这是一篇来自已证抗体库的有关小鼠 Ifna1的综述,是根据157篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ifna1 抗体。
Ifna1 同义词: Ifa1

圣克鲁斯生物技术
大鼠 单克隆(FF6)
  • 免疫组化; 小鼠; 图 5
圣克鲁斯生物技术 Ifna1抗体(Santa Cruz Biotechnology, sc-74104)被用于被用于免疫组化在小鼠样本上 (图 5). Int J Mol Med (2016) ncbi
大鼠 单克隆(FF6)
  • 免疫组化; 小鼠; 图 6
圣克鲁斯生物技术 Ifna1抗体(Santa Cruz, sc-74104)被用于被用于免疫组化在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
碧迪BD
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2022) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Pharmingen, 562333)被用于被用于流式细胞仪在小鼠样本上. Front Oncol (2022) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2k
碧迪BD Ifna1抗体(BD, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 2k). Cell Rep (2022) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Ifna1抗体(BD Biosciences, 562020)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2022) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6b
碧迪BD Ifna1抗体(BD Biosciences, 554413)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Mol Ther Oncolytics (2022) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:40; 图 s3a, s3b, 5g
碧迪BD Ifna1抗体(BD Biosciences, 554413)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 s3a, s3b, 5g). Cell Death Discov (2022) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Ifna1抗体(BD Biosciences, 562303)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Mucosal Immunol (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a, 3b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 3b). Front Immunol (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6i
碧迪BD Ifna1抗体(BD Pharmingen, 561479)被用于被用于流式细胞仪在小鼠样本上 (图 6i). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s7b
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7b). Nat Commun (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 13l
碧迪BD Ifna1抗体(BD Pharmingen, 561479)被用于被用于流式细胞仪在小鼠样本上 (图 13l). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 1:500; 图 2a
碧迪BD Ifna1抗体(BD Biosciences, 554410)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:500 (图 2a). Cancer Res (2021) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 1:1000; 图 2a
碧迪BD Ifna1抗体(BD Biosciences, 551216)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:1000 (图 2a). Cancer Res (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 2c
碧迪BD Ifna1抗体(BD Biosciences, 561479)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2c). Nature (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD Ifna1抗体(BD biosciences, 554413)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Biomedicines (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Mucosal Immunol (2021) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BD Ifna1抗体(BD Pharmingen, 557649)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Vaccines (Basel) (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Ifna1抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Immunol (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1m
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1m). Nat Commun (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Neuroinflammation (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Aging Cell (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD Ifna1抗体(BD Biosciences, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cell Rep (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2d
碧迪BD Ifna1抗体(BD Biosciences, XMG-1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Science (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD Ifna1抗体(BD Biosciences, 560661)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Immunity (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, 554413)被用于被用于流式细胞仪在小鼠样本上. Cell Rep (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 2g, 5d
碧迪BD Ifna1抗体(BD Biosciences, 557724)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2g, 5d). Nat Immunol (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BD Ifna1抗体(BD, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Cell (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s3d
碧迪BD Ifna1抗体(BD Biosciences, 561479)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3d). Cell (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Br J Pharmacol (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD Ifna1抗体(BD, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Cell (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:300; 图 3c
碧迪BD Ifna1抗体(BD Biosciences, 562019)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3c). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Immunol Res (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 s7h
碧迪BD Ifna1抗体(BD Biosciences, 554411)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7h). Nat Neurosci (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:400; 图 s7a
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s7a). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 s3c
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3c). J Clin Invest (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1b
碧迪BD Ifna1抗体(BD, 559065)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1b). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3l
碧迪BD Ifna1抗体(BD, 562019)被用于被用于流式细胞仪在小鼠样本上 (图 3l). Cancer Res (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 1d
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 1d). J Virol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 1d
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 1d). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3g
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3g). Science (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). EMBO J (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 7a
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Virol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s8
碧迪BD Ifna1抗体(BioLegend, 557649)被用于被用于流式细胞仪在小鼠样本上 (图 s8). J Clin Invest (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Cell Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:50; 图 7e
碧迪BD Ifna1抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7e). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). Infect Immun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Ifna1抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Ifna1抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Virol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s6b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Science (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Immunology (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4d
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Front Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6m
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6m). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nature (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 7b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 7b). Front Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
碧迪BD Ifna1抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Sci Rep (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD Ifna1抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). PLoS ONE (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 3a
碧迪BD Ifna1抗体(BD Biosciences, 554410)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3a). Oncol Rep (2017) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 3a
碧迪BD Ifna1抗体(BD Biosciences, 551216)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3a). Oncol Rep (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 4A
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4A). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 3c
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3c). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 0.5 ug/ml; 图 st4
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为0.5 ug/ml (图 st4). Nature (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Biol Chem (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s4a
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4a). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
碧迪BD Ifna1抗体(BD, XMG1.2)被用于. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 2e
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2e). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cancer Res (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 4h
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 4h). J Virol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4c
碧迪BD Ifna1抗体(BD, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4d
碧迪BD Ifna1抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Clin Invest (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s6
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Brain (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 7c
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 7c). Immunology (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Ifna1抗体(BD Biosciences, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 s6c
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 s6c). J Clin Invest (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Eur J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Ifna1抗体(Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:400; 表 s2
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Ifna1抗体(BD Biosciences, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Immunol Cell Biol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 S5b
碧迪BD Ifna1抗体(BD Biosciences, 554411)被用于被用于流式细胞仪在小鼠样本上 (图 S5b). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Ifna1抗体(BD Pharmingen, 561040)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:50; 图 s5b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s5b). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2 BD)被用于被用于流式细胞仪在小鼠样本上 (图 7). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Oncotarget (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 6
碧迪BD Ifna1抗体(BD Biosciences, 554411)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6). Nat Commun (2016) ncbi
大鼠 单克隆(R4-6A2)
  • 流式细胞仪; 小鼠; 10 ug/ml; 图 s8
碧迪BD Ifna1抗体(BD Biosciences, R4-6A2)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml (图 s8). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
碧迪BD Ifna1抗体(BD Biosciences, 559065)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). J Immunol Res (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD Ifna1抗体(BD, 554411)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Oncoimmunology (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD-Biosciences, 562020)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(R4-6A2)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 2
碧迪BD Ifna1抗体(BD Bioscience, 551216)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2I
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2I). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Ifna1抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Leukoc Biol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 2
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5c
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Arterioscler Thromb Vasc Biol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). EMBO Mol Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4, 7
碧迪BD Ifna1抗体(BD Biosciences, 562018)被用于被用于流式细胞仪在小鼠样本上 (图 4, 7). Nat Neurosci (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4, 5
碧迪BD Ifna1抗体(BD Bioscience, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). PLoS Pathog (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1A; 2D
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1A; 2D). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(AN-18)
  • 免疫细胞化学; 小鼠; 图 5
碧迪BD Ifna1抗体(BD Biosciences, AN-18)被用于被用于免疫细胞化学在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 10
碧迪BD Ifna1抗体(BD Pharmingen, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 10). Infect Immun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2.c,d
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2.c,d). J Inflamm (Lond) (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Ifna1抗体(BD Horizon, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 5
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Ifna1抗体(BD, 554413)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Ifna1抗体(BD Biosciences, clone XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cell Host Microbe (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
  • 酶联免疫吸附测定; 小鼠; 1 ug/ml
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 和 被用于酶联免疫吸附测定在小鼠样本上浓度为1 ug/ml. Glia (2015) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 1 ug/ml
碧迪BD Ifna1抗体(BD Biosciences, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1 ug/ml. Glia (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD Ifna1抗体(BD Pharmingen, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 6). Int J Obes (Lond) (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Exp Med (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Ifna1抗体(BD Bioscience, 554412)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS Negl Trop Dis (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:400; 图 2
碧迪BD Ifna1抗体(BD, 554411)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 免疫印迹; 小鼠; 1:100; 图 5,6
碧迪BD Ifna1抗体(BD Bioscience, XMG1.2)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 2,000 ug/ml
碧迪BD Ifna1抗体(BD Biosciences, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为2,000 ug/ml. Nat Commun (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Pharmigen, 554412)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, 554413)被用于被用于流式细胞仪在小鼠样本上. J Neurosci (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:50
碧迪BD Ifna1抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Cancer Immunol Res (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 2 ug/ml
碧迪BD Ifna1抗体(BD Pharmingen, XMG 1.2)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为2 ug/ml. Intervirology (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Mucosal Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 5 ug/ml
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. Int Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifna1抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2011) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6C
碧迪BD Ifna1抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6C). J Leukoc Biol (2007) ncbi
文章列表
  1. Dagkonaki A, Papalambrou A, Avloniti M, Gkika A, Evangelidou M, Androutsou M, et al. Maturation of circulating Ly6ChiCCR2+ monocytes by mannan-MOG induces antigen-specific tolerance and reverses autoimmune encephalomyelitis. Front Immunol. 2022;13:972003 pubmed 出版商
  2. Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, et al. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol. 2022;12:887257 pubmed 出版商
  3. Pi xf1 eros A, Kulkarni A, Gao H, Orr K, Glenn L, Huang F, et al. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep. 2022;39:111011 pubmed 出版商
  4. Chen J, Meng J, Li X, Li X, Liu Y, Jin C, et al. HA/CD44 Regulates the T Helper 1 Cells Differentiation by Activating Annexin A1/Akt/mTOR Signaling to Drive the Pathogenesis of EAP. Front Immunol. 2022;13:875412 pubmed 出版商
  5. El Sayes N, Walsh S, Vito A, Reihani A, Ask K, Wan Y, et al. IFNAR blockade synergizes with oncolytic VSV to prevent virus-mediated PD-L1 expression and promote antitumor T cell activity. Mol Ther Oncolytics. 2022;25:16-30 pubmed 出版商
  6. Yang H, Shi Y, Liu H, Lin F, Qiu B, Feng Q, et al. Pyroptosis executor gasdermin D plays a key role in scleroderma and bleomycin-induced skin fibrosis. Cell Death Discov. 2022;8:183 pubmed 出版商
  7. Zhu Y, Elsheikha H, Wang J, Fang S, He J, Zhu X, et al. Synergy between Toxoplasma gondii type I ΔGRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer. 2021;9: pubmed 出版商
  8. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  9. Yang C, Kwon D, Kim M, Im S, Lee Y. Commensal Microbiome Expands Tγδ17 Cells in the Lung and Promotes Particulate Matter-Induced Acute Neutrophilia. Front Immunol. 2021;12:645741 pubmed 出版商
  10. Horiuchi H, Parajuli B, Komiya H, Ogawa Y, Jin S, Takahashi K, et al. Interleukin-19 Abrogates Experimental Autoimmune Encephalomyelitis by Attenuating Antigen-Presenting Cell Activation. Front Immunol. 2021;12:615898 pubmed 出版商
  11. Shen T, Liu J, Wang C, Rixiati Y, Li S, Cai L, et al. Targeting Erbin in B cells for therapy of lung metastasis of colorectal cancer. Signal Transduct Target Ther. 2021;6:115 pubmed 出版商
  12. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394 pubmed 出版商
  13. Liu J, Wang C, Cheng T, Rixiati Y, Ji C, Deng M, et al. Circadian Clock Disruption Suppresses PDL1+ Intraepithelial B Cells in Experimental Colitis and Colitis-Associated Colorectal Cancer. Cell Mol Gastroenterol Hepatol. 2021;12:251-276 pubmed 出版商
  14. Kharkwal S, Johndrow C, Veerapen N, Kharkwal H, Saavedra Avila N, Carreño L, et al. Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Res. 2021;81:1788-1801 pubmed 出版商
  15. Sanmarco L, Wheeler M, Gutiérrez Vázquez C, Polonio C, Linnerbauer M, Pinho Ribeiro F, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature. 2021;: pubmed 出版商
  16. Ebelt N, Zuniga E, Marzagalli M, Zamloot V, Blazar B, Salgia R, et al. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy. Biomedicines. 2020;8: pubmed 出版商
  17. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  18. Jansons J, Bayurova E, Skrastina D, Kurlanda A, Fridrihsone I, Kostyushev D, et al. Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells. Vaccines (Basel). 2020;8: pubmed 出版商
  19. Gibaldi D, Vilar Pereira G, Pereira I, Silva A, Barrios L, Ramos I, et al. CCL3/Macrophage Inflammatory Protein-1α Is Dually Involved in Parasite Persistence and Induction of a TNF- and IFNγ-Enriched Inflammatory Milieu in Trypanosoma cruzi-Induced Chronic Cardiomyopathy. Front Immunol. 2020;11:306 pubmed 出版商
  20. Choi S, Bae H, Jeong S, Park I, Cho H, Hong S, et al. YAP/TAZ direct commitment and maturation of lymph node fibroblastic reticular cells. Nat Commun. 2020;11:519 pubmed 出版商
  21. Thiele Née Schrewe L, Guse K, Tietz S, Remlinger J, Demir S, Pedreiturria X, et al. Functional relevance of the multi-drug transporter abcg2 on teriflunomide therapy in an animal model of multiple sclerosis. J Neuroinflammation. 2020;17:9 pubmed 出版商
  22. Cheng M, Chen Y, Huang D, Chen W, Xu W, Chen Y, et al. Intrinsically altered lung-resident γδT cells control lung melanoma by producing interleukin-17A in the elderly. Aging Cell. 2020;19:e13099 pubmed 出版商
  23. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  24. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  25. Chen Z, Ji Z, Ngiow S, Manne S, Cai Z, Huang A, et al. TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision. Immunity. 2019;51:840-855.e5 pubmed 出版商
  26. Nelson C, Thompson E, Quarnstrom C, Fraser K, Seelig D, Bhela S, et al. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019;28:3092-3104.e5 pubmed 出版商
  27. Verma V, Shrimali R, Ahmad S, Dai W, Wang H, Lu S, et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat Immunol. 2019;20:1231-1243 pubmed 出版商
  28. Sharma N, Vacher J, Allison J. TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proc Natl Acad Sci U S A. 2019;116:10453-10462 pubmed 出版商
  29. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  30. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  31. Mikolajczyk T, Nosalski R, Skiba D, Koziol J, Mazur M, Justo Junior A, et al. 1,2,3,4,6-Penta-O-galloyl-β-d-glucose modulates perivascular inflammation and prevents vascular dysfunction in angiotensin II-induced hypertension. Br J Pharmacol. 2019;176:1951-1965 pubmed 出版商
  32. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing J, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A. 2019;116:609-618 pubmed 出版商
  33. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  34. Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, et al. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun. 2018;9:4874 pubmed 出版商
  35. Qu J, Li L, Xie H, Zhang X, Yang Q, Qiu H, et al. TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res. 2018;2018:7519856 pubmed 出版商
  36. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  37. Wang H, D Souza C, Lim X, Kostenko L, Pediongco T, Eckle S, et al. MAIT cells protect against pulmonary Legionella longbeachae infection. Nat Commun. 2018;9:3350 pubmed 出版商
  38. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  39. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  40. Tan B, Shi X, Zhang J, Qin J, Zhang N, Ren H, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018;78:4929-4942 pubmed 出版商
  41. Khan A, Srivastava R, Vahed H, Roy S, Walia S, Kim G, et al. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107+ CD8+ T Cells That Infiltrate the Corneas and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect . J Virol. 2018;92: pubmed 出版商
  42. Ludtmann M, Angelova P, Horrocks M, Choi M, Rodrigues M, Baev A, et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun. 2018;9:2293 pubmed 出版商
  43. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360: pubmed 出版商
  44. Drobek A, Moudra A, Mueller D, Huranová M, Horková V, Pribikova M, et al. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. 2018;37: pubmed 出版商
  45. Dipiazza A, Laniewski N, Rattan A, Topham D, Miller J, Sant A. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection. J Virol. 2018;92: pubmed 出版商
  46. Zheng X, Fang Z, Liu X, Deng S, Zhou P, Wang X, et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J Clin Invest. 2018;128:2104-2115 pubmed 出版商
  47. Kling J, Jordan M, Pitt L, Meiners J, Thanh Tran T, Tran L, et al. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling. Front Immunol. 2018;9:483 pubmed 出版商
  48. Xiao F, Ai G, Yan W, Wan X, Luo X, Ning Q. Intrahepatic recruitment of cytotoxic NK cells contributes to autoimmune hepatitis progression. Cell Immunol. 2018;327:13-20 pubmed 出版商
  49. Mencarelli A, Khameneh H, Fric J, Vacca M, El Daker S, Janela B, et al. Calcineurin-mediated IL-2 production by CD11chighMHCII+ myeloid cells is crucial for intestinal immune homeostasis. Nat Commun. 2018;9:1102 pubmed 出版商
  50. Westhorpe C, Norman M, Hall P, Snelgrove S, Finsterbusch M, Li A, et al. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes. Nat Commun. 2018;9:747 pubmed 出版商
  51. Guimarães G, Gomes M, Campos P, Marinho F, de Assis N, Silveira T, et al. Immunoproteasome Subunits Are Required for CD8+ T Cell Function and Host Resistance to Brucella abortus Infection in Mice. Infect Immun. 2018;86: pubmed 出版商
  52. Maseda D, Johnson E, Nyhoff L, Baron B, Kojima F, Wilhelm A, et al. mPGES1-Dependent Prostaglandin E2 (PGE2) Controls Antigen-Specific Th17 and Th1 Responses by Regulating T Autocrine and Paracrine PGE2 Production. J Immunol. 2018;200:725-736 pubmed 出版商
  53. Whitney P, Makhlouf C, MacLeod B, Ma J, Gressier E, Greyer M, et al. Effective Priming of Herpes Simplex Virus-Specific CD8+ T Cells In Vivo Does Not Require Infected Dendritic Cells. J Virol. 2018;92: pubmed 出版商
  54. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  55. Bhattacharyya M, Penaloza MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology. 2017;151:340-348 pubmed 出版商
  56. Baranek T, Morello E, Valayer A, Aimar R, Bréa D, Henry C, et al. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol. 2017;8:123 pubmed 出版商
  57. Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed 出版商
  58. Pardi N, Hogan M, Pelc R, Muramatsu H, Andersen H, Demaso C, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543:248-251 pubmed 出版商
  59. Welsby I, Detienne S, N kuli F, Thomas S, Wouters S, Bechtold V, et al. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. Front Immunol. 2016;7:663 pubmed 出版商
  60. Nowyhed H, Chandra S, Kiosses W, Marcovecchio P, Andary F, Zhao M, et al. ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Sci Rep. 2017;7:40273 pubmed 出版商
  61. Jiang X, Park C, Geddes Sweeney J, Yoo M, Gaide O, Kupper T. Dermal ?? T Cells Do Not Freely Re-Circulate Out of Skin and Produce IL-17 to Promote Neutrophil Infiltration during Primary Contact Hypersensitivity. PLoS ONE. 2017;12:e0169397 pubmed 出版商
  62. Okuyama H, Tominaga A, Fukuoka S, Taguchi T, Kusumoto Y, Ono S. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-?. Oncol Rep. 2017;37:684-694 pubmed 出版商
  63. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A. 2017;114:E540-E549 pubmed 出版商
  64. Rowe A, Yun H, Hendricks R. Exposure Stress Induces Reversible Corneal Graft Opacity in Recipients With Herpes Simplex Virus-1 Infections. Invest Ophthalmol Vis Sci. 2017;58:35-41 pubmed 出版商
  65. van der Weyden L, Arends M, Campbell A, Bald T, Wardle Jones H, Griggs N, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233-236 pubmed 出版商
  66. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  67. Griffiths K, Ahmed M, Das S, Gopal R, Horne W, Connell T, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016;7:13894 pubmed 出版商
  68. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  69. Ohs I, Van Den Broek M, Nussbaum K, MUNZ C, Arnold S, Quezada S, et al. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat Commun. 2016;7:13708 pubmed 出版商
  70. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  71. Srivastava R, Khan A, Garg S, Syed S, Furness J, Vahed H, et al. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocula. J Virol. 2017;91: pubmed 出版商
  72. Baron L, Paatero A, Morel J, Impens F, Guenin Macé L, Saint Auret S, et al. Mycolactone subverts immunity by selectively blocking the Sec61 translocon. J Exp Med. 2016;213:2885-2896 pubmed
  73. Park K, Mikulski Z, Seo G, Andreyev A, Marcovecchio P, Blatchley A, et al. The transcription factor NR4A3 controls CD103+ dendritic cell migration. J Clin Invest. 2016;126:4603-4615 pubmed 出版商
  74. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  75. Kwong Chung C, Ronchi F, Geuking M. Detrimental effect of systemic antimicrobial CD4+ T-cell reactivity on gut epithelial integrity. Immunology. 2017;150:221-235 pubmed 出版商
  76. Arunachalam P, Mishra R, Badarinath K, Selvam D, Payeli S, Stout R, et al. Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Sci Rep. 2016;6:33564 pubmed 出版商
  77. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  78. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  79. Le Gars M, Haustant M, Klezovich Bénard M, Paget C, Trottein F, Goossens P, et al. Mechanisms of Invariant NKT Cell Activity in Restraining Bacillus anthracis Systemic Dissemination. J Immunol. 2016;197:3225-3232 pubmed
  80. Papadaki G, Kambas K, Choulaki C, Vlachou K, Drakos E, Bertsias G, et al. Neutrophil extracellular traps exacerbate Th1-mediated autoimmune responses in rheumatoid arthritis by promoting DC maturation. Eur J Immunol. 2016;46:2542-2554 pubmed 出版商
  81. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  82. Ulges A, Witsch E, Pramanik G, Klein M, Birkner K, Bühler U, et al. Protein kinase CK2 governs the molecular decision between encephalitogenic TH17 cell and Treg cell development. Proc Natl Acad Sci U S A. 2016;113:10145-50 pubmed 出版商
  83. Wang H, Li M, Hung C, Sinha M, Lee L, Wiesner D, et al. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathog. 2016;12:e1005787 pubmed 出版商
  84. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  85. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  86. Ferreirinha P, Pérez Cabezas B, Correia A, Miyazawa B, França A, Carvalhais V, et al. Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun. 2016;84:2933-43 pubmed 出版商
  87. Alberdi M, Iglesias M, Tejedor S, Merino R, Lopez Rodriguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFN? expression by the transcription factor NFAT5. Immunol Cell Biol. 2017;95:56-67 pubmed 出版商
  88. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  89. Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Hervé R, et al. In Vivo Expansion of Activated Foxp3+ Regulatory T Cells and Establishment of a Type 2 Immune Response upon IL-33 Treatment Protect against Experimental Arthritis. J Immunol. 2016;197:1708-19 pubmed 出版商
  90. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  91. Stifter K, Schuster C, Schlosser M, Boehm B, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep. 2016;6:29419 pubmed 出版商
  92. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  93. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  94. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  95. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  96. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  97. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  98. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  99. Vandenberk L, Garg A, Verschuere T, Koks C, Belmans J, Beullens M, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5:e1083669 pubmed
  100. Llopiz D, Aranda F, Díaz Valdés N, Ruiz M, Infante S, Belsue V, et al. Vaccine-induced but not tumor-derived Interleukin-10 dictates the efficacy of Interleukin-10 blockade in therapeutic vaccination. Oncoimmunology. 2016;5:e1075113 pubmed
  101. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  102. Seo J, Bang M, Kim G, Cho S, Park D. Erythronium japonicum attenuates histopathological lung abnormalities in a mouse model of ovalbumin-induced asthma. Int J Mol Med. 2016;37:1221-8 pubmed 出版商
  103. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  104. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  105. Smith R, Reyes N, Khandelwal P, Schlereth S, Lee H, Masli S, et al. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease. J Leukoc Biol. 2016;100:371-80 pubmed 出版商
  106. Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, et al. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 2016;6:20588 pubmed 出版商
  107. Foks A, Engelbertsen D, Kuperwaser F, Alberts Grill N, Gonen A, Witztum J, et al. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol. 2016;36:456-65 pubmed 出版商
  108. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  109. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  110. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  111. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  112. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  113. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  114. Okada K, Sato S, Sato A, Mandelboim O, Yamasoba T, Kiyono H. Identification and Analysis of Natural Killer Cells in Murine Nasal Passages. PLoS ONE. 2015;10:e0142920 pubmed 出版商
  115. Fontinha D, Lopes F, Marques S, Alenquer M, Simas J. Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells. PLoS ONE. 2015;10:e0142540 pubmed 出版商
  116. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol. 2016;90:650-8 pubmed 出版商
  117. Ruan S, Samuelson D, Assouline B, Morre M, Shellito J. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect Immun. 2016;84:108-19 pubmed 出版商
  118. Min S, Yan M, Kim S, Ravikumar S, Kwon S, Vanarsa K, et al. Green Tea Epigallocatechin-3-Gallate Suppresses Autoimmune Arthritis Through Indoleamine-2,3-Dioxygenase Expressing Dendritic Cells and the Nuclear Factor, Erythroid 2-Like 2 Antioxidant Pathway. J Inflamm (Lond). 2015;12:53 pubmed 出版商
  119. Manlove L, Berquam Vrieze K, Pauken K, Williams R, Jenkins M, Farrar M. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells. J Immunol. 2015;195:4028-37 pubmed 出版商
  120. Poncini C, Ilarregui J, Batalla E, Engels S, Cerliani J, Cucher M, et al. Trypanosoma cruzi Infection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1-Dependent Mechanisms. J Immunol. 2015;195:3311-24 pubmed 出版商
  121. Redpath S, Van Der Werf N, MacDonald A, Maizels R, Taylor M. Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase. Infect Immun. 2015;83:3881-9 pubmed 出版商
  122. Silva O, Crocetti J, Humphries L, Burkhardt J, Miceli M. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS ONE. 2015;10:e0133353 pubmed 出版商
  123. Abt M, Lewis B, Caballero S, Xiong H, Carter R, SuÅ¡ac B, et al. Innate Immune Defenses Mediated by Two ILC Subsets Are Critical for Protection against Acute Clostridium difficile Infection. Cell Host Microbe. 2015;18:27-37 pubmed 出版商
  124. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  125. Ackerknecht M, Hauser M, Legler D, Stein J. In vivo TCR Signaling in CD4(+) T Cells Imprints a Cell-Intrinsic, Transient Low-Motility Pattern Independent of Chemokine Receptor Expression Levels, or Microtubular Network, Integrin, and Protein Kinase C Activity. Front Immunol. 2015;6:297 pubmed 出版商
  126. Bruchard M, Rebé C, Derangère V, Togbé D, Ryffel B, Boidot R, et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16:859-70 pubmed 出版商
  127. Khan I, Perrard X, Brunner G, Lui H, Sparks L, Smith S, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond). 2015;39:1607-18 pubmed 出版商
  128. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  129. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  130. Tsou Y, Lin Y, Shao H, Yu S, Wu S, Lin H, et al. Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease. PLoS Negl Trop Dis. 2015;9:e0003692 pubmed 出版商
  131. Badillo Godinez O, Gutierrez Xicotencatl L, Plett Torres T, Pedroza Saavedra A, González Jaimes A, Chihu Amparan L, et al. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice. Vaccine. 2015;33:4228-37 pubmed 出版商
  132. Sakala I, Chaudhri G, Eldi P, Buller R, Karupiah G. Deficiency in Th2 cytokine responses exacerbate orthopoxvirus infection. PLoS ONE. 2015;10:e0118685 pubmed 出版商
  133. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  134. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  135. Bang M, Seo J, Seo J, Jo G, Jung S, Yu R, et al. Bacillus subtilis KCTC 11782BP-produced alginate oligosaccharide effectively suppresses asthma via T-helper cell type 2-related cytokines. PLoS ONE. 2015;10:e0117524 pubmed 出版商
  136. Spada R, Rojas J, Pérez Yagüe S, Mulens V, Cannata Ortiz P, Bragado R, et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol. 2015;97:583-98 pubmed 出版商
  137. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  138. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  139. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  140. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  141. Larsen J, Dall M, Antvorskov J, Weile C, Engkilde K, Josefsen K, et al. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion. Eur J Immunol. 2014;44:3056-67 pubmed 出版商
  142. Zhou Q, Ho A, Schlitzer A, Tang Y, Wong K, Wong F, et al. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis. J Immunol. 2014;193:496-509 pubmed 出版商
  143. Moreno M, Bannerman P, Ma J, Guo F, Miers L, Soulika A, et al. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J Neurosci. 2014;34:8175-85 pubmed 出版商
  144. Vargas A, Zhou S, Ethier Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28:3703-19 pubmed 出版商
  145. Zhang Y, Yan W, Mathew E, Bednar F, Wan S, Collins M, et al. CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunol Res. 2014;2:423-35 pubmed 出版商
  146. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  147. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  148. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  149. Takei S, Omoto C, Kitagawa K, Morishita N, Katayama T, Shigemura K, et al. Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV-NS3-specific systemic immune response in mice. Vaccine. 2014;32:3066-74 pubmed 出版商
  150. Samuelson E, Laird R, Papillion A, Tatum A, Princiotta M, Hayes S. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS ONE. 2014;9:e92054 pubmed 出版商
  151. Martins K, Steffens J, Van Tongeren S, Wells J, Bergeron A, Dickson S, et al. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS ONE. 2014;9:e89735 pubmed 出版商
  152. Medina Armenteros Y, Farinha Arcieri L, Braga C, Carromeu C, Tamura R, Ventura A. Mapping of CD8 T cell epitopes in human respiratory syncytial virus L protein. Intervirology. 2014;57:55-64 pubmed 出版商
  153. Jayaraman A, Jackson D, Message S, Pearson R, Aniscenko J, Caramori G, et al. IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunol. 2014;7:1151-64 pubmed 出版商
  154. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  155. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  156. Murapa P, Ward M, Gandhapudi S, Woodward J, D Orazio S. Heat shock factor 1 protects mice from rapid death during Listeria monocytogenes infection by regulating expression of tumor necrosis factor alpha during fever. Infect Immun. 2011;79:177-84 pubmed 出版商
  157. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed