出版商
  89. Chien J, Tsen S, Chien C, Liu H, Tung C, Lin C. ?TAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells. Cell Death Discov. 2016;2:16006 pubmed 出版商
  90. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed 出版商
  91. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  92. Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N, Betz T, et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun. 2016;7:12237 pubmed 出版商
  93. Tanaka G, Inoue K, Shimizu T, Akimoto K, Kubota K. Dual pharmacological inhibition of glutathione and thioredoxin systems synergizes to kill colorectal carcinoma stem cells. Cancer Med. 2016;5:2544-57 pubmed 出版商
  94. Grinshtein N, Rioseco C, Marcellus R, UEHLING D, Aman A, Lun X, et al. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget. 2016;7:59360-59376 pubmed 出版商
  95. Gygli P, Chang J, Gokozan H, Catacutan F, Schmidt T, Kaya B, et al. Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging (Albany NY). 2016;8:1540-70 pubmed 出版商
  96. Alver T, Lavelle T, Longva A, Øy G, Hovig E, Bøe S. MITF depletion elevates expression levels of ERBB3 receptor and its cognate ligand NRG1-beta in melanoma. Oncotarget. 2016;7:55128-55140 pubmed 出版商
  97. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  98. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016;22:861-8 pubmed 出版商
  99. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  100. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  101. Ono H, Basson M, Ito H. P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget. 2016;7:51301-51310 pubmed 出版商
  102. Deaton A, Gómez Rodríguez M, Mieczkowski J, Tolstorukov M, Kundu S, Sadreyev R, et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. elife. 2016;5: pubmed 出版商
  103. Zhu P, Wang Y, Huang G, Ye B, Liu B, Wu J, et al. lnc-?-Catm elicits EZH2-dependent ?-catenin stabilization and sustains liver CSC self-renewal. Nat Struct Mol Biol. 2016;23:631-9 pubmed 出版商
  104. Fang D, Gan H, Lee J, Han J, Wang Z, Riester S, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science. 2016;352:1344-8 pubmed 出版商
  105. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  106. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  107. Zeng L, Cai C, Li S, Wang W, Li Y, Chen J, et al. Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells. PLoS Genet. 2016;12:e1006055 pubmed 出版商
  108. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  109. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  110. Kunze M, Benz F, Brauß T, Lampe S, Weigand J, Braun J, et al. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. Biochim Biophys Acta. 2016;1859:848-59 pubmed 出版商
  111. Terakawa J, Rocchi A, Serna V, Bottinger E, Graff J, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol. 2016;30:783-95 pubmed 出版商
  112. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  113. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  114. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  115. Huang Y, Chen S, Liu R, Chen Y, Lin C, Huang C, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94:1025-37 pubmed 出版商
  116. Iimori M, Watanabe S, Kiyonari S, Matsuoka K, Sakasai R, Saeki H, et al. Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun. 2016;7:11117 pubmed 出版商
  117. Perez R, Shen H, Duan L, Kim R, Kim T, Park N, et al. Modeling the Etiology of p53-mutated Cancer Cells. J Biol Chem. 2016;291:10131-47 pubmed 出版商
  118. Xiao J, Duan Q, Wang Z, Yan W, Sun H, Xue P, et al. Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon. Oncotarget. 2016;7:24483-94 pubmed 出版商
  119. Dheekollu J, Wiedmer A, Sentana Lledo D, Cassel J, Messick T, Lieberman P. HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. J Virol. 2016;90:5353-5367 pubmed 出版商
  120. Elnfati A, Iles D, Miller D. Nucleosomal chromatin in the mature sperm of Drosophila melanogaster. Genom Data. 2016;7:175-7 pubmed 出版商
  121. Richarson A, Scott D, Zagnitko O, Aza Blanc P, Chang C, Russler Germain D. Registered report: IDH mutation impairs histone demethylation and results in a block to cell differentiation. elife. 2016;5:e10860 pubmed 出版商
  122. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  123. Wu J, Chi L, Chen Z, Lu X, Xiao S, Zhang G, et al. Functional analysis of the TMPRSS2:ERG fusion gene in cisplatin‑induced cell death. Mol Med Rep. 2016;13:3173-80 pubmed 出版商
  124. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  125. Wei J, Xiong Z, Lee J, Cheng J, Duffney L, Matas E, et al. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J Neurosci. 2016;36:2119-30 pubmed 出版商
  126. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  127. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X, et al. Expression of Ferritin Light Chain (FTL) Is Elevated in Glioblastoma, and FTL Silencing Inhibits Glioblastoma Cell Proliferation via the GADD45/JNK Pathway. PLoS ONE. 2016;11:e0149361 pubmed 出版商
  128. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  129. Brasa S, Mueller A, Jacquemont S, Hahne F, Rozenberg I, Peters T, et al. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome. Clin Epigenetics. 2016;8:15 pubmed 出版商
  130. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed 出版商
  131. El Hokayem J, Brittain G, Nawaz Z, Bethea J. Tumor Necrosis Factor Receptor Associated Factors (TRAFs) 2 and 3 Form a Transcriptional Complex with Phosho-RNA Polymerase II and p65 in CD40 Ligand Activated Neuro2a Cells. Mol Neurobiol. 2017;54:1301-1313 pubmed 出版商
  132. Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño Roa L, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. elife. 2016;5: pubmed 出版商
  133. Mo F, Zhuang X, Liu X, Yao P, Qin B, Su Z, et al. Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol. 2016;12:226-32 pubmed 出版商
  134. Lyons M, Chen L, Deng J, Finn C, Pfenning A, Sabhlok A, et al. The transcription factor calcium-response factor limits NMDA receptor-dependent transcription in the developing brain. J Neurochem. 2016;137:164-76 pubmed 出版商
  135. Bouge A, Parmentier M. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech. 2016;9:307-19 pubmed 出版商
  136. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  137. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  138. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  139. Cousin F, Jouan Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne Muller G, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget. 2016;7:7161-78 pubmed 出版商
  140. Carabalona A, Hu D, Vallee R. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci. 2016;19:253-62 pubmed 出版商
  141. Chen N, Uddin B, Voit R, Schiebel E. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A. 2016;113:990-5 pubmed 出版商
  142. Mir R, Bele A, Mirza S, Srivastava S, Olou A, Ammons S, et al. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression. Mol Cell Biol. 2015;36:886-99 pubmed 出版商
  143. Paladino D, Yue P, Furuya H, Acoba J, Rosser C, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 2016;7:7253-67 pubmed 出版商
  144. García V, Lara Chica M, Cantarero I, Sterner O, Calzado M, Muñoz E. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells. Oncotarget. 2016;7:4490-506 pubmed 出版商
  145. Abu Odeh M, Hereema N, Aqeilan R. WWOX modulates the ATR-mediated DNA damage checkpoint response. Oncotarget. 2016;7:4344-55 pubmed 出版商
  146. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  147. Harley M, Murina O, Leitch A, Higgs M, Bicknell L, Yigit G, et al. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nat Genet. 2016;48:36-43 pubmed 出版商
  148. Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget. 2016;7:1380-94 pubmed 出版商
  149. Hernando H, Gelato K, Lesche R, Beckmann G, Koehr S, Otto S, et al. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes. Mol Cancer Ther. 2016;15:287-98 pubmed 出版商
  150. Yu Z, Huang Y, Shieh S. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Res. 2016;44:1133-50 pubmed 出版商
  151. Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Front Plant Sci. 2015;6:846 pubmed 出版商
  152. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  153. Amlie Wolf A, Ryvkin P, Tong R, Dragomir I, Suh E, Xu Y, et al. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS ONE. 2015;10:e0141836 pubmed 出版商
  154. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  155. Meyer S, Krebs S, Thirion C, Blum H, Krause S, Pfaffl M. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells. PLoS ONE. 2015;10:e0139520 pubmed 出版商
  156. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  157. Hehnly H, Canton D, Bucko P, Langeberg L, Ogier L, Gelman I, et al. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells. elife. 2015;4:e09384 pubmed 出版商
  158. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  159. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed 出版商
  160. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  161. Paret C, Simon P, Vormbrock K, Bender C, Kölsch A, Breitkreuz A, et al. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer. Oncotarget. 2015;6:25356-67 pubmed 出版商
  162. Nezich C, Wang C, Fogel A, Youle R. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015;210:435-50 pubmed 出版商
  163. Lovisa S, LeBleu V, Tampe B, Sugimoto H, Vadnagara K, Carstens J, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21:998-1009 pubmed 出版商
  164. Massey A. Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE. 2015;10:e0134306 pubmed 出版商
  165. Badal S, Her Y, Maher L. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J Biol Chem. 2015;290:22287-97 pubmed 出版商
  166. Sadaie M, Dillon C, Narita M, Young A, Cairney C, Godwin L, et al. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell. 2015;26:2971-85 pubmed 出版商
  167. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed 出版商
  168. Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, et al. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med. 2015;7:1048-62 pubmed 出版商
  169. Alexandrova E, Yallowitz A, Li D, Xu S, Schulz R, Proia D, et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352-6 pubmed 出版商
  170. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11:1446-57 pubmed 出版商
  171. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed 出版商
  172. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  173. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  174. Milev M, Hasaj B, Saint Dic D, Snounou S, Zhao Q, Sacher M. TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment. J Cell Biol. 2015;209:221-34 pubmed 出版商
  175. Chen H, Huang W, Yang L, Lin C. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol. 2015;185:1487-99 pubmed 出版商
  176. Morchoisne Bolhy S, Geoffroy M, Bouhlel I, Alves A, Audugé N, Baudin X, et al. Intranuclear dynamics of the Nup107-160 complex. Mol Biol Cell. 2015;26:2343-56 pubmed 出版商
  177. Huang X, Shen M, Wang L, Yu F, Wu W, Liu H. Effects of tributyltin chloride on developing mouse oocytes and preimplantation embryos. Microsc Microanal. 2015;21:358-67 pubmed 出版商
  178. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  179. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  180. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  181. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  182. Carlson S, Moore K, Sankaran S, Reynoird N, Elias J, Gozani O. A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme. J Biol Chem. 2015;290:12040-7 pubmed 出版商
  183. Hendriks I, Treffers L, Verlaan de Vries M, Olsen J, Vertegaal A. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. Cell Rep. 2015;10:1778-1791 pubmed 出版商
  184. Poirier J, Gardner E, Connis N, Moreira A, de Stanchina E, Hann C, et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene. 2015;34:5869-78 pubmed 出版商
  185. Simon H, ODELBERG S. Assessing cardiomyocyte proliferative capacity in the newt heart and primary culture. Methods Mol Biol. 2015;1290:227-40 pubmed 出版商
  186. Bardhan K, Paschall A, Yang D, Chen M, Simon P, Bhutia Y, et al. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer. Cancer Immunol Res. 2015;3:795-805 pubmed 出版商
  187. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602-14 pubmed
  188. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  189. Lee E, Kim S, Cho K. Reconstituted High-Density Lipoprotein Containing Human Growth Hormone-1 Shows Potent Tissue Regeneration Activity with Enhancement of Anti-Oxidant and Anti-Atherosclerotic Activities. Rejuvenation Res. 2015;18:245-56 pubmed 出版商
  190. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  191. Hsiao S, Chen M, Chen C, Chien M, Hua K, Hsiao M, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1556-65 pubmed 出版商
  192. Kim S, Ebbert K, Cordeiro M, Romero M, Zhu J, Serna V, et al. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology. 2015;156:1464-76 pubmed 出版商
  193. Ochi T, Blackford A, Coates J, Jhujh S, Mehmood S, Tamura N, et al. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science. 2015;347:185-188 pubmed 出版商
  194. Wang W, Visavadiya N, Pandya J, Nelson P, Sullivan P, Springer J. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84-93 pubmed 出版商
  195. Pacaud R, Cheray M, Nadaradjane A, Vallette F, Cartron P. Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy. Theranostics. 2015;5:12-22 pubmed 出版商
  196. Naganuma K, Hatta M, Ikebe T, Yamazaki J. Epigenetic alterations of the keratin 13 gene in oral squamous cell carcinoma. BMC Cancer. 2014;14:988 pubmed 出版商
  197. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  198. Ulanet D, Couto K, Jha A, Choe S, Wang A, Woo H, et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS ONE. 2014;9:e115144 pubmed 出版商
  199. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed 出版商
  200. Luense S, Denner P, Fernández Montalván A, Hartung I, Husemann M, Stresemann C, et al. Quantification of histone H3 Lys27 trimethylation (H3K27me3) by high-throughput microscopy enables cellular large-scale screening for small-molecule EZH2 inhibitors. J Biomol Screen. 2015;20:190-201 pubmed 出版商
  201. Peterson E, Menon V, Gatti L, Kipping R, Dewasinghe D, Perego P, et al. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm. 2015;12:287-97 pubmed 出版商
  202. Santos G, da Silva A, Feldman L, Ventura G, Vassetzky Y, de Moura Gallo C. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem. 2015;116:533-41 pubmed 出版商
  203. Zhuang C, Sheng C, Shin W, Wu Y, Li J, Yao J, et al. A novel drug discovery strategy: mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. Oncotarget. 2014;5:10830-9 pubmed
  204. Kawasumi M, Bradner J, Tolliday N, Thibodeau R, Sloan H, Brummond K, et al. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity. Cancer Res. 2014;74:7534-45 pubmed 出版商
  205. Xu S, Tong M, Huang J, Zhang Y, Qiao Y, Weng W, et al. TRIB2 inhibits Wnt/β-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, β-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 2014;588:4334-41 pubmed 出版商
  206. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep. 2014;4:6614 pubmed 出版商
  207. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed 出版商
  208. Saloura V, Cho H, Kiyotani K, Alachkar H, Zuo Z, Nakakido M, et al. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res. 2015;13:293-304 pubmed 出版商
  209. Quan J, Adelmant G, Marto J, Look A, Yusufzai T. The chromatin remodeling factor CHD5 is a transcriptional repressor of WEE1. PLoS ONE. 2014;9:e108066 pubmed 出版商
  210. Seredick S, Hutchinson S, Van Ryswyk L, Talbot J, Eisen J. Lhx3 and Lhx4 suppress Kolmer-Agduhr interneuron characteristics within zebrafish axial motoneurons. Development. 2014;141:3900-9 pubmed 出版商
  211. Chan Y, West S. Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nat Commun. 2014;5:4844 pubmed 出版商
  212. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed 出版商
  213. Wanet A, Remacle N, Najar M, Sokal E, Arnould T, Najimi M, et al. Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol. 2014;54:174-85 pubmed 出版商
  214. Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, et al. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis. 2014;35:1901-10 pubmed 出版商
  215. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  216. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  217. Chen Y, Chen J, Yu J, Yang G, Temple E, Harbinski F, et al. Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition. J Biol Chem. 2014;289:18914-27 pubmed 出版商
  218. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  219. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  220. Elhammali A, Ippolito J, Collins L, Crowley J, Marasa J, Piwnica Worms D. A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov. 2014;4:828-39 pubmed 出版商
  221. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  222. Zeng Z, Shen L, Li X, Luo T, Wei X, Zhang J, et al. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (Lond). 2014;127:435-48 pubmed 出版商
  223. Aoshiba K, Tsuji T, Itoh M, Semba S, Yamaguchi K, Nakamura H, et al. A murine model of airway fibrosis induced by repeated naphthalene exposure. Exp Toxicol Pathol. 2014;66:169-77 pubmed 出版商
  224. Cao Q, Wang X, Zhao M, Yang R, Malik R, Qiao Y, et al. The central role of EED in the orchestration of polycomb group complexes. Nat Commun. 2014;5:3127 pubmed 出版商
  225. Schröder Heurich B, Wieland B, Lavin M, Schindler D, Dork T. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis. FASEB J. 2014;28:1331-41 pubmed 出版商
  226. Hast B, Cloer E, Goldfarb D, Li H, Siesser P, Yan F, et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res. 2014;74:808-17 pubmed 出版商
  227. Sulahian R, Casey F, Shen J, Qian Z, Shin H, Ogino S, et al. An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene. 2014;33:5637-48 pubmed 出版商
  228. Subbanna S, Nagre N, Shivakumar M, Umapathy N, Psychoyos D, Basavarajappa B. Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Neuroscience. 2014;258:422-32 pubmed 出版商
  229. Hammond S, Byrum S, Namjoshi S, Graves H, Dennehey B, Tackett A, et al. Mitotic phosphorylation of histone H3 threonine 80. Cell Cycle. 2014;13:440-52 pubmed 出版商
  230. Wu H, Balsbaugh J, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398-408 pubmed 出版商
  231. Tümer E, Bröer A, Balkrishna S, Jülich T, Broer S. Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks. J Biol Chem. 2013;288:33813-23 pubmed 出版商
  232. Copeland A, Altamura L, Van Deusen N, Schmaljohn C. Nuclear relocalization of polyadenylate binding protein during rift valley fever virus infection involves expression of the NSs gene. J Virol. 2013;87:11659-69 pubmed 出版商
  233. Voss M, Campbell K, Saranzewa N, Campbell D, Hastie C, Peggie M, et al. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with ?-tubulin. Cell Cycle. 2013;12:2876-87 pubmed 出版商
  234. Lauffer B, Mintzer R, Fong R, Mukund S, Tam C, Zilberleyb I, et al. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem. 2013;288:26926-43 pubmed 出版商
  235. Saurat N, Andersson T, Vasistha N, Molnár Z, Livesey F. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 2013;8:14 pubmed 出版商
  236. Dai C, Sun F, Zhu C, Hu X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors. PLoS ONE. 2013;8:e63054 pubmed 出版商
  237. Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development. 2013;140:2310-20 pubmed 出版商
  238. Subbanna S, Shivakumar M, Umapathy N, Saito M, Mohan P, Kumar A, et al. G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain. Neurobiol Dis. 2013;54:475-85 pubmed 出版商
  239. Blakemore L, Boes C, Cordell R, Manson M. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage. Carcinogenesis. 2013;34:351-60 pubmed 出版商
  240. Gallagher S, Kofman A, Huszar J, Dannenberg J, Depinho R, Braun R, et al. Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol. 2013;373:83-94 pubmed 出版商
  241. Rothova M, Peterkova R, Tucker A. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol. 2012;366:244-54 pubmed 出版商
  242. Qin J, Van Buren D, Huang H, Zhong L, Mostoslavsky R, Akbarian S, et al. Chromatin protein L3MBTL1 is dispensable for development and tumor suppression in mice. J Biol Chem. 2010;285:27767-75 pubmed 出版商
  243. Nair M, Nagamori I, Sun P, Mishra D, Rhéaume C, Li B, et al. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol. 2008;320:446-55 pubmed 出版商