这是一篇来自已证抗体库的有关小鼠 Ifng的综述,是根据551篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ifng 抗体。
Ifng 同义词: IFN-g; Ifg

其他
Ifng抗体(BioLegend, XMG1.2)被用于. Nat Commun (2018) ncbi
Ifng抗体(Biolegend, XMG1.2)被用于. EMBO J (2019) ncbi
Ifng抗体(BioLegend, 505827)被用于. Immunity (2018) ncbi
Ifng抗体(BioLegend, XMG1.2)被用于. J Clin Invest (2018) ncbi
Ifng抗体(Biolegend, XMG1.2)被用于. Front Immunol (2018) ncbi
Ifng抗体(BioLegend, XMG1.2)被用于. PLoS ONE (2018) ncbi
Ifng抗体(BioLegend, XMG1.2)被用于. J Clin Invest (2018) ncbi
Ifng抗体(Biolegend, XMG1.2)被用于. Nature (2017) ncbi
Ifng抗体(Biolegend, XMG1.2)被用于. J Virol (2017) ncbi
Ifng抗体(Biolegend, XMG1.2)被用于. Nat Commun (2017) ncbi
Ifng抗体(BioLegend, XMG1.2)被用于. J Exp Med (2017) ncbi
Ifng抗体(BioLegend, XMG1.2)被用于. J Exp Med (2017) ncbi
Ifng抗体(BioLegend, XMG1.2)被用于. J Exp Med (2017) ncbi
Ifng抗体(BioLegend, XMG1.2)被用于. J Clin Invest (2017) ncbi
Ifng抗体(BioLegend, XMG1.2)被用于. Proc Natl Acad Sci U S A (2017) ncbi
赛默飞世尔
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Ifng抗体(eBioscience, 17-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cell (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔 Ifng抗体(ThermoFisher Scientific, 12-7311-81)被用于被用于流式细胞仪在小鼠样本上 (图 7b). elife (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 免疫组化-石蜡切片; 小鼠; 图 7d
赛默飞世尔 Ifng抗体(ThermoFisher, XMG1.2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7d). Sci Rep (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:1000; 图 2e, 5f
赛默飞世尔 Ifng抗体(Thermo Fisher Scientific, 53-7311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2e, 5f). elife (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:300; 图 s7d
赛默飞世尔 Ifng抗体(Invitrogen, 25-7311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s7d). Cell Res (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Ifng抗体(eBioscience, 11-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Ifng抗体(eBioscience, 25731182)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Nat Commun (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔 Ifng抗体(Thermo Fisher, 48-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Cell (2020) ncbi
大鼠 单克隆(AN-18)
  • 流式细胞仪; 小鼠; 图 2f, 3c,
赛默飞世尔 Ifng抗体(eBioscience, AN-18)被用于被用于流式细胞仪在小鼠样本上 (图 2f, 3c, ). JCI Insight (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Nature (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 5
赛默飞世尔 Ifng抗体(eBioscience, 25-7311)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5). JCI Insight (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:400; 图 5c
赛默飞世尔 Ifng抗体(eBioscience, 17731181)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 5c). Nat Commun (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nature (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ifng抗体(eBioscience, 48-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Science (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2c, 6e
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2c, 6e). Sci Adv (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 3d
赛默飞世尔 Ifng抗体(Thermo Fisher, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3d). Science (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). BMC Complement Altern Med (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Nature (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2.)被用于被用于流式细胞仪在人类样本上 (图 2b). Sci Adv (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔 Ifng抗体(eBioscience, 12-7311-41)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Cell (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6c). J Exp Med (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 3e
赛默飞世尔 Ifng抗体(eBioscience, 11-7311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3e). Nat Commun (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Exp Med (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 ex1e
赛默飞世尔 Ifng抗体(eBioscience, 17-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 ex1e). Nature (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncoimmunology (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Immune Netw (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Front Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 6a
赛默飞世尔 Ifng抗体(eBioscience, 48-7311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6a). elife (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1b, 2c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b, 2c). Nature (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Ifng抗体(eBioscience, 11-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cell Mol Gastroenterol Hepatol (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s4d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s4d). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Cancer Res (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4f). PLoS Pathog (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nature (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Front Microbiol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Ifng抗体(eBioscience, 12-7311)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Neuroinflammation (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ifng抗体(Thermo Fisher Scientific, 25-7311-41)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunity (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Science (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 1:300; 图 3d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 3d). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:500; 图 s4a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s4a). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ifng抗体(eBioscience, XMG 1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 e4b
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 e4b). Nature (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Clin Invest (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2018) ncbi
仓鼠 单克隆(H22)
  • 抑制或激活实验; 人类; 10 ug/ml; 图 1a
赛默飞世尔 Ifng抗体(eBioscience, H22)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml (图 1a). Cancer Res (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Virol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Front Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Ifng抗体(eBioscience, 12-7311)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Med (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Ifng抗体(eBiosciences, 48-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Cell (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Ifng抗体(eBioscience, 177311)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Br J Pharmacol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Ifng抗体(eBiosciences, 25-7311-41)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). EMBO J (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Ifng抗体(Thermo Fisher Scientific, 25-7311-41)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 2c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 2c). J Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a, 2d
  • 酶联免疫吸附测定; 小鼠; 图 3a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 2d) 和 被用于酶联免疫吸附测定在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cancer Res (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ifng抗体(Invitrogen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1e). PLoS Pathog (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Eur J Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:1000; 图 s3d
赛默飞世尔 Ifng抗体(ebioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s3d). Nat Commun (2017) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 3a
赛默飞世尔 Ifng抗体(eBioscience, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3a). J Immunol (2017) ncbi
大鼠 单克隆(AN-18)
  • 酶联免疫吸附测定; 小鼠; 图 2e
赛默飞世尔 Ifng抗体(eBiosciences, AN-18)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2e). J Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔 Ifng抗体(eBioscience, 48-7311-80)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Nature (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Cell Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2b
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2b) 和 被用于流式细胞仪在人类样本上 (图 2b). Stem Cells (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ifng抗体(eBiosciences, 11-7311-81)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s7d
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Oncotarget (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Leukoc Biol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 8a
赛默飞世尔 Ifng抗体(Thermo Fisher Scientific, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 8a). J Exp Med (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Ifng抗体(eBioscience, XMG121)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Eur J Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Int J Parasitol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Clin Invest (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 6l
赛默飞世尔 Ifng抗体(eBioscience, 17-7311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6l). Nat Commun (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Nat Commun (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). J Clin Invest (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:500; 图 s1d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s1d). Nat Commun (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3e
赛默飞世尔 Ifng抗体(eBioscience, 12-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 5j
赛默飞世尔 Ifng抗体(eBioscience, 12-7311)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5j). Nat Commun (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS ONE (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔 Ifng抗体(eBiosciences, 25-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ifng抗体(eBioscience, 17-7311)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Cell Biol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Cell Mol Life Sci (2017) ncbi
大鼠 单克隆(R4-6A2)
  • 抑制或激活实验; 小鼠; 图 4a
赛默飞世尔 Ifng抗体(Endogen, MM701)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Oncol Rep (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4g
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4g). Immunology (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1k
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1k). J Exp Med (2017) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 s7a
赛默飞世尔 Ifng抗体(eBiosciences, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 s7a). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 s7a
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 s7a). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Ifng抗体(ebioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Infect Immun (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). J Clin Invest (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Oncoimmunology (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5B
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5B). PLoS ONE (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s5f
赛默飞世尔 Ifng抗体(eBiosciences, 17-7311-81)被用于被用于流式细胞仪在小鼠样本上 (图 s5f). Nat Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Circ Res (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Clin Invest (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Ifng抗体(eBioscience, 12-7311)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6f
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6f). J Clin Invest (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 4
赛默飞世尔 Ifng抗体(eBiosciences, 11-7311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Ifng抗体(Affymetrix eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 图 6b
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上 (图 6b). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5B
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5B). Oncoimmunology (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 6d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 6d). Oncoimmunology (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s3
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3). J Clin Invest (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Immunity (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4m
赛默飞世尔 Ifng抗体(eBioscience, 51-73-1182)被用于被用于流式细胞仪在小鼠样本上 (图 4m). J Virol (2016) ncbi
大鼠 单克隆(R4-6A2)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Ifng抗体(Thermo Scientific, MM701)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s4d
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s4d). Science (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s11a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s11a). Science (2016) ncbi
大鼠 单克隆(AN-18)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Ifng抗体(eBiosciences, AN-18)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Cancer Res (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, 25731141)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunother Cancer (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Biosci (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Ifng抗体(eBioscience, 25-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Biol Open (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2016) ncbi
大鼠 单克隆(AN-18)
  • 酶联免疫吸附测定; 小鼠; 图 3D
赛默飞世尔 Ifng抗体(eBiosciences, AN-18)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3D). PLoS ONE (2016) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 3D
赛默飞世尔 Ifng抗体(eBiosciences, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3D). PLoS ONE (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 10 ug/ml; 图 2
赛默飞世尔 Ifng抗体(eBioscience, 45-7311-82)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml (图 2). Mucosal Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 图 8
赛默飞世尔 Ifng抗体(eBioscience, 16-7311-85)被用于被用于抑制或激活实验在小鼠样本上 (图 8). PLoS Negl Trop Dis (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Nat Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ifng抗体(e-Bioscience, 25-7311)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 流式细胞仪; 大鼠; 图 s6e
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于流式细胞仪在大鼠样本上 (图 s6e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Am J Pathol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Infect Immun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s7
赛默飞世尔 Ifng抗体(eBioscience, 25-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Sci Rep (2016) ncbi
大鼠 单克隆(R4-6A2)
  • 流式细胞仪; 小鼠; 1:100; 图 s6b
赛默飞世尔 Ifng抗体(eBioscience, R4-6A2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6b). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBiocience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(eBioscience, XMG 1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (表 1). Am J Pathol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5, 6
赛默飞世尔 Ifng抗体(ebioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5, 6). Nat Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔 Ifng抗体(eBioscience, 11-7311)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Nat Neurosci (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Exp Med (2015) ncbi
大鼠 单克隆(R4-6A2)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Ifng抗体(eBiosciences, R4-6A2)被用于被用于抑制或激活实验在小鼠样本上. Methods Mol Biol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nat Med (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ifng抗体(eBioscience, XMG-1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3c
赛默飞世尔 Ifng抗体(eBioscience, 11-7311-41)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Oncogene (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ifng抗体(eBioscience, 12-7311)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ifng抗体(eBioscience, 14-8311-63)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
赛默飞世尔 Ifng抗体(EBioscience, XMG1.2)被用于. Mucosal Immunol (2016) ncbi
大鼠 单克隆(R4-6A2)
赛默飞世尔 Ifng抗体(EBioscience, R4-6A2)被用于. Mucosal Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 牛
赛默飞世尔 Ifng抗体(Affymetrix eBioscience, 48-7311-80)被用于被用于流式细胞仪在牛样本上. Cell Tissue Res (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Retrovirology (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cancer Res (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ifng抗体(eBioscience, #17-7311-82)被用于被用于流式细胞仪在小鼠样本上 (图 6). Front Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Neuroinflammation (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Ifng抗体(eBioscience, 17-7311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Nat Commun (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1C
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1C). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 Ifng抗体(ebiosciences, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 3). Nat Biotechnol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6e
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Nat Commun (2015) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 图 4b
赛默飞世尔 Ifng抗体(eBioscience, DB1)被用于被用于酶联免疫吸附测定在大鼠样本上 (图 4b). Brain Behav Immun (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Vaccine (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s9
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Nature (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s4). PLoS Pathog (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Invitrogen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Infect Immun (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠; 1:100; 图 4
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4). PLoS Pathog (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Pathog (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Clin Invest (2015) ncbi
domestic goat 多克隆
赛默飞世尔 Ifng抗体(Thermo Scientific, PA1-24782)被用于. J Cell Commun Signal (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Clin Invest (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 3). Cell Res (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 Ifng抗体(eBioscience or BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Cell Mol Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ifng抗体(ebioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Invest Dermatol (2015) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 免疫组化; 大鼠
赛默飞世尔 Ifng抗体(Invitrogen, ARC4033)被用于被用于免疫组化在大鼠样本上. Exp Neurol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 3
赛默飞世尔 Ifng抗体(Caltag Laboratories, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). Transpl Int (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nat Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Mucosal Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Ifng抗体(ebioscience, MM700)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Clin Cancer Res (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 免疫印迹; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, 85-12-7311-81)被用于被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Invitrogen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Immunol Cell Biol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Neuroimmunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Invest Dermatol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
大鼠 单克隆(XMG1.2)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于免疫细胞化学在小鼠样本上. J Neuroinflammation (2013) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ifng抗体(Caltag, clone XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Infect Immun (2013) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Invitrogen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Brain Behav Immun (2013) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2013) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(ebiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(Invitrogen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Virol (2012) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 3
赛默飞世尔 Ifng抗体(Caltag Laboratories, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). Evid Based Complement Alternat Med (2012) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 3
赛默飞世尔 Ifng抗体(Caltag Laboratories, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). Evid Based Complement Alternat Med (2012) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 3
赛默飞世尔 Ifng抗体(Caltag Laboratories, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). J Cardiothorac Surg (2012) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 3
赛默飞世尔 Ifng抗体(Caltag Laboratories, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). J Cardiothorac Surg (2012) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ifng抗体(Invitrogen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2012) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2011) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2011) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). BMC Immunol (2011) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Ifng抗体(Invitrogen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2011) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). J Immunol (2010) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 7
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 7). J Immunol (2010) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 7
赛默飞世尔 Ifng抗体(eBioscience, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 7). J Immunol (2010) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Immunol (2010) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2010) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Int J Cancer (2011) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2010) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2009) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2009) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2009) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2009) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Proc Natl Acad Sci U S A (2009) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
  • 流式细胞仪; 人类
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 和 被用于流式细胞仪在人类样本上. J Immunol (2009) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2009) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Caltag-Invitrogen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Gastroenterology (2009) ncbi
大鼠 单克隆(R4-6A2)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, R4-6A2)被用于被用于抑制或激活实验在小鼠样本上. Cell Res (2008) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Gastroenterology (2008) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Virol (2008) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2008) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 10 ug/ml
赛默飞世尔 Ifng抗体(Invitrogen Life Technologies, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为10 ug/ml. J Immunol (2007) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 10 ug/ml
赛默飞世尔 Ifng抗体(Invitrogen Life Technologies, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为10 ug/ml. J Immunol (2007) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Int J Parasitol (2008) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2007) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上. Immunology (2008) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔 Ifng抗体(eBioscience, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上. Immunology (2008) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 图 3
赛默飞世尔 Ifng抗体(Invitrogen, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上 (图 3). Microbiol Immunol (2007) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2007) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(eBiosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2007) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Infect Immun (2007) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). J Immunol (2006) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 2
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). J Immunol (2006) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ifng抗体(eBioscience, MG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). Eur J Immunol (2006) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 5
赛默飞世尔 Ifng抗体(eBioscience, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). J Immunol (2006) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 图 5
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上 (图 5). Clin Exp Immunol (2006) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ifng抗体(eBioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2006) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 小鼠; 图 4
赛默飞世尔 Ifng抗体(Biosource, DB1)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4). Parasitol Res (2005) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 图 5
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上 (图 5). Inflamm Bowel Dis (2005) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上. Immunology (2005) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 1 ug/ml
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上浓度为1 ug/ml. Immunol Lett (2005) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 10 ug/ml; 图 4
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上浓度为10 ug/ml (图 4). Neuroscience (2004) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(CalTag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2005) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:50; 图 3
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). Antivir Ther (2004) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 图 3
赛默飞世尔 Ifng抗体(BioSource, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上 (图 3). J Immunol (2004) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在小鼠样本上. J Autoimmun (2004) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 图 3
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上 (图 3). Clin Exp Immunol (2004) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2004) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 4
赛默飞世尔 Ifng抗体(Caltag, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4). Transplantation (2004) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 4
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4). Transplantation (2004) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Int Immunol (2003) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 抑制或激活实验; 大鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于抑制或激活实验在大鼠样本上. J Immunol Methods (2003) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Caltag Probes, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2003) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 5 ug/ml
赛默飞世尔 Ifng抗体(Endogen, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. Int Immunol (2002) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Ifng抗体(BioSource International, clone DB-1)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Neuroimmunol (2002) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 抑制或激活实验; 大鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于抑制或激活实验在大鼠样本上. Pediatr Res (2002) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 10 ug/ml; 图 2
赛默飞世尔 Ifng抗体(Biosource, clone DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上浓度为10 ug/ml (图 2). Am J Respir Cell Mol Biol (2002) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2002) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 7
赛默飞世尔 Ifng抗体(Endogen, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 7). J Immunol (2002) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 流式细胞仪; 大鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于流式细胞仪在大鼠样本上. J Gastroenterol Hepatol (2002) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 图 8
赛默飞世尔 Ifng抗体(BioSource International, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上 (图 8). J Immunol (2001) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 小鼠; 图 1
赛默飞世尔 Ifng抗体(BioSource International, DB-1)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Transplantation (2000) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 流式细胞仪; 大鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于流式细胞仪在大鼠样本上. J Immunol Methods (2000) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Caltag, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2000) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 免疫组化-石蜡切片; 大鼠; 图 6
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6). J Immunol (2000) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠; 2 ug/ml; 图 1
赛默飞世尔 Ifng抗体(BioSource International, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上浓度为2 ug/ml (图 1). J Immunol (1999) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 大鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在大鼠样本上. Infect Immun (1999) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于免疫组化-石蜡切片在大鼠样本上. J Immunol (1999) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ifng抗体(Caltag, XMG)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (1998) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 免疫组化; 大鼠
赛默飞世尔 Ifng抗体(biosource, DB-1)被用于被用于免疫组化在大鼠样本上. Transplantation (1998) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 小鼠; 图 1
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 1). J Immunol (1997) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于酶联免疫吸附测定在小鼠样本上. Infect Immun (1997) ncbi
小鼠 单克隆(DB-1 (DB1))
  • 抑制或激活实验; 小鼠
赛默飞世尔 Ifng抗体(Biosource, DB-1)被用于被用于抑制或激活实验在小鼠样本上. Infect Immun (1995) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 表 2
赛默飞世尔 Ifng抗体(noco, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (表 2). J Exp Med (1987) ncbi
BioLegend
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6a, 6e
BioLegend Ifng抗体(BioLegend, 505826)被用于被用于流式细胞仪在小鼠样本上 (图 6a, 6e). Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:250
  • 免疫组化; 小鼠; 图 2a
BioLegend Ifng抗体(Biolegend, 505810)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 和 被用于免疫组化在小鼠样本上 (图 2a). elife (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s17
BioLegend Ifng抗体(BioLegend, 505815)被用于被用于流式细胞仪在小鼠样本上 (图 s17). Nat Commun (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Ifng抗体(BioLegend, 505810)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Oncoimmunology (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; ; 图 2b
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 2b) 和 被用于流式细胞仪在小鼠样本上 (图 2c). Sci Adv (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Ifng抗体(BioLegend, XMG-1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1f). elife (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
  • 流式细胞仪; 小鼠; 图 4a, 4b
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d) 和 被用于流式细胞仪在小鼠样本上 (图 4a, 4b). BMC Immunol (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 2i
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 2i). Science (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 3s4d
BioLegend Ifng抗体(Biolegend, 505810)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3s4d). elife (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Sci Adv (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 6s2
BioLegend Ifng抗体(BioLegend, 505810)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6s2). elife (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ifng抗体(Bio-Legend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). BMC Infect Dis (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 s2f
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 s2f). Science (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2f, 2g
  • 流式细胞仪; 人类; 图 7e
BioLegend Ifng抗体(BioLegend, 505808)被用于被用于流式细胞仪在小鼠样本上 (图 2f, 2g) 和 被用于流式细胞仪在人类样本上 (图 7e). J Exp Med (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend Ifng抗体(Biolegend, 505826)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Cell (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5g
BioLegend Ifng抗体(Biolegend, 505810)被用于被用于流式细胞仪在小鼠样本上 (图 5g). Cell (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3e, 3k
BioLegend Ifng抗体(Biolegend, 505825)被用于被用于流式细胞仪在小鼠样本上 (图 3e, 3k). Oncoimmunology (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ifng抗体(Biolegend, 505839)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cell (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 5b
BioLegend Ifng抗体(Biolegend, 505808)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5b). Nat Commun (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 3f
BioLegend Ifng抗体(BioLegend, 505810)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3f). Nat Commun (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Ifng抗体(BioLegend, 505830)被用于被用于流式细胞仪在小鼠样本上 (图 4e). EMBO J (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ifng抗体(BioLegend, 505810)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immunity (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 10 ug/ml; 图 3c
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为10 ug/ml (图 3c). JCI Insight (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 4a
BioLegend Ifng抗体(BioLegend, 505810)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4a). Nature (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Ifng抗体(Biolegend, 505806)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Rep (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Med (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Nat Commun (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:50; 图 1d
BioLegend Ifng抗体(Biolegend, 505810)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1d). elife (2019) ncbi
小鼠 单克隆(DB-1)
  • 流式细胞仪; 大鼠; 图 s4b
BioLegend Ifng抗体(Biolegend, DB-1)被用于被用于流式细胞仪在大鼠样本上 (图 s4b). Nature (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Immunol (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2c, 2g
BioLegend Ifng抗体(Biolegend, 505808)被用于被用于流式细胞仪在小鼠样本上 (图 2c, 2g). Cell Rep (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3d). JCI Insight (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s4c
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4c). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6m
BioLegend Ifng抗体(Biolegend, 505810)被用于被用于流式细胞仪在小鼠样本上 (图 6m). Cell Rep (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 1 ug/ml; 图 s9c
BioLegend Ifng抗体(BioLegend, 505802)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml (图 s9c). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6a). EMBO J (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 9g
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 9g). J Clin Invest (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ifng抗体(BioLegend, XMG-1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:300; 图 4a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4a). J Exp Med (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5e). J Exp Med (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1d). PLoS ONE (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:400; 图 4a
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2f). J Exp Med (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 7c
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 7c). J Clin Invest (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Ifng抗体(Biolegend, 505808)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Clin Invest (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Ifng抗体(Biolegend, 505823)被用于被用于流式细胞仪在小鼠样本上 (图 3d). PLoS Biol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Ifng抗体(BioLegend, 505813)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Ifng抗体(BioLegend, XM1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Front Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Ifng抗体(BioLegend, 505806)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Science (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3o
BioLegend Ifng抗体(Biolegend, 505814)被用于被用于流式细胞仪在小鼠样本上 (图 3o). Science (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s4c
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). PLoS ONE (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Ifng抗体(BioLegend, HMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 1:100; 图 5a
BioLegend Ifng抗体(BioLegend, 505810)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5a). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 8d
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 8d). J Clin Invest (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). JCI Insight (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s10i
BioLegend Ifng抗体(BioLegend, 505808)被用于被用于流式细胞仪在小鼠样本上 (图 s10i). Nature (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). Nat Commun (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 e1b
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 e1b). Nature (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3i
BioLegend Ifng抗体(Biolegend, 505810)被用于被用于流式细胞仪在小鼠样本上 (图 3i). Cell Death Dis (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Eur J Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Ifng抗体(BioLegend, 505806)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Clin Invest (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 8b
BioLegend Ifng抗体(Biolegend, 505829)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 8b). Nat Cell Biol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 图 3a
BioLegend Ifng抗体(BioLegend, 505801)被用于被用于抑制或激活实验在小鼠样本上 (图 3a). Eur J Immunol (2017) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 2e
BioLegend Ifng抗体(BioLegend, R46A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2e). J Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Cell Death Differ (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6d
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Cancer Res (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Virol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). Nat Commun (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Clin Invest (2017) ncbi
大鼠 单克隆(R4-6A2)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Ifng抗体(BioLegend, 505702)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Exp Med (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nat Med (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Exp Med (2017) ncbi
仓鼠 单克隆(H22)
  • 免疫组化; 小鼠; 图 3e
BioLegend Ifng抗体(Biolegend, 513202)被用于被用于免疫组化在小鼠样本上 (图 3e). Oncogene (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Front Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3e
BioLegend Ifng抗体(BioLegend, 505806)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Clin Invest (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Ifng抗体(BioLegend, 505805)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Exp Med (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(DB-1)
  • 流式细胞仪; 大鼠; 图 4c
BioLegend Ifng抗体(BioLegend, DB-1)被用于被用于流式细胞仪在大鼠样本上 (图 4c). Eur J Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Mucosal Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Oncotarget (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s5d
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). PLoS Pathog (2016) ncbi
大鼠 单克隆(R4-6A2)
  • 抑制或激活实验; 小鼠; 图 s4c
BioLegend Ifng抗体(BioLegend, R4-6A2)被用于被用于抑制或激活实验在小鼠样本上 (图 s4c). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ifng抗体(BioLegend, 505826)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Ifng抗体(Biolegend, XMG 1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Infect Immun (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 4b
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4b). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Mucosal Immunol (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 S1b
BioLegend Ifng抗体(BioLegend, 505809)被用于被用于流式细胞仪在小鼠样本上 (图 S1b). J Exp Clin Cancer Res (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 2b
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 2b). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:333; 图 7a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:333 (图 7a). PLoS Negl Trop Dis (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2c
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Nature (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 9a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 9a). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Oncogene (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Immunol (2016) ncbi
大鼠 单克隆(AN-18)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Ifng抗体(BioLegend, AN-18)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
BioLegend Ifng抗体(Biolegend, 505804)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Eur J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
BioLegend Ifng抗体(BioLegend, 505810)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ifng抗体(BioLegend, 505807)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 1 ug/ml; 图 5
BioLegend Ifng抗体(Biolegend, 505804)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1 ug/ml (图 5). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
BioLegend Ifng抗体(Biolegend, 505808)被用于. Sci Rep (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mucosal Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 1
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(DB-1)
  • 免疫印迹; 大鼠
BioLegend Ifng抗体(Biolegend, 507802)被用于被用于免疫印迹在大鼠样本上. Int J Clin Exp Pathol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 8c
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 8c). J Leukoc Biol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 1
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ifng抗体(BioLegend, 505815)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于流式细胞仪在小鼠样本上 (图 2). Oncoimmunology (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 4
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4). Eur J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Ifng抗体(BioLegend, 505808)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Shock (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于. PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6). Am J Pathol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:50
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Nat Commun (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(XMG1.2)
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 图 s2c
BioLegend Ifng抗体(Biolegend, 505802)被用于被用于抑制或激活实验在小鼠样本上 (图 s2c). Nat Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 10 ug/ml
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml. J Clin Invest (2014) ncbi
小鼠 单克隆(DB-1)
BioLegend Ifng抗体(BioLegend, DB-1)被用于. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ifng抗体(Biolegend, clone XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Vaccine (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Leukoc Biol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(Biolegend, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
BioLegend Ifng抗体(BioLegend, 505826)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 5 ug/ml
BioLegend Ifng抗体(BioLegend, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. J Immunol (2014) ncbi
MABTECH
大鼠 单克隆(AN18)
  • 其他; 小鼠; 图 3c
MABTECH Ifng抗体(MabTech, AN-18)被用于被用于其他在小鼠样本上 (图 3c). Vaccines (Basel) (2020) ncbi
大鼠 单克隆(R4-6A2)
  • 其他; 小鼠; 图 3c
MABTECH Ifng抗体(MabTech, R4-6A2)被用于被用于其他在小鼠样本上 (图 3c). Vaccines (Basel) (2020) ncbi
大鼠 单克隆(R4-6A2)
  • 其他; 小鼠; 1 ug/ml; 图 5a
MABTECH Ifng抗体(Mabtech, R4-6A2)被用于被用于其他在小鼠样本上浓度为1 ug/ml (图 5a). Nat Commun (2020) ncbi
大鼠 单克隆(AN18)
  • 其他; 小鼠; 10 ug/ml; 图 5a
MABTECH Ifng抗体(Mabtech, AN-18)被用于被用于其他在小鼠样本上浓度为10 ug/ml (图 5a). Nat Commun (2020) ncbi
大鼠 单克隆(AN18)
  • 酶联免疫吸附测定; 人类; 10 ug/ml; 图 4b
MABTECH Ifng抗体(Mabtech, AN18)被用于被用于酶联免疫吸附测定在人类样本上浓度为10 ug/ml (图 4b). Nature (2016) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 4b
MABTECH Ifng抗体(Mabtech, R4-6A2)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 4b). Nature (2016) ncbi
大鼠 单克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 1 ug/ml; 图 2
MABTECH Ifng抗体(Mabtech, 3321-6-250)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1 ug/ml (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(AN18)
  • 酶联免疫吸附测定; 小鼠; 10 ug/ml; 图 2
MABTECH Ifng抗体(Mabtech, 3321-3-1000)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为10 ug/ml (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(AN18)
MABTECH Ifng抗体(Mabtech AB, 3321-3)被用于. Hum Vaccin Immunother (2016) ncbi
Bio X Cell
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 图 4c
Bio X Cell Ifng抗体(BioXCell, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上 (图 4c). elife (2020) ncbi
大鼠 单克隆(R4-6A2)
  • 流式细胞仪; 小鼠; 图 1b, 2d, 3b
Bio X Cell Ifng抗体(Bio X Cell, BE0054-5MG)被用于被用于流式细胞仪在小鼠样本上 (图 1b, 2d, 3b). JCI Insight (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 s2
Bio X Cell Ifng抗体(Bio X Cell, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 s2). Cancer Res (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 图 5a
Bio X Cell Ifng抗体(BioXCell, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上 (图 5a). Infect Immun (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 图 3d
Bio X Cell Ifng抗体(BioXcell, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上 (图 3d). J Immunol (2016) ncbi
大鼠 单克隆(R4-6A2)
  • 抑制或激活实验; 小鼠; 图 s7
Bio X Cell Ifng抗体(BioXcell, R4-6A2)被用于被用于抑制或激活实验在小鼠样本上 (图 s7). Infect Immun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 20 ug/ml; 图 s3e
  • 流式细胞仪; 小鼠
Bio X Cell Ifng抗体(BioXcell, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为20 ug/ml (图 s3e) 和 被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 8m
艾博抗(上海)贸易有限公司 Ifng抗体(Abcam, ab25101)被用于被用于免疫组化在人类样本上浓度为1:100 (图 8m). Nat Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2h
艾博抗(上海)贸易有限公司 Ifng抗体(Abcam, ab9657)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2h). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EPR1108)
  • 免疫细胞化学; 小鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司 Ifng抗体(Abcam, ab133566)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3e). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:300; 图 3
艾博抗(上海)贸易有限公司 Ifng抗体(Abcam, Ab9657)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 3). Reprod Biol (2016) ncbi
domestic rabbit 多克隆
  • 抑制或激活实验; 人类; 图 s7
艾博抗(上海)贸易有限公司 Ifng抗体(Abcam, ab9657)被用于被用于抑制或激活实验在人类样本上 (图 s7). Nat Med (2016) ncbi
美天旎
大鼠 单克隆(AN.18.17.24)
  • 流式细胞仪; 小鼠; 图 5d
美天旎 Ifng抗体(Miltenyi Biotec, AN.18.17.24)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Transl Med (2017) ncbi
伯乐(Bio-Rad)公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4a
伯乐(Bio-Rad)公司 Ifng抗体(AbD Serotec, AAM29)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). J Clin Invest (2016) ncbi
安迪生物R&D
大鼠 单克隆(37895)
  • 抑制或激活实验; 小鼠; 图 s5c
安迪生物R&D Ifng抗体(R&D Systems, MAB485-100)被用于被用于抑制或激活实验在小鼠样本上 (图 s5c). Sci Signal (2016) ncbi
Tonbo Biosciences
小鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3e
Tonbo Biosciences Ifng抗体(TONBO Biosciences, 35-7311-U100)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cell Rep (2020) ncbi
rat 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3g
Tonbo Biosciences Ifng抗体(tonbo Biosciences, 20-7311)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Cell Rep (2018) ncbi
rat 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s7g
Tonbo Biosciences Ifng抗体(Tonbo, 50-7311)被用于被用于流式细胞仪在小鼠样本上 (图 s7g). Gastroenterology (2018) ncbi
rat 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3e
Tonbo Biosciences Ifng抗体(Tonbo, 50-7311)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Nature (2016) ncbi
碧迪BD
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Ifng抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Immunol (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Neuroinflammation (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Aging Cell (2020) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2d
碧迪BD Ifng抗体(BD Biosciences, XMG-1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Science (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Br J Pharmacol (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Immunol Res (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:400; 图 s7a
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s7a). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 s3c
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3c). J Clin Invest (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1b
碧迪BD Ifng抗体(BD, 559065)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1b). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 1d
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 1d). J Virol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 1d
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 1d). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3g
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3g). Science (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5a). EMBO J (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 7a
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Virol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Cell Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:50; 图 7e
碧迪BD Ifng抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7e). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Commun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
碧迪BD Ifng抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). Infect Immun (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Ifng抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD Ifng抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Virol (2018) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6b
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Immunology (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 人类; 图 7b
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在人类样本上 (图 7b). Front Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5e
碧迪BD Ifng抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Sci Rep (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD Ifng抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). PLoS ONE (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 4A
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4A). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s8b
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s8b). Nature (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Biol Chem (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:100; 图 s4a
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4a). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
碧迪BD Ifng抗体(BD, XMG1.2)被用于. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cancer Res (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4d
碧迪BD Ifng抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Clin Invest (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s6
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Brain (2017) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Ifng抗体(Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS Pathog (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5b
碧迪BD Ifng抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:50; 图 s5b
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s5b). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2 BD)被用于被用于流式细胞仪在小鼠样本上 (图 7). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Oncotarget (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). Nat Commun (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
碧迪BD Ifng抗体(BD Biosciences, 559065)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). J Immunol Res (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2I
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2I). J Immunol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Ifng抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Leukoc Biol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 2
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). EMBO Mol Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Ifng抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 1A; 2D
碧迪BD Ifng抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 1A; 2D). J Exp Med (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2016) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Ifng抗体(BD Horizon, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 图 5
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Bioscience, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Ifng抗体(BD Biosciences, clone XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cell Host Microbe (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
  • 酶联免疫吸附测定; 小鼠; 1 ug/ml
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 和 被用于酶联免疫吸附测定在小鼠样本上浓度为1 ug/ml. Glia (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Exp Med (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 免疫印迹; 小鼠; 1:100; 图 5,6
碧迪BD Ifng抗体(BD Bioscience, XMG1.2)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Pharmingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 酶联免疫吸附测定; 小鼠; 2 ug/ml
碧迪BD Ifng抗体(BD Pharmingen, XMG 1.2)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为2 ug/ml. Intervirology (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 4). Mucosal Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 抑制或激活实验; 小鼠; 5 ug/ml
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于抑制或激活实验在小鼠样本上浓度为5 ug/ml. Int Immunol (2014) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠
碧迪BD Ifng抗体(BD Biosciences, XMG1.2)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2011) ncbi
大鼠 单克隆(XMG1.2)
  • 流式细胞仪; 小鼠; 图 6C
碧迪BD Ifng抗体(BD PharMingen, XMG1.2)被用于被用于流式细胞仪在小鼠样本上 (图 6C). J Leukoc Biol (2007) ncbi
文章列表
  1. Lee H, Park J, Yoo H, Lee H, Lee B, Kim J. The Selenoprotein MsrB1 Instructs Dendritic Cells to Induce T-Helper 1 Immune Responses. Antioxidants (Basel). 2020;9: pubmed 出版商
  2. Bhaskar A, Kumar S, Khan M, Singh A, Dwivedi V, Nandicoori V. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. elife. 2020;9: pubmed 出版商
  3. Sun J, Zhuang Z, Zheng J, Li K, Wong R, Liu D, et al. Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment. Cell. 2020;182:734-743.e5 pubmed 出版商
  4. Robbins Y, Greene S, Friedman J, Clavijo P, Van Waes C, Fabian K, et al. Tumor control via targeting PD-L1 with chimeric antigen receptor modified NK cells. elife. 2020;9: pubmed 出版商
  5. Alexander R, Liou Y, Knudsen N, Starost K, Xu C, Hyde A, et al. Bmal1 integrates mitochondrial metabolism and macrophage activation. elife. 2020;9: pubmed 出版商
  6. Chinnakannan S, Cargill T, Donnison T, Ansari M, Sebastian S, Lee L, et al. The Design and Development of a Multi-HBV Antigen Encoded in Chimpanzee Adenoviral and Modified Vaccinia Ankara Viral Vectors; A Novel Therapeutic Vaccine Strategy against HBV. Vaccines (Basel). 2020;8: pubmed 出版商
  7. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  8. Gibaldi D, Vilar Pereira G, Pereira I, Silva A, Barrios L, Ramos I, et al. CCL3/Macrophage Inflammatory Protein-1α Is Dually Involved in Parasite Persistence and Induction of a TNF- and IFNγ-Enriched Inflammatory Milieu in Trypanosoma cruzi-Induced Chronic Cardiomyopathy. Front Immunol. 2020;11:306 pubmed 出版商
  9. Donaldson D, Bradford B, Else K, Mabbott N. Accelerated onset of CNS prion disease in mice co-infected with a gastrointestinal helminth pathogen during the preclinical phase. Sci Rep. 2020;10:4554 pubmed 出版商
  10. Chaurasiya S, Yang A, Kang S, Lu J, Kim S, Park A, et al. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology. 2020;9:1729300 pubmed 出版商
  11. Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6:eaay9269 pubmed 出版商
  12. Kumar A, Chamoto K, Chowdhury P, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. elife. 2020;9: pubmed 出版商
  13. Wei J, Mattapallil M, Horai R, Jittayasothorn Y, Modi A, Sen H, et al. A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina. elife. 2020;9: pubmed 出版商
  14. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  15. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  16. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  17. Marchingo J, Sinclair L, Howden A, Cantrell D. Quantitative analysis of how Myc controls T cell proteomes and metabolic pathways during T cell activation. elife. 2020;9: pubmed 出版商
  18. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  19. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  20. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  21. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  22. Thiele Née Schrewe L, Guse K, Tietz S, Remlinger J, Demir S, Pedreiturria X, et al. Functional relevance of the multi-drug transporter abcg2 on teriflunomide therapy in an animal model of multiple sclerosis. J Neuroinflammation. 2020;17:9 pubmed 出版商
  23. Cheng M, Chen Y, Huang D, Chen W, Xu W, Chen Y, et al. Intrinsically altered lung-resident γδT cells control lung melanoma by producing interleukin-17A in the elderly. Aging Cell. 2020;19:e13099 pubmed 出版商
  24. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  25. Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed 出版商
  26. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  27. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  28. Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed 出版商
  29. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  30. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  31. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  32. Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H, et al. Changes of CD103-expressing pulmonary CD4+ and CD8+ T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis. 2019;19:999 pubmed 出版商
  33. Gil Cruz C, Perez Shibayama C, De Martin A, Ronchi F, Van der Borght K, Niederer R, et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science. 2019;366:881-886 pubmed 出版商
  34. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  35. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  36. Constantinides M, Link V, Tamoutounour S, Wong A, Pérez Chaparro P, Han S, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366: pubmed 出版商
  37. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  38. Wolf Y, Bartok O, Patkar S, Eli G, Cohen S, Litchfield K, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell. 2019;179:219-235.e21 pubmed 出版商
  39. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  40. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  41. Cohen J, Edwards T, Liu A, Hirai T, Jones M, Wu J, et al. Cutaneous TRPV1+ Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell. 2019;178:919-932.e14 pubmed 出版商
  42. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  43. Niemann J, Woller N, Brooks J, Fleischmann Mundt B, Martin N, Kloos A, et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun. 2019;10:3236 pubmed 出版商
  44. Clancy Thompson E, Chen G, LaMarche N, Ali L, Jeong H, Crowley S, et al. Transnuclear mice reveal Peyer's patch iNKT cells that regulate B-cell class switching to IgG1. EMBO J. 2019;38:e101260 pubmed 出版商
  45. Ma L, Dichwalkar T, Chang J, Cossette B, Garafola D, Zhang A, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science. 2019;365:162-168 pubmed 出版商
  46. Pan X, Ma B, You X, Chen S, Wu J, Wang T, et al. Synthesized natural peptides from amphibian skin secretions increase the efficacy of a therapeutic vaccine by recruiting more T cells to the tumour site. BMC Complement Altern Med. 2019;19:163 pubmed 出版商
  47. Liu D, Yin X, Olyha S, Nascimento M, Chen P, White T, et al. IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α+ Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity. 2019;: pubmed 出版商
  48. Kono M, Maeda K, Stocton Gavanescu I, Pan W, Umeda M, Katsuyama E, et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI Insight. 2019;4: pubmed 出版商
  49. Khan O, Giles J, McDonald S, Manne S, Ngiow S, Patel K, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;: pubmed 出版商
  50. Oh J, Iijima N, Song E, Lu P, Klein J, Jiang R, et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019;: pubmed 出版商
  51. Qiu J, Villa M, Sanin D, Buck M, O Sullivan D, Ching R, et al. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27:2063-2074.e5 pubmed 出版商
  52. Sharma N, Vacher J, Allison J. TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proc Natl Acad Sci U S A. 2019;116:10453-10462 pubmed 出版商
  53. Kawalkowska J, Ogbechi J, Venables P, Williams R. cIAP1/2 inhibition synergizes with TNF inhibition in autoimmunity by down-regulating IL-17A and inducing Tregs. Sci Adv. 2019;5:eaaw5422 pubmed 出版商
  54. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  55. Misumi I, Starmer J, Uchimura T, Beck M, Magnuson T, Whitmire J. Obesity Expands a Distinct Population of T Cells in Adipose Tissue and Increases Vulnerability to Infection. Cell Rep. 2019;27:514-524.e5 pubmed 出版商
  56. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  57. Li Y, Tinoco R, Elmén L, Segota I, Xian Y, Fujita Y, et al. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5-/- mice. Nat Commun. 2019;10:1492 pubmed 出版商
  58. Sinclair L, Howden A, Brenes A, Spinelli L, Hukelmann J, Macintyre A, et al. Antigen receptor control of methionine metabolism in T cells. elife. 2019;8: pubmed 出版商
  59. Kumar P, Rajasekaran K, Nanbakhsh A, Gorski J, Thakar M, Malarkannan S. IL-27 promotes NK cell effector functions via Maf-Nrf2 pathway during influenza infection. Sci Rep. 2019;9:4984 pubmed 出版商
  60. Qian L, Bajana S, Georgescu C, Peng V, Wang H, Adrianto I, et al. Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med. 2019;216:884-899 pubmed 出版商
  61. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  62. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  63. Chen J, López Moyado I, Seo H, Lio C, Hempleman L, Sekiya T, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019;567:530-534 pubmed 出版商
  64. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  65. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, et al. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol. 2019;20:313-325 pubmed 出版商
  66. Salerno F, Guislain A, Freen van Heeren J, Nicolet B, Young H, Wolkers M. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8:e1532762 pubmed 出版商
  67. Mikolajczyk T, Nosalski R, Skiba D, Koziol J, Mazur M, Justo Junior A, et al. 1,2,3,4,6-Penta-O-galloyl-β-d-glucose modulates perivascular inflammation and prevents vascular dysfunction in angiotensin II-induced hypertension. Br J Pharmacol. 2019;176:1951-1965 pubmed 出版商
  68. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  69. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  70. Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Front Immunol. 2018;9:2981 pubmed 出版商
  71. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing J, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A. 2019;116:609-618 pubmed 出版商
  72. Wang X, Piersma S, Nelson C, Dai Y, Christensen T, Lazear E, et al. A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. elife. 2018;7: pubmed 出版商
  73. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  74. Bern M, Parikh B, Yang L, Beckman D, Poursine Laurent J, Yokoyama W. Inducible down-regulation of MHC class I results in natural killer cell tolerance. J Exp Med. 2019;216:99-116 pubmed 出版商
  75. Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin G, Shurin M, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2019;116:1361-1369 pubmed 出版商
  76. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  77. Poncette L, Chen X, Lorenz F, Blankenstein T. Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression. J Clin Invest. 2019;129:324-335 pubmed 出版商
  78. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  79. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai M, Nomura E, et al. Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol. 2019;7:135-156 pubmed 出版商
  80. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  81. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  82. Chinta K, Rahman M, Saini V, Glasgow J, Reddy V, Lever J, et al. Microanatomic Distribution of Myeloid Heme Oxygenase-1 Protects against Free Radical-Mediated Immunopathology in Human Tuberculosis. Cell Rep. 2018;25:1938-1952.e5 pubmed 出版商
  83. Mastroianni J, Stickel N, Andrlova H, Hanke K, Melchinger W, Duquesne S, et al. miR-146a Controls Immune Response in the Melanoma Microenvironment. Cancer Res. 2019;79:183-195 pubmed 出版商
  84. Jensen I, Winborn C, Fosdick M, Shao P, Tremblay M, Shan Q, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018;14:e1007405 pubmed 出版商
  85. Singh A, Khare P, Obaid A, Conlon K, Basrur V, Depinho R, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun. 2018;9:4515 pubmed 出版商
  86. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  87. Song M, Sandoval T, Chae C, Chopra S, Tan C, Rutkowski M, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 2018;562:423-428 pubmed 出版商
  88. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  89. Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons. Front Microbiol. 2018;9:2148 pubmed 出版商
  90. Qu J, Li L, Xie H, Zhang X, Yang Q, Qiu H, et al. TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res. 2018;2018:7519856 pubmed 出版商
  91. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  92. Wang H, D Souza C, Lim X, Kostenko L, Pediongco T, Eckle S, et al. MAIT cells protect against pulmonary Legionella longbeachae infection. Nat Commun. 2018;9:3350 pubmed 出版商
  93. Geary C, Krishna C, Lau C, Adams N, Gearty S, Pritykin Y, et al. Non-redundant ISGF3 Components Promote NK Cell Survival in an Auto-regulatory Manner during Viral Infection. Cell Rep. 2018;24:1949-1957.e6 pubmed 出版商
  94. Tilstra J, Avery L, Menk A, Gordon R, Smita S, Kane L, et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J Clin Invest. 2018;128:4884-4897 pubmed 出版商
  95. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  96. Cheng Y, Zhu X, Wang X, Zhuang Q, Huyan X, Sun X, et al. Trichinella spiralis Infection Mitigates Collagen-Induced Arthritis via Programmed Death 1-Mediated Immunomodulation. Front Immunol. 2018;9:1566 pubmed 出版商
  97. Deason K, Troutman T, Jain A, Challa D, Mandraju R, Brewer T, et al. BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation. J Exp Med. 2018;215:2413-2428 pubmed 出版商
  98. Singh M, Ni M, Sullivan J, Hamerman J, Campbell D. B cell adaptor for PI3-kinase (BCAP) modulates CD8+ effector and memory T cell differentiation. J Exp Med. 2018;215:2429-2443 pubmed 出版商
  99. Cummings M, Arumanayagam A, Zhao P, Kannanganat S, Stuve O, Karandikar N, et al. Presenilin1 regulates Th1 and Th17 effector responses but is not required for experimental autoimmune encephalomyelitis. PLoS ONE. 2018;13:e0200752 pubmed 出版商
  100. Oldstone M, Ware B, Horton L, Welch M, Aiolfi R, Zarpellon A, et al. Lymphocytic choriomeningitis virus Clone 13 infection causes either persistence or acute death dependent on IFN-1, cytotoxic T lymphocytes (CTLs), and host genetics. Proc Natl Acad Sci U S A. 2018;115:E7814-E7823 pubmed 出版商
  101. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  102. Poffenberger M, Metcalfe Roach A, Aguilar E, Chen J, Hsu B, Wong A, et al. LKB1 deficiency in T cells promotes the development of gastrointestinal polyposis. Science. 2018;361:406-411 pubmed 出版商
  103. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  104. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  105. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  106. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  107. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  108. Khan A, Srivastava R, Vahed H, Roy S, Walia S, Kim G, et al. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107+ CD8+ T Cells That Infiltrate the Corneas and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect . J Virol. 2018;92: pubmed 出版商
  109. Ludtmann M, Angelova P, Horrocks M, Choi M, Rodrigues M, Baev A, et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun. 2018;9:2293 pubmed 出版商
  110. Jogdand G, Sengupta S, Bhattacharya G, Singh S, Barik P, Devadas S. Inducible Costimulator Expressing T Cells Promote Parasitic Growth During Blood Stage Plasmodium berghei ANKA Infection. Front Immunol. 2018;9:1041 pubmed 出版商
  111. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  112. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360: pubmed 出版商
  113. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  114. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  115. Yu F, Sharma S, Jankovic D, Gurram R, Su P, Hu G, et al. The transcription factor Bhlhe40 is a switch of inflammatory versus antiinflammatory Th1 cell fate determination. J Exp Med. 2018;215:1813-1821 pubmed 出版商
  116. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  117. Drobek A, Moudra A, Mueller D, Huranová M, Horková V, Pribikova M, et al. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. 2018;37: pubmed 出版商
  118. Wang Y, Dong W, Zhang Y, Caligiuri M, Yu J. Dependence of innate lymphoid cell 1 development on NKp46. PLoS Biol. 2018;16:e2004867 pubmed 出版商
  119. Anker J, Naseem A, Mok H, Schaeffer A, Abdulkadir S, Thumbikat P. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat Commun. 2018;9:1591 pubmed 出版商
  120. Dipiazza A, Laniewski N, Rattan A, Topham D, Miller J, Sant A. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection. J Virol. 2018;92: pubmed 出版商
  121. Varelias A, Bunting M, Ormerod K, Koyama M, Olver S, Straube J, et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J Clin Invest. 2018;128:1919-1936 pubmed 出版商
  122. Prado C, Gaiazzi M, Gonzalez H, Ugalde V, Figueroa A, Osorio Barrios F, et al. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:571 pubmed 出版商
  123. Kling J, Jordan M, Pitt L, Meiners J, Thanh Tran T, Tran L, et al. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling. Front Immunol. 2018;9:483 pubmed 出版商
  124. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  125. Harker J, Wong K, Dallari S, Bao P, Dolgoter A, Jo Y, et al. Interleukin-27R Signaling Mediates Early Viral Containment and Impacts Innate and Adaptive Immunity after Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol. 2018;92: pubmed 出版商
  126. Xiao F, Ai G, Yan W, Wan X, Luo X, Ning Q. Intrahepatic recruitment of cytotoxic NK cells contributes to autoimmune hepatitis progression. Cell Immunol. 2018;327:13-20 pubmed 出版商
  127. Mencarelli A, Khameneh H, Fric J, Vacca M, El Daker S, Janela B, et al. Calcineurin-mediated IL-2 production by CD11chighMHCII+ myeloid cells is crucial for intestinal immune homeostasis. Nat Commun. 2018;9:1102 pubmed 出版商
  128. Stanko K, Iwert C, Appelt C, Vogt K, Schumann J, Strunk F, et al. CD96 expression determines the inflammatory potential of IL-9-producing Th9 cells. Proc Natl Acad Sci U S A. 2018;115:E2940-E2949 pubmed 出版商
  129. Sockolosky J, Trotta E, Parisi G, Picton L, Su L, Le A, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359:1037-1042 pubmed 出版商
  130. Metghalchi S, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS ONE. 2018;13:e0193737 pubmed 出版商
  131. Tinoco R, Carrette F, Henriquez M, Fujita Y, Bradley L. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells. J Immunol. 2018;200:2690-2702 pubmed 出版商
  132. Nadafi R, Koning J, Veninga H, Stachtea X, Konijn T, Zwiers A, et al. Dendritic Cell Migration to Skin-Draining Lymph Nodes Is Controlled by Dermatan Sulfate and Determines Adaptive Immunity Magnitude. Front Immunol. 2018;9:206 pubmed 出版商
  133. Westhorpe C, Norman M, Hall P, Snelgrove S, Finsterbusch M, Li A, et al. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes. Nat Commun. 2018;9:747 pubmed 出版商
  134. Kotov D, Kotov J, Goldberg M, Jenkins M. Many Th Cell Subsets Have Fas Ligand-Dependent Cytotoxic Potential. J Immunol. 2018;200:2004-2012 pubmed 出版商
  135. Mathew N, Baumgartner F, Braun L, O Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24:282-291 pubmed 出版商
  136. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  137. Wheeler D, Sariol A, Meyerholz D, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128:931-943 pubmed 出版商
  138. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  139. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  140. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  141. Fontaine M, Vogel I, Van Eycke Y, Galuppo A, Ajouaou Y, Decaestecker C, et al. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J. 2018;37:398-412 pubmed 出版商
  142. Guimarães G, Gomes M, Campos P, Marinho F, de Assis N, Silveira T, et al. Immunoproteasome Subunits Are Required for CD8+ T Cell Function and Host Resistance to Brucella abortus Infection in Mice. Infect Immun. 2018;86: pubmed 出版商
  143. Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B, Warren Navia A, et al. Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells. Cell. 2018;172:517-533.e20 pubmed 出版商
  144. Maseda D, Johnson E, Nyhoff L, Baron B, Kojima F, Wilhelm A, et al. mPGES1-Dependent Prostaglandin E2 (PGE2) Controls Antigen-Specific Th17 and Th1 Responses by Regulating T Autocrine and Paracrine PGE2 Production. J Immunol. 2018;200:725-736 pubmed 出版商
  145. Pedros C, Canonigo Balancio A, Kong K, Altman A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight. 2017;2: pubmed 出版商
  146. Ibrahim M, Scozzi D, Toth K, Ponti D, Kreisel D, Menna C, et al. Naive CD4+ T Cells Carrying a TLR2 Agonist Overcome TGF-β-Mediated Tumor Immune Evasion. J Immunol. 2018;200:847-856 pubmed 出版商
  147. Sharma D, Malik A, Guy C, Karki R, Vogel P, Kanneganti T. Pyrin Inflammasome Regulates Tight Junction Integrity to Restrict Colitis and Tumorigenesis. Gastroenterology. 2018;154:948-964.e8 pubmed 出版商
  148. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  149. Johnson R, Yu H, Strank N, Karunakaran K, Zhu Y, Brunham R. B Cell Presentation of Chlamydia Antigen Selects Out Protective CD4?13 T Cells: Implications for Genital Tract Tissue-Resident Memory Lymphocyte Clusters. Infect Immun. 2018;86: pubmed 出版商
  150. Whitney P, Makhlouf C, MacLeod B, Ma J, Gressier E, Greyer M, et al. Effective Priming of Herpes Simplex Virus-Specific CD8+ T Cells In Vivo Does Not Require Infected Dendritic Cells. J Virol. 2018;92: pubmed 出版商
  151. Singh M, Vianden C, Cantwell M, Dai Z, Xiao Z, Sharma M, et al. Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain. Nat Commun. 2017;8:1447 pubmed 出版商
  152. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  153. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  154. Zhang S, Takaku M, Zou L, Gu A, Chou W, Zhang G, et al. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature. 2017;551:105-109 pubmed 出版商
  155. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  156. Purvis H, Clarke F, Jordan C, Blanco C, Cornish G, Dai X, et al. Protein tyrosine phosphatase PTPN22 regulates IL-1β dependent Th17 responses by modulating dectin-1 signaling in mice. Eur J Immunol. 2018;48:306-315 pubmed 出版商
  157. Bern M, Beckman D, Ebihara T, Taffner S, Poursine Laurent J, White J, et al. Immunoreceptor tyrosine-based inhibitory motif-dependent functions of an MHC class I-specific NK cell receptor. Proc Natl Acad Sci U S A. 2017;114:E8440-E8447 pubmed 出版商
  158. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  159. Zimmermann J, Durek P, Kuhl A, Schattenberg F, Maschmeyer P, Siracusa F, et al. The intestinal microbiota determines the colitis-inducing potential of T-bet-deficient Th cells in mice. Eur J Immunol. 2018;48:161-167 pubmed 出版商
  160. Li B, Wang X, Choi I, Wang Y, Liu S, Pham A, et al. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest. 2017;127:3702-3716 pubmed 出版商
  161. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  162. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  163. Li L, Labuda J, Imai D, Griffey S, McSorley S. CCR7 Deficiency Allows Accelerated Clearance of Chlamydia from the Female Reproductive Tract. J Immunol. 2017;199:2547-2554 pubmed 出版商
  164. Pirault J, Polyzos K, Petri M, Ketelhuth D, Bäck M, Hansson G. The inflammatory cytokine interferon-gamma inhibits sortilin-1 expression in hepatocytes via the JAK/STAT pathway. Eur J Immunol. 2017;47:1918-1924 pubmed 出版商
  165. Strandt H, Pinheiro D, Kaplan D, Wirth D, GRATZ I, Hammerl P, et al. Neoantigen Expression in Steady-State Langerhans Cells Induces CTL Tolerance. J Immunol. 2017;199:1626-1634 pubmed 出版商
  166. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  167. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739-1749 pubmed 出版商
  168. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  169. Lupfer C, Stokes K, Kuriakose T, Kanneganti T. Deficiency of the NOD-Like Receptor NLRC5 Results in Decreased CD8+ T Cell Function and Impaired Viral Clearance. J Virol. 2017;91: pubmed 出版商
  170. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  171. Seifert H, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark A, et al. Sex differences in regulatory cells in experimental stroke. Cell Immunol. 2017;318:49-54 pubmed 出版商
  172. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  173. Escribà Garcia L, Alvarez Fernández C, Tellez Gabriel M, Sierra J, Briones J. Dendritic cells combined with tumor cells and ?-galactosylceramide induce a potent, therapeutic and NK-cell dependent antitumor immunity in B cell lymphoma. J Transl Med. 2017;15:115 pubmed 出版商
  174. Li C, Leng Y, Zhao B, Gao C, Du F, Jin N, et al. Human iPSC-MSC-Derived Xenografts Modulate Immune Responses by Inhibiting the Cleavage of Caspases. Stem Cells. 2017;35:1719-1732 pubmed 出版商
  175. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  176. Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody D, et al. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest. 2017;127:2339-2352 pubmed 出版商
  177. Singh R, Miao T, Symonds A, Omodho B, Li S, Wang P. Egr2 and 3 Inhibit T-bet-Mediated IFN-? Production in T Cells. J Immunol. 2017;198:4394-4402 pubmed 出版商
  178. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  179. Acharya N, Penukonda S, Shcheglova T, Hagymasi A, Basu S, Srivastava P. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc Natl Acad Sci U S A. 2017;114:5005-5010 pubmed 出版商
  180. Garg G, Nikolouli E, Hardtke Wolenski M, Toker A, Ohkura N, Beckstette M, et al. Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells. Oncotarget. 2017;8:35542-35557 pubmed 出版商
  181. Chien C, Yu H, Chen S, Chiang B. Characterization of c-Maf+Foxp3- Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells. Sci Rep. 2017;7:46348 pubmed 出版商
  182. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  183. Claser C, de Souza J, Thorburn S, Grau G, Riley E, Renia L, et al. Host Resistance to Plasmodium-Induced Acute Immune Pathology Is Regulated by Interleukin-10 Receptor Signaling. Infect Immun. 2017;85: pubmed 出版商
  184. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  185. Shrestha B, You D, Saravia J, Siefker D, Jaligama S, Lee G, et al. IL-4R? on dendritic cells in neonates and Th2 immunopathology in respiratory syncytial virus infection. J Leukoc Biol. 2017;102:153-161 pubmed 出版商
  186. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  187. Lino C, Barros Martins J, Oberdörfer L, Walzer T, Prinz I. Eomes expression reports the progressive differentiation of IFN-?-producing Th1-like ?? T cells. Eur J Immunol. 2017;47:970-981 pubmed 出版商
  188. van der Vlugt L, Obieglo K, Ozir Fazalalikhan A, Sparwasser T, Haeberlein S, Smits H. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol. 2017;47:545-554 pubmed 出版商
  189. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  190. Kitada S, Kayama H, Okuzaki D, Koga R, Kobayashi M, Arima Y, et al. BATF2 inhibits immunopathological Th17 responses by suppressing Il23a expression during Trypanosoma cruzi infection. J Exp Med. 2017;214:1313-1331 pubmed 出版商
  191. He W, Wang C, Mu R, Liang P, Huang Z, Zhang J, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene. 2017;36:4212-4223 pubmed 出版商
  192. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  193. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  194. Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214:905-917 pubmed 出版商
  195. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  196. Bhattacharyya M, Penaloza MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology. 2017;151:340-348 pubmed 出版商
  197. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  198. Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715 pubmed 出版商
  199. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  200. Stacey M, Clare S, Clement M, Marsden M, Abdul Karim J, Kane L, et al. The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis. J Clin Invest. 2017;127:1463-1474 pubmed 出版商
  201. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  202. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  203. Vaitaitis G, Yussman M, Waid D, Wagner D. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells. PLoS ONE. 2017;12:e0172037 pubmed 出版商
  204. Ying W, Wollam J, Ofrecio J, Bandyopadhyay G, El Ouarrat D, Lee Y, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127:1019-1030 pubmed 出版商
  205. Leech J, Lacey K, Mulcahy M, Medina E, McLoughlin R. IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections. J Immunol. 2017;198:2352-2365 pubmed 出版商
  206. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  207. Vander Lugt B, Riddell J, Khan A, Hackney J, Lesch J, DeVoss J, et al. Transcriptional determinants of tolerogenic and immunogenic states during dendritic cell maturation. J Cell Biol. 2017;216:779-792 pubmed 出版商
  208. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  209. Welsby I, Detienne S, N kuli F, Thomas S, Wouters S, Bechtold V, et al. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. Front Immunol. 2016;7:663 pubmed 出版商
  210. Chamoto K, Chowdhury P, Kumar A, Sonomura K, Matsuda F, Fagarasan S, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A. 2017;114:E761-E770 pubmed 出版商
  211. Nowyhed H, Chandra S, Kiosses W, Marcovecchio P, Andary F, Zhao M, et al. ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Sci Rep. 2017;7:40273 pubmed 出版商
  212. Jiang X, Park C, Geddes Sweeney J, Yoo M, Gaide O, Kupper T. Dermal ?? T Cells Do Not Freely Re-Circulate Out of Skin and Produce IL-17 to Promote Neutrophil Infiltration during Primary Contact Hypersensitivity. PLoS ONE. 2017;12:e0169397 pubmed 出版商
  213. Okuyama H, Tominaga A, Fukuoka S, Taguchi T, Kusumoto Y, Ono S. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-?. Oncol Rep. 2017;37:684-694 pubmed 出版商
  214. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A. 2017;114:E540-E549 pubmed 出版商
  215. Förster M, Boora R, Petrov J, Fodil N, Albanese I, Kim J, et al. A role for the histone H2A deubiquitinase MYSM1 in maintenance of CD8+ T cells. Immunology. 2017;151:110-121 pubmed 出版商
  216. van der Weyden L, Arends M, Campbell A, Bald T, Wardle Jones H, Griggs N, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233-236 pubmed 出版商
  217. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214:209-226 pubmed 出版商
  218. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  219. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  220. Griffiths K, Ahmed M, Das S, Gopal R, Horne W, Connell T, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016;7:13894 pubmed 出版商
  221. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  222. Beyaz S, Kim J, Pinello L, Xifaras M, Hu Y, Huang J, et al. The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nat Immunol. 2017;18:184-195 pubmed 出版商
  223. Hashimoto Hill S, Friesen L, Kim M, Kim C. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunol. 2017;10:912-923 pubmed 出版商
  224. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  225. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  226. Moroishi T, Hayashi T, Pan W, Fujita Y, Holt M, Qin J, et al. The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell. 2016;167:1525-1539.e17 pubmed 出版商
  227. Swanson P, Hart G, Russo M, Nayak D, Yazew T, Pena M, et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog. 2016;12:e1006022 pubmed 出版商
  228. Angela M, Endo Y, Asou H, Yamamoto T, Tumes D, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPAR? directs early activation of T cells. Nat Commun. 2016;7:13683 pubmed 出版商
  229. Yokota Nakatsuma A, Ohoka Y, Takeuchi H, Song S, Iwata M. Beta 1-integrin ligation and TLR ligation enhance GM-CSF-induced ALDH1A2 expression in dendritic cells, but differentially regulate their anti-inflammatory properties. Sci Rep. 2016;6:37914 pubmed 出版商
  230. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  231. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  232. Wu X, Wu X, Ma Y, Shao F, Tan Y, Tan T, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7:13498 pubmed 出版商
  233. Escalante N, Lemire P, Cruz Tleugabulova M, Prescott D, Mortha A, Streutker C, et al. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. J Exp Med. 2016;213:2841-2850 pubmed
  234. Theisen E, Sauer J. Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity. Infect Immun. 2017;85: pubmed 出版商
  235. Park K, Mikulski Z, Seo G, Andreyev A, Marcovecchio P, Blatchley A, et al. The transcription factor NR4A3 controls CD103+ dendritic cell migration. J Clin Invest. 2016;126:4603-4615 pubmed 出版商
  236. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  237. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  238. Shifrin N, Kissiov D, Ardolino M, Joncker N, Raulet D. Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. J Immunol. 2016;197:4127-4136 pubmed 出版商
  239. Theeß W, Sellau J, Steeg C, Klinke A, Baldus S, Cramer J, et al. Myeloperoxidase Attenuates Pathogen Clearance during Plasmodium yoelii Nonlethal Infection. Infect Immun. 2017;85: pubmed 出版商
  240. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  241. Wang L, Ma N, Okamoto S, Amaishi Y, Sato E, Seo N, et al. Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome. Oncoimmunology. 2016;5:e1211218 pubmed
  242. Alves da Costa T, Di Gangi R, Thomé R, Barreto Felisbino M, Pires Bonfanti A, Lumi Watanabe Ishikawa L, et al. Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS ONE. 2016;11:e0164745 pubmed 出版商
  243. Georgiev H, Ravens I, Benarafa C, Forster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun. 2016;7:13116 pubmed 出版商
  244. Coursey T, Bian F, Zaheer M, Pflugfelder S, Volpe E, de Paiva C. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells. Mucosal Immunol. 2017;10:743-756 pubmed 出版商
  245. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  246. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  247. Kishi Y, Kondo T, Xiao S, Yosef N, Gaublomme J, Wu C, et al. Protein C receptor (PROCR) is a negative regulator of Th17 pathogenicity. J Exp Med. 2016;213:2489-2501 pubmed
  248. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  249. Butcher M, Filipowicz A, Waseem T, McGary C, Crow K, Magilnick N, et al. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFN?+ Th1/Tregs. Circ Res. 2016;119:1190-1203 pubmed 出版商
  250. Huang M, Zhang W, Guo J, Wei X, Phiwpan K, Zhang J, et al. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation. Sci Rep. 2016;6:33612 pubmed 出版商
  251. Takeda Y, Azuma M, Matsumoto M, Seya T. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. J Exp Clin Cancer Res. 2016;35:143 pubmed 出版商
  252. Le Gars M, Haustant M, Klezovich Bénard M, Paget C, Trottein F, Goossens P, et al. Mechanisms of Invariant NKT Cell Activity in Restraining Bacillus anthracis Systemic Dissemination. J Immunol. 2016;197:3225-3232 pubmed
  253. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  254. Guo H, Cranert S, Lu Y, Zhong M, Zhang S, Chen J, et al. Deletion of Slam locus in mice reveals inhibitory role of SLAM family in NK cell responses regulated by cytokines and LFA-1. J Exp Med. 2016;213:2187-207 pubmed 出版商
  255. Bombeiro A, Thomé R, Oliveira Nunes S, Monteiro Moreira B, Verinaud L, Oliveira A. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS ONE. 2016;11:e0161463 pubmed 出版商
  256. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  257. Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U, et al. Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells. PLoS Negl Trop Dis. 2016;10:e0004935 pubmed 出版商
  258. Wang H, Li M, Hung C, Sinha M, Lee L, Wiesner D, et al. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathog. 2016;12:e1005787 pubmed 出版商
  259. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  260. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  261. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  262. Ferreirinha P, Pérez Cabezas B, Correia A, Miyazawa B, França A, Carvalhais V, et al. Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun. 2016;84:2933-43 pubmed 出版商
  263. Hwang S, Cobb D, Bhadra R, Youngblood B, Khan I. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016;213:1799-818 pubmed 出版商
  264. Liu W, Kang S, Huang Z, Wu C, Jin H, Maine C, et al. A miR-155-Peli1-c-Rel pathway controls the generation and function of T follicular helper cells. J Exp Med. 2016;213:1901-19 pubmed 出版商
  265. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  266. Chow K, Delconte R, Huntington N, Tarlinton D, Sutherland R, Zhan Y, et al. Innate Allorecognition Results in Rapid Accumulation of Monocyte-Derived Dendritic Cells. J Immunol. 2016;197:2000-8 pubmed 出版商
  267. Veinotte L, Gebremeskel S, Johnston B. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFN? production and tumor control. Oncoimmunology. 2016;5:e1160979 pubmed 出版商
  268. Nakhlé J, Pierron V, Bauchet A, Plas P, Thiongane A, Meyer Losic F, et al. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer. Oncoimmunology. 2016;5:e1145333 pubmed 出版商
  269. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  270. Weiss J, Chen W, Nyuydzefe M, Trzeciak A, Flynn R, Tonra J, et al. ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings. Sci Signal. 2016;9:ra73 pubmed 出版商
  271. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  272. Rackov G, Hernandez Jimenez E, Shokri R, Carmona Rodríguez L, Manes S, Alvarez Mon M, et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-?B and IFN-?. J Clin Invest. 2016;126:3089-103 pubmed 出版商
  273. Wang S, Xia P, Chen Y, Huang G, Xiong Z, Liu J, et al. Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection. Immunity. 2016;45:131-44 pubmed 出版商
  274. Keil M, Sonner J, Lanz T, Oezen I, Bunse T, Bittner S, et al. General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. J Neuroimmunol. 2016;297:117-26 pubmed 出版商
  275. Gorman M, Poddar S, Farzan M, Diamond M. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J Virol. 2016;90:8212-25 pubmed 出版商
  276. Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 2017;36:639-651 pubmed 出版商
  277. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  278. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  279. Li C, Zhang Y, Tang L, Zhao H, Gao C, Gao L, et al. Expression of factors involved in the regulation of angiogenesis in the full-term human placenta: Effects of in vitro fertilization. Reprod Biol. 2016;16:104-12 pubmed 出版商
  280. Kranz L, Diken M, Haas H, Kreiter S, Loquai C, Reuter K, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396-401 pubmed 出版商
  281. Sujino T, London M, Hoytema van Konijnenburg D, Rendon T, Buch T, Silva H, et al. Tissue adaptation of regulatory and intraepithelial CD4? T cells controls gut inflammation. Science. 2016;352:1581-6 pubmed 出版商
  282. Lim J, Im K, Lee E, Kim N, Nam Y, Jeon Y, et al. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Sci Rep. 2016;6:26851 pubmed 出版商
  283. Chu H, Khosravi A, Kusumawardhani I, Kwon A, Vasconcelos A, Cunha L, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352:1116-20 pubmed 出版商
  284. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling. Cancer Res. 2016;76:4124-35 pubmed 出版商
  285. Martin S, Brown S, Wick D, Nielsen J, Kroeger D, Twumasi Boateng K, et al. Low Mutation Burden in Ovarian Cancer May Limit the Utility of Neoantigen-Targeted Vaccines. PLoS ONE. 2016;11:e0155189 pubmed 出版商
  286. Patel M, Kim J, Theodros D, Tam A, Velarde E, Kochel C, et al. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer. 2016;4:28 pubmed 出版商
  287. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  288. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  289. Contreras F, Prado C, Gonzalez H, Franz D, Osorio Barrios F, Osorio F, et al. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. J Immunol. 2016;196:4143-9 pubmed 出版商
  290. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  291. Cooley L, El Shikh M, Li W, Keim R, Zhang Z, Strauss J, et al. Impaired immunological synapse in sperm associated antigen 6 (SPAG6) deficient mice. Sci Rep. 2016;6:25840 pubmed 出版商
  292. Xu A, Bhanumathy K, Wu J, Ye Z, Freywald A, Leary S, et al. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci. 2016;6:30 pubmed 出版商
  293. Salao K, Jiang L, Li H, Tsai V, Husaini Y, Curmi P, et al. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis. Biol Open. 2016;5:620-30 pubmed 出版商
  294. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  295. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  296. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  297. Holmkvist P, Pool L, Hägerbrand K, Agace W, Rivollier A. IL-18R?-deficient CD4(+) T cells induce intestinal inflammation in the CD45RB(hi) transfer model of colitis despite impaired innate responsiveness. Eur J Immunol. 2016;46:1371-82 pubmed 出版商
  298. Arellano B, Hussain R, Miller Little W, Herndon E, Lambracht Washington D, Eagar T, et al. A Single Amino Acid Substitution Prevents Recognition of a Dominant Human Aquaporin-4 Determinant in the Context of HLA-DRB1*03:01 by a Murine TCR. PLoS ONE. 2016;11:e0152720 pubmed 出版商
  299. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  300. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  301. Qi X, Gurung P, Malireddi R, Karmaus P, Sharma D, Vogel P, et al. Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis. Mucosal Immunol. 2017;10:128-138 pubmed 出版商
  302. Martínez Gómez J, Ong L, Lam J, Binte Aman S, Libau E, Lee P, et al. Maternal Antibody-Mediated Disease Enhancement in Type I Interferon-Deficient Mice Leads to Lethal Disease Associated with Liver Damage. PLoS Negl Trop Dis. 2016;10:e0004536 pubmed 出版商
  303. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  304. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  305. Tosiek M, Fiette L, El Daker S, Eberl G, Freitas A. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun. 2016;7:10888 pubmed 出版商
  306. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  307. Gabunia K, Ellison S, Kelemen S, Kako F, Cornwell W, Rogers T, et al. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. Am J Pathol. 2016;186:1361-74 pubmed 出版商
  308. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed 出版商
  309. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  310. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  311. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  312. Yang L, Cai C, Feng Q, Shi Y, Zuo Q, Yang H, et al. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models. Sci Rep. 2016;6:20929 pubmed 出版商
  313. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  314. Smith R, Reyes N, Khandelwal P, Schlereth S, Lee H, Masli S, et al. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease. J Leukoc Biol. 2016;100:371-80 pubmed 出版商
  315. Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, et al. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 2016;6:20588 pubmed 出版商
  316. Kim K, Kim N, Lee G. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region. PLoS ONE. 2016;11:e0148576 pubmed 出版商
  317. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  318. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  319. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  320. Polansky J, Bahri R, Divivier M, Duitman E, Vock C, Goyeneche Patino D, et al. High dose CD11c-driven IL15 is sufficient to drive NK cell maturation and anti-tumor activity in a trans-presentation independent manner. Sci Rep. 2016;6:19699 pubmed 出版商
  321. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  322. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  323. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  324. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  325. Lood C, Blanco L, Purmalek M, Carmona Rivera C, De Ravin S, Smith C, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22:146-53 pubmed 出版商
  326. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  327. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  328. Schedel M, Jia Y, Michel S, Takeda K, Domenico J, Joetham A, et al. 1,25D3 prevents CD8(+)Tc2 skewing and asthma development through VDR binding changes to the Cyp11a1 promoter. Nat Commun. 2016;7:10213 pubmed 出版商
  329. Goldberg G, Cornish A, Murphy J, Pang E, Lim L, Campbell I, et al. G-CSF and Neutrophils Are Nonredundant Mediators of Murine Experimental Autoimmune Uveoretinitis. Am J Pathol. 2016;186:172-84 pubmed 出版商
  330. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  331. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  332. Sagoo P, Garcia Z, Breart B, Lemaître F, Michonneau D, Albert M, et al. In vivo imaging of inflammasome activation reveals a subcapsular macrophage burst response that mobilizes innate and adaptive immunity. Nat Med. 2016;22:64-71 pubmed 出版商
  333. Ren Y, Wang N, Hu W, Zhang X, Xu J, Wan Y. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination. Sci Rep. 2015;5:18099 pubmed 出版商
  334. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  335. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  336. Okada K, Sato S, Sato A, Mandelboim O, Yamasoba T, Kiyono H. Identification and Analysis of Natural Killer Cells in Murine Nasal Passages. PLoS ONE. 2015;10:e0142920 pubmed 出版商
  337. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  338. Fontinha D, Lopes F, Marques S, Alenquer M, Simas J. Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells. PLoS ONE. 2015;10:e0142540 pubmed 出版商
  339. Sekiya T, Yoshimura A. In Vitro Th Differentiation Protocol. Methods Mol Biol. 2016;1344:183-91 pubmed 出版商
  340. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol. 2016;90:650-8 pubmed 出版商
  341. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  342. Blazevic V, Malm M, Arinobu D, Lappalainen S, Vesikari T. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine. Hum Vaccin Immunother. 2016;12:740-8 pubmed 出版商
  343. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  344. Wu V, Smith A, You H, Nguyen T, Ferguson R, Taylor M, et al. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol. 2016;9:777-86 pubmed 出版商
  345. Kurtulus S, Sakuishi K, Ngiow S, Joller N, Tan D, Teng M, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 2015;125:4053-62 pubmed 出版商
  346. Manlove L, Berquam Vrieze K, Pauken K, Williams R, Jenkins M, Farrar M. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells. J Immunol. 2015;195:4028-37 pubmed 出版商
  347. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  348. Joly A, Deepti A, Seignez A, Goloudina A, Hebrard S, Schmitt E, et al. The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development. Oncogene. 2016;35:2842-51 pubmed 出版商
  349. Poncini C, Ilarregui J, Batalla E, Engels S, Cerliani J, Cucher M, et al. Trypanosoma cruzi Infection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1-Dependent Mechanisms. J Immunol. 2015;195:3311-24 pubmed 出版商
  350. Wang X, Huang Z, Chen Y, Lu X, Zhu P, Wen K, et al. A Multiple Antigenic Peptide Mimicking Peptidoglycan Induced T Cell Responses to Protect Mice from Systemic Infection with Staphylococcus aureus. PLoS ONE. 2015;10:e0136888 pubmed 出版商
  351. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  352. Rapovy S, Zhao J, Bricker R, Schmidt S, Setchell K, Qualls J. Differential Requirements for L-Citrulline and L-Arginine during Antimycobacterial Macrophage Activity. J Immunol. 2015;195:3293-300 pubmed 出版商
  353. Smith K, Filbey K, Reynolds L, Hewitson J, Harcus Y, Boon L, et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 2016;9:428-43 pubmed 出版商
  354. Ampem G, Azegrouz H, Bacsadi Ã, Balogh L, Schmidt S, Thuróczy J, et al. Adipose tissue macrophages in non-rodent mammals: a comparative study. Cell Tissue Res. 2016;363:461-78 pubmed 出版商
  355. Arbelaez C, Glatigny S, Duhen R, Eberl G, Oukka M, Bettelli E. IL-7/IL-7 Receptor Signaling Differentially Affects Effector CD4+ T Cell Subsets Involved in Experimental Autoimmune Encephalomyelitis. J Immunol. 2015;195:1974-83 pubmed 出版商
  356. Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed 出版商
  357. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  358. Redpath S, Van Der Werf N, MacDonald A, Maizels R, Taylor M. Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase. Infect Immun. 2015;83:3881-9 pubmed 出版商
  359. Garcia P, Apolinário L, Böckelmann P, da Silva Nunes I, Duran N, Fávaro W. Alterations in ubiquitin ligase Siah-2 and its corepressor N-CoR after P-MAPA immunotherapy and anti-androgen therapy: new therapeutic opportunities for non-muscle invasive bladder cancer. Int J Clin Exp Pathol. 2015;8:4427-43 pubmed
  360. Vogel A, Brown D. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol. 2015;6:327 pubmed 出版商
  361. Abt M, Lewis B, Caballero S, Xiong H, Carter R, SuÅ¡ac B, et al. Innate Immune Defenses Mediated by Two ILC Subsets Are Critical for Protection against Acute Clostridium difficile Infection. Cell Host Microbe. 2015;18:27-37 pubmed 出版商
  362. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  363. McWilliams I, Rajbhandari R, Nozell S, BENVENISTE E, Harrington L. STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE. J Neuroinflammation. 2015;12:128 pubmed 出版商
  364. Mikucki M, Fisher D, Matsuzaki J, Skitzki J, Gaulin N, Muhitch J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458 pubmed 出版商
  365. Ackerknecht M, Hauser M, Legler D, Stein J. In vivo TCR Signaling in CD4(+) T Cells Imprints a Cell-Intrinsic, Transient Low-Motility Pattern Independent of Chemokine Receptor Expression Levels, or Microtubular Network, Integrin, and Protein Kinase C Activity. Front Immunol. 2015;6:297 pubmed 出版商
  366. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  367. Deppisch N, Ruf P, Eissler N, Neff F, Buhmann R, Lindhofer H, et al. Efficacy and Tolerability of a GD2-Directed Trifunctional Bispecific Antibody in a Preclinical Model: Subcutaneous Administration Is Superior to Intravenous Delivery. Mol Cancer Ther. 2015;14:1877-83 pubmed 出版商
  368. Deberge M, Ely K, Wright P, Thorp E, Enelow R. Shedding of TNF receptor 2 by effector CD8⁺ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection. J Leukoc Biol. 2015;98:423-34 pubmed 出版商
  369. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  370. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  371. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  372. Nacka Aleksić M, Djikić J, Pilipović I, Stojić Vukanić Z, Kosec D, Bufan B, et al. Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun. 2015;49:101-18 pubmed 出版商
  373. Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich P, Derouazi M, Walker P. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol. 2015;45:2263-75 pubmed 出版商
  374. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  375. Becker P, Hervouet C, Mason G, KWON S, Klavinskis L. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine. 2015;33:4691-8 pubmed 出版商
  376. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  377. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  378. Najm F, Madhavan M, Zaremba A, Shick E, Karl R, Factor D, et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522:216-20 pubmed 出版商
  379. Kim Y, Lim H, Jung H, Wetsel R, Chung Y. Regulation of autoimmune germinal center reactions in lupus-prone BXD2 mice by follicular helper T cells. PLoS ONE. 2015;10:e0120294 pubmed 出版商
  380. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  381. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  382. Sakala I, Chaudhri G, Eldi P, Buller R, Karupiah G. Deficiency in Th2 cytokine responses exacerbate orthopoxvirus infection. PLoS ONE. 2015;10:e0118685 pubmed 出版商
  383. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  384. Zhan R, Han Q, Zhang C, Tian Z, Zhang J. Toll-Like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica serovar Typhimurium infection. Infect Immun. 2015;83:1641-9 pubmed 出版商
  385. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler T. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog. 2015;11:e1004481 pubmed 出版商
  386. Stack G, Jones E, Marsden M, Stacey M, Snelgrove R, Lacaze P, et al. CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog. 2015;11:e1004641 pubmed 出版商
  387. Huang Y, Clarke F, Karimi M, Roy N, Williamson E, Okumura M, et al. CRK proteins selectively regulate T cell migration into inflamed tissues. J Clin Invest. 2015;125:1019-32 pubmed 出版商
  388. Fisher P, Zhao Y, Rico M, Massicotte V, WADE C, Litvin J, et al. Increased CCN2, substance P and tissue fibrosis are associated with sensorimotor declines in a rat model of repetitive overuse injury. J Cell Commun Signal. 2015;9:37-54 pubmed 出版商
  389. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  390. Cabrera Perez J, Condotta S, James B, Kashem S, Brincks E, Rai D, et al. Alterations in antigen-specific naive CD4 T cell precursors after sepsis impairs their responsiveness to pathogen challenge. J Immunol. 2015;194:1609-20 pubmed 出版商
  391. Li J, Liu D, Mou Z, Ihedioha O, Blanchard A, Jia P, et al. Deficiency of prolactin-inducible protein leads to impaired Th1 immune response and susceptibility to Leishmania major in mice. Eur J Immunol. 2015;45:1082-91 pubmed 出版商
  392. Glatigny S, Duhen R, Arbelaez C, Kumari S, Bettelli E. Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4. Sci Rep. 2015;5:7834 pubmed 出版商
  393. Clouthier D, Zhou A, Wortzman M, Luft O, Levy G, Watts T. GITR intrinsically sustains early type 1 and late follicular helper CD4 T cell accumulation to control a chronic viral infection. PLoS Pathog. 2015;11:e1004517 pubmed 出版商
  394. Spada R, Rojas J, Pérez Yagüe S, Mulens V, Cannata Ortiz P, Bragado R, et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol. 2015;97:583-98 pubmed 出版商
  395. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  396. Shindo Y, Unsinger J, Burnham C, Green J, Hotchkiss R. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015;43:334-43 pubmed 出版商
  397. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  398. Hu Z, Molloy M, Usherwood E. CD4(+) T-cell dependence of primary CD8(+) T-cell response against vaccinia virus depends upon route of infection and viral dose. Cell Mol Immunol. 2016;13:82-93 pubmed 出版商
  399. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  400. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  401. Agarwal P, Rashighi M, Essien K, Richmond J, Randall L, Pazoki Toroudi H, et al. Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J Invest Dermatol. 2015;135:1080-1088 pubmed 出版商
  402. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  403. Pusic A, Mitchell H, Kunkler P, Klauer N, Kraig R. Spreading depression transiently disrupts myelin via interferon-gamma signaling. Exp Neurol. 2015;264:43-54 pubmed 出版商
  404. Stoycheva D, Deiser K, Stärck L, Nishanth G, Schlüter D, Uckert W, et al. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J Immunol. 2015;194:553-9 pubmed 出版商
  405. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  406. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  407. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  408. Uchiyama M, Jin X, Yin E, Shimokawa T, Niimi M. Treadmill exercise induces murine cardiac allograft survival and generates regulatory T cell. Transpl Int. 2015;28:352-62 pubmed 出版商
  409. Mehta P, Nuotio Antar A, Smith C. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J Leukoc Biol. 2015;97:121-34 pubmed 出版商
  410. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  411. Simpson L, Patel S, Bhakta N, Choy D, Brightbill H, Ren X, et al. A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat Immunol. 2014;15:1162-70 pubmed 出版商
  412. Wang X, Sumida H, Cyster J. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J Exp Med. 2014;211:2351-9 pubmed 出版商
  413. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  414. Edwards C, Best S, Gun S, Claser C, James K, de Oca M, et al. Spatiotemporal requirements for IRF7 in mediating type I IFN-dependent susceptibility to blood-stage Plasmodium infection. Eur J Immunol. 2015;45:130-41 pubmed 出版商
  415. McDonnell A, Lesterhuis W, Khong A, Nowak A, Lake R, Currie A, et al. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur J Immunol. 2015;45:49-59 pubmed 出版商
  416. Tassi I, Claudio E, Wang H, Tang W, Ha H, Saret S, et al. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. J Immunol. 2014;193:4303-11 pubmed 出版商
  417. Bertin S, Lozano Ruiz B, Bachiller V, García Martínez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505-15 pubmed 出版商
  418. Carty S, Koretzky G, Jordan M. Interleukin-4 regulates eomesodermin in CD8+ T cell development and differentiation. PLoS ONE. 2014;9:e106659 pubmed 出版商
  419. Chatterjee S, Thyagarajan K, Kesarwani P, Song J, Soloshchenko M, Fu J, et al. Reducing CD73 expression by IL1?-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res. 2014;74:6048-59 pubmed 出版商
  420. Wei H, Nash W, Makrigiannis A, Brown M. Impaired NK-cell education diminishes resistance to murine CMV infection. Eur J Immunol. 2014;44:3273-82 pubmed 出版商
  421. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  422. Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K, Matsushita T. B cells promote tumor immunity against B16F10 melanoma. Am J Pathol. 2014;184:3120-9 pubmed 出版商
  423. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  424. Wu C, He S, Peng Y, Kushwaha K, Lin J, Dong J, et al. TSLPR deficiency attenuates atherosclerotic lesion development associated with the inhibition of TH17 cells and the promotion of regulator T cells in ApoE-deficient mice. J Mol Cell Cardiol. 2014;76:33-45 pubmed 出版商
  425. Ishihara M, Seo N, Mitsui J, Muraoka D, Tanaka M, Mineno J, et al. Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS ONE. 2014;9:e104669 pubmed 出版商
  426. Chuang H, Sheu W, Lin Y, Tsai C, Yang C, Cheng Y, et al. HGK/MAP4K4 deficiency induces TRAF2 stabilization and Th17 differentiation leading to insulin resistance. Nat Commun. 2014;5:4602 pubmed 出版商
  427. Berod L, Stüve P, Varela F, Behrends J, Swallow M, Kruse F, et al. Rapid rebound of the Treg compartment in DEREG mice limits the impact of Treg depletion on mycobacterial burden, but prevents autoimmunity. PLoS ONE. 2014;9:e102804 pubmed 出版商
  428. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  429. Longman R, Diehl G, Victorio D, Huh J, Galan C, Miraldi E, et al. CX?CR1? mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571-83 pubmed 出版商
  430. Hosking M, Flynn C, Whitton J. Antigen-specific naive CD8+ T cells produce a single pulse of IFN-γ in vivo within hours of infection, but without antiviral effect. J Immunol. 2014;193:1873-85 pubmed 出版商
  431. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  432. Madireddi S, Eun S, Lee S, Nemčovičová I, Mehta A, Zajonc D, et al. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med. 2014;211:1433-48 pubmed 出版商
  433. Friedman R, Lindsay R, Lilly J, Nguyen V, Sorensen C, Jacobelli J, et al. An evolving autoimmune microenvironment regulates the quality of effector T cell restimulation and function. Proc Natl Acad Sci U S A. 2014;111:9223-8 pubmed 出版商
  434. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15:676-86 pubmed 出版商
  435. Geem D, Medina Contreras O, McBride M, Newberry R, Koni P, Denning T. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431-8 pubmed 出版商
  436. Alam M, Gaida M, Ogawa Y, Kolios A, Lasitschka F, Ashwell J. Counter-regulation of T cell effector function by differentially activated p38. J Exp Med. 2014;211:1257-70 pubmed 出版商
  437. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  438. Bedke T, Iannitti R, De Luca A, Giovannini G, Fallarino F, Berges C, et al. Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3+ regulatory T cells in humans and mice. Immunol Cell Biol. 2014;92:659-70 pubmed 出版商
  439. Zhang Y, Mena P, Romanov G, Bliska J. Effector CD8+ T cells are generated in response to an immunodominant epitope in type III effector YopE during primary Yersinia pseudotuberculosis infection. Infect Immun. 2014;82:3033-44 pubmed 出版商
  440. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  441. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  442. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  443. Ntranos A, Hall O, Robinson D, Grishkan I, Schott J, Tosi D, et al. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. J Neuroimmunol. 2014;270:13-21 pubmed 出版商
  444. Koga T, Hedrich C, Mizui M, Yoshida N, Otomo K, Lieberman L, et al. CaMK4-dependent activation of AKT/mTOR and CREM-? underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124:2234-45 pubmed 出版商
  445. Takei S, Omoto C, Kitagawa K, Morishita N, Katayama T, Shigemura K, et al. Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV-NS3-specific systemic immune response in mice. Vaccine. 2014;32:3066-74 pubmed 出版商
  446. Chao G, Wallis R, Marandi L, Ning T, Sarmiento J, Paterson A, et al. Iddm30 controls pancreatic expression of Ccl11 (Eotaxin) and the Th1/Th2 balance within the insulitic lesions. J Immunol. 2014;192:3645-53 pubmed 出版商
  447. Samuelson E, Laird R, Papillion A, Tatum A, Princiotta M, Hayes S. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS ONE. 2014;9:e92054 pubmed 出版商
  448. Yan J, Villarreal D, Racine T, Chu J, Walters J, Morrow M, et al. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine. 2014;32:2833-42 pubmed 出版商
  449. Martins K, Steffens J, Van Tongeren S, Wells J, Bergeron A, Dickson S, et al. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS ONE. 2014;9:e89735 pubmed 出版商
  450. Lee J, Walsh M, Hoehn K, James D, Wherry E, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-9 pubmed 出版商
  451. Medina Armenteros Y, Farinha Arcieri L, Braga C, Carromeu C, Tamura R, Ventura A. Mapping of CD8 T cell epitopes in human respiratory syncytial virus L protein. Intervirology. 2014;57:55-64 pubmed 出版商
  452. Jayaraman A, Jackson D, Message S, Pearson R, Aniscenko J, Caramori G, et al. IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunol. 2014;7:1151-64 pubmed 出版商
  453. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  454. Xia S, Wei J, Wang J, Sun H, Zheng W, Li Y, et al. A requirement of dendritic cell-derived interleukin-27 for the tumor infiltration of regulatory T cells. J Leukoc Biol. 2014;95:733-742 pubmed
  455. Brenndörfer E, Brass A, Karthe J, Ahlen G, Bode J, Sallberg M. Cleavage of the T cell protein tyrosine phosphatase by the hepatitis C virus nonstructural 3/4A protease induces a Th1 to Th2 shift reversible by ribavirin therapy. J Immunol. 2014;192:1671-80 pubmed 出版商
  456. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  457. Chatterjee S, Eby J, Al Khami A, Soloshchenko M, Kang H, Kaur N, et al. A quantitative increase in regulatory T cells controls development of vitiligo. J Invest Dermatol. 2014;134:1285-1294 pubmed 出版商
  458. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  459. Kim H, Lee H, Chang Y, Pichavant M, Shore S, Fitzgerald K, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54-61 pubmed 出版商
  460. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  461. Lee P, Puppi M, Schluns K, Yu Lee L, Dong C, Lacorazza H. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. J Immunol. 2014;192:178-88 pubmed 出版商
  462. Griffiths K, Stylianou E, Poyntz H, Betts G, Fletcher H, McShane H. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS ONE. 2013;8:e78312 pubmed 出版商
  463. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  464. Bodhankar S, Chen Y, Vandenbark A, Murphy S, Offner H. PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation. 2013;10:111 pubmed 出版商
  465. Furuya Y, Kirimanjeswara G, Roberts S, Metzger D. Increased susceptibility of IgA-deficient mice to pulmonary Francisella tularensis live vaccine strain infection. Infect Immun. 2013;81:3434-41 pubmed 出版商
  466. Mandal M, Donnelly R, Elkabes S, Zhang P, Davini D, David B, et al. Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain Behav Immun. 2013;33:33-45 pubmed 出版商
  467. Barron L, Smith A, El Kasmi K, Qualls J, Huang X, Cheever A, et al. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS ONE. 2013;8:e61961 pubmed 出版商
  468. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  469. Powell N, Walker A, Stolarczyk E, Canavan J, Gökmen M, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674-84 pubmed 出版商
  470. Walker J, Raué H, Slifka M. Characterization of CD8+ T cell function and immunodominance generated with an H2O2-inactivated whole-virus vaccine. J Virol. 2012;86:13735-44 pubmed 出版商
  471. Jin X, Uchiyama M, Zhang Q, Hirai T, Niimi M. Inchingorei-san (TJ-117) and Artemisiae Capillaris Herba Induced Prolonged Survival of Fully Mismatched Cardiac Allografts and Generated Regulatory Cells in Mice. Evid Based Complement Alternat Med. 2012;2012:689810 pubmed 出版商
  472. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  473. Uchiyama M, Jin X, Zhang Q, Hirai T, Amano A, Bashuda H, et al. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells. J Cardiothorac Surg. 2012;7:26 pubmed 出版商
  474. Mathieu M, Cotta Grand N, Daudelin J, Boulet S, Lapointe R, Labrecque N. CD40-activated B cells can efficiently prime antigen-specific naïve CD8+ T cells to generate effector but not memory T cells. PLoS ONE. 2012;7:e30139 pubmed 出版商
  475. Pinto A, Daffis S, Brien J, Gainey M, Yokoyama W, Sheehan K, et al. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection. PLoS Pathog. 2011;7:e1002407 pubmed 出版商
  476. Tousif S, Singh Y, Prasad D, Sharma P, Van Kaer L, Das G. T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS ONE. 2011;6:e19864 pubmed 出版商
  477. Werner J, Busl E, Farkas S, Schlitt H, Geissler E, Hornung M. DX5+NKT cells display phenotypical and functional differences between spleen and liver as well as NK1.1-Balb/c and NK1.1+ C57Bl/6 mice. BMC Immunol. 2011;12:26 pubmed 出版商
  478. Mota B, Gallardo Romero N, Trindade G, Keckler M, Karem K, Carroll D, et al. Adverse events post smallpox-vaccination: insights from tail scarification infection in mice with Vaccinia virus. PLoS ONE. 2011;6:e18924 pubmed 出版商
  479. Murapa P, Ward M, Gandhapudi S, Woodward J, D Orazio S. Heat shock factor 1 protects mice from rapid death during Listeria monocytogenes infection by regulating expression of tumor necrosis factor alpha during fever. Infect Immun. 2011;79:177-84 pubmed 出版商
  480. Gibbert K, Dietze K, Zelinskyy G, Lang K, Barchet W, Kirschning C, et al. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. J Immunol. 2010;185:6179-89 pubmed 出版商
  481. Weber K, Hildner K, Murphy K, Allen P. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol. 2010;185:2836-46 pubmed 出版商
  482. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  483. Marshall H, Prince A, Berg L, Welsh R. IFN-alpha beta and self-MHC divert CD8 T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. J Immunol. 2010;185:1419-28 pubmed 出版商
  484. Jacobs C, Duewell P, Heckelsmiller K, Wei J, Bauernfeind F, Ellermeier J, et al. An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int J Cancer. 2011;128:897-907 pubmed 出版商
  485. Zou Y, Chen T, Han M, Wang H, Yan W, Song G, et al. Increased killing of liver NK cells by Fas/Fas ligand and NKG2D/NKG2D ligand contributes to hepatocyte necrosis in virus-induced liver failure. J Immunol. 2010;184:466-75 pubmed 出版商
  486. Wu S, Rhee K, Albesiano E, RABIZADEH S, Wu X, Yen H, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016-22 pubmed 出版商
  487. Ellestad K, Tsutsui S, Noorbakhsh F, Warren K, Yong V, Pittman Q, et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol. 2009;183:298-309 pubmed 出版商
  488. Tseng K, Chung C, H ng W, Wang S. Early infection termination affects number of CD8+ memory T cells and protective capacities in listeria monocytogenes-infected mice upon rechallenge. J Immunol. 2009;182:4590-600 pubmed 出版商
  489. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  490. Cooper M, Elliott J, Keyel P, Yang L, Carrero J, Yokoyama W. Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A. 2009;106:1915-9 pubmed 出版商
  491. Nowell M, Williams A, Carty S, Scheller J, Hayes A, Jones G, et al. Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis. J Immunol. 2009;182:613-22 pubmed
  492. Merck E, Voyle R, MacDonald H. Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. J Immunol. 2009;182:183-92 pubmed
  493. Leppkes M, Becker C, Ivanov I, Hirth S, Wirtz S, Neufert C, et al. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology. 2009;136:257-67 pubmed 出版商
  494. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  495. Sprengers D, Sillé F, Derkow K, Besra G, Janssen H, Schott E, et al. Critical role for CD1d-restricted invariant NKT cells in stimulating intrahepatic CD8 T-cell responses to liver antigen. Gastroenterology. 2008;134:2132-43 pubmed 出版商
  496. Sridhar S, Reyes Sandoval A, Draper S, Moore A, Gilbert S, Gao G, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822-33 pubmed 出版商
  497. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  498. Richards H, Longhi M, Wright K, Gallimore A, Ager A. CD62L (L-selectin) down-regulation does not affect memory T cell distribution but failure to shed compromises anti-viral immunity. J Immunol. 2008;180:198-206 pubmed
  499. Tian C, Ansari M, Paez Cortez J, Bagley J, Godwin J, Donnarumma M, et al. Induction of robust diabetes resistance and prevention of recurrent type 1 diabetes following islet transplantation by gene therapy. J Immunol. 2007;179:6762-9 pubmed
  500. Wanasen N, Xin L, Soong L. Pathogenic role of B cells and antibodies in murine Leishmania amazonensis infection. Int J Parasitol. 2008;38:417-29 pubmed
  501. Allard E, Hardy M, Leignadier J, Marquis M, Rooney J, Lehoux D, et al. Overexpression of IL-21 promotes massive CD8+ memory T cell accumulation. Eur J Immunol. 2007;37:3069-77 pubmed
  502. Park S, Han Y, Aleyas A, George J, Yoon H, Lee J, et al. Low-dose antigen-experienced CD4+ T cells display reduced clonal expansion but facilitate an effective memory pool in response to secondary exposure. Immunology. 2008;123:426-37 pubmed
  503. Iwabuchi N, Takahashi N, Xiao J, Miyaji K, Iwatsuki K. In vitro Th1 cytokine-independent Th2 suppressive effects of bifidobacteria. Microbiol Immunol. 2007;51:649-60 pubmed
  504. Badovinac V, Harty J. Manipulating the rate of memory CD8+ T cell generation after acute infection. J Immunol. 2007;179:53-63 pubmed
  505. Burster T, Giffon T, Dahl M, Björck P, Bogyo M, Weber E, et al. Influenza A virus elevates active cathepsin B in primary murine DC. Int Immunol. 2007;19:645-55 pubmed
  506. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed
  507. Chang S, Wang K, Lu Y, Yang L, Chen W, Lin Y, et al. Characterization of early gamma interferon (IFN-gamma) expression during murine listeriosis: identification of NK1.1+ CD11c+ cells as the primary IFN-gamma-expressing cells. Infect Immun. 2007;75:1167-76 pubmed
  508. Kobie J, Shah P, Yang L, Rebhahn J, Fowell D, Mosmann T. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine. J Immunol. 2006;177:6780-6 pubmed
  509. Hewitson J, Jenkins G, Hamblin P, Mountford A. CD40/CD154 interactions are required for the optimal maturation of skin-derived APCs and the induction of helminth-specific IFN-gamma but not IL-4. J Immunol. 2006;177:3209-17 pubmed
  510. Huster K, Koffler M, Stemberger C, Schiemann M, Wagner H, Busch D. Unidirectional development of CD8+ central memory T cells into protective Listeria-specific effector memory T cells. Eur J Immunol. 2006;36:1453-64 pubmed
  511. Pedras Vasconcelos J, Goucher D, Puig M, Tonelli L, Wang V, Ito S, et al. CpG oligodeoxynucleotides protect newborn mice from a lethal challenge with the neurotropic Tacaribe arenavirus. J Immunol. 2006;176:4940-9 pubmed
  512. Hoentjen F, Tonkonogy S, Liu B, Sartor R, Taurog J, Dieleman L. Adoptive transfer of nontransgenic mesenteric lymph node cells induces colitis in athymic HLA-B27 transgenic nude rats. Clin Exp Immunol. 2006;143:474-83 pubmed
  513. Matsuda J, Zhang Q, Ndonye R, Richardson S, Howell A, Gapin L. T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood. 2006;107:2797-805 pubmed
  514. Al Qaoud K, Abdel Hafez S. Humoral and cytokine response during protection of mice against secondary hydatidosis caused by Echinococcus granulosus. Parasitol Res. 2005;98:54-60 pubmed
  515. Hoentjen F, Welling G, Harmsen H, Zhang X, Snart J, Tannock G, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis. 2005;11:977-85 pubmed
  516. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed
  517. Qian B, Tonkonogy S, Hoentjen F, Dieleman L, Sartor R. Dysregulated luminal bacterial antigen-specific T-cell responses and antigen-presenting cell function in HLA-B27 transgenic rats with chronic colitis. Immunology. 2005;116:112-21 pubmed
  518. Janelidze S, Enell K, Visse E, Darabi A, Salford L, Siesjo P. Activation of purified allogeneic CD4(+) T cells by rat bone marrow-derived dendritic cells induces concurrent secretion of IFN-gamma, IL-4, and IL-10. Immunol Lett. 2005;101:193-201 pubmed
  519. Moalem G, Xu K, Yu L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience. 2004;129:767-77 pubmed
  520. Beadling C, Slifka M. Differential regulation of virus-specific T-cell effector functions following activation by peptide or innate cytokines. Blood. 2005;105:1179-86 pubmed
  521. Freyschmidt E, Alonso A, Hartmann G, Gissmann L. Activation of dendritic cells and induction of T cell responses by HPV 16 L1/E7 chimeric virus-like particles are enhanced by CpG ODN or sorbitol. Antivir Ther. 2004;9:479-89 pubmed
  522. Todd D, Forsberg E, Greiner D, Mordes J, Rossini A, Bortell R. Deficiencies in gut NK cell number and function precede diabetes onset in BB rats. J Immunol. 2004;172:5356-62 pubmed
  523. Cabarrocas J, Piaggio E, Zappulla J, Desbois S, Mars L, Lassmann H, et al. A transgenic mouse model for T-cell ignorance of a glial autoantigen. J Autoimmun. 2004;22:179-89 pubmed
  524. Dieleman L, Hoentjen F, Qian B, Sprengers D, Tjwa E, Torres M, et al. Reduced ratio of protective versus proinflammatory cytokine responses to commensal bacteria in HLA-B27 transgenic rats. Clin Exp Immunol. 2004;136:30-9 pubmed
  525. Chen B, Cui X, Sempowski G, Domen J, Chao N. Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood. 2004;103:4344-52 pubmed
  526. Aramaki O, Shirasugi N, Takayama T, Shimazu M, Kitajima M, Ikeda Y, et al. Programmed death-1-programmed death-L1 interaction is essential for induction of regulatory cells by intratracheal delivery of alloantigen. Transplantation. 2004;77:6-12 pubmed
  527. Hogg K, Kumkate S, Mountford A. IL-10 regulates early IL-12-mediated immune responses induced by the radiation-attenuated schistosome vaccine. Int Immunol. 2003;15:1451-9 pubmed
  528. Chakir H, Wang H, Lefebvre D, Webb J, Scott F. T-bet/GATA-3 ratio as a measure of the Th1/Th2 cytokine profile in mixed cell populations: predominant role of GATA-3. J Immunol Methods. 2003;278:157-69 pubmed
  529. Drappa J, Kamen L, Chan E, Georgiev M, Ashany D, Marti F, et al. Impaired T cell death and lupus-like autoimmunity in T cell-specific adapter protein-deficient mice. J Exp Med. 2003;198:809-21 pubmed
  530. Goñi O, Alcaide P, Fresno M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+ )immature myeloid suppressor cells. Int Immunol. 2002;14:1125-34 pubmed
  531. Archin N, Atherton S. Infiltration of T-lymphocytes in the brain after anterior chamber inoculation of a neurovirulent and neuroinvasive strain of HSV-1. J Neuroimmunol. 2002;130:117-27 pubmed
  532. Sorkness R, Castleman W, Mikus L, Mosser A, Lemanske R. Chronic postbronchiolitis airway instability induced with anti-IFN-gamma antibody in F344 rats. Pediatr Res. 2002;52:382-6 pubmed
  533. Hylkema M, Timens W, Luinge M, Van Der Werf N, Hoekstra M. The effect of bacillus Calmette-Guérin immunization depends on the genetic predisposition to Th2-type responsiveness. Am J Respir Cell Mol Biol. 2002;27:244-9 pubmed
  534. Turner J, Frank A, Orme I. Old mice express a transient early resistance to pulmonary tuberculosis that is mediated by CD8 T cells. Infect Immun. 2002;70:4628-37 pubmed
  535. Roach D, Bean A, Demangel C, France M, Briscoe H, Britton W. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol. 2002;168:4620-7 pubmed
  536. Uehara K, Ichida T, Sugahara S, Ishikawa T, Yamagiwa S, Yoshida Y, et al. Systemic administration of liposome-encapsulated OK-432 prolongs the survival of rats with hepatocellular carcinoma through the induction of IFN-gamma-producing hepatic lymphocytes. J Gastroenterol Hepatol. 2002;17:81-90 pubmed
  537. Todd D, Greiner D, Rossini A, Mordes J, Bortell R. An atypical population of NK cells that spontaneously secrete IFN-gamma and IL-4 is present in the intraepithelial lymphoid compartment of the rat. J Immunol. 2001;167:3600-9 pubmed
  538. Liva S, Voskuhl R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J Immunol. 2001;167:2060-7 pubmed
  539. Chen B, Liu C, Cui X, Fidler J, Chao N. Prevention of graft-versus-host disease by a novel immunosuppressant, PG490-88, through inhibition of alloreactive T cell expansion. Transplantation. 2000;70:1442-7 pubmed
  540. Caraher E, Parenteau M, Gruber H, Scott F. Flow cytometric analysis of intracellular IFN-gamma, IL-4 and IL-10 in CD3(+)4(+) T-cells from rat spleen. J Immunol Methods. 2000;244:29-40 pubmed
  541. Price G, Ou R, Jiang H, Huang L, Moskophidis D. Viral escape by selection of cytotoxic T cell-resistant variants in influenza A virus pneumonia. J Exp Med. 2000;191:1853-67 pubmed
  542. Lin Y, Soares M, Sato K, Csizmadia E, Robson S, Smith N, et al. Long-term survival of hamster hearts in presensitized rats. J Immunol. 2000;164:4883-92 pubmed
  543. Kawai T, Seki M, Hiromatsu K, Eastcott J, Watts G, Sugai M, et al. Selective diapedesis of Th1 cells induced by endothelial cell RANTES. J Immunol. 1999;163:3269-78 pubmed
  544. Cetre C, Pierrot C, Cocude C, Lafitte S, Capron A, Capron M, et al. Profiles of Th1 and Th2 cytokines after primary and secondary infection by Schistosoma mansoni in the semipermissive rat host. Infect Immun. 1999;67:2713-9 pubmed
  545. Lin Y, Soares M, Sato K, Takigami K, Csizmadia E, Anrather J, et al. Rejection of cardiac xenografts by CD4+ or CD8+ T cells. J Immunol. 1999;162:1206-14 pubmed
  546. Gett A, Hodgkin P. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc Natl Acad Sci U S A. 1998;95:9488-93 pubmed
  547. Miyatake T, Koyamada N, Hancock W, Soares M, Bach F. Survival of accommodated cardiac xenografts upon retransplantation into cyclosporine-treated recipients. Transplantation. 1998;65:1563-9 pubmed
  548. Shibata Y, Metzger W, Myrvik Q. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. J Immunol. 1997;159:2462-7 pubmed
  549. Shibata Y, Foster L, Metzger W, Myrvik Q. Alveolar macrophage priming by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice. Infect Immun. 1997;65:1734-41 pubmed
  550. Früh R, Blum B, Mossmann H, Domdey H, von Specht B. TH1 cells trigger tumor necrosis factor alpha-mediated hypersensitivity to Pseudomonas aeruginosa after adoptive transfer into SCID mice. Infect Immun. 1995;63:1107-12 pubmed
  551. Cherwinski H, Schumacher J, Brown K, Mosmann T. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987;166:1229-44 pubmed