这是一篇来自已证抗体库的有关小鼠 白细胞介素 (Il2) 的综述,是根据91篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合白细胞介素 抗体。
白细胞介素 同义词: Il-2

赛默飞世尔
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素抗体(eBiosciences, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2021) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 1:100; 图 2i
赛默飞世尔白细胞介素抗体(eBioscience, 12-7021-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2i). EMBO Mol Med (2020) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 s4e
赛默飞世尔白细胞介素抗体(eBioscience, 48-7021-82)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). Cell Rep (2020) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 1:250; 图 s5a
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 s5a). Mol Ther Methods Clin Dev (2020) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 6e
赛默飞世尔白细胞介素抗体(eBioscience, 11-7021-82)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Cell Rep (2019) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔白细胞介素抗体(Thermo Fisher Scientific, 17-7021-82)被用于被用于流式细胞仪在小鼠样本上 (图 2d). J Clin Invest (2019) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔白细胞介素抗体(eBiosciences, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(JES6-1A12)
  • 抑制或激活实验; 小鼠; 图 s3a
赛默飞世尔白细胞介素抗体(Thermo Fisher Scientific, JES6-1A12)被用于被用于抑制或激活实验在小鼠样本上 (图 s3a). Eur J Immunol (2018) ncbi
大鼠 单克隆(1A12)
  • 酶联免疫吸附测定; 小鼠; 图 3a
赛默飞世尔白细胞介素抗体(Pierce-Thermo Fisher, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
大鼠 单克隆(JES6-5H4)
  • 酶联免疫吸附测定; 小鼠; 图 3a
赛默飞世尔白细胞介素抗体(Pierce-Thermo Fisher, Jes6-5H4)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
大鼠 单克隆(5H4)
  • 流式细胞仪; 小鼠; 图 s6b
赛默飞世尔白细胞介素抗体(eBioscience, 5H4)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). PLoS Pathog (2017) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔白细胞介素抗体(eBioscience, 25-7021-82)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Nature (2017) ncbi
大鼠 单克隆(1A12)
  • 抑制或激活实验; 小鼠; 图 s4a
赛默飞世尔白细胞介素抗体(eBiosciences, JES6-1A12)被用于被用于抑制或激活实验在小鼠样本上 (图 s4a). Nat Commun (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 4b
赛默飞世尔白细胞介素抗体(Thermo Fisher, JES6-5H4)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 4b). J Leukoc Biol (2017) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔白细胞介素抗体(ebioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Infect Immun (2017) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Clin Invest (2016) ncbi
大鼠 单克隆(1A12)
  • 酶联免疫吸附测定; 小鼠; 图 6
赛默飞世尔白细胞介素抗体(eBioscience, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 人类; 图 6d
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在人类样本上 (图 6d). Oncoimmunology (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔白细胞介素抗体(eBioscience, 12-7021-82)被用于被用于流式细胞仪在小鼠样本上 (图 6). Sci Rep (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 1:100; 图 s6b
赛默飞世尔白细胞介素抗体(eBioscience, ES6-5H4)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6b). Nat Commun (2016) ncbi
大鼠 单克隆(1A12)
  • 抑制或激活实验; 小鼠
赛默飞世尔白细胞介素抗体(eBiosciences, JES6-1A12)被用于被用于抑制或激活实验在小鼠样本上. Methods Mol Biol (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2015) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2015) ncbi
大鼠 单克隆(JES6-1A12)
  • 抑制或激活实验; 人类
赛默飞世尔白细胞介素抗体(eBioscience, JES6-1A12)被用于被用于抑制或激活实验在人类样本上. Cell Res (2015) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(1A12)
  • 酶联免疫吸附测定; 小鼠; 图 3
赛默飞世尔白细胞介素抗体(Caltag Laboratories, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). Transpl Int (2015) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nat Immunol (2014) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2014) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
大鼠 单克隆(JES6-1A12)
  • 抑制或激活实验; 小鼠; 图 2d
赛默飞世尔白细胞介素抗体(eBioscience, JES6-1)被用于被用于抑制或激活实验在小鼠样本上 (图 2d). Mucosal Immunol (2014) ncbi
大鼠 单克隆(JES6-1A12)
  • 抑制或激活实验; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-1A12)被用于被用于抑制或激活实验在小鼠样本上. J Exp Med (2013) ncbi
大鼠 单克隆(JES6-1A12)
  • 酶联免疫吸附测定; 小鼠; 图 2
赛默飞世尔白细胞介素抗体(eBioscience, 14-7022-85)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). PLoS ONE (2013) ncbi
大鼠 单克隆(JES6-5H4)
  • 酶联免疫吸附测定; 小鼠; 图 2
赛默飞世尔白细胞介素抗体(eBioscience, 13-7021-81)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). PLoS ONE (2013) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔白细胞介素抗体(Ebioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2013) ncbi
大鼠 单克隆(1A12)
  • 酶联免疫吸附测定; 小鼠; 图 3
赛默飞世尔白细胞介素抗体(Caltag Laboratories, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). Evid Based Complement Alternat Med (2012) ncbi
大鼠 单克隆(1A12)
  • 酶联免疫吸附测定; 小鼠; 图 3
赛默飞世尔白细胞介素抗体(Caltag Laboratories, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3). J Cardiothorac Surg (2012) ncbi
大鼠 单克隆(JES6-1A12)
  • 抑制或激活实验; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-1A12)被用于被用于抑制或激活实验在小鼠样本上. Mucosal Immunol (2012) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). J Immunol (2010) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Immunol (2009) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. J Virol (2008) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
大鼠 单克隆(JES6-1A12)
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上. Immunology (2008) ncbi
大鼠 单克隆(JES6-5H4)
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于酶联免疫吸附测定在小鼠样本上. Immunology (2008) ncbi
大鼠 单克隆(1A12)
  • 酶联免疫吸附测定; 小鼠; 0.5 ug/ml; 表 4
赛默飞世尔白细胞介素抗体(Caltag, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为0.5 ug/ml (表 4). Alcohol Clin Exp Res (2007) ncbi
大鼠 单克隆(JES6-5H4)
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔白细胞介素抗体(e-Bioscience, 13-7021)被用于被用于酶联免疫吸附测定在小鼠样本上. Nat Immunol (2007) ncbi
大鼠 单克隆(JES6-1A12)
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔白细胞介素抗体(e-Bioscience, 14-7022)被用于被用于酶联免疫吸附测定在小鼠样本上. Nat Immunol (2007) ncbi
大鼠 单克隆(JES6-5H4)
  • 酶联免疫吸附测定; 小鼠; 图 2
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). J Immunol (2006) ncbi
大鼠 单克隆(JES6-1A12)
  • 酶联免疫吸附测定; 小鼠; 图 2
赛默飞世尔白细胞介素抗体(eBioscience, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). J Immunol (2006) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
赛默飞世尔白细胞介素抗体(eBioscience, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(1A12)
  • 酶联免疫吸附测定; 小鼠; 图 4
赛默飞世尔白细胞介素抗体(Caltag, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4). Transplantation (2004) ncbi
BioLegend
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素抗体(BioLegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. Commun Biol (2021) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 1:100
BioLegend白细胞介素抗体(Biolegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素抗体(Biolegend, 503808)被用于被用于流式细胞仪在小鼠样本上. Cell Rep Med (2021) ncbi
大鼠 单克隆(JES6-5H4)
  • 酶联免疫吸附测定; 小鼠; 图 2f
BioLegend白细胞介素抗体(BioLegend, 503804)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2f). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend白细胞介素抗体(Biolegend, 503810)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cell Rep (2019) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend白细胞介素抗体(BioLegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Clin Invest (2018) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 5e
BioLegend白细胞介素抗体(BioLegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 5e). J Exp Med (2018) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 3o
BioLegend白细胞介素抗体(Biolegend, 503808)被用于被用于流式细胞仪在小鼠样本上 (图 3o). Science (2018) ncbi
大鼠 单克隆(JES6-5H4)
  • 酶联免疫吸附测定; 小鼠; 图 3j
BioLegend白细胞介素抗体(BioLegend, BLG-503804)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3j). J Virol (2017) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素抗体(BioLegend, 503808)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend白细胞介素抗体(BioLegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 6
BioLegend白细胞介素抗体(Biolegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 6). Sci Rep (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 2
BioLegend白细胞介素抗体(Biolegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend白细胞介素抗体(Biolegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Sci Rep (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend白细胞介素抗体(BioLegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Exp Med (2015) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素抗体(Biolegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素抗体(BioLegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素抗体(Biolegend, 503807)被用于被用于流式细胞仪在小鼠样本上. Exp Parasitol (2014) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
BioLegend白细胞介素抗体(Biolegend, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
Bio X Cell
大鼠 单克隆(JES6-1A12)
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 s2
Bio X Cell白细胞介素抗体(Bio X Cell, JES6-1A12)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 s2). Cancer Res (2018) ncbi
大鼠 单克隆(JES6-5H4)
  • 抑制或激活实验; 小鼠
Bio X Cell白细胞介素抗体(BioXcell, JES6-5H4)被用于被用于抑制或激活实验在小鼠样本上. Infect Immun (2016) ncbi
大鼠 单克隆(JES6-1A12)
  • 抑制或激活实验; 小鼠; 图 s4c
Bio X Cell白细胞介素抗体(BioXCell, JES6-1)被用于被用于抑制或激活实验在小鼠样本上 (图 s4c). Retrovirology (2015) ncbi
碧迪BD
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 s3f
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 s3f). Science (2019) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD白细胞介素抗体(BD, 554427)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Oncoimmunology (2018) ncbi
大鼠 单克隆(JES6-1A12)
  • 酶联免疫吸附测定; 小鼠; 1:250; 图 s10
碧迪BD白细胞介素抗体(BD Biosciences, 554424)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:250 (图 s10). Nat Commun (2018) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 s13a
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 s13a). J Clin Invest (2018) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 6e
碧迪BD白细胞介素抗体(BD Biosciences, 554428)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Clin Invest (2018) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 7a
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Virol (2018) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Immunology (2017) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 1,3
碧迪BD白细胞介素抗体(BD Biosciences, 554427)被用于被用于流式细胞仪在小鼠样本上 (图 1,3). Oncoimmunology (2017) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nature (2017) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 人类; 图 7b
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H4)被用于被用于流式细胞仪在人类样本上 (图 7b). Front Immunol (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 s5f
碧迪BD白细胞介素抗体(BD Biosciences, 561061)被用于被用于流式细胞仪在小鼠样本上 (图 s5f). Nat Immunol (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD白细胞介素抗体(BD, 562041)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunother Cancer (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Oncotarget (2016) ncbi
大鼠 单克隆(S4B6)
  • 抑制或激活实验; 小鼠; 图 5
碧迪BD白细胞介素抗体(BD, S4B6)被用于被用于抑制或激活实验在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 酶联免疫吸附测定; 小鼠; 图 2
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H4)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2016) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD白细胞介素抗体(BD, 554429)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠
碧迪BD白细胞介素抗体(BD Biosciences, JES6-5H4)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2015) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD白细胞介素抗体(BD Pharmigen, JE56-5H4)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
大鼠 单克隆(JES6-1A12)
  • 酶联免疫吸附测定; 小鼠; 图 1
碧迪BD白细胞介素抗体(BD Biosciences, 554424)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(JES6-5H4)
  • 酶联免疫吸附测定; 小鼠; 图 1
碧迪BD白细胞介素抗体(BD Biosciences, 554426)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 1). J Immunol (2015) ncbi
大鼠 单克隆(S4B6)
  • 其他; 小鼠; 图 2a
碧迪BD白细胞介素抗体(BD Pharmingen, S4B6-1)被用于被用于其他在小鼠样本上 (图 2a). Nat Commun (2014) ncbi
大鼠 单克隆(JES6-1A12)
  • 酶联免疫吸附测定; 小鼠; 2 mg/ml
碧迪BD白细胞介素抗体(BD Biosciences, JES6-1A12)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为2 mg/ml. Nat Commun (2014) ncbi
大鼠 单克隆(JES6-5H4)
  • 流式细胞仪; 小鼠; 1:200; 图 6b
碧迪BD白细胞介素抗体(BD Biosciences, JES6-6H4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6b). Nat Commun (2014) ncbi
文章列表
  1. Susukida T, Kuwahara S, Song B, Kazaoka A, Aoki S, Ito K. Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun Biol. 2021;4:1137 pubmed 出版商
  2. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  3. Bonilla W, Kirchhammer N, Marx A, Kallert S, Krzyzaniak M, Lu M, et al. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. Cell Rep Med. 2021;2:100209 pubmed 出版商
  4. Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, et al. Targeting age-specific changes in CD4+ T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell. 2021;20:e13299 pubmed 出版商
  5. Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, et al. Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571 pubmed 出版商
  6. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  7. Bliss C, Parsons A, Nachbagauer R, Hamilton J, Cappuccini F, Ulaszewska M, et al. Targeting Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and Non-human Adenoviral Vaccines in Mice. Mol Ther Methods Clin Dev. 2020;16:108-125 pubmed 出版商
  8. Ozdilek A, Paschall A, Dookwah M, Tiemeyer M, Avci F. Host protein glycosylation in nucleic acid vaccines as a potential hurdle in vaccine design for nonviral pathogens. Proc Natl Acad Sci U S A. 2020;117:1280-1282 pubmed 出版商
  9. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  10. Gehring T, Erdmann T, Rahm M, Graß C, Flatley A, O Neill T, et al. MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells. Cell Rep. 2019;29:873-888.e10 pubmed 出版商
  11. Misumi I, Starmer J, Uchimura T, Beck M, Magnuson T, Whitmire J. Obesity Expands a Distinct Population of T Cells in Adipose Tissue and Increases Vulnerability to Infection. Cell Rep. 2019;27:514-524.e5 pubmed 出版商
  12. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  13. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing J, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A. 2019;116:609-618 pubmed 出版商
  14. Quandt J, Schlude C, Bartoschek M, Will R, Cid Arregui A, Schölch S, et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 2018;7:e1500671 pubmed 出版商
  15. Chandra S, Gray J, Kiosses W, Khurana A, Hitomi K, Crosby C, et al. Mrp1 is involved in lipid presentation and iNKT cell activation by Streptococcus pneumoniae. Nat Commun. 2018;9:4279 pubmed 出版商
  16. Tilstra J, Avery L, Menk A, Gordon R, Smita S, Kane L, et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J Clin Invest. 2018;128:4884-4897 pubmed 出版商
  17. Singh M, Ni M, Sullivan J, Hamerman J, Campbell D. B cell adaptor for PI3-kinase (BCAP) modulates CD8+ effector and memory T cell differentiation. J Exp Med. 2018;215:2429-2443 pubmed 出版商
  18. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  19. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  20. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  21. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  22. Dipiazza A, Laniewski N, Rattan A, Topham D, Miller J, Sant A. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection. J Virol. 2018;92: pubmed 出版商
  23. Sockolosky J, Trotta E, Parisi G, Picton L, Su L, Le A, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359:1037-1042 pubmed 出版商
  24. Johnson R, Yu H, Strank N, Karunakaran K, Zhu Y, Brunham R. B Cell Presentation of Chlamydia Antigen Selects Out Protective CD4?13 T Cells: Implications for Genital Tract Tissue-Resident Memory Lymphocyte Clusters. Infect Immun. 2018;86: pubmed 出版商
  25. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  26. Bar On Y, Charpak Amikam Y, Glasner A, Isaacson B, Duev Cohen A, Tsukerman P, et al. NKp46 Recognizes the Sigma1 Protein of Reovirus: Implications for Reovirus-Based Cancer Therapy. J Virol. 2017;91: pubmed 出版商
  27. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  28. Bhattacharyya M, Penaloza MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology. 2017;151:340-348 pubmed 出版商
  29. Huang R, Francois A, McGray A, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561 pubmed 出版商
  30. Pardi N, Hogan M, Pelc R, Muramatsu H, Andersen H, Demaso C, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543:248-251 pubmed 出版商
  31. Welsby I, Detienne S, N kuli F, Thomas S, Wouters S, Bechtold V, et al. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. Front Immunol. 2016;7:663 pubmed 出版商
  32. Tripathi D, Venkatasubramanian S, Cheekatla S, Paidipally P, Welch E, Tvinnereim A, et al. A TLR9 agonist promotes IL-22-dependent pancreatic islet allograft survival in type 1 diabetic mice. Nat Commun. 2016;7:13896 pubmed 出版商
  33. Chen B, Lee A, Chew M, Ashkar A. NK cells require antigen-specific memory CD4+ T cells to mediate superior effector functions during HSV-2 recall responses in vitro. J Leukoc Biol. 2017;101:1045-1052 pubmed 出版商
  34. Theisen E, Sauer J. Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity. Infect Immun. 2017;85: pubmed 出版商
  35. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  36. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  37. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  38. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  39. Silberman D, Krovi S, Tuttle K, Crooks J, Reisdorph R, White J, et al. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors. Proc Natl Acad Sci U S A. 2016;113:E5608-17 pubmed 出版商
  40. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  41. Nakhlé J, Pierron V, Bauchet A, Plas P, Thiongane A, Meyer Losic F, et al. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer. Oncoimmunology. 2016;5:e1145333 pubmed 出版商
  42. Patel M, Kim J, Theodros D, Tam A, Velarde E, Kochel C, et al. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer. 2016;4:28 pubmed 出版商
  43. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  44. Barsoumian H, Yolcu E, Shirwan H. 4-1BB Signaling in Conventional T Cells Drives IL-2 Production That Overcomes CD4+CD25+FoxP3+ T Regulatory Cell Suppression. PLoS ONE. 2016;11:e0153088 pubmed 出版商
  45. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  46. Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, et al. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 2016;6:20588 pubmed 出版商
  47. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  48. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  49. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  50. Sekiya T, Yoshimura A. In Vitro Th Differentiation Protocol. Methods Mol Biol. 2016;1344:183-91 pubmed 出版商
  51. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol. 2016;90:650-8 pubmed 出版商
  52. Villegas Mendez A, Shaw T, Inkson C, Strangward P, de Souza J, Couper K. Parasite-Specific CD4+ IFN-γ+ IL-10+ T Cells Distribute within Both Lymphoid and Nonlymphoid Compartments and Are Controlled Systemically by Interleukin-27 and ICOS during Blood-Stage Malaria Infection. Infect Immun. 2016;84:34-46 pubmed 出版商
  53. Kurtulus S, Sakuishi K, Ngiow S, Joller N, Tan D, Teng M, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 2015;125:4053-62 pubmed 出版商
  54. Littwitz Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology. 2015;12:66 pubmed 出版商
  55. Silva O, Crocetti J, Humphries L, Burkhardt J, Miceli M. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS ONE. 2015;10:e0133353 pubmed 出版商
  56. Ackerknecht M, Hauser M, Legler D, Stein J. In vivo TCR Signaling in CD4(+) T Cells Imprints a Cell-Intrinsic, Transient Low-Motility Pattern Independent of Chemokine Receptor Expression Levels, or Microtubular Network, Integrin, and Protein Kinase C Activity. Front Immunol. 2015;6:297 pubmed 出版商
  57. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  58. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  59. Charlton J, Tsoukatou D, Mamalaki C, Chatzidakis I. Programmed death 1 regulates memory phenotype CD4 T cell accumulation, inhibits expansion of the effector memory phenotype subset and modulates production of effector cytokines. PLoS ONE. 2015;10:e0119200 pubmed 出版商
  60. Michelet X, Garg S, Wolf B, Tuli A, Ricciardi Castagnoli P, Brenner M. MHC class II presentation is controlled by the lysosomal small GTPase, Arl8b. J Immunol. 2015;194:2079-88 pubmed 出版商
  61. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  62. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  63. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  64. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  65. Uchiyama M, Jin X, Yin E, Shimokawa T, Niimi M. Treadmill exercise induces murine cardiac allograft survival and generates regulatory T cell. Transpl Int. 2015;28:352-62 pubmed 出版商
  66. McKinstry K, Strutt T, Bautista B, Zhang W, Kuang Y, Cooper A, et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun. 2014;5:5377 pubmed 出版商
  67. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  68. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  69. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  70. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  71. Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82-92 pubmed 出版商
  72. León B, Bradley J, Lund F, Randall T, Ballesteros Tato A. FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat Commun. 2014;5:3495 pubmed 出版商
  73. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  74. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  75. Webster K, Kim H, Kyparissoudis K, Corpuz T, Pinget G, Uldrich A, et al. IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival. Mucosal Immunol. 2014;7:1058-67 pubmed 出版商
  76. Amado I, Berges J, Luther R, Mailhé M, Garcia S, Bandeira A, et al. IL-2 coordinates IL-2-producing and regulatory T cell interplay. J Exp Med. 2013;210:2707-20 pubmed 出版商
  77. Steede N, Rust B, Hossain M, Freytag L, Robinson J, Landry S. Shaping T cell - B cell collaboration in the response to human immunodeficiency virus type 1 envelope glycoprotein gp120 by peptide priming. PLoS ONE. 2013;8:e65748 pubmed 出版商
  78. Van Der Werf N, Redpath S, Azuma M, Yagita H, Taylor M. Th2 cell-intrinsic hypo-responsiveness determines susceptibility to helminth infection. PLoS Pathog. 2013;9:e1003215 pubmed 出版商
  79. Jin X, Uchiyama M, Zhang Q, Hirai T, Niimi M. Inchingorei-san (TJ-117) and Artemisiae Capillaris Herba Induced Prolonged Survival of Fully Mismatched Cardiac Allografts and Generated Regulatory Cells in Mice. Evid Based Complement Alternat Med. 2012;2012:689810 pubmed 出版商
  80. Uchiyama M, Jin X, Zhang Q, Hirai T, Amano A, Bashuda H, et al. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells. J Cardiothorac Surg. 2012;7:26 pubmed 出版商
  81. Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster K, Sprent J, et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 2012;5:161-72 pubmed 出版商
  82. Gibbert K, Dietze K, Zelinskyy G, Lang K, Barchet W, Kirschning C, et al. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. J Immunol. 2010;185:6179-89 pubmed 出版商
  83. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  84. Sridhar S, Reyes Sandoval A, Draper S, Moore A, Gilbert S, Gao G, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822-33 pubmed 出版商
  85. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  86. Park S, Han Y, Aleyas A, George J, Yoon H, Lee J, et al. Low-dose antigen-experienced CD4+ T cells display reduced clonal expansion but facilitate an effective memory pool in response to secondary exposure. Immunology. 2008;123:426-37 pubmed
  87. Heinz R, Waltenbaugh C. Ethanol consumption modifies dendritic cell antigen presentation in mice. Alcohol Clin Exp Res. 2007;31:1759-71 pubmed
  88. Gallagher E, Enzler T, Matsuzawa A, Anzelon Mills A, Otero D, Holzer R, et al. Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat Immunol. 2007;8:57-63 pubmed
  89. Kobie J, Shah P, Yang L, Rebhahn J, Fowell D, Mosmann T. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine. J Immunol. 2006;177:6780-6 pubmed
  90. Vanasek T, Nandiwada S, Jenkins M, Mueller D. CD25+Foxp3+ regulatory T cells facilitate CD4+ T cell clonal anergy induction during the recovery from lymphopenia. J Immunol. 2006;176:5880-9 pubmed
  91. Aramaki O, Shirasugi N, Takayama T, Shimazu M, Kitajima M, Ikeda Y, et al. Programmed death-1-programmed death-L1 interaction is essential for induction of regulatory cells by intratracheal delivery of alloantigen. Transplantation. 2004;77:6-12 pubmed