这是一篇来自已证抗体库的有关小鼠 Itgb2的综述,是根据31篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Itgb2 抗体。
Itgb2 同义词: 2E6; AI528527; Cd18; LAD; LCAMB; Lfa1; MF17

BioLegend
小鼠 单克隆(m24)
  • 免疫细胞化学; 人类; 1:40; 图 2h
BioLegend Itgb2抗体(Biolegend, 363412)被用于被用于免疫细胞化学在人类样本上浓度为1:40 (图 2h). elife (2019) ncbi
大鼠 单克隆(M18/2)
  • 免疫细胞化学; 小鼠; 图 1c
BioLegend Itgb2抗体(Biolegend, M18/2)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). elife (2019) ncbi
大鼠 单克隆(M18/2)
BioLegend Itgb2抗体(BioLegend, 101401)被用于. Theranostics (2018) ncbi
小鼠 单克隆(m24)
  • 流式细胞仪; 人类; 图 4s1
BioLegend Itgb2抗体(BioLegend, 363410)被用于被用于流式细胞仪在人类样本上 (图 4s1). elife (2018) ncbi
大鼠 单克隆(H155-78)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Itgb2抗体(Biolegend, 141011)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Immunol (2018) ncbi
大鼠 单克隆(H155-78)
  • 流式细胞仪; 小鼠; 图 s1f
BioLegend Itgb2抗体(BioLegend, H155-78)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). J Exp Med (2017) ncbi
大鼠 单克隆(M18/2)
  • 抑制或激活实验; 小鼠; 图 7g
BioLegend Itgb2抗体(BioLegend, M18/2)被用于被用于抑制或激活实验在小鼠样本上 (图 7g). J Exp Med (2017) ncbi
大鼠 单克隆(M18/2)
BioLegend Itgb2抗体(Biolegend, 101408)被用于. J Neuroinflammation (2017) ncbi
小鼠 单克隆(m24)
  • 免疫细胞化学; 人类; 图 7b
BioLegend Itgb2抗体(BioLegend, M24)被用于被用于免疫细胞化学在人类样本上 (图 7b). J Cell Biol (2016) ncbi
大鼠 单克隆(H155-78)
BioLegend Itgb2抗体(BioLegend, H155-78)被用于. J Exp Med (2016) ncbi
大鼠 单克隆(M18/2)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Itgb2抗体(Biolegend, M18/2)被用于被用于流式细胞仪在小鼠样本上 (图 6c). J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(m24)
  • 流式细胞仪; 人类; 图 4a
BioLegend Itgb2抗体(biolegend, 363403)被用于被用于流式细胞仪在人类样本上 (图 4a). PLoS Pathog (2015) ncbi
大鼠 单克隆(H155-78)
  • 免疫细胞化学; 小鼠; 图 1
BioLegend Itgb2抗体(BioLegend, H155)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Immunol Cell Biol (2015) ncbi
大鼠 单克隆(M18/2)
  • 流式细胞仪; 小鼠
BioLegend Itgb2抗体(BioLegend, M18/2)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(H155-78)
  • 流式细胞仪; 小鼠
BioLegend Itgb2抗体(BioLegend, 141005)被用于被用于流式细胞仪在小鼠样本上. Ann Neurol (2014) ncbi
大鼠 单克隆(H155-78)
BioLegend Itgb2抗体(Biolegend, H155-78)被用于. PLoS Pathog (2014) ncbi
赛默飞世尔
大鼠 单克隆(M18/2)
  • 流式细胞仪; 小鼠; 图 e3a
赛默飞世尔 Itgb2抗体(eBioscience, M18/2)被用于被用于流式细胞仪在小鼠样本上 (图 e3a). Nature (2017) ncbi
大鼠 单克隆(M18/2)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 Itgb2抗体(Thermo, MA1-10122)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Proteomics (2016) ncbi
大鼠 单克隆(M18/2)
  • 流式细胞仪; 小鼠; 1:100; 图 s4
赛默飞世尔 Itgb2抗体(eBioscience, M18/2)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4). Nat Commun (2016) ncbi
大鼠 单克隆(M18/2)
  • 免疫组化; 小鼠; 1:100; 图 2
赛默飞世尔 Itgb2抗体(eBioscience, 14-0181)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Oncoimmunology (2015) ncbi
大鼠 单克隆(M18/2)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔 Itgb2抗体(eBioscience, M18/2)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Cell Res (2015) ncbi
大鼠 单克隆(M18/2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Itgb2抗体(eBioscience, M18/2)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2013) ncbi
大鼠 单克隆(M18/2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Itgb2抗体(eBioscience, M18/2)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2012) ncbi
大鼠 单克隆(M18/2)
  • 流式细胞仪; 小鼠
赛默飞世尔 Itgb2抗体(eBioscience, M18/2)被用于被用于流式细胞仪在小鼠样本上. J Proteomics (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(CTB104)
  • 免疫印迹; 人类; 1:500; 图 1s1a
  • 免疫印迹; 小鼠; 1:500; 图 1s1a
圣克鲁斯生物技术 Itgb2抗体(Santa, sc-8420)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1s1a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1s1a). elife (2019) ncbi
小鼠 单克隆(CTB104)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Itgb2抗体(Santa Cruz, sc-8420)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Cell Proteomics (2016) ncbi
碧迪BD
大鼠 单克隆(C71/16)
  • 流式细胞仪; 小鼠; 图 6c
碧迪BD Itgb2抗体(BD Biosciences, 553293)被用于被用于流式细胞仪在小鼠样本上 (图 6c). PLoS ONE (2017) ncbi
大鼠 单克隆(C71/16)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD Itgb2抗体(BD Biosciences, C71/16)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
大鼠 单克隆(GAME-46)
  • 抑制或激活实验; 小鼠; 图 2
碧迪BD Itgb2抗体(BD PharMingen, GAME46)被用于被用于抑制或激活实验在小鼠样本上 (图 2). Cell (2015) ncbi
大鼠 单克隆(C71/16)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Itgb2抗体(BD Pharmingen, 557439)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(C71/16)
  • 流式细胞仪; 小鼠
碧迪BD Itgb2抗体(BD Biosciences, C71/16)被用于被用于流式细胞仪在小鼠样本上. Blood (2014) ncbi
大鼠 单克隆(GAME-46)
  • 抑制或激活实验; 小鼠
碧迪BD Itgb2抗体(BD Biosciences, GAME-46)被用于被用于抑制或激活实验在小鼠样本上. Blood (2014) ncbi
大鼠 单克隆(C71/16)
  • 流式细胞仪; 小鼠
碧迪BD Itgb2抗体(BD, C71/16)被用于被用于流式细胞仪在小鼠样本上. Biochim Biophys Acta (2013) ncbi
文章列表
  1. Burel J, Pomaznoy M, Lindestam Arlehamn C, Weiskopf D, da Silva Antunes R, Jung Y, et al. Circulating T cell-monocyte complexes are markers of immune perturbations. elife. 2019;8: pubmed 出版商
  2. Cunin P, Bouslama R, Machlus K, Martínez Bonet M, Lee P, Wactor A, et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. elife. 2019;8: pubmed 出版商
  3. Li Y, Li K, Hu W, Ojcius D, Fang J, Li S, et al. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. elife. 2019;8: pubmed 出版商
  4. Gran S, Honold L, Fehler O, Zenker S, Eligehausen S, Kuhlmann M, et al. Imaging, myeloid precursor immortalization, and genome editing for defining mechanisms of leukocyte recruitment in vivo. Theranostics. 2018;8:2407-2423 pubmed 出版商
  5. Lee C, Zhang H, Singh S, Koo L, Kabat J, Tsang H, et al. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. elife. 2018;7: pubmed 出版商
  6. Iseka F, Goetz B, Mushtaq I, An W, Cypher L, Bielecki T, et al. Role of the EHD Family of Endocytic Recycling Regulators for TCR Recycling and T Cell Function. J Immunol. 2018;200:483-499 pubmed 出版商
  7. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  8. Chen J, Zhong M, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017;544:493-497 pubmed 出版商
  9. Deniset J, Surewaard B, Lee W, Kubes P. Splenic Ly6Ghigh mature and Ly6Gint immature neutrophils contribute to eradication of S. pneumoniae. J Exp Med. 2017;214:1333-1350 pubmed 出版商
  10. Kumar A, Stoica B, Loane D, Yang M, Abulwerdi G, Khan N, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation. 2017;14:47 pubmed 出版商
  11. Komegae E, Souza T, Grund L, Lima C, Lopes Ferreira M. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS ONE. 2017;12:e0171796 pubmed 出版商
  12. Murugesan S, Hong J, Yi J, Li D, Beach J, Shao L, et al. Formin-generated actomyosin arcs propel T cell receptor microcluster movement at the immune synapse. J Cell Biol. 2016;215:383-399 pubmed
  13. Hashimoto Tane A, Sakuma M, Ike H, Yokosuka T, Kimura Y, Ohara O, et al. Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation. J Exp Med. 2016;213:1609-25 pubmed 出版商
  14. Jo D, Bae J, Chae S, Kim J, Han J, Hwang D, et al. Quantitative Proteomics Reveals β2 Integrin-mediated Cytoskeletal Rearrangement in Vascular Endothelial Growth Factor (VEGF)-induced Retinal Vascular Hyperpermeability. Mol Cell Proteomics. 2016;15:1681-91 pubmed 出版商
  15. Kim D, Kim T, Wu G, Park B, Ha J, Kim Y, et al. Extracellular Release of CD11b by TLR9 Stimulation in Macrophages. PLoS ONE. 2016;11:e0150677 pubmed 出版商
  16. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  17. Kraft S, Klemis V, Sens C, Lenhard T, Jacobi C, Samstag Y, et al. Identification and characterization of a unique role for EDB fibronectin in phagocytosis. J Mol Med (Berl). 2016;94:567-81 pubmed 出版商
  18. Yotsumoto F, You W, Cejudo Martin P, Kucharova K, Sakimura K, Stallcup W. NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology. 2015;4:e1001204 pubmed
  19. McArthur M, Fresnay S, Magder L, Darton T, Jones C, Waddington C, et al. Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog. 2015;11:e1004914 pubmed 出版商
  20. Wang H, Hong L, Huang J, Jiang Q, Tao R, Tan C, et al. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy. Cell Res. 2015;25:674-90 pubmed 出版商
  21. Guidotti L, Inverso D, Sironi L, Di Lucia P, Fioravanti J, Ganzer L, et al. Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell. 2015;161:486-500 pubmed 出版商
  22. Funakoshi S, Shimizu T, Numata O, Ato M, Melchers F, Ohnishi K. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells. PLoS ONE. 2015;10:e0117566 pubmed 出版商
  23. Lin W, Fan Z, Suo Y, Deng Y, Zhang M, Wang J, et al. The bullseye synapse formed between CD4+ T-cell and staphylococcal enterotoxin B-pulsed dendritic cell is a suppressive synapse in T-cell response. Immunol Cell Biol. 2015;93:99-110 pubmed 出版商
  24. Honjo K, Kubagawa Y, Suzuki Y, Takagi M, Ohno H, Bucy R, et al. Enhanced auto-antibody production and Mott cell formation in Fc?R-deficient autoimmune mice. Int Immunol. 2014;26:659-72 pubmed 出版商
  25. Breuer J, Schwab N, Schneider Hohendorf T, Marziniak M, Mohan H, Bhatia U, et al. Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity. Ann Neurol. 2014;75:739-58 pubmed 出版商
  26. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  27. Weckbach L, Gola A, Winkelmann M, Jakob S, Groesser L, Borgolte J, et al. The cytokine midkine supports neutrophil trafficking during acute inflammation by promoting adhesion via ?2 integrins (CD11/CD18). Blood. 2014;123:1887-96 pubmed 出版商
  28. Erlandsson M, Svensson M, Jonsson I, Bian L, Ambartsumian N, Andersson S, et al. Expression of metastasin S100A4 is essential for bone resorption and regulates osteoclast function. Biochim Biophys Acta. 2013;1833:2653-2663 pubmed 出版商
  29. Hong F, Liu B, Chiosis G, Gewirth D, Li Z. ?7 helix region of ?I domain is crucial for integrin binding to endoplasmic reticulum chaperone gp96: a potential therapeutic target for cancer metastasis. J Biol Chem. 2013;288:18243-8 pubmed 出版商
  30. Wu S, Hong F, Gewirth D, Guo B, Liu B, Li Z. The molecular chaperone gp96/GRP94 interacts with Toll-like receptors and integrins via its C-terminal hydrophobic domain. J Biol Chem. 2012;287:6735-42 pubmed 出版商
  31. Ferret Bernard S, Castro Borges W, Dowle A, Sanin D, Cook P, Turner J, et al. Plasma membrane proteomes of differentially matured dendritic cells identified by LC-MS/MS combined with iTRAQ labelling. J Proteomics. 2012;75:938-48 pubmed 出版商