这是一篇来自已证抗体库的有关小鼠 Havcr2的综述,是根据56篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Havcr2 抗体。
Havcr2 同义词: TIM-3; Tim3; Timd3

BioLegend
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 1:50; 图 4a
BioLegend Havcr2抗体(Biolegend, 134004)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4a). Nat Commun (2022) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Havcr2抗体(BioLegend, 119718)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Sci Adv (2022) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 1:200; 图 4d, s5d
BioLegend Havcr2抗体(BioLegend, 134008)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4d, s5d). Cell Rep (2022) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 s6b
BioLegend Havcr2抗体(Biolegend, B8.2C12)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Nat Commun (2022) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 1:50; 图 6j, s8
BioLegend Havcr2抗体(Biolegend, 119715)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6j, s8). Nat Commun (2022) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠
BioLegend Havcr2抗体(Biolegend, 119721)被用于被用于流式细胞仪在小鼠样本上. Theranostics (2021) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 1:600; 图 s2e
BioLegend Havcr2抗体(BioLegend, B8.2C12)被用于被用于流式细胞仪在小鼠样本上浓度为1:600 (图 s2e). Sci Adv (2021) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠
BioLegend Havcr2抗体(Biolegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Havcr2抗体(Biolegend, 134014)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Immunother Cancer (2021) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend Havcr2抗体(Biolegend, 119721)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell (2021) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend Havcr2抗体(Biolegend, 134014)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell (2021) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 s2c
BioLegend Havcr2抗体(Biolegend, B8.2C12)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). J Immunother Cancer (2021) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 1:100; 图 2g
BioLegend Havcr2抗体(BioLegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2g). Nat Commun (2021) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 1:250; 图 7a
BioLegend Havcr2抗体(BioLegend, 134006)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 7a). Cancer Res (2021) ncbi
大鼠 单克隆(RMT3-23)
BioLegend Havcr2抗体(BioLegend, RMT3-23)被用于. Nature (2020) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend Havcr2抗体(Biolegend, 119706)被用于被用于流式细胞仪在小鼠样本上 (图 6e). elife (2020) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 6s1
BioLegend Havcr2抗体(Biolegend, B8.2C12)被用于被用于流式细胞仪在小鼠样本上 (图 6s1). elife (2020) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Havcr2抗体(BioLegend, 119721)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Immunity (2019) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend Havcr2抗体(Biolegend, 134003)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Cell (2019) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 1:100; 图 4a
BioLegend Havcr2抗体(Biolegend, 119705)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4a). Nat Commun (2019) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 s3h
BioLegend Havcr2抗体(Biolegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 s3h). JCI Insight (2019) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Havcr2抗体(BioLegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nature (2019) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 1:100; 图 s2b
BioLegend Havcr2抗体(Biolegend, 119723)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2b). Nat Commun (2019) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 s6f
BioLegend Havcr2抗体(Biolegend, 119718)被用于被用于流式细胞仪在小鼠样本上 (图 s6f). Cell (2019) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Havcr2抗体(Biolegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Science (2019) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Havcr2抗体(Biolegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Front Immunol (2018) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 s2b, s2k
BioLegend Havcr2抗体(BioLegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 s2b, s2k). Cell Rep (2018) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Havcr2抗体(Biolegend, 134004)被用于被用于流式细胞仪在小鼠样本上 (图 1d). elife (2018) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 s12a
BioLegend Havcr2抗体(BioLegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 s12a). J Clin Invest (2018) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 e4d
BioLegend Havcr2抗体(Biolegend, B8.2c12)被用于被用于流式细胞仪在小鼠样本上 (图 e4d). Nature (2018) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 4j
BioLegend Havcr2抗体(BioLegend, 119716)被用于被用于流式细胞仪在小鼠样本上 (图 4j). Cell (2018) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Havcr2抗体(Biolegend, B8.2C12)被用于被用于流式细胞仪在小鼠样本上 (图 3e). JCI Insight (2017) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 4h
BioLegend Havcr2抗体(Biolegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 4h). Nature (2017) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 s12a
BioLegend Havcr2抗体(Biolegend, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 s12a). Science (2017) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 s3f
BioLegend Havcr2抗体(BioLegend, 119706)被用于被用于流式细胞仪在小鼠样本上 (图 s3f). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 1:800; 表 s2
BioLegend Havcr2抗体(Biolegend, B8.2C12)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(B8.2C12)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Havcr2抗体(Biolegend, B8.2C12)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunother Cancer (2015) ncbi
赛默飞世尔
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 1:100; 图 7d
赛默飞世尔 Havcr2抗体(eBioscience, 11-5870-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7d). Nat Commun (2022) ncbi
大鼠 单克隆(8B.2C12)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Havcr2抗体(eBioscience, 8B.2C12)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 1:50; 图 s2a
赛默飞世尔 Havcr2抗体(Thermo Fisher Scientific, RMT3-23)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2a). Nat Immunol (2021) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 1:400; 图 ex4b
赛默飞世尔 Havcr2抗体(ThermoFisher, RMT3-23)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 ex4b). Nat Med (2019) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 ex2b
赛默飞世尔 Havcr2抗体(eBioscience, 12-5870-81)被用于被用于流式细胞仪在小鼠样本上 (图 ex2b). Nature (2019) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 1:100; 图 3b
赛默飞世尔 Havcr2抗体(eBioscience, RMT3-23)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3b). Infect Immun (2018) ncbi
大鼠 单克隆(8B.2C12)
  • 流式细胞仪; 小鼠; 1:300; 图 6f
赛默飞世尔 Havcr2抗体(eBioscience, 13-5871-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6f). Nat Commun (2017) ncbi
大鼠 单克隆(8B.2C12)
  • 流式细胞仪; 小鼠; 图 1,3
赛默飞世尔 Havcr2抗体(eBioscience, 17-5871-82)被用于被用于流式细胞仪在小鼠样本上 (图 1,3). Oncoimmunology (2017) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Havcr2抗体(eBioscience, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Blood (2017) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Havcr2抗体(eBioscience, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
大鼠 单克隆(RMT3-23)
  • 抑制或激活实验; 小鼠; 图 3
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 1
赛默飞世尔 Havcr2抗体(eBioscience, RMT-3-23)被用于被用于抑制或激活实验在小鼠样本上 (图 3) 和 被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Havcr2抗体(eBioscience, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunother Cancer (2015) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Havcr2抗体(eBioscience, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(8B.2C12)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Havcr2抗体(eBioscience, 12-5871)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Immunol (2015) ncbi
大鼠 单克隆(8B.2C12)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Havcr2抗体(eBioscience, 8B.2C12)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2014) ncbi
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Havcr2抗体(eBiosciences, RMT3- 23)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Leukoc Biol (2007) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR22241)
  • 免疫组化; 人类; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Havcr2抗体(Abcam, ab241332)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Havcr2抗体(Abcam, ab185703)被用于被用于免疫印迹在小鼠样本上 (图 4h). elife (2018) ncbi
Bio X Cell
大鼠 单克隆(RMT3-23)
  • 抑制或激活实验; 小鼠; 图 5c
Bio X Cell Havcr2抗体(BioXcell, BE0115)被用于被用于抑制或激活实验在小鼠样本上 (图 5c). Oncogene (2018) ncbi
大鼠 单克隆(RMT3-23)
  • 抑制或激活实验; 小鼠; 图 2
Bio X Cell Havcr2抗体(BioXCell, RMT3-23)被用于被用于抑制或激活实验在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(RMT3-23)
  • 抑制或激活实验; 小鼠; 图 3
  • 流式细胞仪; 小鼠; 图 2a
Bio X Cell Havcr2抗体(Bio-X-cell, RMT3-23)被用于被用于抑制或激活实验在小鼠样本上 (图 3) 和 被用于流式细胞仪在小鼠样本上 (图 2a). Mol Immunol (2014) ncbi
安迪生物R&D
domestic goat 多克隆
安迪生物R&D Havcr2抗体(R&D Systems, AF1529)被用于. Nat Commun (2015) ncbi
美天旎
大鼠 单克隆(RMT3-23)
  • 流式细胞仪; 小鼠; 图 3
美天旎 Havcr2抗体(Miltenyi Biotech, RMT3-23)被用于被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2017) ncbi
文章列表
  1. Ravindranathan S, Passang T, Li J, Wang S, Dhamsania R, Ware M, et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun. 2022;13:6418 pubmed 出版商
  2. Que W, Ma K, Hu X, Guo W, Li X. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. Sci Adv. 2022;8:eabo4413 pubmed 出版商
  3. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  4. Taniguchi H, Caeser R, Chavan S, Zhan Y, Chow A, Manoj P, et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 2022;39:110814 pubmed 出版商
  5. Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176 pubmed 出版商
  6. Xiong W, Gao X, Zhang T, Jiang B, Hu M, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700 pubmed 出版商
  7. Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 2021;11:9162-9176 pubmed 出版商
  8. Rizvi Z, Dalal R, Sadhu S, Kumar Y, Kumar S, Gupta S, et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci Adv. 2021;7:eabg5016 pubmed 出版商
  9. Neumann S, Campbell K, Woodall M, Evans M, Clarkson A, Young S. Obesity Has a Systemic Effect on Immune Cells in Naïve and Cancer-Bearing Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  10. Lauret Marie Joseph E, Kirilovsky A, Lecoester B, El Sissy C, Boullerot L, Rangan L, et al. Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy. J Immunother Cancer. 2021;9: pubmed 出版商
  11. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  12. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  13. Choi Y, Kim Y, Oh S, Suh K, Kim Y, Lee G, et al. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. Adv Sci (Weinh). 2021;8:2002497 pubmed 出版商
  14. Can xe8 S, Van Snick J, Uyttenhove C, Pilotte L, van den Eynde B. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J Immunother Cancer. 2021;9: pubmed 出版商
  15. Page N, Lemeille S, Vincenti I, Klimek B, Mariotte A, Wagner I, et al. Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling. Nat Commun. 2021;12:1009 pubmed 出版商
  16. Yao C, Lou G, Sun H, Zhu Z, Sun Y, Chen Z, et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat Immunol. 2021;22:370-380 pubmed 出版商
  17. Kharkwal S, Johndrow C, Veerapen N, Kharkwal H, Saavedra Avila N, Carreño L, et al. Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Res. 2021;81:1788-1801 pubmed 出版商
  18. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  19. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  20. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  21. Chen Z, Ji Z, Ngiow S, Manne S, Cai Z, Huang A, et al. TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision. Immunity. 2019;51:840-855.e5 pubmed 出版商
  22. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  23. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  24. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  25. Khan O, Giles J, McDonald S, Manne S, Ngiow S, Patel K, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;: pubmed 出版商
  26. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  27. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  28. Poggio M, Hu T, Pai C, Chu B, BELAIR C, Chang A, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177:414-427.e13 pubmed 出版商
  29. Chen J, López Moyado I, Seo H, Lio C, Hempleman L, Sekiya T, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019;567:530-534 pubmed 出版商
  30. Cox M, Duncan G, Lin G, Steinberg B, Yu L, Brenner D, et al. Choline acetyltransferase-expressing T cells are required to control chronic viral infection. Science. 2019;363:639-644 pubmed 出版商
  31. Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Front Immunol. 2018;9:2981 pubmed 出版商
  32. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  33. Zhu H, Zhang L, Wu Y, Dong B, Guo W, Wang M, et al. T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1. elife. 2018;7: pubmed 出版商
  34. Splitt S, Souza S, Valentine K, Castellanos B, Curd A, Hoyer K, et al. PD-L1, TIM-3, and CTLA-4 Blockade Fails To Promote Resistance to Secondary Infection with Virulent Strains of Toxoplasma gondii. Infect Immun. 2018;86: pubmed 出版商
  35. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  36. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  37. Zhang H, Song Y, Yang H, Liu Z, Gao L, Liang X, et al. Tumor cell-intrinsic Tim-3 promotes liver cancer via NF-κB/IL-6/STAT3 axis. Oncogene. 2018;37:2456-2468 pubmed 出版商
  38. Böttcher J, Bonavita E, Chakravarty P, Blees H, Cabeza Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022-1037.e14 pubmed 出版商
  39. Pedros C, Canonigo Balancio A, Kong K, Altman A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight. 2017;2: pubmed 出版商
  40. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  41. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  42. Torcellan T, Hampton H, Bailey J, Tomura M, Brink R, Chtanova T. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A. 2017;114:5677-5682 pubmed 出版商
  43. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  44. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  45. Huang R, Francois A, McGray A, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561 pubmed 出版商
  46. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  47. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  48. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  49. Tripathi S, Chabtini L, Dakle P, Smith B, Akiba H, Yagita H, et al. Effect of TIM-3 Blockade on the Immunophenotype and Cytokine Profile of Murine Uterine NK Cells. PLoS ONE. 2015;10:e0123439 pubmed 出版商
  50. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  51. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  52. Clouthier D, Zhou A, Wortzman M, Luft O, Levy G, Watts T. GITR intrinsically sustains early type 1 and late follicular helper CD4 T cell accumulation to control a chronic viral infection. PLoS Pathog. 2015;11:e1004517 pubmed 出版商
  53. Wang H, Zhu X, Qin L, Qian H, Wang Y. Microglia activity modulated by T cell Ig and mucin domain protein 3 (Tim-3). Cell Immunol. 2015;293:49-58 pubmed 出版商
  54. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  55. Ju Y, Shang X, Liu Z, Zhang J, Li Y, Shen Y, et al. The Tim-3/galectin-9 pathway involves in the homeostasis of hepatic Tregs in a mouse model of concanavalin A-induced hepatitis. Mol Immunol. 2014;58:85-91 pubmed 出版商
  56. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed