这是一篇来自已证抗体库的有关小鼠 H3f3c的综述,是根据53篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合H3f3c 抗体。
H3f3c 同义词: Gm14384; H3mm11; histone H3.3C

Novus Biologicals
兔 多克隆
  • 其他; 人类; 1:4000; 图 3
Novus Biologicals H3f3c抗体(Novus, NB21-1023)被用于被用于其他在人类样本上浓度为1:4000 (图 3). Nat Chem Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 s6d
Novus Biologicals H3f3c抗体(Novus, NB21-1188)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s6d). Nat Commun (2017) ncbi
小鼠 单克隆(6F12-H4)
  • 免疫组化; 猪; 1:100; 图 3c
  • 免疫印迹; 猪; 图 1b
Novus Biologicals H3f3c抗体(Novus Biologicals, NBP1-30141)被用于被用于免疫组化在猪样本上浓度为1:100 (图 3c) 和 被用于免疫印迹在猪样本上 (图 1b). J Reprod Dev (2015) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇 H3f3c抗体(sigma, H0134)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). J Mol Med (Berl) (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 3f
西格玛奥德里奇 H3f3c抗体(Sigma-Aldrich, D5567)被用于被用于染色质免疫沉淀 在人类样本上 (图 3f). Sci Rep (2016) ncbi
小鼠 单克隆(AH3-120)
  • 染色质免疫沉淀 ; 人类; 图 s6f
西格玛奥德里奇 H3f3c抗体(Sigma-Aldrich, H0913)被用于被用于染色质免疫沉淀 在人类样本上 (图 s6f). Sci Rep (2016) ncbi
小鼠 单克隆(APH3-64)
  • 其他; 人类; 图 st1
西格玛奥德里奇 H3f3c抗体(SIGMA, APH3-64)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 H3f3c抗体(Sigma, H0164)被用于被用于免疫印迹在人类样本上 (图 2). Oxid Med Cell Longev (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 2
西格玛奥德里奇 H3f3c抗体(Sigma, D5567)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(AH3-120)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 H3f3c抗体(Sigma Aldrich, H0913)被用于被用于免疫印迹在人类样本上浓度为1:500. Biotechnol Bioeng (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 H3f3c抗体(Sigma Aldrich, H0164)被用于被用于免疫印迹在人类样本上浓度为1:5000. Biotechnol Bioeng (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
西格玛奥德里奇 H3f3c抗体(Sigma-Aldrich, H0164)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). J Neurochem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
西格玛奥德里奇 H3f3c抗体(Sigma, H0164)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 6
西格玛奥德里奇 H3f3c抗体(Sigma, H0164)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 6). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 7a
西格玛奥德里奇 H3f3c抗体(Sigma-Aldrich, H0164)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 7a). Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 1:2000
西格玛奥德里奇 H3f3c抗体(Sigma, H0164)被用于被用于免疫组化在果蝇样本上浓度为1:2000. Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 家蚕
西格玛奥德里奇 H3f3c抗体(Sigma-Aldrich, H0164)被用于被用于免疫印迹在家蚕样本上. Insect Biochem Mol Biol (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇 H3f3c抗体(Sigma, H0913)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cryobiology (2014) ncbi
小鼠 单克隆(AH3-120)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 染色质免疫沉淀 ; 人类; 2-5 ug/ChIP; 图 2
西格玛奥德里奇 H3f3c抗体(Sigma, H0913)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于染色质免疫沉淀 在人类样本上浓度为2-5 ug/ChIP (图 2). Nature (2014) ncbi
默克密理博中国
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4f
默克密理博中国 H3f3c抗体(EMD Millipore, 07-690)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). J Virol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2d
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上 (图 2d). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • ChIP-Seq; 小鼠; 图 3a
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于ChIP-Seq在小鼠样本上 (图 3a). elife (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
默克密理博中国 H3f3c抗体(EMD Millipore, 09-838)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 2c
默克密理博中国 H3f3c抗体(Millipore, 17-10245)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 2c). Development (2017) ncbi
小鼠 单克隆(18E9.1)
  • ChIP-Seq; 小鼠; 图 st2
  • 免疫印迹; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 3a
默克密理博中国 H3f3c抗体(Millipore, 05-1951)被用于被用于ChIP-Seq在小鼠样本上 (图 st2), 被用于免疫印迹在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3a). Nucleic Acids Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s5b
默克密理博中国 H3f3c抗体(Upstate Biotechnology, 07-690)被用于被用于免疫印迹在人类样本上 (图 s5b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
默克密理博中国 H3f3c抗体(Merck Millipore, 07-690)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5c
默克密理博中国 H3f3c抗体(Millipore, 09-838)被用于被用于免疫印迹在人类样本上 (图 5c). Exp Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1s1
默克密理博中国 H3f3c抗体(Millipore, 09-838)被用于被用于免疫印迹在小鼠样本上 (图 1s1). elife (2016) ncbi
兔 多克隆
  • ChIP-Seq; 鸡; 图 3
默克密理博中国 H3f3c抗体(Millipore, 09-838)被用于被用于ChIP-Seq在鸡样本上 (图 3). EMBO J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
默克密理博中国 H3f3c抗体(Millipore, 09-838)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5d
默克密理博中国 H3f3c抗体(Merck Millipore, 07-690)被用于被用于免疫印迹在人类样本上 (图 5d). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 免疫印迹; 果蝇; 1:50,000; 图 1
默克密理博中国 H3f3c抗体(Millipore, 17-10254)被用于被用于免疫印迹在果蝇样本上浓度为1:50,000 (图 1). Development (2016) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类; 图 1
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于染色质免疫沉淀 在人类样本上 (图 1). J Virol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3a
默克密理博中国 H3f3c抗体(Upstate Signaling Solutions, 07-690)被用于被用于免疫印迹在小鼠样本上 (图 3a). Mol Neurobiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3
默克密理博中国 H3f3c抗体(Millipore, 070-690)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). J Neurochem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
兔 多克隆
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 s5
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s5). Nat Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2016) ncbi
兔 多克隆
  • 免疫印迹; Saccharum sp.
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在Saccharum sp.样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(18E9.1)
  • 免疫印迹; 人类; 1:15,000; 图 4a
默克密理博中国 H3f3c抗体(Millipore, 05-1951)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 4a). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
默克密理博中国 H3f3c抗体(Merck-Millipore, 07-690)被用于被用于免疫印迹在人类样本上 (图 1). Carcinogenesis (2015) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
  • 免疫沉淀; 人类
默克密理博中国 H3f3c抗体(Millipore, 09-838)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫沉淀在人类样本上. J Virol (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于染色质免疫沉淀 在人类样本上. J Virol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
默克密理博中国 H3f3c抗体(Millipore, 09-838)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Genome Res (2014) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 人类
默克密理博中国 H3f3c抗体(Millipore, 17-10254)被用于被用于染色质免疫沉淀 在人类样本上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 图 1b
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫组化在小鼠样本上 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 1b). Biochem J (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s2, s4
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在小鼠样本上 (图 s2, s4). Development (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:25000
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上浓度为1:25000. Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
兔 多克隆
  • 染色质免疫沉淀 ; 小鼠
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于染色质免疫沉淀 在小鼠样本上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 H3f3c抗体(Upstate Biotechnology, 07-690)被用于被用于免疫印迹在小鼠样本上. Int J Pharm (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
默克密理博中国 H3f3c抗体(Millipore, 07-690)被用于被用于免疫印迹在大鼠样本上. Biochem Biophys Res Commun (2012) ncbi
文章列表
  1. Lu F, Wiedmer A, Martin K, Wickramasinghe P, Kossenkov A, Lieberman P. Coordinate Regulation of TET2 and EBNA2 Controls the DNA Methylation State of Latent Epstein-Barr Virus. J Virol. 2017;91: pubmed 出版商
  2. Utani K, Fu H, Jang S, Marks A, Smith O, Zhang Y, et al. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability. Nucleic Acids Res. 2017;45:7807-7824 pubmed 出版商
  3. Endoh M, Endo T, Shinga J, Hayashi K, Farcas A, Ma K, et al. PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. elife. 2017;6: pubmed 出版商
  4. Zhang X, Li B, Rezaeian A, Xu X, Chou P, Jin G, et al. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nat Commun. 2017;8:14799 pubmed 出版商
  5. He Y, Selvaraju S, Curtin M, Jakob C, Zhu H, Comess K, et al. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol. 2017;13:389-395 pubmed 出版商
  6. de Castro I, Budzak J, Di Giacinto M, Ligammari L, Gokhan E, Spanos C, et al. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun. 2017;8:14048 pubmed 出版商
  7. Zhou L, Baibakov B, Canagarajah B, Xiong B, Dean J. Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos. Development. 2017;144:519-528 pubmed 出版商
  8. Zhong J, Li X, Cai W, Wang Y, Dong S, Yang J, et al. TET1 modulates H4K16 acetylation by controlling auto-acetylation of hMOF to affect gene regulation and DNA repair function. Nucleic Acids Res. 2017;45:672-684 pubmed 出版商
  9. Murai J, Feng Y, Yu G, Ru Y, Tang S, Shen Y, et al. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget. 2016;7:76534-76550 pubmed 出版商
  10. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  11. Yang J, Song T, Jo C, Park J, Lee H, Song I, et al. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch. Exp Mol Med. 2016;48:e252 pubmed 出版商
  12. Deaton A, Gómez Rodríguez M, Mieczkowski J, Tolstorukov M, Kundu S, Sadreyev R, et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. elife. 2016;5: pubmed 出版商
  13. Romanello M, Schiavone D, Frey A, Sale J. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J. 2016;35:1452-64 pubmed 出版商
  14. Jayaram H, Hoelper D, Jain S, Cantone N, Lundgren S, Poy F, et al. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3. Proc Natl Acad Sci U S A. 2016;113:6182-7 pubmed 出版商
  15. Kunze M, Benz F, Brauß T, Lampe S, Weigand J, Braun J, et al. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. Biochim Biophys Acta. 2016;1859:848-59 pubmed 出版商
  16. Kwenda L, Collins C, Dattoli A, Dunleavy E. Nucleolar activity and CENP-C regulate CENP-A and CAL1 availability for centromere assembly in meiosis. Development. 2016;143:1400-12 pubmed 出版商
  17. Huang Y, Chen S, Liu R, Chen Y, Lin C, Huang C, et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl). 2016;94:1025-37 pubmed 出版商
  18. Dheekollu J, Wiedmer A, Sentana Lledo D, Cassel J, Messick T, Lieberman P. HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. J Virol. 2016;90:5353-5367 pubmed 出版商
  19. Haokip D, Goel I, Arya V, Sharma T, Kumari R, Priya R, et al. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep. 2016;6:20532 pubmed 出版商
  20. El Hokayem J, Brittain G, Nawaz Z, Bethea J. Tumor Necrosis Factor Receptor Associated Factors (TRAFs) 2 and 3 Form a Transcriptional Complex with Phosho-RNA Polymerase II and p65 in CD40 Ligand Activated Neuro2a Cells. Mol Neurobiol. 2017;54:1301-1313 pubmed 出版商
  21. Lyons M, Chen L, Deng J, Finn C, Pfenning A, Sabhlok A, et al. The transcription factor calcium-response factor limits NMDA receptor-dependent transcription in the developing brain. J Neurochem. 2016;137:164-76 pubmed 出版商
  22. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  23. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  24. Verdone L, La Fortezza M, Ciccarone F, Caiafa P, Zampieri M, Caserta M. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription. PLoS ONE. 2015;10:e0144287 pubmed 出版商
  25. Harley M, Murina O, Leitch A, Higgs M, Bicknell L, Yigit G, et al. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nat Genet. 2016;48:36-43 pubmed 出版商
  26. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed 出版商
  27. Yu Z, Huang Y, Shieh S. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Res. 2016;44:1133-50 pubmed 出版商
  28. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  29. Moraes I, Yuan Z, Liu S, Souza G, Garcia B, Casas Mollano J. Analysis of Histones H3 and H4 Reveals Novel and Conserved Post-Translational Modifications in Sugarcane. PLoS ONE. 2015;10:e0134586 pubmed 出版商
  30. Badal S, Her Y, Maher L. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J Biol Chem. 2015;290:22287-97 pubmed 出版商
  31. Li M, Pehar M, Liu Y, Bhattacharyya A, Zhang S, O Riordan K, et al. The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a short isoform of p53, through an IRES-dependent mechanism. Neurobiol Aging. 2015;36:2725-36 pubmed 出版商
  32. Chou W, Hu L, Hsiung C, Shen C. Initiation of the ATM-Chk2 DNA damage response through the base excision repair pathway. Carcinogenesis. 2015;36:832-40 pubmed 出版商
  33. Fischer S, Paul A, Wagner A, Mathias S, Geiss M, Schandock F, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng. 2015;112:2142-53 pubmed 出版商
  34. Singh P, Konar A, Kumar A, Srivas S, Thakur M. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem. 2015;134:642-51 pubmed 出版商
  35. No J, Choi M, Kwon D, Yoo J, Yang B, Park J, et al. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming. J Reprod Dev. 2015;61:90-8 pubmed 出版商
  36. Sun S, Ling S, Qiu J, Albuquerque C, Zhou Y, Tokunaga S, et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun. 2015;6:6171 pubmed 出版商
  37. Jacob V, Chernyavskaya Y, Chen X, Tan P, Kent B, Hoshida Y, et al. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development. 2015;142:510-21 pubmed 出版商
  38. Smith B, Vance C, Scotter E, Troakes C, Wong C, Topp S, et al. Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol Aging. 2015;36:1602.e17-27 pubmed 出版商
  39. Lee J, Peng Y, Lin W, Parrish J. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development. 2015;142:162-73 pubmed 出版商
  40. Li Z, Mon H, Mitsunobu H, Zhu L, Xu J, Lee J, et al. Dynamics of polycomb proteins-mediated histone modifications during UV irradiation-induced DNA damage. Insect Biochem Mol Biol. 2014;55:9-18 pubmed 出版商
  41. Bakhtari A, Rahmani H, Bonakdar E, Jafarpour F, Asgari V, Hosseini S, et al. The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology. 2014;69:419-27 pubmed 出版商
  42. Tsai K, Chan L, Gibeault R, Conn K, Dheekollu J, Domsic J, et al. Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection. J Virol. 2014;88:14350-63 pubmed 出版商
  43. Ivanauskiene K, Delbarre E, McGhie J, Küntziger T, Wong L, Collas P. The PML-associated protein DEK regulates the balance of H3.3 loading on chromatin and is important for telomere integrity. Genome Res. 2014;24:1584-94 pubmed 出版商
  44. Chutake Y, Costello W, Lam C, Bidichandani S. Altered nucleosome positioning at the transcription start site and deficient transcriptional initiation in Friedreich ataxia. J Biol Chem. 2014;289:15194-202 pubmed 出版商
  45. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  46. Arnandis T, Ferrer Vicens I, Torres L, García C, García Trevijano E, Zaragoza R, et al. Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J. 2014;459:355-68 pubmed 出版商
  47. Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S, et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development. 2014;141:526-37 pubmed 出版商
  48. Rennoll S, Konsavage W, Yochum G. Nuclear AXIN2 represses MYC gene expression. Biochem Biophys Res Commun. 2014;443:217-22 pubmed 出版商
  49. Yuan G, Ma B, Yuan W, Zhang Z, Chen P, Ding X, et al. Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases. J Biol Chem. 2013;288:30832-42 pubmed 出版商
  50. Schroeder F, Lewis M, Fass D, Wagner F, Zhang Y, Hennig K, et al. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE. 2013;8:e71323 pubmed 出版商
  51. Jacobi C, Rudigier L, Scholz H, Kirschner K. Transcriptional regulation by the Wilms tumor protein, Wt1, suggests a role of the metalloproteinase Adamts16 in murine genitourinary development. J Biol Chem. 2013;288:18811-24 pubmed 出版商
  52. Kamiya H, Miyamoto S, Goto H, Kanda G, Kobayashi M, Matsuoka I, et al. Enhanced transgene expression from chromatinized plasmid DNA in mouse liver. Int J Pharm. 2013;441:146-50 pubmed 出版商
  53. Kawakami K, Nakamura A, Goto S. Dietary restriction increases site-specific histone H3 acetylation in rat liver: possible modulation by sirtuins. Biochem Biophys Res Commun. 2012;418:836-40 pubmed 出版商