这是一篇来自已证抗体库的有关小鼠 缺氧诱导因子1A (Hif1a) 的综述,是根据193篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合缺氧诱导因子1A 抗体。
缺氧诱导因子1A 同义词: AA959795; HIF-1-alpha; HIF1-alpha; HIF1alpha; MOP1; bHLHe78

Novus Biologicals
小鼠 单克隆(ESEE122)
  • proximity ligation assay; 小鼠; 图 8a
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-131)被用于被用于proximity ligation assay在小鼠样本上 (图 8a). Cell Mol Life Sci (2022) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 猕猴; 图 7a, 7b
  • 免疫印迹; 人类; 图 5a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biological Company, NB100-449)被用于被用于免疫印迹在猕猴样本上 (图 7a, 7b) 和 被用于免疫印迹在人类样本上 (图 5a). Aging Dis (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 染色质免疫沉淀 ; 人类; 图 1d, s2
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-479)被用于被用于染色质免疫沉淀 在人类样本上 (图 1d, s2). Sci Adv (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6b
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-134)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Bone Res (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Front Physiol (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 6c
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫印迹在人类样本上 (图 6c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 人类; 1:100; 图 s15
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s15). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:500; 图 4c
Novus Biologicals缺氧诱导因子1A抗体(NovusBio, NBP100123)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4c). Cardiovasc Diabetol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5a, 7a
  • 免疫组化-石蜡切片; 人类; 1:150; 图 5e
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-134)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5a, 7a) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (图 5e). Oncogene (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
  • 免疫印迹; 人类; 1:1000; 图 5, s8a
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5, s8a). Cancer Sci (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 其他; 人类; 1:50; 图 1d
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于其他在人类样本上浓度为1:50 (图 1d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 8e
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8e). Acta Neuropathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). J Clin Invest (2020) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:200; 图 s4d
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4d). Nat Commun (2020) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 大鼠; 1:200; 图 4a
  • 免疫印迹; 大鼠; 1:10,000; 图 s1a
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-479)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 s1a). Int J Mol Med (2020) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000; 图 s13a
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s13a). Nat Commun (2019) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100; 图 7
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100 (图 7). Kidney Blood Press Res (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 3a
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-479)被用于被用于免疫印迹在人类样本上 (图 3a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Rep (2018) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹基因敲除验证; 人类; 图 5b
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5b). Free Radic Biol Med (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4a). Am J Pathol (2018) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 图 10a
  • 免疫印迹; 人类; 图 9c
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologics, NB100-131)被用于被用于免疫组化-石蜡切片在人类样本上 (图 10a) 和 被用于免疫印迹在人类样本上 (图 9c). J Clin Invest (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-449)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Dis Model Mech (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s4e
Novus Biologicals缺氧诱导因子1A抗体(Novus Biological, NB100-134)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4e). Nat Cell Biol (2018) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:500; 图 5e
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5e). Nature (2018) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图 2f
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105SS)被用于被用于免疫印迹在小鼠样本上 (图 2f). Science (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2o
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2o). Genes Dev (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:500; 表 s1
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 s1). Stem Cell Reports (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 1:600; 图 5f
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:600 (图 5f). J Cell Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 3a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 3a). J Clin Invest (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图 s2a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在小鼠样本上 (图 s2a). elife (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). Cancer Res (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:500; 图 s3a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3a). Science (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 5b
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-449)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Rep (2017) ncbi
domestic rabbit 多克隆(14F468)
  • 免疫印迹; 小鼠; 1:200; 图 3a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB-100-654)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Br J Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogenesis (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹基因敲除验证; 小鼠; 图 2f
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-123)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2f). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 人类; 1:50; 图 s4a
  • 免疫印迹; 人类; 1:500; 图 s6
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s4a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s6). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫沉淀; 大鼠; 图 4a
  • 免疫印迹; 大鼠; 图 2d
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫沉淀在大鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上 (图 2d). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 4a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Cell Biol (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 1:500; 图 e4a
  • 免疫印迹; 小鼠; 1,000 ug/ml; 图 2b
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 e4a) 和 被用于免疫印迹在小鼠样本上浓度为1,000 ug/ml (图 2b). Nature (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:1000; 图 2c
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Mol Clin Oncol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 5
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, H1alpha67)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 1B
  • 免疫印迹; 人类; 1:500; 图 1B
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化在人类样本上 (图 1B) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1B). Front Pharmacol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Theranostics (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 4f
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB 10134)被用于被用于染色质免疫沉淀 在人类样本上 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:500; 图 5
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:500 (图 5). Brain Behav (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 2
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-449)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-134)被用于被用于染色质免疫沉淀 在小鼠样本上. Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 小鼠; 图 1b
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化在小鼠样本上 (图 1b). J Pathol (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 s7a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-449)被用于被用于免疫印迹在小鼠样本上 (图 s7a). J Clin Invest (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 2b
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 4
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-冰冻切片; 小鼠; 图 3
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB-100-449)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). BMC Cancer (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 1
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样本上 (图 1). Int J Cancer (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 大鼠; 1:1000; 图 5
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-479)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
  • 免疫印迹基因敲除验证; 小鼠; 图 3
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在人类样本上 (图 3) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 3
  • 免疫印迹基因敲除验证; 小鼠; 图 3
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 3) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 2a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 1:200; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2f
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Cell Biol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图 3
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图 3a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Cell Tissue Res (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:100; 图 2b
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2b). Oncotarget (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s5
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s5). Cancer Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-134)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:500; 图 3
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncol Rep (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于. Nucleic Acids Res (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-449)被用于. Antioxid Redox Signal (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 图 2
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, ESEE122)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Cancer (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:2000
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:2000. Life Sci (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 酶联免疫吸附测定; 人类; 图 s4
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于酶联免疫吸附测定在人类样本上 (图 s4). PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于. J Clin Invest (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-134)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-479)被用于. Int J Clin Exp Med (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500
  • 免疫组化; 小鼠
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上浓度为1:500 和 被用于免疫组化在小鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 3a
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Biol Sci (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 4c
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 4c). Int J Mol Med (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-449)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 图 1
Novus Biologicals缺氧诱导因子1A抗体(Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 表 2
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在人类样本上 (表 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-134)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-479)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-131)被用于被用于免疫组化在人类样本上. Acta Neuropathol Commun (2014) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:600
  • 免疫印迹; 大鼠
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-134)被用于被用于免疫印迹在小鼠样本上浓度为1:600 和 被用于免疫印迹在大鼠样本上. Mol Neurobiol (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-479)被用于. Neurosci Lett (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 s2
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 s2). J Cell Biochem (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 1:1000
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroreport (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 小鼠; 1:2000; 图 2
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-131A1)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Front Immunol (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 大鼠; 1:200
Novus Biologicals缺氧诱导因子1A抗体(Novus Biological, NB-100-123)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 6c
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-105)被用于被用于免疫组化在人类样本上 (图 6c). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在大鼠样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
Novus Biologicals缺氧诱导因子1A抗体(Novus, NB100-123)被用于被用于免疫印迹在人类样本上. Cell Cycle (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB100-105)被用于被用于免疫印迹在大鼠样本上. J Comp Neurol (2012) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫组化; 人类
Novus Biologicals缺氧诱导因子1A抗体(Novus Biologicals, NB 100-105)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫组化在人类样本上. J Histochem Cytochem (2007) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR16897)
  • 免疫组化; 小鼠; 图 s1j
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab179483)被用于被用于免疫组化在小鼠样本上 (图 s1j). Sci Rep (2022) ncbi
小鼠 单克隆(H1alpha67)
  • 染色质免疫沉淀 ; 人类; 图 3e
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于染色质免疫沉淀 在人类样本上 (图 3e). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab179483)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). Mol Med Rep (2022) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:3000; 图 4d
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4d). Oncol Lett (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 大鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3c). J Tissue Eng (2021) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab179483)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫细胞化学基因敲除验证; 人类; 1:100; 图 2a
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 2c
  • 免疫组化; 人类; 图 1b
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(abcam, ab179483)被用于被用于免疫细胞化学基因敲除验证在人类样本上浓度为1:100 (图 2a), 被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 2c) 和 被用于免疫组化在人类样本上 (图 1b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫印迹; 小鼠; 图 3e, 3f
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab179483)被用于被用于免疫印迹在小鼠样本上 (图 3e, 3f). EMBO J (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:500; 图 5d
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam Technology, ab1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5d). Oncogene (2021) ncbi
小鼠 单克隆(H1alpha67)
  • 染色质免疫沉淀 ; 人类; 图 3k
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于染色质免疫沉淀 在人类样本上 (图 3k). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫组化; 大鼠; 1:50; 图 5c
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab179483)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 5c). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫印迹; 小鼠; 图 5c
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab179483)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell (2019) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫印迹; 人类; 图 s6d
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, 179483)被用于被用于免疫印迹在人类样本上 (图 s6d). J Clin Invest (2019) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:100; 图 6a
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6a). Nature (2018) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab8366)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). J Clin Invest (2018) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 7b
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab8366)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 7b). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫细胞化学; 人类; 1:200; 图 1e
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1e) 和 被用于免疫印迹在人类样本上 (图 1d). Stem Cells Dev (2017) ncbi
domestic rabbit 单克隆(EPR16897)
  • 免疫组化-冰冻切片; 小鼠; 图 s6e
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, EPR16897)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6e). Nature (2017) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab8366)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2). Virchows Arch (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 染色质免疫沉淀 ; 小鼠; 图 6g
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6g). Nat Med (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab8366)被用于被用于免疫细胞化学在人类样本上 (图 1). J Diabetes Res (2016) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 人类; 表 4
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ESEE122)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Chin J Cancer (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于免疫印迹在小鼠样本上 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab8366)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化; 人类; 1:500; 图 6c
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab8366)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6c). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于免疫组化在人类样本上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:5000. Stem Cells (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab8366)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 大鼠; 1:200
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, H1alpha67)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Lab Invest (2014) ncbi
小鼠 单克隆(ESEE122)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司缺氧诱导因子1A抗体(Abcam, ab8366)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Stem Cells Dev (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6e
  • 免疫印迹; 人类; 1:2000; 图 6h
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-53546)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6e) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 6h). Front Oncol (2022) ncbi
小鼠 单克隆(28b)
  • 染色质免疫沉淀 ; 人类; 图 10e
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-13515)被用于被用于染色质免疫沉淀 在人类样本上 (图 10e). Theranostics (2021) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫细胞化学; 小鼠; 1:80; 图 5a
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-53546)被用于被用于免疫细胞化学在小鼠样本上浓度为1:80 (图 5a). Biomolecules (2020) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:300; 图 6a
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 6a). PLoS ONE (2020) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4e
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4e). Chin Med J (Engl) (2020) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4e
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4e). Chin Med J (Engl) (2020) ncbi
小鼠 单克隆(28b)
  • 免疫组化; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 图 4g
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa, sc-13515)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 4g). Invest Ophthalmol Vis Sci (2019) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2a). Arch Med Sci (2017) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2a
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, 28b)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2a). Arch Med Sci (2017) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样本上 (图 2a). Am J Transl Res (2017) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图 3A
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3A). Oncol Lett (2017) ncbi
小鼠 单克隆(28b)
  • 免疫组化; 人类; 图 1e
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-13515)被用于被用于免疫组化在人类样本上 (图 1e). Nat Commun (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图 9d
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, H1alpha 67)被用于被用于免疫印迹在人类样本上 (图 9d). PLoS ONE (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫细胞化学; 人类; 1:50; 图 2
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-53546)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 3
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, 67)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25 (图 3). Stem Cells Int (2016) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-71247)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(28b)
  • 免疫沉淀; 人类; 1:200; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2f
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-13515)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Cell Biol (2016) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫沉淀; 人类; 1:1000; 图 5
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(28b)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-13515)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(28b)
  • 免疫细胞化学; 人类; 图 4
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-13515)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(3C144)
  • 免疫印迹; 人类
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-71247)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-53546)被用于被用于免疫印迹在人类样本上 (图 3). EBioMedicine (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-13515)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-13515)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(28b)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-13515)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-53546)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz, sc-53546)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫细胞化学; 人类; 1:50; 图 4
圣克鲁斯生物技术缺氧诱导因子1A抗体(anta Cruz, sc-53546)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4). Cell Cycle (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 人类
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 图 4
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Front Physiol (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:2000. Br J Neurosurg (2014) ncbi
小鼠 单克隆(28b)
  • EMSA; 人类; 1 ug
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa-Cruz Biotechnology Inc., sc13515)被用于被用于EMSA在人类样本上浓度为1 ug. Liver Int (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫印迹在大鼠样本上. Vascular (2015) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, clone H1alpha67)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Acta Histochem (2014) ncbi
小鼠 单克隆(H1alpha 67)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术缺氧诱导因子1A抗体(Santa Cruz Biotechnology, sc-53546)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Brain Tumor Pathol (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔缺氧诱导因子1A抗体(Thermo Scientific, PA1-16601)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Front Pharmacol (2017) ncbi
小鼠 单克隆(mgc3)
  • 免疫细胞化学; 小鼠; 1:200; 图 s1a
赛默飞世尔缺氧诱导因子1A抗体(Pierce, MA1-516)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s1a). Sci Rep (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 图 1b
赛默飞世尔缺氧诱导因子1A抗体(Thermo Fisher Scientific, H1alpha67)被用于被用于免疫组化在人类样本上 (图 1b). Oncogenesis (2017) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; pigs ; 1:1000; 表 1
赛默飞世尔缺氧诱导因子1A抗体(NeoMarkers, Ab-4)被用于被用于免疫组化在pigs 样本上浓度为1:1000 (表 1). Semin Thorac Cardiovasc Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔缺氧诱导因子1A抗体(Thermo Fisher Scientific, PA1-16601)被用于被用于免疫印迹在小鼠样本上 (图 3). Cell Signal (2016) ncbi
小鼠 单克隆(mgc3)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔缺氧诱导因子1A抗体(Affinity Bioreagents, mgc3)被用于被用于免疫印迹在人类样本上 (图 1a). FEBS Lett (2016) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔缺氧诱导因子1A抗体(Thermo Scientific, MA1-16504)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). FEBS Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 9a
赛默飞世尔缺氧诱导因子1A抗体(Thermo Fisher, PA3-16521)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 9a). Transplantation (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔缺氧诱导因子1A抗体(ThermoFisher Scientific, PA1-16601)被用于. Mol Med Rep (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 人类; 1:200
赛默飞世尔缺氧诱导因子1A抗体(LabVision, H1alpha67)被用于被用于免疫组化在人类样本上浓度为1:200. Int Urol Nephrol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔缺氧诱导因子1A抗体(Thermo Fisher Scientific, PA1-16601)被用于. Inflammation (2015) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔缺氧诱导因子1A抗体(Neomarkers, MS-1164)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Ann Surg Oncol (2014) ncbi
小鼠 单克隆(mgc3)
  • EMSA; 大鼠
  • EMSA; 小鼠
赛默飞世尔缺氧诱导因子1A抗体(Thermo Scientific, MA1-516)被用于被用于EMSA在大鼠样本上 和 被用于EMSA在小鼠样本上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(H1alpha67)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔缺氧诱导因子1A抗体(Thermo, MS-1164-P0)被用于被用于免疫组化在大鼠样本上浓度为1:200. J Comp Neurol (2012) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 人类; 图 4e, 5e
安迪生物R&D缺氧诱导因子1A抗体(R&D Systems, AF1935)被用于被用于免疫印迹在人类样本上 (图 4e, 5e). Cancer Cell Int (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:20; 图 s4
安迪生物R&D缺氧诱导因子1A抗体(R&D Systems, AF1935)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 s4). Commun Biol (2021) ncbi
Active Motif
小鼠 单克隆(ESEE122)
  • 免疫印迹; 人类; 1:1000; 图 4
Active Motif缺氧诱导因子1A抗体(Active Motif, 61275)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
SICGEN
domestic goat 多克隆
SICGEN缺氧诱导因子1A抗体(Sicgen, AB0112-200)被用于. Sci Rep (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Oncogene (2021) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 s6b
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Hypoxia (Auckl) (2019) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 图 8e
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling Technology, 3434)被用于被用于免疫印迹在人类样本上 (图 8e). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫组化-冰冻切片; 小鼠; 图 s3g
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, D43B5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3g). Science (2017) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:2000; 图 7E
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7E). elife (2017) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Sci Transl Med (2016) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:5000; 图 s1
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling Technology, 3434)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫沉淀; 人类; 图 8
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell signaling, D43B5)被用于被用于免疫沉淀在人类样本上 (图 8). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling Technology, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(D43B5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司缺氧诱导因子1A抗体(Cell Signaling, 3434)被用于被用于免疫印迹在人类样本上 (图 2a). Genes Dev (2014) ncbi
碧迪BD
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图 1f
碧迪BD缺氧诱导因子1A抗体(BD实验室, 611078)被用于被用于免疫印迹在人类样本上 (图 1f). Cell Rep (2021) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图 1e
碧迪BD缺氧诱导因子1A抗体(BD Biosciences, 611078)被用于被用于免疫印迹在人类样本上 (图 1e). Oncogene (2017) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 小鼠; 图 3
碧迪BD缺氧诱导因子1A抗体(BD, 611078)被用于被用于免疫印迹在小鼠样本上 (图 3). Toxicol Sci (2015) ncbi
小鼠 单克隆(29/HIF-1b)
  • 免疫印迹; 人类; 图 4a
碧迪BD缺氧诱导因子1A抗体(BD, 611079)被用于被用于免疫印迹在人类样本上 (图 4a). Genes Dev (2014) ncbi
文章列表
  1. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  2. Yoshida Y, Shimizu I, Shimada A, Nakahara K, Yanagisawa S, Kubo M, et al. Brown adipose tissue dysfunction promotes heart failure via a trimethylamine N-oxide-dependent mechanism. Sci Rep. 2022;12:14883 pubmed 出版商
  3. Ka N, Lim G, Kim S, Hwang S, Han J, Lee Y, et al. Type I IFN stimulates IFI16-mediated aromatase expression in adipocytes that promotes E2-dependent growth of ER-positive breast cancer. Cell Mol Life Sci. 2022;79:306 pubmed 出版商
  4. Zhang M, Cui J, Lee D, Yuen V, Chiu D, Goh C, et al. Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat Commun. 2022;13:954 pubmed 出版商
  5. Méndez Solís O, Bendjennat M, Naipauer J, Theodoridis P, Ho J, Verdun R, et al. Kaposi's sarcoma herpesvirus activates the hypoxia response to usurp HIF2α-dependent translation initiation for replication and oncogenesis. Cell Rep. 2021;37:110144 pubmed 出版商
  6. Yeh C, Liu H, Lee M, Leu Y, Chiang W, Chang H, et al. Phytochemical‑rich herbal formula ATG‑125 protects against sucrose‑induced gastrocnemius muscle atrophy by rescuing Akt signaling and improving mitochondrial dysfunction in young adult mice. Mol Med Rep. 2022;25: pubmed 出版商
  7. Sil S, Singh S, Chemparathy D, Chivero E, Gordon L, Buch S. Astrocytes & Astrocyte derived Extracellular Vesicles in Morphine Induced Amyloidopathy: Implications for Cognitive Deficits in Opiate Abusers. Aging Dis. 2021;12:1389-1408 pubmed 出版商
  8. Wang Y, Lyu Y, Tu K, Xu Q, Yang Y, Salman S, et al. Histone citrullination by PADI4 is required for HIF-dependent transcriptional responses to hypoxia and tumor vascularization. Sci Adv. 2021;7: pubmed 出版商
  9. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  10. Wu Q, Zhang W, Liu Y, Huang Y, Wu H, Ma C. Histone deacetylase 1 facilitates aerobic glycolysis and growth of endometrial cancer. Oncol Lett. 2021;22:721 pubmed 出版商
  11. Han E, Wang J, Kural M, Jiang B, Leiby K, Chowdhury N, et al. Development of a Bioartificial Vascular Pancreas. J Tissue Eng. 2021;12:20417314211027714 pubmed 出版商
  12. Shao R, Zhang Z, Xu Z, Ouyang H, Wang L, Ouyang H, et al. H3K36 methyltransferase NSD1 regulates chondrocyte differentiation for skeletal development and fracture repair. Bone Res. 2021;9:30 pubmed 出版商
  13. Wang N, Peng Y, Su X, Prabhakar N, Nanduri J. Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Front Physiol. 2021;12:688322 pubmed 出版商
  14. Pan W, Song X, Hu Q, Zhang Y. miR-485 inhibits histone deacetylase HDAC5, HIF1α and PFKFB3 expression to alleviate epilepsy in cellular and rodent models. Aging (Albany NY). 2021;13:14416-14432 pubmed 出版商
  15. Sánchez del Campo L, Martí Díaz R, Montenegro M, González Guerrero R, Hernández Caselles T, Martínez Barba E, et al. MITF induces escape from innate immunity in melanoma. J Exp Clin Cancer Res. 2021;40:117 pubmed 出版商
  16. Wang P, Zhao L, Gong S, Xiong S, Wang J, Zou D, et al. HIF1α/HIF2α-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis. 2021;12:312 pubmed 出版商
  17. Du J, Yu Q, Liu Y, Du S, Huang L, Xu D, et al. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics. 2021;11:4207-4231 pubmed 出版商
  18. Fan X, Zhao Z, Song J, Zhang D, Wu F, Tu J, et al. LncRNA-SNHG6 promotes the progression of hepatocellular carcinoma by targeting miR-6509-5p and HIF1A. Cancer Cell Int. 2021;21:150 pubmed 出版商
  19. Choi Y, Kim Y, Oh S, Suh K, Kim Y, Lee G, et al. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. Adv Sci (Weinh). 2021;8:2002497 pubmed 出版商
  20. Saw E, Pearson J, Schwenke D, Munasinghe P, Tsuchimochi H, Rawal S, et al. Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications. Cardiovasc Diabetol. 2021;20:50 pubmed 出版商
  21. Turgu B, Zhang F, El Naggar A, Negri G, Kogler M, Tortola L, et al. HACE1 blocks HIF1α accumulation under hypoxia in a RAC1 dependent manner. Oncogene. 2021;40:1988-2001 pubmed 出版商
  22. Liu M, Li N, Qu C, Gao Y, Wu L, Hu L. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol. 2021;4:188 pubmed 出版商
  23. Yagi M, Toshima T, Amamoto R, Do Y, Hirai H, Setoyama D, et al. Mitochondrial translation deficiency impairs NAD+ -mediated lysosomal acidification. EMBO J. 2021;40:e105268 pubmed 出版商
  24. Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, et al. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci. 2021;: pubmed 出版商
  25. Wang Z, Shi Y, Ying C, Jiang Y, Hu J. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene. 2021;: pubmed 出版商
  26. Guo S, Chen Y, Yang Y, Zhang X, Ma L, Xue X, et al. TRIB2 modulates proteasome function to reduce ubiquitin stability and protect liver cancer cells against oxidative stress. Cell Death Dis. 2021;12:42 pubmed 出版商
  27. Capaci V, Bascetta L, Fantuz M, Beznoussenko G, Sommaggio R, Cancila V, et al. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun. 2020;11:3945 pubmed 出版商
  28. Devraj G, Guérit S, Seele J, Spitzer D, Macas J, Khel M, et al. HIF-1α is involved in blood-brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol. 2020;140:183-208 pubmed 出版商
  29. Dmitrieva N, Walts A, Nguyen D, Grubb A, Zhang X, Wang X, et al. Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. J Clin Invest. 2020;130:4167-4181 pubmed 出版商
  30. Zhang S, Kim B, Zhu X, Gui X, Wang Y, Lan Z, et al. Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways. Nat Commun. 2020;11:2027 pubmed 出版商
  31. Zhou Y, Huang Y, Hu K, Zhang Z, Yang J, Wang Z. HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 2020;11:176 pubmed 出版商
  32. Li J, Tao T, Xu J, Liu Z, Zou Z, Jin M. HIF‑1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia‑reperfusion injury in a rat MCAO model. Int J Mol Med. 2020;45:1027-1036 pubmed 出版商
  33. Merlo S, Luaces J, Spampinato S, Toro Urrego N, Caruso G, D Amico F, et al. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules. 2020;10: pubmed 出版商
  34. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  35. Yang W, Chen Z, Ma X, Ouyang X, Fang J, Wei H. Co-overexpression of VEGF and GDNF in adipose-derived stem cells optimizes therapeutic effect in neurogenic erectile dysfunction model. Cell Prolif. 2020;53:e12756 pubmed 出版商
  36. Tang H, Feng H, Wang M, Zhu Q, Liu Y, Jiang Y. In vivo longitudinal and multimodal imaging of hypoxia-inducible factor 1α and angiogenesis in breast cancer. Chin Med J (Engl). 2020;133:205-211 pubmed 出版商
  37. Ghezzi C, Wong A, Chen B, Ribalet B, Damoiseaux R, Clark P. A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nat Commun. 2019;10:5444 pubmed 出版商
  38. Wang Y, Chiang I, Ohara T, Fujii S, Cheng J, Muegge B, et al. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell. 2019;179:1144-1159.e15 pubmed 出版商
  39. Wang Y, Zhang X, Hua Z, Xie L, Jiang X, Wang R, et al. Blood Oxygen Level-Dependent Imaging and Intravoxel Incoherent Motion MRI of Early Contrast-Induced Acute Kidney Injury in a Rabbit Model. Kidney Blood Press Res. 2019;44:496-512 pubmed 出版商
  40. Wohlrab C, Kuiper C, Vissers M, Phillips E, Robinson B, Dachs G. Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckl). 2019;7:17-31 pubmed 出版商
  41. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  42. Guo H, Ci X, Ahmed M, Hua J, Soares F, Lin D, et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun. 2019;10:278 pubmed 出版商
  43. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  44. Cheng Y, Sun M, Chen L, Li Y, Lin L, Yao B, et al. Ten-Eleven Translocation Proteins Modulate the Response to Environmental Stress in Mice. Cell Rep. 2018;25:3194-3203.e4 pubmed 出版商
  45. Lee M, Wang C, Jin S, Labrecque M, Beischlag T, Brockman M, et al. Expression of human inducible nitric oxide synthase in response to cytokines is regulated by hypoxia-inducible factor-1. Free Radic Biol Med. 2019;130:278-287 pubmed 出版商
  46. Schwartz A, Das N, Ramakrishnan S, Jain C, Jurkovic M, Wu J, et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J Clin Invest. 2019;129:336-348 pubmed 出版商
  47. Aoki A, Nakashima A, Kusabiraki T, Ono Y, Yoshino O, Muto M, et al. Trophoblast-Specific Conditional Atg7 Knockout Mice Develop Gestational Hypertension. Am J Pathol. 2018;188:2474-2486 pubmed 出版商
  48. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  49. Kim Y, Lee M, Gu H, Kim J, Jeong S, Yeo S, et al. HIF-1α activation in myeloid cells accelerates dextran sodium sulfate-induced colitis progression in mice. Dis Model Mech. 2018;11: pubmed 出版商
  50. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  51. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  52. Wendeln A, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 2018;556:332-338 pubmed 出版商
  53. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  54. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  55. La Porta S, Roth L, Singhal M, Mogler C, Spegg C, Schieb B, et al. Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest. 2018;128:834-845 pubmed 出版商
  56. Hira V, Wormer J, Kakar H, Breznik B, van der Swaan B, Hulsbos R, et al. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins. J Histochem Cytochem. 2018;66:155-173 pubmed 出版商
  57. Badowska Kozakiewicz A, Sobol M, Patera J. Expression of multidrug resistance protein P-glycoprotein in correlation with markers of hypoxia (HIF-1?, EPO, EPO-R) in invasive breast cancer with metastasis to lymph nodes. Arch Med Sci. 2017;13:1303-1314 pubmed 出版商
  58. Ho L, van Dijk M, Chye S, Messerschmidt D, Chng S, Ong S, et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 2017;357:707-713 pubmed 出版商
  59. Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda Andoh T, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports. 2017;8:1743-1756 pubmed 出版商
  60. Li W, Chen C, Zhao X, Ye H, Zhao Y, Fu Z, et al. HIF-2? regulates non-canonical glutamine metabolism via activation of PI3K/mTORC2 pathway in human pancreatic ductal adenocarcinoma. J Cell Mol Med. 2017;21:2896-2908 pubmed 出版商
  61. Ciria M, García N, Ontoria Oviedo I, González King H, Carrero R, de la Pompa J, et al. Mesenchymal Stem Cell Migration and Proliferation Are Mediated by Hypoxia-Inducible Factor-1α Upstream of Notch and SUMO Pathways. Stem Cells Dev. 2017;26:973-985 pubmed 出版商
  62. Yuan X, Qi H, Li X, Wu F, Fang J, Bober E, et al. Disruption of spatiotemporal hypoxic signaling causes congenital heart disease in mice. J Clin Invest. 2017;127:2235-2248 pubmed 出版商
  63. Li S, Liu H, Tang S, Li X, Wang X. MicroRNA-150 regulates glycolysis by targeting von Hippel-Lindau in glioma cells. Am J Transl Res. 2017;9:1058-1066 pubmed
  64. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  65. Guo Q, He J, Shen F, Zhang W, Yang X, Zhang C, et al. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett. 2017;13:949-954 pubmed 出版商
  66. An Y, Sun K, Joffin N, Zhang F, Deng Y, Donze O, et al. Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. elife. 2017;6: pubmed 出版商
  67. Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, et al. E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Res. 2017;77:2090-2101 pubmed 出版商
  68. Miles A, Burr S, Grice G, Nathan J. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1? prolyl hydroxylation by regulating cellular iron levels. elife. 2017;6: pubmed 出版商
  69. Xiao N, Yang L, Yang Y, Liu L, Li J, Liu B, et al. Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance. Front Pharmacol. 2017;8:43 pubmed 出版商
  70. Williams P, Harder J, Foxworth N, Cochran K, Philip V, Porciatti V, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756-760 pubmed 出版商
  71. Omatsu Kanbe M, Nozuchi N, Nishino Y, Mukaisho K, Sugihara H, Matsuura H. Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death. Sci Rep. 2017;7:41318 pubmed 出版商
  72. Gardner P, Liyanage S, Cristante E, Sampson R, Dick A, Ali R, et al. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Sci Rep. 2017;7:40830 pubmed 出版商
  73. Bouchard G, Therriault H, Geha S, Bujold R, Saucier C, Paquette B. Radiation-induced lung metastasis development is MT1-MMP-dependent in a triple-negative breast cancer mouse model. Br J Cancer. 2017;116:479-488 pubmed 出版商
  74. Murakami A, Wang L, Kalhorn S, Schraml P, Rathmell W, Tan A, et al. Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma. Oncogenesis. 2017;6:e287 pubmed 出版商
  75. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed 出版商
  76. Yu Z, Mouillesseaux K, Kushner E, Bautch V. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication. PLoS ONE. 2016;11:e0168334 pubmed 出版商
  77. Oh E, Kim J, Kim J, Kim S, Lee J, Hong S, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun. 2016;7:13593 pubmed 出版商
  78. Li F, Li Z, Jiang Z, Tian Y, Wang Z, Yi W, et al. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway. Am J Transl Res. 2016;8:4791-4801 pubmed
  79. Thompson J, Nguyen Q, Singh M, Pavesic M, Nesterenko I, Nelson L, et al. Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene. 2017;36:1080-1089 pubmed 出版商
  80. Myllymäki M, Määttä J, Dimova E, Izzi V, Väisänen T, Myllyharju J, et al. Notch Downregulation and Extramedullary Erythrocytosis in Hypoxia-Inducible Factor Prolyl 4-Hydroxylase 2-Deficient Mice. Mol Cell Biol. 2017;37: pubmed 出版商
  81. Chen W, Hill H, Christie A, Kim M, Holloman E, Pavía Jiménez A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539:112-117 pubmed 出版商
  82. Arvola O, Haapanen H, Herajärvi J, Anttila T, Puistola U, Karihtala P, et al. Remote Ischemic Preconditioning Reduces Cerebral Oxidative Stress Following Hypothermic Circulatory Arrest in a Porcine Model. Semin Thorac Cardiovasc Surg. 2016;28:92-102 pubmed 出版商
  83. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  84. Guimarães T, Farias L, Santos E, De Carvalho Fraga C, Orsini L, de Freitas Teles L, et al. Metformin increases PDH and suppresses HIF-1? under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget. 2016;7:55057-55068 pubmed 出版商
  85. Takasaki C, Kobayashi M, Ishibashi H, Akashi T, Okubo K. Expression of hypoxia-inducible factor-1? affects tumor proliferation and antiapoptosis in surgically resected lung cancer. Mol Clin Oncol. 2016;5:295-300 pubmed
  86. Schokrpur S, Hu J, Moughon D, Liu P, Lin L, Hermann K, et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci Rep. 2016;6:29032 pubmed 出版商
  87. Colombo J, Maciel J, Ferreira L, da Silva R, Zuccari D. Effects of melatonin on HIF-1? and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol Lett. 2016;12:231-237 pubmed
  88. Zhao W, Li A, Feng X, Hou T, Liu K, Liu B, et al. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell Signal. 2016;28:1401-11 pubmed 出版商
  89. Higashimura Y, Kitakaze T, Harada N, Inui H, Nakano Y, Yamaji R. pVHL-mediated degradation of HIF-2? regulates estrogen receptor ? expression in normoxic breast cancer cells. FEBS Lett. 2016;590:2690-9 pubmed 出版商
  90. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  91. Hoefflin R, Lahrmann B, Warsow G, Hübschmann D, Spath C, Walter B, et al. Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity. Nat Commun. 2016;7:ncomms11845 pubmed 出版商
  92. Lo Dico A, Costa V, Martelli C, Diceglie C, Rajata F, Rizzo A, et al. MiR675-5p Acts on HIF-1? to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma. Theranostics. 2016;6:1105-18 pubmed 出版商
  93. Salvi V, Vermi W, Gianello V, Lonardi S, Gagliostro V, Naldini A, et al. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors. Oncotarget. 2016;7:39256-39269 pubmed 出版商
  94. Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, et al. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav. 2016;6:e00472 pubmed 出版商
  95. Piton N, Wason J, Colasse É, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch. 2016;469:145-54 pubmed 出版商
  96. Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, et al. HIF-1?-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 2016;7:11635 pubmed 出版商
  97. Cherepanova O, Gomez D, Shankman L, Swiatlowska P, Williams J, Sarmento O, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. 2016;22:657-65 pubmed 出版商
  98. Guinot A, Lehmann H, Wild P, Frew I. Combined deletion of Vhl, Trp53 and Kif3a causes cystic and neoplastic renal lesions. J Pathol. 2016;239:365-73 pubmed 出版商
  99. Okawa H, Kayashima H, Sasaki J, Miura J, Kamano Y, Kosaka Y, et al. Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells. Stem Cells Int. 2016;2016:6240794 pubmed 出版商
  100. Kobayashi H, Liu Q, Binns T, Urrutia A, Davidoff O, Kapitsinou P, et al. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest. 2016;126:1926-38 pubmed 出版商
  101. Xu X, Tan X, Hulshoff M, Wilhelmi T, Zeisberg M, Zeisberg E. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590:1222-33 pubmed 出版商
  102. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  103. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  104. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  105. Djamali A, Wilson N, Sadowski E, Zha W, Niles D, Hafez O, et al. Nox2 and Cyclosporine-Induced Renal Hypoxia. Transplantation. 2016;100:1198-210 pubmed 出版商
  106. Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396-403 pubmed 出版商
  107. Karuppagounder S, Alim I, Khim S, Bourassa M, Sleiman S, John R, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016;8:328ra29 pubmed 出版商
  108. Zhou F, Dai A, Jiang Y, Tan X, Zhang X. SENP‑1 enhances hypoxia‑induced proliferation of rat pulmonary artery smooth muscle cells by regulating hypoxia‑inducible factor‑1α. Mol Med Rep. 2016;13:3482-90 pubmed 出版商
  109. Edalat L, Stegen B, Klumpp L, Haehl E, Schilbach K, Lukowski R, et al. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells. Oncotarget. 2016;7:14259-78 pubmed 出版商
  110. Chowdhury H, Velebit J, Radić N, Frančič V, Kreft M, Zorec R. Hypoxia Alters the Expression of Dipeptidyl Peptidase 4 and Induces Developmental Remodeling of Human Preadipocytes. J Diabetes Res. 2016;2016:7481470 pubmed 出版商
  111. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  112. Mori H, Yao Y, Learman B, Kurozumi K, Ishida J, Ramakrishnan S, et al. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep. 2016;6:21520 pubmed 出版商
  113. Wang P, Li L, Zhang Z, Kan Q, Chen S, Gao F. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoClâ‚‚ treatment. Mol Med Rep. 2016;13:2909-17 pubmed 出版商
  114. Regan Anderson T, Ma S, Raj G, Cidlowski J, Helle T, Knutson T, et al. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res. 2016;76:1653-63 pubmed 出版商
  115. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  116. Kim Y, Nam H, Lee J, Park D, Kim C, Yu Y, et al. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347 pubmed 出版商
  117. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, et al. The LINK-A lncRNA activates normoxic HIF1? signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18:213-24 pubmed 出版商
  118. Chen K, Zeng J, Xiao H, Huang C, Hu J, Yao W, et al. Regulation of glucose metabolism by p62/SQSTM1 through HIF1α. J Cell Sci. 2016;129:817-30 pubmed 出版商
  119. Maugeri G, D Amico A, Reitano R, Saccone S, Federico C, Cavallaro S, et al. Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in gliobastoma-derived cell lines in vitro. Cell Tissue Res. 2016;364:465-474 pubmed 出版商
  120. Lee S, Frattini V, Bansal M, Castano A, Sherman D, Hutchinson K, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature. 2016;529:172-7 pubmed 出版商
  121. Sharpe M, Baskin D. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget. 2016;7:3379-93 pubmed 出版商
  122. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, et al. Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci. 2016;107:123-32 pubmed 出版商
  123. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  124. de Jong O, van Balkom B, Gremmels H, Verhaar M. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. J Cell Mol Med. 2016;20:342-50 pubmed 出版商
  125. Aquino Gálvez A, González Ávila G, Delgado Tello J, Castillejos López M, Mendoza Milla C, Zúñiga J, et al. Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncol Rep. 2016;35:577-83 pubmed 出版商
  126. Shen G, Ning N, Zhao X, Liu X, Wang G, Wang T, et al. Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia. Mol Med Rep. 2015;12:8055-61 pubmed 出版商
  127. Chen P, Weng J, Hsu P, Shew J, Huang Y, Lee W. NPGPx modulates CPEB2-controlled HIF-1α RNA translation in response to oxidative stress. Nucleic Acids Res. 2015;43:9393-404 pubmed 出版商
  128. Konzack A, Jakupovic M, Kubaichuk K, Görlach A, Dombrowski F, Miinalainen I, et al. Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis. Antioxid Redox Signal. 2015;23:1059-75 pubmed 出版商
  129. Saini Y, Proper S, Dornbos P, Greenwood K, Kopec A, Lynn S, et al. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice. PLoS ONE. 2015;10:e0139270 pubmed 出版商
  130. Singh S, Chand H, Gundavarapu S, Saeed A, Langley R, Tesfaigzi Y, et al. HIF-1α Plays a Critical Role in the Gestational Sidestream Smoke-Induced Bronchopulmonary Dysplasia in Mice. PLoS ONE. 2015;10:e0137757 pubmed 出版商
  131. Rodríguez C, Reidel S, Bal de Kier Joffé E, Jasnis M, Fiszman G. Autophagy Protects from Trastuzumab-Induced Cytotoxicity in HER2 Overexpressing Breast Tumor Spheroids. PLoS ONE. 2015;10:e0137920 pubmed 出版商
  132. Ochi F, Shiozaki A, Ichikawa D, Fujiwara H, Nakashima S, Takemoto K, et al. Carbonic Anhydrase XII as an Independent Prognostic Factor in Advanced Esophageal Squamous Cell Carcinoma. J Cancer. 2015;6:922-9 pubmed 出版商
  133. Huang J, Liu L, Feng M, An S, Zhou M, Li Z, et al. Effect of CoClâ‚‚ on fracture repair in a rat model of bone fracture. Mol Med Rep. 2015;12:5951-6 pubmed 出版商
  134. Wang I, Sun K, Tsai T, Chen C, Chang S, Yu T, et al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci. 2015;136:133-41 pubmed 出版商
  135. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  136. Chan M, Atasoylu O, Hodson E, Tumber A, Leung I, Chowdhury R, et al. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. PLoS ONE. 2015;10:e0132004 pubmed 出版商
  137. Yang X, Zheng K, Lin K, Zheng G, Zou H, Wang J, et al. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study. PLoS ONE. 2015;10:e0132695 pubmed 出版商
  138. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  139. Li X, Yang X, Biskup E, Zhou J, Li H, Wu Y, et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget. 2015;6:22880-9 pubmed
  140. Xie L, Pi X, Townley Tilson W, Li N, Wehrens X, Entman M, et al. PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban. J Clin Invest. 2015;125:2759-71 pubmed 出版商
  141. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  142. Yorulmaz H, Ozkok E, Erguven M, Ates G, Aydın I, Tamer S. Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis. Int J Clin Exp Med. 2015;8:3640-50 pubmed
  143. Espana Agusti J, Tuveson D, Adams D, Matakidou A. A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules. Sci Rep. 2015;5:11061 pubmed 出版商
  144. Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, et al. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci. 2015;11:664-71 pubmed 出版商
  145. Zhang Y, Fan N, Yang J. Expression and clinical significance of hypoxia-inducible factor 1?, Snail and E-cadherin in human ovarian cancer cell lines. Mol Med Rep. 2015;12:3393-3399 pubmed 出版商
  146. Kumar P, Gullberg U, Olsson I, Ajore R. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1. PLoS ONE. 2015;10:e0123725 pubmed 出版商
  147. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  148. Park H, Lee D, Yim M, Choi Y, Park S, Seo S, et al. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions. Int J Mol Med. 2015;36:301-8 pubmed 出版商
  149. Bánfi G, Teleki I, Nyirády P, Keszthelyi A, Romics I, Fintha A, et al. Changes of protein expression in prostate cancer having lost its androgen sensitivity. Int Urol Nephrol. 2015;47:1149-54 pubmed 出版商
  150. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  151. Guven M, Sehitoglu M, Yüksel Y, Tokmak M, Aras A, Akman T, et al. The Neuroprotective Effect of Coumaric Acid on Spinal Cord Ischemia/Reperfusion Injury in Rats. Inflammation. 2015;38:1986-95 pubmed 出版商
  152. Basu S, Majumder S, Bhowal A, Ghosh A, Naskar S, Nandy S, et al. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia. PLoS ONE. 2015;10:e0125560 pubmed 出版商
  153. Kim B, Lee J, Choi J, Park D, Song H, Park T, et al. Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization. Br J Pharmacol. 2015;172:3875-89 pubmed 出版商
  154. Qiao S, Dennis M, Song X, Vadysirisack D, Salunke D, Nash Z, et al. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun. 2015;6:7014 pubmed 出版商
  155. Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, et al. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081-98 pubmed 出版商
  156. Sun Y, George J, Rocha S. Dose-dependent effects of allopurinol on human foreskin fibroblast cells and human umbilical vein endothelial cells under hypoxia. PLoS ONE. 2015;10:e0123649 pubmed 出版商
  157. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  158. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  159. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  160. Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt L, Hejhal T, et al. A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest. 2015;125:1603-19 pubmed 出版商
  161. Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804-17 pubmed
  162. Yu C, Yang S, Fang X, Jiang J, Sun C, Huang T. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol Med Rep. 2015;11:4002-8 pubmed 出版商
  163. Shankar G, Taylor Weiner A, Lelic N, Jones R, Kim J, FRANCIS J, et al. Sporadic hemangioblastomas are characterized by cryptic VHL inactivation. Acta Neuropathol Commun. 2014;2:167 pubmed 出版商
  164. Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, et al. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle. 2014;13:3878-91 pubmed 出版商
  165. Cannito S, Turato C, Paternostro C, Biasiolo A, Colombatto S, Cambieri I, et al. Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells. Oncotarget. 2015;6:2206-21 pubmed
  166. Hung Y, Chang S, Huang C, Yin J, Hwang C, Yang L, et al. Inhibitor of Differentiation-1 and Hypoxia-Inducible Factor-1 Mediate Sonic Hedgehog Induction by Amyloid Beta-Peptide in Rat Cortical Neurons. Mol Neurobiol. 2016;53:793-809 pubmed 出版商
  167. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  168. Fine J, Renner D, Forsberg A, Cameron R, Galick B, Le C, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett. 2015;584:362-7 pubmed 出版商
  169. Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 2015;17:95-103 pubmed 出版商
  170. Mazzatenta A, Marconi G, Zara S, Cataldi A, Porzionato A, Di Giulio C. In the carotid body, galanin is a signal for neurogenesis in young, and for neurodegeneration in the old and in drug-addicted subjects. Front Physiol. 2014;5:427 pubmed 出版商
  171. Basham K, Leonard C, Kieffer C, Shelton D, McDowell M, Bhonde V, et al. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicol Sci. 2015;143:36-45 pubmed 出版商
  172. Lee H, Kim K, Lim H, Choi M, Kim H, Ahn H, et al. Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model. J Cell Biochem. 2015;116:310-9 pubmed 出版商
  173. Miao Z, Wang Z, Zhao T, Xu Y, Gao J, Miao F, et al. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α. Stem Cells. 2014;32:3062-74 pubmed 出版商
  174. Huang T, Huang W, Zhang Z, Yu L, Xie C, Zhu D, et al. Hypoxia-inducible factor-1? upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction. Neuroreport. 2014;25:1122-8 pubmed 出版商
  175. Hempel C, Hoyer N, Kildemoes A, Jendresen C, Kurtzhals J. Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment. Front Immunol. 2014;5:291 pubmed 出版商
  176. Zheng X, Zhai B, Koivunen P, Shin S, Lu G, Liu J, et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev. 2014;28:1429-44 pubmed 出版商
  177. Schreurs L, Smit J, Pavlov K, Pultrum B, Pruim J, Groen H, et al. Prognostic impact of clinicopathological features and expression of biomarkers related to (18)F-FDG uptake in esophageal cancer. Ann Surg Oncol. 2014;21:3751-7 pubmed 出版商
  178. Ramamoorthy P, Shi H. Ischemia induces different levels of hypoxia inducible factor-1? protein expression in interneurons and pyramidal neurons. Acta Neuropathol Commun. 2014;2:51 pubmed 出版商
  179. Waza A, Andrabi K, Hussain M. Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal. 2014;26:1909-17 pubmed 出版商
  180. Wu W, Tian R, Hao S, Xu F, Mao X, Liu B. A pre-injury high ethanol intake in rats promotes brain edema following traumatic brain injury. Br J Neurosurg. 2014;28:739-45 pubmed 出版商
  181. Schaffner C, Mwinyi J, Gai Z, Thasler W, Eloranta J, Kullak Ublick G. The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes. Liver Int. 2015;35:1152-61 pubmed 出版商
  182. Aksu V, Yuksel V, Chousein S, Tastekin E, Iscan S, Sagiroglu G, et al. The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium. Vascular. 2015;23:21-30 pubmed 出版商
  183. Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS ONE. 2014;9:e90667 pubmed 出版商
  184. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  185. Kulzer J, Stitzel M, Morken M, Huyghe J, Fuchsberger C, Kuusisto J, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94:186-97 pubmed 出版商
  186. Chen T, Shih Y, Tseng J, Lai M, Wu C, Li Y, et al. Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res. 2014;42:2932-44 pubmed 出版商
  187. Ding H, Gao Y, Wang Y, Hu C, Sun Y, Zhang C. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 2014;23:990-1000 pubmed 出版商
  188. Maschio L, Madallozo B, Capellasso B, Jardim B, Moschetta M, Jampietro J, et al. Immunohistochemical investigation of the angiogenic proteins VEGF, HIF-1? and CD34 in invasive ductal carcinoma of the breast. Acta Histochem. 2014;116:148-57 pubmed 出版商
  189. Xie L, Collins J. Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia. J Biol Chem. 2013;288:23943-52 pubmed 出版商
  190. Cao W, Kawai N, Miyake K, Zhang X, Fei Z, Tamiya T. Relationship of 14-3-3zeta (?), HIF-1?, and VEGF expression in human brain gliomas. Brain Tumor Pathol. 2014;31:1-10 pubmed 出版商
  191. Salem A, Howell A, Sartini M, Sotgia F, Lisanti M. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1?, autophagy and ketone body production. Cell Cycle. 2012;11:4167-73 pubmed 出版商
  192. Hsieh Y, Chou L, Chang P, Yang C, Kao M, Hong C. Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1? (HIF-1?). J Comp Neurol. 2012;520:2903-16 pubmed 出版商
  193. Groenman F, Rutter M, Caniggia I, Tibboel D, Post M. Hypoxia-inducible factors in the first trimester human lung. J Histochem Cytochem. 2007;55:355-63 pubmed