这是一篇来自已证抗体库的有关小鼠 Il7r的综述,是根据159篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Il7r 抗体。
Il7r 同义词: CD127; IL-7Ralpha

其他
Il7r抗体(Biolegend, A7R34)被用于. BMC Immunol (2020) ncbi
  • 流式细胞仪; 小鼠; 图 s6f
Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s6f). Nature (2019) ncbi
  • mass cytometry; 小鼠; 图 1a, 1c, s1
Il7r抗体(Biolegend, A7R34)被用于被用于mass cytometry在小鼠样本上 (图 1a, 1c, s1). Cell Rep (2019) ncbi
Il7r抗体(BioLegend, A7R34)被用于. Nature (2019) ncbi
Il7r抗体(BioLegend, A7R34)被用于. J Exp Med (2018) ncbi
Il7r抗体(Biolegend, A7R34)被用于. Eur J Immunol (2018) ncbi
Il7r抗体(Biolegend, A7R34)被用于. Sci Rep (2018) ncbi
Il7r抗体(BioLegend, A7R34)被用于. Nat Commun (2018) ncbi
Il7r抗体(BioLegend, A7R34)被用于. J Exp Med (2017) ncbi
Il7r抗体(BioLegend, A7R34)被用于. J Immunol (2017) ncbi
赛默飞世尔
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 1:1400; 图 e3i
赛默飞世尔 Il7r抗体(eBioscience, 13-1271-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:1400 (图 e3i). Nature (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Il7r抗体(Thermo Fisher, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Exp Med (2019) ncbi
大鼠 单克隆(A7R34)
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 1a
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 1a). J Exp Med (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Il7r抗体(Thermo Fisher Scientific, 17-1271-82)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Il7r抗体(eBioscience, 45-1271-80)被用于被用于流式细胞仪在小鼠样本上 (图 3a). PLoS Biol (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 1:100; 图 3d
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3d). Heliyon (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔 Il7r抗体(Affymetrix, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Leukemia (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Exp Med (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Science (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Exp Med (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s6b
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). PLoS Pathog (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Il7r抗体(eBiosciences, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
赛默飞世尔 Il7r抗体(eBiosciences, A7R34)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Nat Immunol (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1c,d
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Il7r抗体(EBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Haematologica (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔 Il7r抗体(eBioscience, 25-1271-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1G
赛默飞世尔 Il7r抗体(eBioscience, 25-1271-82)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Il7r抗体(eBiosciences, 12-1271-81)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Clin Invest (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Il7r抗体(BD Pharmingen or eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Mol Cell Biol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Immunity (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nature (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Neuroimmunol (2016) ncbi
大鼠 单克隆(eBioSB/199 (SB/199))
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Il7r抗体(eBioscience, eBioSB/199)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Neuroimmunol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Clin Invest (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Il7r抗体(eBiosciences, 12-1271-83)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Immunol Cell Biol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, 48-1271)被用于被用于流式细胞仪在小鼠样本上. Biol Open (2016) ncbi
大鼠 单克隆(A7R34)
  • 免疫组化; 人类; 1:100; 图 s3
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s18a, s2b
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s18a, s2b). Science (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Transl Med (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Il7r抗体(eBiosciences, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Stem Cells (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1, 2
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2). J Allergy Clin Immunol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Virol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Exp Med (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Il7r抗体(eBiosciences, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(eBioSB/199 (SB/199))
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Il7r抗体(eBioscience, eBioSB/199)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Il7r抗体(eBioscience, 12-1271)被用于被用于流式细胞仪在小鼠样本上 (图 s4). EMBO Mol Med (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Il7r抗体(eBiosciences, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2). Stem Cell Res (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Il7r抗体(eBiosciences, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在人类样本上 (图 3). Cell Res (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Development (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s5d
赛默飞世尔 Il7r抗体(ThermoFisher Scientific, 17-1271-82)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). Nat Med (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Immunol (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (表 1). Nat Immunol (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nature (2013) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS ONE (2013) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(ebiosciences, A7R34)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, 13-1271)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Haematologica (2011) ncbi
大鼠 单克隆(A7R34)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于免疫组化在小鼠样本上 (图 4). Nat Immunol (2011) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2009) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2009) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2009) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBiosciences, A7R34)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2008) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Virol (2008) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 3). Immunity (2007) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Il7r抗体(eBioscience, IL-7Ralpha)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2007) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 4). Eur J Immunol (2006) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2006) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBioscience, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
赛默飞世尔 Il7r抗体(eBiosciences, A7R34)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
BioLegend
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Adv Sci (Weinh) (2020) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s3e
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). BMC Immunol (2020) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 1:100; 图 1s4a
BioLegend Il7r抗体(Biolegend, 135016)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1s4a). elife (2020) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1h
BioLegend Il7r抗体(BioLegend, 135014)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Cell Rep (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s6f
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s6f). Nature (2019) ncbi
大鼠 单克隆(A7R34)
  • mass cytometry; 小鼠; 图 1a, 1c, s1
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于mass cytometry在小鼠样本上 (图 1a, 1c, s1). Cell Rep (2019) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Il7r抗体(Biolegend, SB/199)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). BMC Immunol (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Il7r抗体(Biolegend, 135041)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell (2019) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Il7r抗体(Biolegend, 121111)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend Il7r抗体(Biolegend, 135016)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Oncoimmunology (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 ex3b
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 ex3b). Nature (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 1:100; 图 s3a
BioLegend Il7r抗体(Biolegend, 135024)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3a). Nat Commun (2019) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Il7r抗体(BioLegend, 121122)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Immunity (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Il7r抗体(BioLegend, 135014)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Il7r抗体(Biolegend, 135024)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Immunity (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 e1b
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 e1b). Nature (2019) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Exp Med (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend Il7r抗体(BioLegend, 135035)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Immunity (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Eur J Immunol (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Il7r抗体(BioLegend, 135008)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Nat Genet (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1h
BioLegend Il7r抗体(BioLegend, 135041)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Cell (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Exp Hematol (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s4f
BioLegend Il7r抗体(BioLegend, 135010)被用于被用于流式细胞仪在小鼠样本上 (图 s4f). Cell (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Immunol (2018) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s9f
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s9f). Nature (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Science (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 5k
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 5k). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2017) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 1:50; 表 s2
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Rep (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Commun (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Immunol (2016) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Il7r抗体(BioLegend, SB/199)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Biosci (2016) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Il7r抗体(BioLegend, SB/199)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Allergy Clin Immunol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 4e). J Leukoc Biol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Mucosal Immunol (2017) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠
BioLegend Il7r抗体(Biolegend, SB/199)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠
BioLegend Il7r抗体(BioLegend, SB/199)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s13
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s13). Science (2016) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 8e
BioLegend Il7r抗体(BioLegend, SB/199)被用于被用于流式细胞仪在小鼠样本上 (图 8e). J Exp Med (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 1, 2
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2). J Allergy Clin Immunol (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Sci Rep (2016) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Immunol (2016) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Il7r抗体(BioLegend, SB/199)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Med (2015) ncbi
大鼠 单克隆(A7R34)
BioLegend Il7r抗体(BioLegend, 135009)被用于. Mol Med Rep (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Il7r抗体(biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Immunity (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 表 s1
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 1:40
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上浓度为1:40. PLoS ONE (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 图 5e
BioLegend Il7r抗体(biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Nat Commun (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 表 s1
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Stem Cells (2015) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠; 1:500
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
BioLegend Il7r抗体(BioLegend, A7R34)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(A7R34)
  • 流式细胞仪; 小鼠
BioLegend Il7r抗体(Biolegend, A7R34)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
Bio X Cell
大鼠 单克隆(A7R34)
  • 抑制或激活实验; 小鼠; 图 6c
Bio X Cell Il7r抗体(BioXCell, A7R34)被用于被用于抑制或激活实验在小鼠样本上 (图 6c). PLoS Pathog (2014) ncbi
碧迪BD
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Il7r抗体(BD, SB/199)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Toxicol Appl Pharmacol (2018) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 1:100; 图 s4a
碧迪BD Il7r抗体(BD Biosciences, SB/199)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4a). Nat Commun (2018) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 st2
碧迪BD Il7r抗体(BD, 560733)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(B12-1)
  • 流式细胞仪; 小鼠; 1:100; 图 7
碧迪BD Il7r抗体(BD Pharmingen, B12-1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7). PLoS ONE (2016) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠
碧迪BD Il7r抗体(BD, 552543)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD Il7r抗体(BD Biosciences, 552543)被用于被用于流式细胞仪在小鼠样本上 (图 6). Infect Immun (2016) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD Il7r抗体(BD Biosciences, SB/199)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Vaccine (2015) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠
碧迪BD Il7r抗体(BD Biosciences, SB/199)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(SB/199)
  • 流式细胞仪; 小鼠
碧迪BD Il7r抗体(BD Biosciences, SB/199)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2014) ncbi
文章列表
  1. Bekeschus S, Clemen R, Nießner F, Sagwal S, Freund E, Schmidt A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Adv Sci (Weinh). 2020;7:1903438 pubmed 出版商
  2. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  3. Ferrer Font L, Mehta P, Harmos P, Schmidt A, Chappell S, Price K, et al. High-dimensional analysis of intestinal immune cells during helminth infection. elife. 2020;9: pubmed 出版商
  4. Hurrell B, Galle Treger L, Jahani P, Howard E, Helou D, Banie H, et al. TNFR2 Signaling Enhances ILC2 Survival, Function, and Induction of Airway Hyperreactivity. Cell Rep. 2019;29:4509-4524.e5 pubmed 出版商
  5. Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed 出版商
  6. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  7. Mantani P, Dunér P, Ljungcrantz I, Nilsson J, Bjorkbacka H, Fredrikson G. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol. 2019;20:47 pubmed 出版商
  8. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  9. Nagai M, Noguchi R, Takahashi D, Morikawa T, Koshida K, Komiyama S, et al. Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell. 2019;178:1072-1087.e14 pubmed 出版商
  10. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  11. Khan O, Giles J, McDonald S, Manne S, Ngiow S, Patel K, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;: pubmed 出版商
  12. Wilkinson A, Ishida R, Kikuchi M, Sudo K, Morita M, Crisostomo R, et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature. 2019;: pubmed 出版商
  13. Takagaki S, Yamashita R, Hashimoto N, Sugihara K, Kanari K, Tabata K, et al. Galactosyl carbohydrate residues on hematopoietic stem/progenitor cells are essential for homing and engraftment to the bone marrow. Sci Rep. 2019;9:7133 pubmed 出版商
  14. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  15. Wu J, Ma S, Sandhoff R, Ming Y, Hotz Wagenblatt A, Timmerman V, et al. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity. 2019;50:1218-1231.e5 pubmed 出版商
  16. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  17. Qian L, Bajana S, Georgescu C, Peng V, Wang H, Adrianto I, et al. Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med. 2019;216:884-899 pubmed 出版商
  18. Melo Gonzalez F, Kammoun H, Evren E, Dutton E, Papadopoulou M, Bradford B, et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J Exp Med. 2019;216:728-742 pubmed 出版商
  19. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  20. Kobayashi T, Voisin B, Kim D, Kennedy E, Jo J, Shih H, et al. Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell. 2019;176:982-997.e16 pubmed 出版商
  21. Chopin M, Lun A, Zhan Y, Schreuder J, Coughlan H, D Amico A, et al. Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity. 2019;50:77-90.e5 pubmed 出版商
  22. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  23. Li H, Li D, He Z, Fan J, Li Q, Liu X, et al. The effects of Nrf2 knockout on regulation of benzene-induced mouse hematotoxicity. Toxicol Appl Pharmacol. 2018;358:56-67 pubmed 出版商
  24. Singh M, Ni M, Sullivan J, Hamerman J, Campbell D. B cell adaptor for PI3-kinase (BCAP) modulates CD8+ effector and memory T cell differentiation. J Exp Med. 2018;215:2429-2443 pubmed 出版商
  25. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  26. Jones R, Cosway E, Willis C, White A, Jenkinson W, Fehling H, et al. Dynamic changes in intrathymic ILC populations during murine neonatal development. Eur J Immunol. 2018;48:1481-1491 pubmed 出版商
  27. Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M, Knights A, et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat Genet. 2018;50:883-894 pubmed 出版商
  28. Wang Y, Dong W, Zhang Y, Caligiuri M, Yu J. Dependence of innate lymphoid cell 1 development on NKp46. PLoS Biol. 2018;16:e2004867 pubmed 出版商
  29. Olesen M, Christiansen J, Petersen S, Jensen P, Paslawski W, Romero Ramos M, et al. CD4 T cells react to local increase of α-synuclein in a pathology-associated variant-dependent manner and modify brain microglia in absence of brain pathology. Heliyon. 2018;4:e00513 pubmed 出版商
  30. Verbiest T, Finnon R, Brown N, Cruz Garcia L, Finnon P, O Brien G, et al. Tracking preleukemic cells in vivo to reveal the sequence of molecular events in radiation leukemogenesis. Leukemia. 2018;32:1435-1444 pubmed 出版商
  31. Yeh C, Nojima T, Kuraoka M, Kelsoe G. Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat Commun. 2018;9:928 pubmed 出版商
  32. Yang J, Cornelissen F, Papazian N, Reijmers R, Llorian M, Cupedo T, et al. IL-7-dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. J Exp Med. 2018;215:1069-1077 pubmed 出版商
  33. Omilusik K, Nadjsombati M, Shaw L, Yu B, Milner J, Goldrath A. Sustained Id2 regulation of E proteins is required for terminal differentiation of effector CD8+ T cells. J Exp Med. 2018;215:773-783 pubmed 出版商
  34. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  35. Nakashima H, Alayo Q, Penaloza MacMaster P, Freeman G, Kuchroo V, Reardon D, et al. Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Sci Rep. 2018;8:208 pubmed 出版商
  36. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  37. Huang Y, Mao K, Chen X, Sun M, Kawabe T, Li W, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359:114-119 pubmed 出版商
  38. Kurkewich J, Boucher A, Klopfenstein N, Baskar R, Kapur R, Dahl R. The mirn23a and mirn23b microrna clusters are necessary for proper hematopoietic progenitor cell production and differentiation. Exp Hematol. 2018;59:14-29 pubmed 出版商
  39. Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B, Warren Navia A, et al. Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells. Cell. 2018;172:517-533.e20 pubmed 出版商
  40. Ibitokou S, Dillon B, Sinha M, Szczesny B, Delgadillo A, Reda Abdelrahman D, et al. Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. J Immunol. 2018;200:643-656 pubmed 出版商
  41. Harly C, Cam M, Kaye J, Bhandoola A. Development and differentiation of early innate lymphoid progenitors. J Exp Med. 2018;215:249-262 pubmed 出版商
  42. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  43. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  44. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  45. Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo T, Sun M, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med. 2017;214:1663-1678 pubmed 出版商
  46. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  47. Katerndahl C, Heltemes Harris L, Willette M, Henzler C, Frietze S, Yang R, et al. Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat Immunol. 2017;18:694-704 pubmed 出版商
  48. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  49. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  50. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  51. Oh J, Oh D, Jung H, Lee H. A mechanism for the induction of type 2 immune responses by a protease allergen in the genital tract. Proc Natl Acad Sci U S A. 2017;114:E1188-E1195 pubmed 出版商
  52. Cañete A, Carmona R, Ariza L, Sanchez M, Rojas A, Muñoz Chápuli R. A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica. 2017;102:647-655 pubmed 出版商
  53. Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire L, et al. Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res. 2017;45:1281-1296 pubmed 出版商
  54. Nish S, Zens K, Kratchmarov R, Lin W, Adams W, Chen Y, et al. CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. J Exp Med. 2017;214:39-47 pubmed 出版商
  55. Yanagisawa H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:L122-L130 pubmed 出版商
  56. Ma C, Mishra S, Demel E, Liu Y, Zhang N. TGF-? Controls the Formation of Kidney-Resident T Cells via Promoting Effector T Cell Extravasation. J Immunol. 2017;198:749-756 pubmed 出版商
  57. Forster M, Farrington K, Petrov J, Belle J, Mindt B, Witalis M, et al. MYSM1-dependent checkpoints in B cell lineage differentiation and B cell-mediated immune response. J Leukoc Biol. 2017;101:643-654 pubmed 出版商
  58. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  59. Yu V, Yusuf R, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:1310-1322.e17 pubmed 出版商
  60. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  61. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  62. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  63. Carow B, Gao Y, Coquet J, Reilly M, Rottenberg M. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. J Immunol. 2016;197:2261-8 pubmed 出版商
  64. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  65. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  66. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  67. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  68. Chen S, Miyazaki M, Chandra V, Fisch K, Chang A, Murre C. Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol. 2016;36:2543-52 pubmed 出版商
  69. Wang S, Xia P, Chen Y, Huang G, Xiong Z, Liu J, et al. Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection. Immunity. 2016;45:131-44 pubmed 出版商
  70. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  71. Keil M, Sonner J, Lanz T, Oezen I, Bunse T, Bittner S, et al. General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. J Neuroimmunol. 2016;297:117-26 pubmed 出版商
  72. Terashima A, Okamoto K, Nakashima T, Akira S, Ikuta K, Takayanagi H. Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity. 2016;44:1434-43 pubmed 出版商
  73. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  74. Contreras F, Prado C, Gonzalez H, Franz D, Osorio Barrios F, Osorio F, et al. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. J Immunol. 2016;196:4143-9 pubmed 出版商
  75. Xu A, Bhanumathy K, Wu J, Ye Z, Freywald A, Leary S, et al. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci. 2016;6:30 pubmed 出版商
  76. Stier M, Bloodworth M, Toki S, Newcomb D, Goleniewska K, Boyd K, et al. Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J Allergy Clin Immunol. 2016;138:814-824.e11 pubmed 出版商
  77. Reynaldi A, Smith N, Schlub T, Venturi V, Rudd B, Davenport M. Modeling the dynamics of neonatal CD8+ T-cell responses. Immunol Cell Biol. 2016;94:838-848 pubmed 出版商
  78. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  79. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  80. Kurkewich J, Bikorimana E, Nguyen T, Klopfenstein N, Zhang H, Hallas W, et al. The mirn23a microRNA cluster antagonizes B cell development. J Leukoc Biol. 2016;100:665-677 pubmed
  81. Damle S, Martin R, Cross J, Conrad D. Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol. 2017;10:205-214 pubmed 出版商
  82. Braun J, Meixner A, Brachner A, Foisner R. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE. 2016;11:e0152278 pubmed 出版商
  83. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  84. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  85. Miller M, Rosten P, Lemieux M, Lai C, Humphries R. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion. PLoS ONE. 2016;11:e0151584 pubmed 出版商
  86. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, et al. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58 pubmed 出版商
  87. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  88. Lu K, Nakagawa M, Thummar K, RATHINAM C. Slicer Endonuclease Argonaute 2 Is a Negative Regulator of Hematopoietic Stem Cell Quiescence. Stem Cells. 2016;34:1343-53 pubmed 出版商
  89. Howitt M, Lavoie S, Michaud M, Blum A, Tran S, Weinstock J, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329-33 pubmed 出版商
  90. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  91. Kim J, Choi Y, Lee B, Song M, Ban C, Kim J, et al. Programmed cell death ligand 1 alleviates psoriatic inflammation by suppressing IL-17A production from programmed cell death 1-high T cells. J Allergy Clin Immunol. 2016;137:1466-1476.e3 pubmed 出版商
  92. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  93. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  94. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  95. Zhong C, Cui K, Wilhelm C, Hu G, Mao K, Belkaid Y, et al. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol. 2016;17:169-78 pubmed 出版商
  96. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol. 2016;90:650-8 pubmed 出版商
  97. Ruan S, Samuelson D, Assouline B, Morre M, Shellito J. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect Immun. 2016;84:108-19 pubmed 出版商
  98. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  99. Wei T, Zhang N, Guo Z, Chi F, Song Y, Zhu X. Wnt4 signaling is associated with the decrease of proliferation and increase of apoptosis during age-related thymic involution. Mol Med Rep. 2015;12:7568-76 pubmed 出版商
  100. Aparicio Domingo P, Romera Hernandez M, Karrich J, Cornelissen F, Papazian N, Lindenbergh Kortleve D, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med. 2015;212:1783-91 pubmed 出版商
  101. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  102. Kajikhina K, Melchers F, Tsuneto M. Chemokine polyreactivity of IL7Rα+CSF-1R+ lympho-myeloid progenitors in the developing fetal liver. Sci Rep. 2015;5:12817 pubmed 出版商
  103. Arbelaez C, Glatigny S, Duhen R, Eberl G, Oukka M, Bettelli E. IL-7/IL-7 Receptor Signaling Differentially Affects Effector CD4+ T Cell Subsets Involved in Experimental Autoimmune Encephalomyelitis. J Immunol. 2015;195:1974-83 pubmed 出版商
  104. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  105. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  106. Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich P, Derouazi M, Walker P. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol. 2015;45:2263-75 pubmed 出版商
  107. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  108. Becker P, Hervouet C, Mason G, KWON S, Klavinskis L. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine. 2015;33:4691-8 pubmed 出版商
  109. Siegemund S, Shepherd J, Xiao C, Sauer K. hCD2-iCre and Vav-iCre mediated gene recombination patterns in murine hematopoietic cells. PLoS ONE. 2015;10:e0124661 pubmed 出版商
  110. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  111. Rao T, Marks Bluth J, Sullivan J, Gupta M, Chandrakanthan V, Fitch S, et al. High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res. 2015;14:307-22 pubmed 出版商
  112. Charlton J, Tsoukatou D, Mamalaki C, Chatzidakis I. Programmed death 1 regulates memory phenotype CD4 T cell accumulation, inhibits expansion of the effector memory phenotype subset and modulates production of effector cytokines. PLoS ONE. 2015;10:e0119200 pubmed 出版商
  113. Liu B, Lee J, Chen C, Hershey G, Wang Y. Collaborative interactions between type 2 innate lymphoid cells and antigen-specific CD4+ Th2 cells exacerbate murine allergic airway diseases with prominent eosinophilia. J Immunol. 2015;194:3583-93 pubmed 出版商
  114. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  115. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  116. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  117. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  118. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  119. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  120. Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71-5 pubmed 出版商
  121. Nakamura M, Shibata K, Hatano S, Sato T, Ohkawa Y, Yamada H, et al. A genome-wide analysis identifies a notch-RBP-Jκ-IL-7Rα axis that controls IL-17-producing γδ T cell homeostasis in mice. J Immunol. 2015;194:243-51 pubmed 出版商
  122. Fahl S, Harris B, Coffey F, Wiest D. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. J Immunol. 2015;194:200-9 pubmed
  123. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  124. McKinstry K, Strutt T, Bautista B, Zhang W, Kuang Y, Cooper A, et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun. 2014;5:5377 pubmed 出版商
  125. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  126. Sakamoto H, Takeda N, Arai F, Hosokawa K, García P, Suda T, et al. Determining c-Myb protein levels can isolate functional hematopoietic stem cell subtypes. Stem Cells. 2015;33:479-90 pubmed 出版商
  127. Maneva Radicheva L, Amatya C, Parker C, Ellefson J, Radichev I, Raghavan A, et al. Autoimmune diabetes is suppressed by treatment with recombinant human tissue Kallikrein-1. PLoS ONE. 2014;9:e107213 pubmed 出版商
  128. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  129. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  130. Johannesson B, Sattler S, Semenova E, Pastore S, Kennedy Lydon T, Sampson R, et al. Insulin-like growth factor-1 induces regulatory T cell-mediated suppression of allergic contact dermatitis in mice. Dis Model Mech. 2014;7:977-85 pubmed 出版商
  131. Mise Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, et al. NF-?B RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol. 2014;26:607-18 pubmed 出版商
  132. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  133. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  134. Le Saout C, Hasley R, Imamichi H, Tcheung L, Hu Z, Luckey M, et al. Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis. PLoS Pathog. 2014;10:e1003976 pubmed 出版商
  135. Lee J, Walsh M, Hoehn K, James D, Wherry E, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-9 pubmed 出版商
  136. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  137. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  138. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  139. Nussbaum J, Van Dyken S, von Moltke J, Cheng L, Mohapatra A, Molofsky A, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245-8 pubmed 出版商
  140. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  141. Powell N, Walker A, Stolarczyk E, Canavan J, Gökmen M, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674-84 pubmed 出版商
  142. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  143. Randall K, Chan S, Ma C, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208:2305-20 pubmed 出版商
  144. Ripich T, Jessberger R. SWAP-70 regulates erythropoiesis by controlling ?4 integrin. Haematologica. 2011;96:1743-52 pubmed 出版商
  145. Ota N, Wong K, Valdez P, Zheng Y, Crellin N, Diehl L, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12:941-8 pubmed 出版商
  146. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  147. Kastenmuller W, Gasteiger G, Stross L, Busch D, Drexler I. Cutting edge: mucosal application of a lyophilized viral vector vaccine confers systemic and protective immunity toward intracellular pathogens. J Immunol. 2009;182:2573-7 pubmed 出版商
  148. Maillard I, Chen Y, Friedman A, Yang Y, Tubbs A, Shestova O, et al. Menin regulates the function of hematopoietic stem cells and lymphoid progenitors. Blood. 2009;113:1661-9 pubmed 出版商
  149. Cooper M, Elliott J, Keyel P, Yang L, Carrero J, Yokoyama W. Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A. 2009;106:1915-9 pubmed 出版商
  150. Rana S, Byrne S, MacDonald L, Chan C, Halliday G. Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am J Pathol. 2008;172:993-1004 pubmed 出版商
  151. Sridhar S, Reyes Sandoval A, Draper S, Moore A, Gilbert S, Gao G, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822-33 pubmed 出版商
  152. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  153. Stemberger C, Huster K, Koffler M, Anderl F, Schiemann M, Wagner H, et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity. 2007;27:985-97 pubmed
  154. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  155. Badovinac V, Harty J. Manipulating the rate of memory CD8+ T cell generation after acute infection. J Immunol. 2007;179:53-63 pubmed
  156. Huster K, Koffler M, Stemberger C, Schiemann M, Wagner H, Busch D. Unidirectional development of CD8+ central memory T cells into protective Listeria-specific effector memory T cells. Eur J Immunol. 2006;36:1453-64 pubmed
  157. Yang T, Millar J, Groves T, Grinshtein N, Parsons R, Takenaka S, et al. The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J Immunol. 2006;176:200-10 pubmed
  158. Lacombe M, Hardy M, Rooney J, Labrecque N. IL-7 receptor expression levels do not identify CD8+ memory T lymphocyte precursors following peptide immunization. J Immunol. 2005;175:4400-7 pubmed
  159. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed