这是一篇来自已证抗体库的有关小鼠 Hspa1a的综述,是根据174篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Hspa1a 抗体。
Hspa1a 同义词: Hsp70-3; Hsp70.3; Hsp72; hsp68; hsp70A1

圣克鲁斯生物技术
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:500; 图 2h
圣克鲁斯生物技术 Hspa1a抗体(Santa, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2h). Cell Rep (2021) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000; 图 3d, 3e
  • 免疫印迹; 小鼠; 1:1000; 图 3d
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, W27)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d, 3e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). J Biomed Sci (2021) ncbi
小鼠 单克隆(2A4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5a
圣克鲁斯生物技术 Hspa1a抗体(Santa, Sc-59570)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5a). Mol Neurodegener (2021) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, W27)被用于被用于免疫印迹在小鼠样本上 (图 2a). Sci Rep (2021) ncbi
小鼠 单克隆(W27)
  • 免疫组化; 人类; 1:200; 图 4
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Acta Neuropathol (2021) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 2d, 4e
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-66048)被用于被用于免疫印迹在人类样本上 (图 2d, 4e). iScience (2021) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:5000; 图 6a
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6a). elife (2020) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 3c
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, SC24)被用于被用于免疫印迹在小鼠样本上 (图 3c). BMC Cancer (2020) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 7a
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-66048)被用于被用于免疫印迹在人类样本上 (图 7a) 和 被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2020) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 Hspa1a抗体(santa cruz, W27)被用于被用于免疫印迹在小鼠样本上 (图 1b). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 图 4i
  • 免疫印迹; 人类; 图 4h
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在小鼠样本上 (图 4i) 和 被用于免疫印迹在人类样本上 (图 4h). Science (2018) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, 3A3)被用于被用于免疫印迹在人类样本上 (图 5b). Virology (2018) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1000; 图 ex1m
圣克鲁斯生物技术 Hspa1a抗体(Santa, sc-66048)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex1m). Nature (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000; 图 7i
圣克鲁斯生物技术 Hspa1a抗体(Santa, W27)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7i). Mol Cell Biol (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 s4g
圣克鲁斯生物技术 Hspa1a抗体(SantaCruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 s4g). Cell (2018) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 s2b
  • 免疫组化; 小鼠; 图 s3c
  • 免疫印迹; 小鼠; 图 s3a
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 s2b), 被用于免疫组化在小鼠样本上 (图 s3c) 和 被用于免疫印迹在小鼠样本上 (图 s3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:500; 图 1
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, SC24)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 s3a). Oncoimmunology (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化; 小鼠; 1:50; 图 s6g
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc24)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s6g). Cell (2017) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 6d
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 6d). Antioxid Redox Signal (2017) ncbi
小鼠 单克隆(F-3)
  • 免疫细胞化学; 小鼠; 图 4h
圣克鲁斯生物技术 Hspa1a抗体(SantaCruz, sc-373867)被用于被用于免疫细胞化学在小鼠样本上 (图 4h). EBioMedicine (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化; 小鼠; 图 s3
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, W27)被用于被用于免疫组化在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, W27)被用于被用于免疫印迹在人类样本上 (图 5a). J Cell Mol Med (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, SC-66048)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Front Microbiol (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(4G4)
  • 免疫沉淀; 人类; 图 3
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, 4G4)被用于被用于免疫沉淀在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 大鼠; 图 5e
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在大鼠样本上 (图 5e). Cell Signal (2016) ncbi
小鼠 单克隆(4G4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-59569)被用于被用于免疫印迹在人类样本上. J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠; 1:1000; 图 8
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Oncotarget (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnologies, C92F3A-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
圣克鲁斯生物技术 Hspa1a抗体(santa Cruz, SC-24)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). Cancer Sci (2016) ncbi
小鼠 单克隆(W27)
  • 免疫组化-石蜡切片; 人类; 图 4
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 4,5,6
圣克鲁斯生物技术 Hspa1a抗体(Santa cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 4,5,6). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Extracell Vesicles (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:2000; 图 5b
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). Nat Commun (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上. J Extracell Vesicles (2015) ncbi
小鼠 单克隆(W27)
  • 流式细胞仪; 人类
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, SC-24)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(2A4)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-59570)被用于被用于免疫印迹在小鼠样本上 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc-137239)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(BRM-22)
  • 免疫沉淀; fruit fly ; 图 5
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, BRM-22)被用于被用于免疫沉淀在fruit fly 样本上 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc32239)被用于被用于免疫印迹在小鼠样本上. Growth Factors (2015) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; redtail notho; 1:1000
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, SC-24)被用于被用于免疫印迹在redtail notho样本上浓度为1:1000. Rejuvenation Res (2014) ncbi
小鼠 单克隆(BRM-22)
  • 免疫印迹; 牛; 1:250
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, SC-59572)被用于被用于免疫印迹在牛样本上浓度为1:250. J Agric Food Chem (2014) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, 32239)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2014) ncbi
小鼠 单克隆(SPM254)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-65521)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Exp Neurol (2014) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, B12)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 图 1, 2
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc-66048)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Cell Commun Signal (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 2b). Int J Oncol (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; bee ; 1:1000
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在bee 样本上浓度为1:1000. Exp Gerontol (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz Biotechnology, sc-24)被用于被用于免疫印迹在人类样本上浓度为1:1000. Neuromolecular Med (2014) ncbi
小鼠 单克隆(W27)
  • 免疫印迹; 人类; 图 8b
圣克鲁斯生物技术 Hspa1a抗体(Santa cruz, sc-24)被用于被用于免疫印迹在人类样本上 (图 8b). Oncogene (2014) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Hspa1a抗体(Santa Cruz, sc-32239)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Pharmacol (2013) ncbi
赛默飞世尔
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 1e
赛默飞世尔 Hspa1a抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell Res (2020) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 7a
赛默飞世尔 Hspa1a抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Biol Chem (2018) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 图 2c
赛默飞世尔 Hspa1a抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫细胞化学在人类样本上 (图 2c). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 Hspa1a抗体(Affinity BioReagents, MA3-028)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2017) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 3c
赛默飞世尔 Hspa1a抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2017) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 1:200; 图 5
赛默飞世尔 Hspa1a抗体(Affinity BioReagents, MA3-006)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Biomed Pharmacother (2017) ncbi
小鼠 单克隆(3A3)
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-006)被用于. Comp Biochem Physiol A Mol Integr Physiol (2017) ncbi
小鼠 单克隆(2A4)
  • 免疫印迹; 人类; 1:5000; 图 1a
赛默飞世尔 Hspa1a抗体(Thermo Pierce, MA3-008)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫组化; 大鼠; 1:50
  • 免疫印迹; 大鼠; 1:500; 图 8b
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-028)被用于被用于免疫组化在大鼠样本上浓度为1:50 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 8b). J Biol Chem (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 4h
赛默飞世尔 Hspa1a抗体(Thermo Fisher, MA3- 028)被用于被用于免疫印迹在小鼠样本上 (图 4h). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 1:5000
  • 免疫印迹; Artemia franciscana; 1:5000; 图 2a
赛默飞世尔 Hspa1a抗体(Affinity BioReagents, 3A3)被用于被用于免疫印迹在人类样本上浓度为1:5000 和 被用于免疫印迹在Artemia franciscana样本上浓度为1:5000 (图 2a). Environ Res (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 Hspa1a抗体(Thermo Pierce, MA3-028)被用于被用于免疫印迹在人类样本上 (图 1c). Biochem J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛默飞世尔 Hspa1a抗体(Thermo Fisher Scientific, PA5-28003)被用于被用于免疫印迹在小鼠样本上 (图 6a). Free Radic Biol Med (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-0066)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). PLoS ONE (2016) ncbi
小鼠 单克隆(MB-H1)
  • 免疫组化-石蜡切片; 人类; 1:40; 表 3
赛默飞世尔 Hspa1a抗体(Invitrogen, 33-3800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (表 3). Oncol Lett (2016) ncbi
小鼠 单克隆(3A3)
赛默飞世尔 Hspa1a抗体(ThermoScientific, 3A3)被用于. Fish Shellfish Immunol (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; Pacific oyster; 1:2500; 图 1
赛默飞世尔 Hspa1a抗体(Affinity BioReagents, MA3-006)被用于被用于免疫印迹在Pacific oyster样本上浓度为1:2500 (图 1). Comp Biochem Physiol A Mol Integr Physiol (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 2f
赛默飞世尔 Hspa1a抗体(Thermo Scientific, JG1)被用于被用于免疫印迹在人类样本上 (图 2f). J Biol Chem (2016) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; scallops; 图 7
赛默飞世尔 Hspa1a抗体(Affinity Bioreagents, MA3-007)被用于被用于免疫印迹在scallops样本上 (图 7). J Exp Biol (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Hspa1a抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Res (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Hspa1a抗体(Pierce Antibodies, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 6). J Neurochem (2016) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Hspa1a抗体(Affinity Bioreagents, MA3-007)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 Hspa1a抗体(ThermoFisher, MA3-028)被用于被用于免疫细胞化学在人类样本上 (图 2). Nat Med (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 Hspa1a抗体(ABR, MA3-028)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 1:500; 图 s1
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔 Hspa1a抗体(ThermoScientific, MA3-028)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1). Mol Biol Cell (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Hspa1a抗体(Scoresby VIC, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 小鼠; 1:5000; 图 1
赛默飞世尔 Hspa1a抗体(Affinity Bioreagents, MA3006)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 大鼠
赛默飞世尔 Hspa1a抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在大鼠样本上. Neuroscience (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; common limpet; 1:1000
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-006)被用于被用于免疫印迹在common limpet样本上浓度为1:1000. Glob Chang Biol (2016) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 1d). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 1:100; 图 7
赛默飞世尔 Hspa1a抗体(ThermoFischer Scientific, MA3-028)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 Hspa1a抗体(Thermo Scientific., MA3-028)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Cell (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; Asian green mussel; 1:5000; 图 2
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-006)被用于被用于免疫印迹在Asian green mussel样本上浓度为1:5000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类
赛默飞世尔 Hspa1a抗体(Affinity Bioreagents, MA3-028)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Hspa1a抗体(Thermo Fisher, PA5-28003)被用于. Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 1:300
赛默飞世尔 Hspa1a抗体(Affinity Bioreagents, MA3-028)被用于被用于免疫印迹在人类样本上浓度为1:300. Cell Signal (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫组化; holothurians; 1:200
  • 免疫印迹; holothurians; 1:1000
赛默飞世尔 Hspa1a抗体(Thermo, MA3-006)被用于被用于免疫组化在holothurians样本上浓度为1:200 和 被用于免疫印迹在holothurians样本上浓度为1:1000. Fish Shellfish Immunol (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Hspa1a抗体(Thermo Fisher Scientific, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 1). J Am Soc Nephrol (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类
赛默飞世尔 Hspa1a抗体(Thermo, MA3-028)被用于被用于免疫印迹在人类样本上. Pharmacol Rep (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 Hspa1a抗体(Thermo Fisher Scientific, MA3028)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 小鼠
赛默飞世尔 Hspa1a抗体(scbt, MA3-007)被用于被用于免疫印迹在小鼠样本上. J Proteome Res (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 Hspa1a抗体(Pierce, MA3-028)被用于被用于免疫印迹在小鼠样本上 (图 1d). Exp Hematol (2015) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Hspa1a抗体(ABR Affinity Bio Reagents, MA3-006)被用于被用于免疫印迹在小鼠样本上 (图 2). Dev Dyn (2015) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在人类样本上. Biochimie (2014) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 Hspa1a抗体(Thermo, MA3-028)被用于被用于免疫细胞化学在人类样本上 (图 5). Nat Immunol (2014) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Hspa1a抗体(Thermo Scientific, MA3-028)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2012) ncbi
小鼠 单克隆(5A5)
  • 酶联免疫吸附测定; fruit fly ; 1:1000; 图 3
赛默飞世尔 Hspa1a抗体(Thermo Scientific, 5A5)被用于被用于酶联免疫吸附测定在fruit fly 样本上浓度为1:1000 (图 3). J Evol Biol (2012) ncbi
小鼠 单克隆(5A5)
  • 酶联免疫吸附测定; Lycaena tityrus; 1:700; 图 2c
赛默飞世尔 Hspa1a抗体(Affinity BioReagents, 5A5)被用于被用于酶联免疫吸附测定在Lycaena tityrus样本上浓度为1:700 (图 2c). Oecologia (2011) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 Hspa1a抗体(Affinity Bioreagents, JG1)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Cycle (2010) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类
赛默飞世尔 Hspa1a抗体(Affinity BioReagents, JG1)被用于被用于免疫印迹在人类样本上. Sci Signal (2009) ncbi
小鼠 单克隆(JG1)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 2d
赛默飞世尔 Hspa1a抗体(Affinity Bioreagents, MA3-028)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 2d). Cell Death Differ (2009) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 1:3000
  • 免疫印迹; Marenzelleria viridis; 1:3000; 图 7a
赛默飞世尔 Hspa1a抗体(Affinity BioReagents, MA3-006)被用于被用于免疫印迹在人类样本上浓度为1:3000 和 被用于免疫印迹在Marenzelleria viridis样本上浓度为1:3000 (图 7a). Comp Biochem Physiol B Biochem Mol Biol (2006) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 大鼠; 图 2a
赛默飞世尔 Hspa1a抗体(Affinity Bioreagents, 3A3)被用于被用于免疫印迹在大鼠样本上 (图 2a). Methods Enzymol (2005) ncbi
小鼠 单克隆(JG1)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Hspa1a抗体(Affinity Bioreagents, MA3-028)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Biol (1999) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(3A3)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
  • 免疫印迹; 人类; 1:2000; 图 2b
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5439)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2b). Cell Mol Life Sci (2022) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab2787)被用于被用于免疫印迹在人类样本上 (图 6e). Cell Death Dis (2021) ncbi
小鼠 单克隆(5A5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab2787)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Mol Med (2021) ncbi
小鼠 单克隆(5A5)
  • 免疫组化; 小鼠; 1:200; 图 7d
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, 2787)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7d). J Clin Invest (2021) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab2787)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹基因敲除验证; 人类; 1:5000; 图 1b
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab47454)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:5000 (图 1b). elife (2020) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 大鼠; 1:800; 图 4a
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab2787)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 4a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1f
  • 免疫细胞化学; 人类; 1:100; 图 2i
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab47455)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1f) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2i). Nat Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1i
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab31010)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab79852)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Sci Adv (2019) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 s2j
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5439)被用于被用于免疫印迹在人类样本上 (图 s2j). Cell (2019) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 图 s2
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab2787)被用于被用于免疫印迹在人类样本上 (图 s2). BMC Cancer (2019) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; brewer's yeast; 1:1000; 图 4c
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5439)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 4c). elife (2019) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab47455)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Stress (2019) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 人类; 1:1000; 图 6d
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab2787)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). EMBO Mol Med (2019) ncbi
小鼠 单克隆(3A3)
  • 免疫细胞化学; 人类; 图 6b
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5439)被用于被用于免疫细胞化学在人类样本上 (图 6b). EMBO J (2018) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab2787)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Lipid Res (2017) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 s3b
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab47455)被用于被用于免疫印迹在人类样本上 (图 s3b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab79852)被用于被用于免疫印迹在人类样本上 (图 4b). Mol Syst Biol (2017) ncbi
小鼠 单克隆(2A4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5442)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1c). Ultrastruct Pathol (2017) ncbi
domestic rabbit 单克隆(EPR16892)
  • 免疫印迹; 小鼠; 图 2
  • 免疫细胞化学; 人类; 图 s3
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Hspa1a抗体(abcam, ab181606)被用于被用于免疫印迹在小鼠样本上 (图 2), 被用于免疫细胞化学在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上 (图 1). Cell (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab47455)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR16892)
  • 免疫细胞化学; 小鼠; 1:500; 图 2a
  • 免疫组化; 小鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab181606)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 4b). Oncol Lett (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab47455)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). In Vitro Cell Dev Biol Anim (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫组化-冰冻切片; 人类; 图 5
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, 3A3)被用于被用于免疫组化-冰冻切片在人类样本上 (图 5). Am J Pathol (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫组化; 豚鼠; 图 2
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5439)被用于被用于免疫组化在豚鼠样本上 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(2A4)
  • 免疫组化-石蜡切片; 人类; 表 2
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, 2A4)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). J Transl Med (2016) ncbi
小鼠 单克隆(3A3)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5439)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫沉淀; 人类; 图 2a
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab47455)被用于被用于免疫沉淀在人类样本上 (图 2a), 被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 3c). FASEB J (2016) ncbi
小鼠 单克隆(2A4)
  • 免疫印迹; 大鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5442)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(2A4)
  • 酶联免疫吸附测定; Austrofundulus limnaeus; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5442)被用于被用于酶联免疫吸附测定在Austrofundulus limnaeus样本上浓度为1:1000 (图 6a). J Exp Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab31010)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Cell Mol Immunol (2017) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; pigs ; 图 6c
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab2787)被用于被用于免疫印迹在pigs 样本上 (图 6c). PLoS ONE (2015) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; African green monkey
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab47455)被用于被用于免疫印迹在African green monkey样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(3A3)
  • 免疫组化-冰冻切片; 大鼠; 1:50
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab5439)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Theranostics (2013) ncbi
小鼠 单克隆(5A5)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab2787)被用于被用于免疫印迹在小鼠样本上. Proteomics (2014) ncbi
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 s3b
艾博抗(上海)贸易有限公司 Hspa1a抗体(Abcam, ab47455)被用于被用于免疫印迹在人类样本上 (图 s3b). PLoS ONE (2012) ncbi
StressMarq Biosciences
小鼠 单克隆(3303)
  • 免疫印迹; 人类; 1:1000; 图 6h, 2g, 6s1e
StressMarq Biosciences Hspa1a抗体(StressMarq, C92F3A-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h, 2g, 6s1e). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
StressMarq Biosciences Hspa1a抗体(StressMarq Biosciences, SPC-103D)被用于被用于免疫印迹在人类样本上 (图 6a). Autophagy (2017) ncbi
小鼠 单克隆(3303)
  • 免疫印迹; 人类; 1:3000; 图 1
  • 免疫印迹基因敲除验证; 小鼠; 1:3000; 图 2
StressMarq Biosciences Hspa1a抗体(StressMarq, SMC-100B)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1) 和 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:3000 (图 2). ASN Neuro (2015) ncbi
小鼠 单克隆(3303)
  • 免疫印迹; 大鼠
StressMarq Biosciences Hspa1a抗体(StressMarq Biosciences Inc, SMC-100B)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(3303)
  • 免疫印迹; 人类; 1:1000; 图 6
StressMarq Biosciences Hspa1a抗体(StressMarq, SMC-100)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cell Death Dis (2013) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4
Novus Biologicals Hspa1a抗体(Novus Biologicals, NBP1-77455)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). J Immunol (2016) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(3B7)
  • 免疫印迹; 牛; 1:3000; 表 1
亚诺法生技股份有限公司 Hspa1a抗体(Abnova, 3B7)被用于被用于免疫印迹在牛样本上浓度为1:3000 (表 1). J Agric Food Chem (2017) ncbi
Rockland Immunochemicals
小鼠 单克隆(C92F3A-5)
  • 免疫印迹; 人类; 图 4
Rockland Immunochemicals Hspa1a抗体(Rockland, 200-301-A27)被用于被用于免疫印迹在人类样本上 (图 4). ASN Neuro (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling Technology, 4872T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3b
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4872)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3b). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s3b
赛信通(上海)生物试剂有限公司 Hspa1a抗体(CST, 4872)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1c
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4872)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6g
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4872)被用于被用于免疫印迹在人类样本上 (图 6g). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4876)被用于被用于免疫印迹在小鼠样本上 (图 3b). Life Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5e
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4872)被用于被用于免疫印迹在人类样本上 (图 s5e). Cell (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4872)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4872)被用于被用于免疫印迹在大鼠样本上 (图 4b). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3c
  • 免疫印迹; 小鼠; 图 s3a
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4872S)被用于被用于免疫组化在小鼠样本上 (图 s3c), 被用于免疫印迹在小鼠样本上 (图 s3a) 和 被用于免疫印迹在人类样本上 (图 s2b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Hspa1a抗体(cell signalling, 4876)被用于被用于免疫印迹在人类样本上 (图 2a). Oxid Med Cell Longev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b, 3c
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4872)被用于被用于免疫印迹在人类样本上 (图 3b, 3c). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Hspa1a抗体(CST, 4872)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signalling, 4872)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4872S)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell Signaling, 4876)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:25; 图 1b
  • 免疫组化; 人类; 图 1a
  • 免疫印迹; 人类; 1:500; 图 1d
赛信通(上海)生物试剂有限公司 Hspa1a抗体(Cell signaling, 4872)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1b), 被用于免疫组化在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1d). Chem Biol Interact (2016) ncbi
文章列表
  1. Mohan H, Trzeciakiewicz H, Pithadia A, Crowley E, Pacitto R, Safren N, et al. RTL8 promotes nuclear localization of UBQLN2 to subnuclear compartments associated with protein quality control. Cell Mol Life Sci. 2022;79:176 pubmed 出版商
  2. Lee Y, Gil E, Jeong I, Kim H, Jang J, Choung Y. Heat Shock Factor 1 Prevents Age-Related Hearing Loss by Decreasing Endoplasmic Reticulum Stress. Cells. 2021;10: pubmed 出版商
  3. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  4. Guo E, Mao X, Wang X, Guo L, An C, Zhang C, et al. Alternatively spliced ANLN isoforms synergistically contribute to the progression of head and neck squamous cell carcinoma. Cell Death Dis. 2021;12:764 pubmed 出版商
  5. Shen C, Hsieh C, Jiang K, Lin C, Chiang N, Li T, et al. AUY922 induces retinal toxicity through attenuating TRPM1. J Biomed Sci. 2021;28:55 pubmed 出版商
  6. Gialluisi A, Reccia M, Modugno N, Nutile T, Lombardi A, Di Giovannantonio L, et al. Identification of sixteen novel candidate genes for late onset Parkinson's disease. Mol Neurodegener. 2021;16:35 pubmed 出版商
  7. Hao D, Li Y, Shi J, Jiang J. Baicalin alleviates chronic obstructive pulmonary disease through regulation of HSP72-mediated JNK pathway. Mol Med. 2021;27:53 pubmed 出版商
  8. Schvarcz C, Danics L, Krenacs T, Viana P, Béres R, Vancsik T, et al. Modulated Electro-Hyperthermia Induces a Prominent Local Stress Response and Growth Inhibition in Mouse Breast Cancer Isografts. Cancers (Basel). 2021;13: pubmed 出版商
  9. Kashyap R, Balzano M, Lechat B, Lambaerts K, Egea Jimenez A, Lembo F, et al. Syntenin-knock out reduces exosome turnover and viral transduction. Sci Rep. 2021;11:4083 pubmed 出版商
  10. Hondius D, Koopmans F, Leistner C, Pita Illobre D, Peferoen Baert R, Marbus F, et al. The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer's disease. Acta Neuropathol. 2021;141:341-358 pubmed 出版商
  11. Singh S, Abu Zaid A, Lin W, Low J, Abdolvahabi A, Jin H, et al. 17-DMAG dually inhibits Hsp90 and histone lysine demethylases in alveolar rhabdomyosarcoma. iScience. 2021;24:101996 pubmed 出版商
  12. Blanc V, Riordan J, Soleymanjahi S, Nadeau J, Nalbantoglu I, Xie Y, et al. Apobec1 complementation factor overexpression promotes hepatic steatosis, fibrosis, and hepatocellular cancer. J Clin Invest. 2021;131: pubmed 出版商
  13. Pathak T, Gueguinou M, Walter V, Delierneux C, Johnson M, Zhang X, et al. Dichotomous role of the human mitochondrial Na+/Ca2+/Li+ exchanger NCLX in colorectal cancer growth and metastasis. elife. 2020;9: pubmed 出版商
  14. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed 出版商
  15. Lackie R, Marques Lopes J, Ostapchenko V, Good S, Choy W, van Oosten Hawle P, et al. Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2020;8:143 pubmed 出版商
  16. Kuo I, Lee J, Wang Y, Chiang H, Huang C, Hsieh P, et al. Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro- hyperthermia. BMC Cancer. 2020;20:603 pubmed 出版商
  17. Kuncha S, Venkadasamy V, Amudhan G, Dahate P, Kola S, Pottabathini S, et al. Genomic innovation of ATD alleviates mistranslation associated with multicellularity in Animalia. elife. 2020;9: pubmed 出版商
  18. Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, et al. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun. 2020;11:1304 pubmed 出版商
  19. Chen Q, Huang M, Wu J, Jiang Q, Zheng X. Exosomes isolated from the plasma of remote ischemic conditioning rats improved cardiac function and angiogenesis after myocardial infarction through targeting Hsp70. Aging (Albany NY). 2020;12:3682-3693 pubmed 出版商
  20. Theivanthiran B, Evans K, Devito N, Plebanek M, Sturdivant M, Wachsmuth L, et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 2020;130:2570-2586 pubmed 出版商
  21. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  22. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed 出版商
  23. Zhang Y, Jin X, Liang J, Guo Y, Sun G, Zeng X, et al. Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Sci Adv. 2019;5:eaav1564 pubmed 出版商
  24. Wegmann S, Bennett R, Delorme L, Robbins A, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404 pubmed 出版商
  25. Azkanaz M, Rodríguez López A, de Boer B, Huiting W, Angrand P, Vellenga E, et al. Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock. elife. 2019;8: pubmed 出版商
  26. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  27. Gennaro V, Wedegaertner H, McMahon S. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer. 2019;19:258 pubmed 出版商
  28. Tye B, Commins N, Ryazanova L, Wühr M, Springer M, Pincus D, et al. Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. elife. 2019;8: pubmed 出版商
  29. Shi H, Yao R, Lian S, Liu P, Liu Y, Yang Y, et al. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress. 2019;22:366-376 pubmed 出版商
  30. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  31. Inouye S, Hatori Y, Kubo T, Saito S, Kitamura H, Akagi R. NRF2 and HSF1 coordinately regulate heme oxygenase-1 expression. Biochem Biophys Res Commun. 2018;506:7-11 pubmed 出版商
  32. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  33. Cui L, Mahesutihan M, Zheng W, Meng L, Fan W, Li J, et al. CDC25B promotes influenza A virus replication by regulating the phosphorylation of nucleoprotein. Virology. 2018;525:40-47 pubmed 出版商
  34. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018;34:411-426.e19 pubmed 出版商
  35. Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Muller M, et al. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018;37: pubmed 出版商
  36. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  37. Fujimoto M, Takii R, Katiyar A, Srivastava P, Nakai A. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA. Mol Cell Biol. 2018;38: pubmed 出版商
  38. Zhang X, Zhuang R, Wu H, Chen J, Wang F, Li G, et al. A novel role of endocan in alleviating LPS-induced acute lung injury. Life Sci. 2018;202:89-97 pubmed 出版商
  39. Lim J, Lim J, Kim G, Levine R. Myristoylated methionine sulfoxide reductase A is a late endosomal protein. J Biol Chem. 2018;293:7355-7366 pubmed 出版商
  40. Savitski M, Zinn N, Faelth Savitski M, Poeckel D, Gade S, Becher I, et al. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. Cell. 2018;173:260-274.e25 pubmed 出版商
  41. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  42. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  43. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  44. Martin G, Landrock D, Chung S, Dangott L, McIntosh A, Mackie J, et al. Loss of fatty acid binding protein-1 alters the hepatic endocannabinoid system response to a high-fat diet. J Lipid Res. 2017;58:2114-2126 pubmed 出版商
  45. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  46. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  47. Terao Y, Fujita H, Horibe S, Sato J, Minami S, Kobayashi M, et al. Interaction of FAM5C with UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1): Implication of N-glycosylation in FAM5C secretion. Biochem Biophys Res Commun. 2017;486:811-816 pubmed 出版商
  48. Qin L, Tan J, Zhang H, Rizwana K, Lu J, Tang J, et al. BAG5 Interacts with DJ-1 and Inhibits the Neuroprotective Effects of DJ-1 to Combat Mitochondrial Oxidative Damage. Oxid Med Cell Longev. 2017;2017:5094934 pubmed 出版商
  49. Gagaoua M, Couvreur S, Le Bec G, Aminot G, Picard B. Associations among Protein Biomarkers and pH and Color Traits in Longissimus thoracis and Rectus abdominis Muscles in Protected Designation of Origin Maine-Anjou Cull Cows. J Agric Food Chem. 2017;65:3569-3580 pubmed 出版商
  50. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  51. Sokolina K, Kittanakom S, Snider J, Kotlyar M, Maurice P, Gandia J, et al. Systematic protein-protein interaction mapping for clinically relevant human GPCRs. Mol Syst Biol. 2017;13:918 pubmed 出版商
  52. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  53. Zhang Q, Ma C, Oberli A, Zinz A, Engels S, Przyborski J. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci Rep. 2017;7:42188 pubmed 出版商
  54. Liu T, Krysiak K, Shirai C, Kim S, Shao J, Ndonwi M, et al. Knockdown of HSPA9 induces TP53-dependent apoptosis in human hematopoietic progenitor cells. PLoS ONE. 2017;12:e0170470 pubmed 出版商
  55. Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, et al. The pattern of hMENA isoforms is regulated by TGF-?1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556 pubmed 出版商
  56. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  57. Zaganelli S, Rebelo Guiomar P, Maundrell K, Rozanska A, Pierredon S, Powell C, et al. The Pseudouridine Synthase RPUSD4 Is an Essential Component of Mitochondrial RNA Granules. J Biol Chem. 2017;292:4519-4532 pubmed 出版商
  58. Kattaia A, Abd El Baset S, Mohamed E, Abdul Maksou R, Elfakharany Y. Molecular mechanisms underlying histological and biochemical changes induced by nitrate in rat liver and the efficacy of S-Allylcysteine. Ultrastruct Pathol. 2017;41:10-22 pubmed 出版商
  59. Seo B, Min K, Woo S, Choe M, Choi K, Lee Y, et al. Inhibition of Cathepsin S Induces Mitochondrial ROS That Sensitizes TRAIL-Mediated Apoptosis Through p53-Mediated Downregulation of Bcl-2 and c-FLIP. Antioxid Redox Signal. 2017;27:215-233 pubmed 出版商
  60. Solárová Z, Kello M, Varinska L, Budovská M, Solar P. Inhibition of heat shock protein (Hsp) 90 potentiates the antiproliferative and pro-apoptotic effects of 2-(4'fluoro-phenylamino)-4H-1,3-thiazine[6,5-b]indole in A2780cis cells. Biomed Pharmacother. 2017;85:463-471 pubmed 出版商
  61. Watanabe Y, Tsujimura A, Taguchi K, Tanaka M. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis. Autophagy. 2017;13:133-148 pubmed 出版商
  62. Rahlff J, Peters J, Moyano M, Pless O, Claussen C, Peck M. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp Biochem Physiol A Mol Integr Physiol. 2017;203:348-358 pubmed 出版商
  63. Jian J, Tian Q, Hettinghouse A, Zhao S, Liu H, Wei J, et al. Progranulin Recruits HSP70 to β-Glucocerebrosidase and Is Therapeutic Against Gaucher Disease. EBioMedicine. 2016;13:212-224 pubmed 出版商
  64. Fritsch J, Fickers R, Klawitter J, Särchen V, Zingler P, Adam D, et al. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death. Oncotarget. 2016;7:75774-75789 pubmed 出版商
  65. Mitra S, Ghosh B, Gayen N, Roy J, Mandal A. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem. 2016;291:24579-24593 pubmed
  66. Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Koike M, Uchiyama Y, et al. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep. 2016;6:34575 pubmed 出版商
  67. de la Fuente S, Fernandez Sanz C, Vail C, Agra E, Holmström K, Sun J, et al. Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle. J Biol Chem. 2016;291:23343-23362 pubmed
  68. Lacroix M, Rodier G, Kirsh O, Houles T, Delpech H, Seyran B, et al. E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 2016;113:10998-1003 pubmed 出版商
  69. Pestana J, Novais S, Norouzitallab P, Vandegehuchte M, Bossier P, De Schamphelaere K. Non-lethal heat shock increases tolerance to metal exposure in brine shrimp. Environ Res. 2016;151:663-670 pubmed 出版商
  70. BRANDT C, McFie P, Stone S. Diacylglycerol acyltransferase-2 and monoacylglycerol acyltransferase-2 are ubiquitinated proteins that are degraded by the 26S proteasome. Biochem J. 2016;473:3621-3637 pubmed
  71. Reeg S, Jung T, Castro J, Davies K, Henze A, Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med. 2016;99:153-166 pubmed 出版商
  72. Hjerpe R, Bett J, Keuss M, Solovyova A, McWilliams T, Johnson C, et al. UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell. 2016;166:935-949 pubmed 出版商
  73. Szymanska M, Fosdahl A, Nikolaysen F, Pedersen M, Grandal M, Stang E, et al. A combination of two antibodies recognizing non-overlapping epitopes of HER2 induces kinase activity-dependent internalization of HER2. J Cell Mol Med. 2016;20:1999-2011 pubmed 出版商
  74. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  75. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  76. Xue J, Fan X, Yu J, Zhang S, Xiao J, Hu Y, et al. Short-Term Heat Shock Affects Host-Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1. Front Microbiol. 2016;7:924 pubmed 出版商
  77. Guo Y, Cui L, Jiang S, Wang D, Jiang S, Xie C, et al. S100A1 transgenic treatment of acute heart failure causes proteomic changes in rats. Mol Med Rep. 2016;14:1538-52 pubmed 出版商
  78. Sclip A, Bacaj T, Giam L, Sudhof T. Extended Synaptotagmin (ESyt) Triple Knock-Out Mice Are Viable and Fertile without Obvious Endoplasmic Reticulum Dysfunction. PLoS ONE. 2016;11:e0158295 pubmed 出版商
  79. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  80. Schmitz M, Douxfils J, Mandiki S, Morana C, Baekelandt S, Kestemont P. Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection. Fish Shellfish Immunol. 2016;55:550-8 pubmed 出版商
  81. Yang C, Sierp M, Abbott C, Li Y, Qin J. Responses to thermal and salinity stress in wild and farmed Pacific oysters Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol. 2016;201:22-29 pubmed 出版商
  82. Vanderperre B, Cermakova K, Escoffier J, Kaba M, Bender T, Nef S, et al. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells. J Biol Chem. 2016;291:16448-61 pubmed 出版商
  83. Akabane S, Matsuzaki K, Yamashita S, Arai K, Okatsu K, Kanki T, et al. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy. J Biol Chem. 2016;291:16162-74 pubmed 出版商
  84. Ansari M, Haqqi T. Interleukin-1β induced Stress Granules Sequester COX-2 mRNA and Regulates its Stability and Translation in Human OA Chondrocytes. Sci Rep. 2016;6:27611 pubmed 出版商
  85. Ivanina A, Nesmelova I, Leamy L, Sokolov E, Sokolova I. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J Exp Biol. 2016;219:1659-74 pubmed 出版商
  86. Trousil S, Kaliszczak M, Schug Z, Nguyen Q, Tomasi G, Favicchio R, et al. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget. 2016;7:37103-37120 pubmed 出版商
  87. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips J, et al. Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1?. Cancer Res. 2016;76:2231-42 pubmed 出版商
  88. Huang K, Chen Z, Jiang Y, Akare S, Kolber Simonds D, Condon K, et al. Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61. Mol Cancer Ther. 2016;15:1208-16 pubmed 出版商
  89. Lin Y, Warren C, Li J, McKinsey T, Russell B. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal. 2016;28:1015-24 pubmed 出版商
  90. Martin G, Chung S, Landrock D, Landrock K, Huang H, Dangott L, et al. FABP-1 gene ablation impacts brain endocannabinoid system in male mice. J Neurochem. 2016;138:407-22 pubmed 出版商
  91. Venkatesan N, Kanwar J, Deepa P, Navaneethakrishnan S, Joseph C, Krishnakumar S. Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem Biol Interact. 2016;252:141-9 pubmed 出版商
  92. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  93. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson M, et al. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation. PLoS ONE. 2016;11:e0152213 pubmed 出版商
  94. Kawano M, Tanaka K, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S, et al. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol Lett. 2016;11:2169-2175 pubmed
  95. Kong F, Wang H, Guo J, Peng M, Ji H, Yang H, et al. Hsp70 suppresses apoptosis of BRL cells by regulating the expression of Bcl-2, cytochrome C, and caspase 8/3. In Vitro Cell Dev Biol Anim. 2016;52:568-75 pubmed 出版商
  96. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  97. Gao S, Chen X, Jin H, Ren S, Liu Z, Fang X, et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane. Oncol Lett. 2016;11:1567-1573 pubmed
  98. Barone R, Macaluso F, Sangiorgi C, Campanella C, Marino Gammazza A, Moresi V, et al. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep. 2016;6:19781 pubmed 出版商
  99. Min S, Kady J, Nam M, Rojas Rodriguez R, Berkenwald A, Kim J, et al. Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med. 2016;22:312-8 pubmed 出版商
  100. Torres G, Morales P, García Miguel M, Norambuena Soto I, Cartes Saavedra B, Vidal Peña G, et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol. 2016;104:52-61 pubmed 出版商
  101. Allenbach Y, Leroux G, Suárez Calvet X, Preusse C, Gallardo E, Hervier B, et al. Dermatomyositis With or Without Anti-Melanoma Differentiation-Associated Gene 5 Antibodies: Common Interferon Signature but Distinct NOS2 Expression. Am J Pathol. 2016;186:691-700 pubmed 出版商
  102. Ojima H, Masugi Y, Tsujikawa H, Emoto K, Fujii Nishimura Y, Hatano M, et al. Early hepatocellular carcinoma with high-grade atypia in small vaguely nodular lesions. Cancer Sci. 2016;107:543-50 pubmed 出版商
  103. Deuel J, Schaer C, Boretti F, Opitz L, Garcia Rubio I, Baek J, et al. Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response. Cell Death Dis. 2016;7:e2064 pubmed 出版商
  104. Bandyopadhyay S, Quinn T, Scandiuzzi L, Basu I, Partanen A, Tomé W, et al. Low-Intensity Focused Ultrasound Induces Reversal of Tumor-Induced T Cell Tolerance and Prevents Immune Escape. J Immunol. 2016;196:1964-76 pubmed 出版商
  105. Peng C, Kaščáková S, Chiappini F, Olaya N, Sandt C, Yousef I, et al. Discrimination of cirrhotic nodules, dysplastic lesions and hepatocellular carcinoma by their vibrational signature. J Transl Med. 2016;14:9 pubmed 出版商
  106. Shimoda A, Ueda K, Nishiumi S, Murata Kamiya N, Mukai S, Sawada S, et al. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep. 2016;6:18346 pubmed 出版商
  107. Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J. 2016;30:1712-23 pubmed 出版商
  108. Tang S, Chen H, Cheng Y, Nasir M, Kemper N, Bao E. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress. Int J Mol Med. 2016;37:56-62 pubmed 出版商
  109. Toni L, Padilla P. Developmentally arrested Austrofundulus limnaeus embryos have changes in post-translational modifications of histone H3. J Exp Biol. 2016;219:544-52 pubmed 出版商
  110. Mills K, Brocardo M, Henderson B. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane. Mol Biol Cell. 2016;27:466-82 pubmed 出版商
  111. Isbel L, Srivastava R, Oey H, Spurling A, Daxinger L, Puthalakath H, et al. Trim33 Binds and Silences a Class of Young Endogenous Retroviruses in the Mouse Testis; a Novel Component of the Arms Race between Retrotransposons and the Host Genome. PLoS Genet. 2015;11:e1005693 pubmed 出版商
  112. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler D, Höpken U, et al. Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE. 2015;10:e0143883 pubmed 出版商
  113. Stanojlović M, GuÅ¡evac I, Grković I, Zlatković J, Mitrović N, Zarić M, et al. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience. 2015;311:308-21 pubmed 出版商
  114. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  115. Lima F, Gomes F, Seabra R, Wethey D, Seabra M, Cruz T, et al. Loss of thermal refugia near equatorial range limits. Glob Chang Biol. 2016;22:254-63 pubmed 出版商
  116. Naghdi S, Várnai P, Hajnóczky G. Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis. Proc Natl Acad Sci U S A. 2015;112:E5590-9 pubmed 出版商
  117. Shi C, Huang X, Zhang B, Zhu D, Luo H, Lu Q, et al. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein. PLoS ONE. 2015;10:e0138936 pubmed 出版商
  118. Nehra S, Bhardwaj V, Ganju L, Saraswat D. Nanocurcumin Prevents Hypoxia Induced Stress in Primary Human Ventricular Cardiomyocytes by Maintaining Mitochondrial Homeostasis. PLoS ONE. 2015;10:e0139121 pubmed 出版商
  119. Yeung H, Lo P, Ng D, Fong W. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol. 2017;14:223-234 pubmed 出版商
  120. Hilton B, Li Z, Musich P, Wang H, Cartwright B, SERRANO M, et al. ATR Plays a Direct Antiapoptotic Role at Mitochondria, which Is Regulated by Prolyl Isomerase Pin1. Mol Cell. 2015;60:35-46 pubmed 出版商
  121. Serban A, Stanca L, Geicu O, Dinischiotu A. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?. Int J Mol Sci. 2015;16:20100-17 pubmed 出版商
  122. Aleng N, Sung Y, MacRae T, Abd Wahid M. Non-Lethal Heat Shock of the Asian Green Mussel, Perna viridis, Promotes Hsp70 Synthesis, Induces Thermotolerance and Protects Against Vibrio Infection. PLoS ONE. 2015;10:e0135603 pubmed 出版商
  123. Vertii A, Zimmerman W, Ivshina M, Doxsey S. Centrosome-intrinsic mechanisms modulate centrosome integrity during fever. Mol Biol Cell. 2015;26:3451-63 pubmed 出版商
  124. Satoh T, Stalder R, McKercher S, Williamson R, Roth G, Lipton S. Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules is Regulated by Electrochemical Oxidation Potential. ASN Neuro. 2015;7: pubmed 出版商
  125. Wu Y, Chen H, Lu J, Zhang M, Zhang R, Duan T, et al. Acetylation-dependent function of human single-stranded DNA binding protein 1. Nucleic Acids Res. 2015;43:7878-87 pubmed 出版商
  126. Frühbeis C, Helmig S, Tug S, Simon P, Krämer Albers E. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles. 2015;4:28239 pubmed 出版商
  127. Li H, Han L, Yang Z, Huang W, Zhang X, Gu Y, et al. Differential Proteomic Analysis of Syncytiotrophoblast Extracellular Vesicles from Early-Onset Severe Preeclampsia, using 8-Plex iTRAQ Labeling Coupled with 2D Nano LC-MS/MS. Cell Physiol Biochem. 2015;36:1116-30 pubmed 出版商
  128. Tembe V, Martino Echarri E, Marzec K, Mok M, Brodie K, Mills K, et al. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function. Cell Signal. 2015;27:1763-71 pubmed 出版商
  129. Sung B, Ketova T, Hoshino D, Zijlstra A, Weaver A. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164 pubmed 出版商
  130. Xu D, Sun L, Liu S, Zhang L, Yang H. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2015;45:321-6 pubmed 出版商
  131. Zhang W, Zhu Y, Yang J, Yang G, Zhou D, Wang J. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model. PLoS ONE. 2015;10:e0125717 pubmed 出版商
  132. Randles M, Woolf A, Huang J, Byron A, Humphries J, Price K, et al. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization. J Am Soc Nephrol. 2015;26:3021-34 pubmed 出版商
  133. Pospichalova V, Svoboda J, Dave Z, Kotrbova A, Kaiser K, Klemová D, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015;4:25530 pubmed 出版商
  134. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  135. Ellis J, Bowman C, Wolfgang M. Metabolic and tissue-specific regulation of acyl-CoA metabolism. PLoS ONE. 2015;10:e0116587 pubmed 出版商
  136. Yang N, Han F, Cui H, Huang J, Wang T, Zhou Y, et al. Matrine suppresses proliferation and induces apoptosis in human cholangiocarcinoma cells through suppression of JAK2/STAT3 signaling. Pharmacol Rep. 2015;67:388-93 pubmed 出版商
  137. Chittoor Vinod V, Lee S, Judge S, Notterpek L. Inducible HSP70 is critical in preventing the aggregation and enhancing the processing of PMP22. ASN Neuro. 2015;7: pubmed 出版商
  138. Robertson J, Jacquemet G, Byron A, Jones M, Warwood S, Selley J, et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun. 2015;6:6265 pubmed 出版商
  139. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  140. Li X, Colvin T, Rauch J, Acosta Alvear D, Kampmann M, Dunyak B, et al. Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther. 2015;14:642-8 pubmed 出版商
  141. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  142. Gradilla A, Gonzalez E, Seijo I, Andres G, Bischoff M, González Méndez L, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 2014;5:5649 pubmed 出版商
  143. Kim H, Jung G. Reactive oxygen species increase HEPN1 expression via activation of the XBP1 transcription factor. FEBS Lett. 2014;588:4413-21 pubmed 出版商
  144. Liu L, Chowdhury S, Uppal S, Fang X, Liu J, Srikant C. mReg2 inhibits nuclear entry of apoptosis-inducing factor in mouse insulinoma cells. Growth Factors. 2015;33:1-7 pubmed 出版商
  145. Cho O, Mallappa C, Hernández Hernández J, Rivera Pérez J, Imbalzano A. Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development. Dev Dyn. 2015;244:43-55 pubmed 出版商
  146. Wang X, Chang Q, Wang Y, Su F, Zhang S. Late-onset temperature reduction can retard the aging process in aged fish via a combined action of an anti-oxidant system and the insulin/insulin-like growth factor 1 signaling pathway. Rejuvenation Res. 2014;17:507-17 pubmed 出版商
  147. Hu Z, Zeng Q, Zhang B, Liu H, Wang W. Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells. Biochimie. 2014;107 Pt B:257-62 pubmed 出版商
  148. Picard B, Gagaoua M, Micol D, Cassar Malek I, Hocquette J, Terlouw C. Inverse relationships between biomarkers and beef tenderness according to contractile and metabolic properties of the muscle. J Agric Food Chem. 2014;62:9808-18 pubmed 出版商
  149. Tsai Y, Lai C, Lai C, Chang K, Wu K, Tseng S, et al. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget. 2014;5:6425-36 pubmed
  150. Odendall C, Dixit E, Stavru F, Bierne H, Franz K, Durbin A, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol. 2014;15:717-26 pubmed 出版商
  151. Nuss J, Kehn Hall K, Benedict A, Costantino J, Ward M, Peyser B, et al. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors. PLoS ONE. 2014;9:e93483 pubmed 出版商
  152. Akkad H, Corpeno R, Larsson L. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model. PLoS ONE. 2014;9:e92622 pubmed 出版商
  153. Wong P, Yeoh C, Ahmad A, Chelala C, Gillett C, Speirs V, et al. Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene. 2014;33:4579-88 pubmed 出版商
  154. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  155. Nakamura T, Okada T, Endo M, Kadomatsu T, Taniwaki T, Sei A, et al. Angiopoietin-like protein 2 induced by mechanical stress accelerates degeneration and hypertrophy of the ligamentum flavum in lumbar spinal canal stenosis. PLoS ONE. 2014;9:e85542 pubmed 出版商
  156. Ashraf M, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 2014;12:6 pubmed 出版商
  157. Agulla J, Brea D, Campos F, Sobrino T, Argibay B, Al Soufi W, et al. In vivo theranostics at the peri-infarct region in cerebral ischemia. Theranostics. 2013;4:90-105 pubmed 出版商
  158. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-pro?cient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44:735-44 pubmed 出版商
  159. Hsu C, Chuang Y, Chan Y. Changes in cellular degradation activity in young and old worker honeybees (Apis mellifera). Exp Gerontol. 2014;50:128-36 pubmed 出版商
  160. Jockusch H, Holland A, Staunton L, Schmitt John T, Heimann P, Dowling P, et al. Pathoproteomics of testicular tissue deficient in the GARP component VPS54: the wobbler mouse model of globozoospermia. Proteomics. 2014;14:839-52 pubmed 出版商
  161. Armstrong A, Mattsson N, Appelqvist H, Janefjord C, Sandin L, Agholme L, et al. Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer's disease. Neuromolecular Med. 2014;16:150-60 pubmed 出版商
  162. Alfonso Pérez T, Domínguez Sánchez M, Garcia Dominguez M, Reyes J. Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis. Oncogene. 2014;33:3064-74 pubmed 出版商
  163. Bauckman K, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592 pubmed 出版商
  164. Ding Y, Liu Z, Desai S, Zhao Y, Liu H, Pannell L, et al. Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun. 2012;3:1271 pubmed 出版商
  165. Qi L, Zhang X, Wu J, Lin F, Wang J, DiFiglia M, et al. The role of chaperone-mediated autophagy in huntingtin degradation. PLoS ONE. 2012;7:e46834 pubmed 出版商
  166. Krzysik Walker S, González Mariscal I, Scheibye Knudsen M, Indig F, Bernier M. The biarylpyrazole compound AM251 alters mitochondrial physiology via proteolytic degradation of ERR?. Mol Pharmacol. 2013;83:157-66 pubmed 出版商
  167. Calabria G, Dolgova O, Rego C, Castañeda L, Rezende E, Balanya J, et al. Hsp70 protein levels and thermotolerance in Drosophila subobscura: a reassessment of the thermal co-adaptation hypothesis. J Evol Biol. 2012;25:691-700 pubmed 出版商
  168. Fischer K, Kölzow N, Höltje H, Karl I. Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity?. Oecologia. 2011;166:23-33 pubmed 出版商
  169. Irvine M, Philipsz S, Frausto M, Mijatov B, Gallagher S, Fung C, et al. Amino terminal hydrophobic import signals target the p14(ARF) tumor suppressor to the mitochondria. Cell Cycle. 2010;9:829-39 pubmed
  170. Humphries J, Byron A, Bass M, Craig S, Pinney J, Knight D, et al. Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal. 2009;2:ra51 pubmed 出版商
  171. Owens T, Valentijn A, Upton J, Keeble J, Zhang L, Lindsay J, et al. Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38MAPK. Cell Death Differ. 2009;16:1551-62 pubmed 出版商
  172. Blank M, Bastrop R, Jürss K. Stress protein response in two sibling species of Marenzelleria (Polychaeta: Spionidae): is there an influence of acclimation salinity?. Comp Biochem Physiol B Biochem Mol Biol. 2006;144:451-62 pubmed
  173. Krauss M, Haucke V. Functional assay of effectors of ADP ribosylation factor 6 during clathrin/AP-2 coat recruitment to membranes. Methods Enzymol. 2005;404:388-98 pubmed
  174. Desagher S, Osen Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 1999;144:891-901 pubmed