这是一篇来自已证抗体库的有关小鼠 白细胞介素10 (Il10) 的综述,是根据146篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合白细胞介素10 抗体。
白细胞介素10 同义词: CSIF; Il-10

赛默飞世尔
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:400; 图 3d
赛默飞世尔白细胞介素10抗体(Thermo Fisher Scientific, 17-7101-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3d). Heliyon (2022) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔白细胞介素10抗体(eBioscience, 17-7101-82)被用于被用于流式细胞仪在小鼠样本上 (图 3e). PLoS Pathog (2022) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔白细胞介素10抗体(eBioscience, 17-7101-81)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell Rep (2022) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s2j
赛默飞世尔白细胞介素10抗体(eBioscience, 17-7101-81)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Cell Rep (2022) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s3, 4b
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s3, 4b). Int J Mol Sci (2022) ncbi
大鼠 单克隆(JES5-2A5)
  • 酶联免疫吸附测定; 小鼠; 图 5
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-2A5)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). Arthritis Res Ther (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:200; 图 s8c
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s8c). J Clin Invest (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔白细胞介素10抗体(Thermo Fisher Scientific, 17-7101-81)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunity (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s4c
赛默飞世尔白细胞介素10抗体(eBiosciences, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). PLoS ONE (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
赛默飞世尔白细胞介素10抗体(eBiosciences, JEs5-16E3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). J Biol Chem (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔白细胞介素10抗体(eBioscience, JESS-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cancer Res (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 免疫组化; 小鼠; 图 s4
赛默飞世尔白细胞介素10抗体(eBioscience, 11-7101-81)被用于被用于免疫组化在小鼠样本上 (图 s4). FASEB J (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int J Parasitol (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s5c
赛默飞世尔白细胞介素10抗体(eBiosciences, JESS-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). J Clin Invest (2017) ncbi
大鼠 单克隆(JES5-2A5)
  • 抑制或激活实验; 小鼠; 50 ug/ml; 图 6d
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-2A5)被用于被用于抑制或激活实验在小鼠样本上浓度为50 ug/ml (图 6d). J Exp Med (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 酶联免疫吸附测定; 小鼠; 1:250; 图 s7a
赛默飞世尔白细胞介素10抗体(eBiosciences, 14-7101-85)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:250 (图 s7a). Nat Commun (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔白细胞介素10抗体(eBioscience, 17-7101)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
大鼠 单克隆(JES5-2A5)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔白细胞介素10抗体(eBioscience, 16-7102-85)被用于被用于免疫印迹在小鼠样本上 (图 4). Dis Model Mech (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16A3)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Clin Invest (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4, 5
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). PLoS Pathog (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔白细胞介素10抗体(eBiosciences, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Immunol Cell Biol (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔白细胞介素10抗体(eBiosciences, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Immunol (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔白细胞介素10抗体(eBioscience, 14-8101-62)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 酶联免疫吸附测定; 小鼠; 图 6
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 6). Mucosal Immunol (2016) ncbi
大鼠 单克隆(JES5-2A5)
  • 酶联免疫吸附测定; 小鼠; 图 6
赛默飞世尔白细胞介素10抗体(EBioscience, JES5-2A5)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 6). Mucosal Immunol (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔白细胞介素10抗体(eBioscience, 11-7101-81)被用于被用于流式细胞仪在小鼠样本上 (图 3). Cancer Res (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 5C
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 5C). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔白细胞介素10抗体(eBioscience, 17-7101-81)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. J Invest Dermatol (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 免疫细胞化学; 小鼠
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于免疫细胞化学在小鼠样本上. J Neuroinflammation (2013) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2013) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2012) ncbi
小鼠 单克隆(2G101H7)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔白细胞介素10抗体(Invitrogen, ARC9102)被用于被用于免疫印迹在大鼠样本上 (图 6). Fundam Clin Pharmacol (2013) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 2, 3
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 2, 3). J Immunol (2010) ncbi
大鼠 单克隆(JES5-2A5)
  • 酶联免疫吸附测定; 小鼠; 图 2b
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-2A5)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2b). J Immunol (2010) ncbi
大鼠 单克隆(JES5-16E3)
  • 酶联免疫吸附测定; 小鼠; 图 2b
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2b). J Immunol (2010) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2009) ncbi
大鼠 单克隆(JES052A5)
  • 抑制或激活实验; 小鼠; 50 ug/ml
赛默飞世尔白细胞介素10抗体(BioSource, JES5-2A5)被用于被用于抑制或激活实验在小鼠样本上浓度为50 ug/ml. J Immunol (2008) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Int J Parasitol (2008) ncbi
大鼠 单克隆(JES052A5)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素10抗体(Caltag, JES5-2A5)被用于被用于流式细胞仪在小鼠样本上. Parasite Immunol (2007) ncbi
大鼠 单克隆(JES052A5)
  • 流式细胞仪; 小鼠; 图 6C
赛默飞世尔白细胞介素10抗体(Caltag, JES5-2A5)被用于被用于流式细胞仪在小鼠样本上 (图 6C). Hepatology (2007) ncbi
大鼠 单克隆(JES052A5)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔白细胞介素10抗体(Caltag, JES5-2A5)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2006) ncbi
大鼠 单克隆(JES052A5)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔白细胞介素10抗体(Caltag, JES5-2A5)被用于被用于流式细胞仪在小鼠样本上 (图 7). Parasite Immunol (2005) ncbi
大鼠 单克隆(JES5-2A5)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔白细胞介素10抗体(eBioscience, JES5-2A5)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Res (2005) ncbi
大鼠 单克隆(JES052A5)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔白细胞介素10抗体(Caltag, JES5-2A5)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2004) ncbi
大鼠 单克隆(JES052A5)
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔白细胞介素10抗体(Biosource, JES5-2A5)被用于被用于酶联免疫吸附测定在小鼠样本上. J Autoimmun (2004) ncbi
BioLegend
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 6d, s4a
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 6d, s4a). Front Cell Infect Microbiol (2022) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 6e
BioLegend白细胞介素10抗体(BioLegend, 505008)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Sci Adv (2022) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:100; 图 4d
BioLegend白细胞介素10抗体(BioLegend, 505005)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4d). Nat Commun (2022) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Oncoimmunology (2022) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:50; 图 s3b
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s3b). Nat Commun (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:100; 图 1c
BioLegend白细胞介素10抗体(Biolegend, JEs5-16E3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). Nat Commun (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • mass cytometry; 小鼠; 图 5c
BioLegend白细胞介素10抗体(Biolegend, 505002)被用于被用于mass cytometry在小鼠样本上 (图 5c). Nat Commun (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend白细胞介素10抗体(Biolegend, 505008)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 11a
BioLegend白细胞介素10抗体(BioLegend, 505021)被用于被用于流式细胞仪在小鼠样本上 (图 11a). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:200; 图 4
BioLegend白细胞介素10抗体(BioLegend, 505031)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4). Nat Commun (2020) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s4c
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). J Neuroinflammation (2020) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend白细胞介素10抗体(BioLegend, 505007)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2020) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend白细胞介素10抗体(Biolegend, 505022)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Immunity (2019) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend白细胞介素10抗体(BioLegend, 505008)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Cyst Fibros (2019) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell Rep (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素10抗体(Biolegend, 505021)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Exp Med (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Nat Med (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Exp Med (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Oncotarget (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 人类; 图 5f
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在人类样本上 (图 5f). Cytokine (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4g
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 4g). Nature (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Gastroenterology (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 2
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素10抗体(BioLegend, 505014)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(JES5-2A5)
  • 免疫组化; 小鼠; 10 ug/ml
BioLegend白细胞介素10抗体(Biolegend, JES5-2A5)被用于被用于免疫组化在小鼠样本上浓度为10 ug/ml. Eur J Immunol (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Transplantation (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素10抗体(BioLegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素10抗体(Biolegend, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Immunol Cell Biol (2014) ncbi
圣克鲁斯生物技术
大鼠 单克隆(JES5-2A5)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4b
圣克鲁斯生物技术白细胞介素10抗体(Santa Cruz, sc-52561)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4b). Nat Commun (2022) ncbi
大鼠 单克隆(NYRmIL-10)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 11b
圣克鲁斯生物技术白细胞介素10抗体(Santa Cruz, sc-73309)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 11b). Front Immunol (2021) ncbi
小鼠 单克隆(A-2)
  • 免疫印迹; 小鼠; 1:200; 图 5a
圣克鲁斯生物技术白细胞介素10抗体(Santa Cruz, sc-365858)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(A-2)
  • 免疫印迹; 大鼠; 1:1000; 图 11a
圣克鲁斯生物技术白细胞介素10抗体(Santa Cruz Biotechnology, sc-365858)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 11a). J Neuroinflammation (2021) ncbi
小鼠 单克隆(A-2)
  • 免疫组化; 小鼠; 1:100; 图 4a
圣克鲁斯生物技术白细胞介素10抗体(Santa Cruz Biotechnology, sc-365858)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a). Mol Metab (2021) ncbi
小鼠 单克隆(A-2)
  • 免疫细胞化学; gerbils; 1:50; 图 6a-c
圣克鲁斯生物技术白细胞介素10抗体(Santa Cruz, CA, USA, sc-365858)被用于被用于免疫细胞化学在gerbils样本上浓度为1:50 (图 6a-c). Mar Drugs (2020) ncbi
小鼠 单克隆(A-2)
  • 免疫组化; 小鼠; 1:50; 图 s2a
圣克鲁斯生物技术白细胞介素10抗体(Santa, sc-365858)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s2a). Oncogene (2019) ncbi
小鼠 单克隆(A-2)
  • 免疫印迹; 小鼠; 1:200; 图 7h
圣克鲁斯生物技术白细胞介素10抗体(SantaCruz, sc-365858)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 7h). Cardiovasc Diabetol (2017) ncbi
小鼠 单克隆(A-2)
  • 免疫印迹; 小鼠; 图 6c
圣克鲁斯生物技术白细胞介素10抗体(SantaCruz, sc-365858)被用于被用于免疫印迹在小鼠样本上 (图 6c). PLoS Pathog (2016) ncbi
大鼠 单克隆(JES5-2A5)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术白细胞介素10抗体(santa Cruz, SC52561)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(NYRmIL-10)
  • 免疫印迹; 小鼠; 1:1000; 图 3
圣克鲁斯生物技术白细胞介素10抗体(Santa Cruz Biotechnology, sc-73309)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(A-2)
  • 免疫组化; 大鼠; 1:200; 图 3b
圣克鲁斯生物技术白细胞介素10抗体(Santa Cruz, sc-365858)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3b). J Dent Res (2015) ncbi
艾博抗(上海)贸易有限公司
大鼠 单克隆(JES5-2A5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8b
艾博抗(上海)贸易有限公司白细胞介素10抗体(Abcam, ab189392)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 6e
艾博抗(上海)贸易有限公司白细胞介素10抗体(Abcam, ab9969)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 6e). Aging (Albany NY) (2021) ncbi
大鼠 单克隆(JES5-2A5)
  • 免疫组化; 大鼠; 图 3c
艾博抗(上海)贸易有限公司白细胞介素10抗体(Abcam, ab189392)被用于被用于免疫组化在大鼠样本上 (图 3c). Eur J Dent (2021) ncbi
大鼠 单克隆(JES5-2A5)
  • 免疫印迹; 大鼠; 图 8e
艾博抗(上海)贸易有限公司白细胞介素10抗体(Abcam, ab33471)被用于被用于免疫印迹在大鼠样本上 (图 8e). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1.5 ug/ml; 图 6a, 6b
艾博抗(上海)贸易有限公司白细胞介素10抗体(Abcam, ab9969)被用于被用于免疫印迹在小鼠样本上浓度为1.5 ug/ml (图 6a, 6b). BMC Nephrol (2019) ncbi
大鼠 单克隆(JES5-2A5)
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司白细胞介素10抗体(Abcam, ab189392)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6a
艾博抗(上海)贸易有限公司白细胞介素10抗体(Abcam, ab9969)被用于被用于免疫印迹在大鼠样本上 (图 6a). J Neuroinflammation (2017) ncbi
大鼠 单克隆(JES5-2A5)
  • 免疫印迹; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司白细胞介素10抗体(Abcam, ab33471)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司白细胞介素10抗体(abcam, ab9969)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). J Neuroinflammation (2016) ncbi
大鼠 单克隆(JES5-2A5)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司白细胞介素10抗体(Abcam, ab33471)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). Cell Mol Immunol (2016) ncbi
Bio X Cell
大鼠 单克隆(JES5-2A5)
  • 抑制或激活实验; 小鼠; 图 3d
Bio X Cell白细胞介素10抗体(BioXcell, JES5-2A5)被用于被用于抑制或激活实验在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(JES5-2A5)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 1c
Bio X Cell白细胞介素10抗体(BioXcell, JES5-2A5)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 1c). J Immunol (2017) ncbi
大鼠 单克隆(JES5-2A5)
  • 抑制或激活实验; 小鼠; 图 9b
Bio X Cell白细胞介素10抗体(BioXCell, JES5-2A5)被用于被用于抑制或激活实验在小鼠样本上 (图 9b). Nat Commun (2015) ncbi
大鼠 单克隆(JES5-2A5)
  • 抑制或激活实验; 小鼠; 图 5
Bio X Cell白细胞介素10抗体(Bio X Cell, JES5-2A)被用于被用于抑制或激活实验在小鼠样本上 (图 5). J Exp Med (2015) ncbi
安迪生物R&D
大鼠 单克隆(JES052A5)
  • 抑制或激活实验; 小鼠; 图 11e
安迪生物R&D白细胞介素10抗体(R&D Systems, MAB417)被用于被用于抑制或激活实验在小鼠样本上 (图 11e). Cell Mol Gastroenterol Hepatol (2022) ncbi
碧迪BD
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
碧迪BD白细胞介素10抗体(BD, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). Nat Commun (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4i, 7a, 7b
碧迪BD白细胞介素10抗体(BD Pharmingen, 561059)被用于被用于流式细胞仪在小鼠样本上 (图 4i, 7a, 7b). Cell Mol Gastroenterol Hepatol (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Mucosal Immunol (2021) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD白细胞介素10抗体(BD, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 4). BMC Infect Dis (2019) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD白细胞介素10抗体(BD, 554468)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Rep (2019) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 s3e
碧迪BD白细胞介素10抗体(BD, 554467)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Cell (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD白细胞介素10抗体(BD Biosciences-Pharmingen, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Clin Invest (2018) ncbi
大鼠 单克隆(JES5-2A5)
  • 酶联免疫吸附测定; 小鼠; 图 3a
碧迪BD白细胞介素10抗体(BD, Jess-2A5)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 酶联免疫吸附测定; 小鼠; 图 3a
碧迪BD白细胞介素10抗体(BD, Jess-16E3)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
大鼠 单克隆(JES5-16E3)
  • 抑制或激活实验; 小鼠; 图 4c
碧迪BD白细胞介素10抗体(BD, 554463)被用于被用于抑制或激活实验在小鼠样本上 (图 4c). Sci Rep (2017) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 12
碧迪BD白细胞介素10抗体(BD Bioscience, 554467)被用于被用于流式细胞仪在小鼠样本上 (图 12). Front Immunol (2017) ncbi
大鼠 单克隆(JES5-2A5)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD白细胞介素10抗体(BD Pharmingen, JES5-2A5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 1A; 2D
碧迪BD白细胞介素10抗体(BD, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 1A; 2D). J Exp Med (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD白细胞介素10抗体(BD Bioscience, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Endod (2016) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD白细胞介素10抗体(BD Biosciences, JES65-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2016) ncbi
大鼠 单克隆(JES5-16E3)
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-16E3)被用于. J Immunol (2015) ncbi
大鼠 单克隆(JES5-2A5)
  • 酶联免疫吸附测定; 小鼠; 图 5
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-2A5)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). J Immunol (2015) ncbi
大鼠 单克隆(SXC-1)
  • 酶联免疫吸附测定; 小鼠; 图 2
碧迪BD白细胞介素10抗体(BD Biosciences, 554423)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). Autophagy (2015) ncbi
大鼠 单克隆(JES5-2A5)
  • 酶联免疫吸附测定; 小鼠; 图 2
碧迪BD白细胞介素10抗体(BD Biosciences, 551215)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). Autophagy (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 人类; 图 3
碧迪BD白细胞介素10抗体(BD Bioscience, 554467)被用于被用于流式细胞仪在人类样本上 (图 3). Cell Res (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠; 图 8
碧迪BD白细胞介素10抗体(BD Pharmingen, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上 (图 8). Clin Exp Immunol (2015) ncbi
大鼠 单克隆(JES5-2A5)
  • 酶联免疫吸附测定; 小鼠; 图 3
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-2A5)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). Transpl Int (2015) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
碧迪BD白细胞介素10抗体(BD, JEs5-16E3)被用于被用于流式细胞仪在小鼠样本上. Neurotherapeutics (2015) ncbi
大鼠 单克隆(JES5-2A5)
  • 酶联免疫吸附测定; 小鼠; 2,000 ug/ml
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-2A5)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为2,000 ug/ml. Nat Commun (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 人类
碧迪BD白细胞介素10抗体(BD PharMingen, 554468)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(JES5-16E3)
  • 流式细胞仪; 小鼠
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-16E3)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2014) ncbi
大鼠 单克隆(JES5-2A5)
  • 酶联免疫吸附测定; 小鼠; 图 3
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-2A5)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). J Cardiothorac Surg (2012) ncbi
大鼠 单克隆(JES5-16E3)
  • 酶联免疫吸附测定; 小鼠; 图 3
碧迪BD白细胞介素10抗体(BD Biosciences, JES5-16E3)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). J Cardiothorac Surg (2012) ncbi
文章列表
  1. Hou X, Shi Y, Kang X, Rousu Z, Li D, Wang M, et al. Echinococcus granulosus: The establishment of the metacestode in the liver is associated with control of the CD4+ T-cell-mediated immune response in patients with cystic echinococcosis and a mouse model. Front Cell Infect Microbiol. 2022;12:983119 pubmed 出版商
  2. Que W, Ma K, Hu X, Guo W, Li X. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. Sci Adv. 2022;8:eabo4413 pubmed 出版商
  3. Kasahara K, Sasaki N, Amin H, Tanaka T, Horibe S, Yamashita T, et al. Depletion of Foxp3+ regulatory T cells augments CD4+ T cell immune responses in atherosclerosis-prone hypercholesterolemic mice. Heliyon. 2022;8:e09981 pubmed 出版商
  4. Yong L, Yu Y, Li B, Ge H, Zhen Q, Mao Y, et al. Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nat Commun. 2022;13:4255 pubmed 出版商
  5. Lu L, Li T, Feng X, Liu Z, Liu Y, Chao T, et al. Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog. 2022;18:e1010596 pubmed 出版商
  6. Pan C, Wu Q, Wang S, Mei Z, Zhang L, Gao X, et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology. 2022;11:2073010 pubmed 出版商
  7. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  8. Cortes J, Filip I, Albero R, Patiño Galindo J, Quinn S, Lin W, et al. Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T cell lymphoma. Cell Rep. 2022;39:110695 pubmed 出版商
  9. Liang Z, He P, Han Y, Yun C. Survival of Stem Cells and Progenitors in the Intestine Is Regulated by LPA5-Dependent Signaling. Cell Mol Gastroenterol Hepatol. 2022;14:129-150 pubmed 出版商
  10. Keller E, Dvorina N, Jørgensen T. Spontaneous CD4+ T Cell Activation and Differentiation in Lupus-Prone B6.Nba2 Mice Is IFNAR-Independent. Int J Mol Sci. 2022;23: pubmed 出版商
  11. Zhang M, Pan X, Fujiwara K, Jurcak N, Muth S, Zhou J, et al. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct Target Ther. 2021;6:366 pubmed 出版商
  12. Yang C, Lei L, Collins J, Briones M, Ma L, Sturdevant G, et al. Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor. Nat Commun. 2021;12:5454 pubmed 出版商
  13. Santana K, Righetti R, Breda C, Domínguez Amorocho O, Ramalho T, Dantas F, et al. Cholesterol-Ester Transfer Protein Alters M1 and M2 Macrophage Polarization and Worsens Experimental Elastase-Induced Pulmonary Emphysema. Front Immunol. 2021;12:684076 pubmed 出版商
  14. Mohamed A, El Magd M, El Said K, El Sharnouby M, Tousson E, Salama A. Potential therapeutic effect of thymoquinone and/or bee pollen on fluvastatin-induced hepatitis in rats. Sci Rep. 2021;11:15688 pubmed 出版商
  15. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  16. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  17. Lin Q, Rong L, Jia X, Li R, Yu B, Hu J, et al. IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella. Nat Commun. 2021;12:2537 pubmed 出版商
  18. Zheng W, Song H, Luo Z, Wu H, Chen L, Wang Y, et al. Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  19. Akgul A, Maddaloni M, Jun S, Nelson A, Odreman V, Hoffman C, et al. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren's syndrome. Arthritis Res Ther. 2021;23:99 pubmed 出版商
  20. Mao F, Lv Y, Hao C, Teng Y, Liu Y, Cheng P, et al. Helicobacter pylori-Induced Rev-erbα Fosters Gastric Bacteria Colonization by Impairing Host Innate and Adaptive Defense. Cell Mol Gastroenterol Hepatol. 2021;12:395-425 pubmed 出版商
  21. Fern xe1 ndez Albarral J, Salazar J, De Hoz R, Marco E, Mart xed n S xe1 nchez B, Flores Salguero E, et al. Retinal Molecular Changes Are Associated with Neuroinflammation and Loss of RGCs in an Experimental Model of Glaucoma. Int J Mol Sci. 2021;22: pubmed 出版商
  22. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394 pubmed 出版商
  23. Liu J, Wang C, Cheng T, Rixiati Y, Ji C, Deng M, et al. Circadian Clock Disruption Suppresses PDL1+ Intraepithelial B Cells in Experimental Colitis and Colitis-Associated Colorectal Cancer. Cell Mol Gastroenterol Hepatol. 2021;12:251-276 pubmed 出版商
  24. Yang P, Chou C, Huang C, Wen W, Chen H, Shun C, et al. Obesity alters ovarian folliculogenesis through disrupted angiogenesis from increased IL-10 production. Mol Metab. 2021;49:101189 pubmed 出版商
  25. Ni X, Zhang Y, Jia L, Lu W, Zhu Q, Ren J, et al. Inhibition of Notch1-mediated inflammation by intermedin protects against abdominal aortic aneurysm via PI3K/Akt signaling pathway. Aging (Albany NY). 2021;13:5164-5184 pubmed 出版商
  26. Sari R, Revianti S, Andriani D, Prananingrum W, Rahayu R, Sudjarwo S. The Effect of Anadara granosa Shell's-Stichopus hermanni Scaffold on CD44 and IL-10 Expression to Decrease Osteoclasts in Socket Healing. Eur J Dent. 2021;15:228-235 pubmed 出版商
  27. Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, et al. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics. 2021;11:361-378 pubmed 出版商
  28. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  29. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  30. Lee T, Ahn J, Park C, Kim B, Park Y, Lee J, et al. Pre-Treatment with Laminarin Protects Hippocampal CA1 Pyramidal Neurons and Attenuates Reactive Gliosis Following Transient Forebrain Ischemia in Gerbils. Mar Drugs. 2020;18: pubmed 出版商
  31. Thiele Née Schrewe L, Guse K, Tietz S, Remlinger J, Demir S, Pedreiturria X, et al. Functional relevance of the multi-drug transporter abcg2 on teriflunomide therapy in an animal model of multiple sclerosis. J Neuroinflammation. 2020;17:9 pubmed 出版商
  32. Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H, et al. Changes of CD103-expressing pulmonary CD4+ and CD8+ T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis. 2019;19:999 pubmed 出版商
  33. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  34. Fu D, Senouthai S, Wang J, You Y. Vasoactive intestinal peptide ameliorates renal injury in a pristane-induced lupus mouse model by modulating Th17/Treg balance. BMC Nephrol. 2019;20:350 pubmed 出版商
  35. Garg G, Muschaweckh A, Moreno H, Vasanthakumar A, Floess S, Lepennetier G, et al. Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Rep. 2019;26:1854-1868.e5 pubmed 出版商
  36. Britton G, Contijoch E, Mogno I, Vennaro O, Llewellyn S, Ng R, et al. Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt+ Regulatory T Cells and Exacerbate Colitis in Mice. Immunity. 2019;50:212-224.e4 pubmed 出版商
  37. Das S, Bar Sagi D. BTK signaling drives CD1dhiCD5+ regulatory B-cell differentiation to promote pancreatic carcinogenesis. Oncogene. 2019;38:3316-3324 pubmed 出版商
  38. Garić D, Tao S, Ahmed E, Youssef M, Kanagaratham C, Shah J, et al. Depletion of BAFF cytokine exacerbates infection in Pseudomonas aeruginosa infected mice. J Cyst Fibros. 2019;18:349-356 pubmed 出版商
  39. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  40. Qiu T, Pei P, Yao X, Jiang L, Wei S, Wang Z, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018;9:946 pubmed 出版商
  41. Tilstra J, Avery L, Menk A, Gordon R, Smita S, Kane L, et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J Clin Invest. 2018;128:4884-4897 pubmed 出版商
  42. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  43. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  44. Georgiev H, Ravens I, Papadogianni G, Halle S, Malissen B, Loots G, et al. Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Front Immunol. 2018;9:714 pubmed 出版商
  45. Tanaka S, Pfleger C, Lai J, Roan F, Sun S, Ziegler S. KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Rep. 2018;23:796-807 pubmed 出版商
  46. Varelias A, Bunting M, Ormerod K, Koyama M, Olver S, Straube J, et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J Clin Invest. 2018;128:1919-1936 pubmed 出版商
  47. Metghalchi S, Vandestienne M, Haddad Y, Esposito B, Dairou J, Tedgui A, et al. Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet. PLoS ONE. 2018;13:e0193737 pubmed 出版商
  48. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  49. Johnson R, Yu H, Strank N, Karunakaran K, Zhu Y, Brunham R. B Cell Presentation of Chlamydia Antigen Selects Out Protective CD4?13 T Cells: Implications for Genital Tract Tissue-Resident Memory Lymphocyte Clusters. Infect Immun. 2018;86: pubmed 出版商
  50. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  51. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  52. Berer K, Gerdes L, Cekanaviciute E, Jia X, Xiao L, Xia Z, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A. 2017;114:10719-10724 pubmed 出版商
  53. Funken D, Ishikawa Ankerhold H, Uhl B, Lerchenberger M, Rentsch M, Mayr D, et al. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver. FASEB J. 2017;31:4796-4808 pubmed 出版商
  54. Aroor A, Habibi J, Kandikattu H, Garro Kacher M, Barron B, Chen D, et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol. 2017;16:61 pubmed 出版商
  55. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  56. Acharya N, Penukonda S, Shcheglova T, Hagymasi A, Basu S, Srivastava P. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc Natl Acad Sci U S A. 2017;114:5005-5010 pubmed 出版商
  57. Chien C, Yu H, Chen S, Chiang B. Characterization of c-Maf+Foxp3- Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells. Sci Rep. 2017;7:46348 pubmed 出版商
  58. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  59. van der Vlugt L, Obieglo K, Ozir Fazalalikhan A, Sparwasser T, Haeberlein S, Smits H. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol. 2017;47:545-554 pubmed 出版商
  60. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  61. Kitada S, Kayama H, Okuzaki D, Koga R, Kobayashi M, Arima Y, et al. BATF2 inhibits immunopathological Th17 responses by suppressing Il23a expression during Trypanosoma cruzi infection. J Exp Med. 2017;214:1313-1331 pubmed 出版商
  62. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  63. Sanges S, Jendoubi M, Kavian N, Hauspie C, Speca S, Crave J, et al. B Cell Homeostasis and Functional Properties Are Altered in an Hypochlorous Acid-Induced Murine Model of Systemic Sclerosis. Front Immunol. 2017;8:53 pubmed 出版商
  64. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14:36 pubmed 出版商
  65. Ulrich B, Verdan F, McKenzie A, Kaplan M, Olson M. STAT3 Activation Impairs the Stability of Th9 Cells. J Immunol. 2017;198:2302-2309 pubmed 出版商
  66. Glenn J, Smith M, Xue P, Chan Li Y, Collins S, Calabresi P, et al. CNS-targeted autoimmunity leads to increased influenza mortality in mice. J Exp Med. 2017;214:297-307 pubmed 出版商
  67. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  68. Tahiri H, Omri S, Yang C, Duhamel F, Samarani S, Ahmad A, et al. Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization. Sci Rep. 2016;6:37391 pubmed 出版商
  69. Ulland T, Jain N, Hornick E, Elliott E, Clay G, Sadler J, et al. Nlrp12 mutation causes C57BL/6J strain-specific defect in neutrophil recruitment. Nat Commun. 2016;7:13180 pubmed 出版商
  70. Wan X, Wen J, Koo S, Liang L, Garg N. SIRT1-PGC1α-NFκB Pathway of Oxidative and Inflammatory Stress during Trypanosoma cruzi Infection: Benefits of SIRT1-Targeted Therapy in Improving Heart Function in Chagas Disease. PLoS Pathog. 2016;12:e1005954 pubmed 出版商
  71. Bombeiro A, Thomé R, Oliveira Nunes S, Monteiro Moreira B, Verinaud L, Oliveira A. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS ONE. 2016;11:e0161463 pubmed 出版商
  72. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  73. Peda J, Salah S, Wallace D, Fields P, Grantham C, Fields T, et al. Autocrine IL-10 activation of the STAT3 pathway is required for pathological macrophage differentiation in polycystic kidney disease. Dis Model Mech. 2016;9:1051-61 pubmed 出版商
  74. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  75. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  76. Ferreirinha P, Pérez Cabezas B, Correia A, Miyazawa B, França A, Carvalhais V, et al. Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun. 2016;84:2933-43 pubmed 出版商
  77. Xie L, Zhou F, Liu X, Fang Y, Yu Z, Song N, et al. Serum microRNA181a: Correlates with the intracellular cytokine levels and a potential biomarker for acute graft-versus-host disease. Cytokine. 2016;85:37-44 pubmed 出版商
  78. Chu H, Khosravi A, Kusumawardhani I, Kwon A, Vasconcelos A, Cunha L, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352:1116-20 pubmed 出版商
  79. Lee K, Lee H, Lin H, Tsay H, Tsai F, Shyue S, et al. Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease. J Neuroinflammation. 2016;13:92 pubmed 出版商
  80. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  81. Baglaenko Y, Manion K, Chang N, Gracey E, Loh C, Wither J. IL-10 Production Is Critical for Sustaining the Expansion of CD5+ B and NKT Cells and Restraining Autoantibody Production in Congenic Lupus-Prone Mice. PLoS ONE. 2016;11:e0150515 pubmed 出版商
  82. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  83. Bowles J, Feng C, Miles K, Ineson J, Spiller C, Koopman P. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries. Nat Commun. 2016;7:10845 pubmed 出版商
  84. Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, et al. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 2016;6:20588 pubmed 出版商
  85. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  86. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  87. Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G. Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol. 2016;94:388-99 pubmed 出版商
  88. Francisconi C, Vieira A, Biguetti C, Glowacki A, Trombone A, Letra A, et al. Characterization of the Protective Role of Regulatory T Cells in Experimental Periapical Lesion Development and Their Chemoattraction Manipulation as a Therapeutic Tool. J Endod. 2016;42:120-6 pubmed 出版商
  89. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol. 2016;90:650-8 pubmed 出版商
  90. da Rocha A, Pereira B, Pauli J, Cintra D, De Souza C, Ropelle E, et al. Downhill Running-Based Overtraining Protocol Improves Hepatic Insulin Signaling Pathway without Concomitant Decrease of Inflammatory Proteins. PLoS ONE. 2015;10:e0140020 pubmed 出版商
  91. Manlove L, Berquam Vrieze K, Pauken K, Williams R, Jenkins M, Farrar M. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells. J Immunol. 2015;195:4028-37 pubmed 出版商
  92. Fiume G, Scialdone A, Albano F, Rossi A, Tuccillo F, Rea D, et al. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice. Sci Rep. 2015;5:13864 pubmed 出版商
  93. Poncini C, Ilarregui J, Batalla E, Engels S, Cerliani J, Cucher M, et al. Trypanosoma cruzi Infection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1-Dependent Mechanisms. J Immunol. 2015;195:3311-24 pubmed 出版商
  94. Rapovy S, Zhao J, Bricker R, Schmidt S, Setchell K, Qualls J. Differential Requirements for L-Citrulline and L-Arginine during Antimycobacterial Macrophage Activity. J Immunol. 2015;195:3293-300 pubmed 出版商
  95. Smith K, Filbey K, Reynolds L, Hewitson J, Harcus Y, Boon L, et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 2016;9:428-43 pubmed 出版商
  96. Redpath S, Van Der Werf N, MacDonald A, Maizels R, Taylor M. Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase. Infect Immun. 2015;83:3881-9 pubmed 出版商
  97. Kratochvill F, Gratz N, Qualls J, Van De Velde L, Chi H, Kovarik P, et al. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res. 2015;75:3054-64 pubmed 出版商
  98. Jiang Y, Gao Q, Wang L, Guo C, Zhu F, Wang B, et al. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice. Cell Mol Immunol. 2016;13:524-34 pubmed 出版商
  99. Weindel C, Richey L, Bolland S, Mehta A, Kearney J, Huber B. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy. 2015;11:1010-24 pubmed 出版商
  100. Deppisch N, Ruf P, Eissler N, Neff F, Buhmann R, Lindhofer H, et al. Efficacy and Tolerability of a GD2-Directed Trifunctional Bispecific Antibody in a Preclinical Model: Subcutaneous Administration Is Superior to Intravenous Delivery. Mol Cancer Ther. 2015;14:1877-83 pubmed 出版商
  101. Lu K, Keppler S, Leithäuser F, Mattfeldt T, Castello A, Kostezka U, et al. Nck adaptor proteins modulate differentiation and effector function of T cells. J Leukoc Biol. 2015;98:301-11 pubmed 出版商
  102. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  103. Holm J, Sorobetea D, Kiilerich P, Ramayo Caldas Y, Estellé J, Ma T, et al. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli. PLoS ONE. 2015;10:e0125495 pubmed 出版商
  104. Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich P, Derouazi M, Walker P. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol. 2015;45:2263-75 pubmed 出版商
  105. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  106. Tsukamoto H, Senju S, Matsumura K, Swain S, Nishimura Y. IL-6-mediated environmental conditioning of defective Th1 differentiation dampens antitumour immune responses in old age. Nat Commun. 2015;6:6702 pubmed 出版商
  107. Badillo Godinez O, Gutierrez Xicotencatl L, Plett Torres T, Pedroza Saavedra A, González Jaimes A, Chihu Amparan L, et al. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice. Vaccine. 2015;33:4228-37 pubmed 出版商
  108. Lal G, Nakayama Y, Sethi A, Singh A, Burrell B, Kulkarni N, et al. Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation. 2015;99:1817-28 pubmed 出版商
  109. Dal Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong C, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447-56 pubmed 出版商
  110. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  111. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  112. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  113. Frossard C, Asigbetse K, Burger D, Eigenmann P. Gut T cell receptor-γδ(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin Exp Immunol. 2015;180:118-30 pubmed 出版商
  114. Uchiyama M, Jin X, Yin E, Shimokawa T, Niimi M. Treadmill exercise induces murine cardiac allograft survival and generates regulatory T cell. Transpl Int. 2015;28:352-62 pubmed 出版商
  115. Patel P, Julien J, Kriz J. Early-stage treatment with Withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12:217-33 pubmed 出版商
  116. He D, Kou X, Luo Q, Yang R, Liu D, Wang X, et al. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J Dent Res. 2015;94:129-39 pubmed 出版商
  117. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  118. Johannesson B, Sattler S, Semenova E, Pastore S, Kennedy Lydon T, Sampson R, et al. Insulin-like growth factor-1 induces regulatory T cell-mediated suppression of allergic contact dermatitis in mice. Dis Model Mech. 2014;7:977-85 pubmed 出版商
  119. Berod L, Stüve P, Varela F, Behrends J, Swallow M, Kruse F, et al. Rapid rebound of the Treg compartment in DEREG mice limits the impact of Treg depletion on mycobacterial burden, but prevents autoimmunity. PLoS ONE. 2014;9:e102804 pubmed 出版商
  120. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  121. Bedke T, Iannitti R, De Luca A, Giovannini G, Fallarino F, Berges C, et al. Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3+ regulatory T cells in humans and mice. Immunol Cell Biol. 2014;92:659-70 pubmed 出版商
  122. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  123. Liu B, Cao Y, Huizinga T, Hafler D, Toes R. TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells. Eur J Immunol. 2014;44:2121-9 pubmed 出版商
  124. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  125. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  126. Samuelson E, Laird R, Papillion A, Tatum A, Princiotta M, Hayes S. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS ONE. 2014;9:e92054 pubmed 出版商
  127. Chatterjee S, Eby J, Al Khami A, Soloshchenko M, Kang H, Kaur N, et al. A quantitative increase in regulatory T cells controls development of vitiligo. J Invest Dermatol. 2014;134:1285-1294 pubmed 出版商
  128. Bodhankar S, Chen Y, Vandenbark A, Murphy S, Offner H. PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation. 2013;10:111 pubmed 出版商
  129. Barron L, Smith A, El Kasmi K, Qualls J, Huang X, Cheever A, et al. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS ONE. 2013;8:e61961 pubmed 出版商
  130. Uchiyama M, Jin X, Zhang Q, Hirai T, Amano A, Bashuda H, et al. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells. J Cardiothorac Surg. 2012;7:26 pubmed 出版商
  131. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney N, Schuijs M, et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7:e32371 pubmed 出版商
  132. Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster K, Sprent J, et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 2012;5:161-72 pubmed 出版商
  133. Galicia Moreno M, Favari L, Muriel P. Trolox mitigates fibrosis in a bile duct ligation model. Fundam Clin Pharmacol. 2013;27:308-18 pubmed 出版商
  134. Lin P, Sun L, Thibodeaux S, Ludwig S, Vadlamudi R, Hurez V, et al. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol. 2010;185:2747-53 pubmed 出版商
  135. Nijnik A, Madera L, Ma S, Waldbrook M, Elliott M, Easton D, et al. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol. 2010;184:2539-50 pubmed 出版商
  136. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  137. Ribeiro de Almeida C, Heath H, Krpic S, Dingjan G, van Hamburg J, Bergen I, et al. Critical role for the transcription regulator CCCTC-binding factor in the control of Th2 cytokine expression. J Immunol. 2009;182:999-1010 pubmed
  138. Reinwald S, Wiethe C, Westendorf A, Breloer M, Probst Kepper M, Fleischer B, et al. CD83 expression in CD4+ T cells modulates inflammation and autoimmunity. J Immunol. 2008;180:5890-7 pubmed
  139. Wanasen N, Xin L, Soong L. Pathogenic role of B cells and antibodies in murine Leishmania amazonensis infection. Int J Parasitol. 2008;38:417-29 pubmed
  140. Walsh C, Smith P, Fallon P. Role for CTLA-4 but not CD25+ T cells during Schistosoma mansoni infection of mice. Parasite Immunol. 2007;29:293-308 pubmed
  141. Erhardt A, Biburger M, Papadopoulos T, Tiegs G. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology. 2007;45:475-85 pubmed
  142. Mangan N, Van Rooijen N, McKenzie A, Fallon P. Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J Immunol. 2006;176:138-47 pubmed
  143. Furze R, Selkirk M. Comparative dynamics and phenotype of the murine immune response to Trichinella spiralis and Trichinella pseudospiralis. Parasite Immunol. 2005;27:181-8 pubmed
  144. Guiducci C, Vicari A, Sangaletti S, Trinchieri G, Colombo M. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 2005;65:3437-46 pubmed
  145. Mangan N, Fallon R, Smith P, Van Rooijen N, McKenzie A, Fallon P. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol. 2004;173:6346-56 pubmed
  146. Cabarrocas J, Piaggio E, Zappulla J, Desbois S, Mars L, Lassmann H, et al. A transgenic mouse model for T-cell ignorance of a glial autoantigen. J Autoimmun. 2004;22:179-89 pubmed