这是一篇来自已证抗体库的有关小鼠 激酶插入区受体 (Kdr) 的综述,是根据189篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合激酶插入区受体 抗体。
激酶插入区受体 同义词: 6130401C07; Flk-1; Flk1; Krd-1; Ly73; VEGFR-2; VEGFR2; orv; sVEGFR-2

圣克鲁斯生物技术
小鼠 单克隆(D-8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5g
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-393163)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5g). PLoS ONE (2022) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:1000; 图 2g
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc6251)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g). elife (2019) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz Biotechnology, sc-6251)被用于被用于免疫印迹在人类样本上 (图 3b). Breast Cancer Res (2019) ncbi
小鼠 单克隆(D-8)
  • 免疫细胞化学; domestic rabbit; 1:100; 图 3d2
圣克鲁斯生物技术激酶插入区受体抗体(Santa, SC393163)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100 (图 3d2). Exp Anim (2019) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-393163)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Mol Med Rep (2018) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 1:500; 图 1c
圣克鲁斯生物技术激酶插入区受体抗体(Santa cruz, sc-6251)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Exp Ther Med (2017) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, (Sc- 6251)被用于被用于免疫印迹在人类样本上 (图 3a). Apoptosis (2017) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 7A
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于免疫印迹在人类样本上 (图 7A). Sci Rep (2017) ncbi
小鼠 单克隆(F-10)
  • 免疫细胞化学; 大鼠; 1:50; 图 1e
圣克鲁斯生物技术激酶插入区受体抗体(SantaCruz, sc-393179)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1e). Mol Med Rep (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 人类; 1:200; 表 1
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc6251)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 1). Methods Mol Biol (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于免疫印迹在人类样本上 (图 2c). Int J Oncol (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 s1
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 s1). Eur J Obstet Gynecol Reprod Biol (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 小鼠; 图 1
圣克鲁斯生物技术激酶插入区受体抗体(santa Cruz, sc-6251)被用于被用于免疫细胞化学在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 小鼠; 1:50; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3a
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Stem Cell Res (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术激酶插入区受体抗体(SantaCruz Biotechnology, Sc-6251)被用于被用于免疫印迹在人类样本上 (图 5c). Urol Oncol (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 大鼠; 1:200; 图 7
圣克鲁斯生物技术激酶插入区受体抗体(santa Cruz, sc-6251)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 7). Mol Med Rep (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫组化-石蜡切片; 人类; 表 4
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, FLK1(A3))被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Chin J Cancer (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 人类; 1:200; 图 s7
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s7). Nat Commun (2016) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 人类; 图 5d
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz Biotechnology, sc-6251)被用于被用于免疫细胞化学在人类样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5c). Mol Cell Biochem (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 大鼠; 1:100; 图 1
圣克鲁斯生物技术激酶插入区受体抗体(santa Cruz, sc-6251)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(A-3)
  • 抑制或激活实验; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz Biotechnology, sc-6251)被用于被用于抑制或激活实验在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Cereb Blood Flow Metab (2015) ncbi
小鼠 单克隆(A-3)
  • 流式细胞仪; 人类; 图 2
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫组化; 人类; 表 2
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, Sc-6251)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(A-3)
  • 流式细胞仪; 人类; 1:200; 图 4
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, SC-6251)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(A-3)
  • 抑制或激活实验; 大鼠; 1:50
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于抑制或激活实验在大鼠样本上浓度为1:50. Exp Cell Res (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫沉淀; 人类; 图 4
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, SC-6251)被用于被用于免疫沉淀在人类样本上 (图 4). Bone (2015) ncbi
小鼠 单克隆(A-3)
  • 流式细胞仪; 大鼠
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于流式细胞仪在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫细胞化学; 人类; 1:200; 图 2
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Cell Biol Int (2015) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz BiotechnologySanta Cruz Biotechnology, sc-6251)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz Biotechnology, SC-6251)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Int J Mol Sci (2014) ncbi
小鼠 单克隆(A-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术激酶插入区受体抗体(Santa Cruz, sc-6251)被用于被用于免疫印迹在人类样本上. J Steroid Biochem Mol Biol (2014) ncbi
赛默飞世尔
domestic rabbit 单克隆(B.309.4)
  • 免疫印迹; 人类; 1:1000; 图 s1c
赛默飞世尔激酶插入区受体抗体(Thermo Fisher Scientific, MA5-15157)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1c). Nat Commun (2020) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠; 图 s5b
赛默飞世尔激酶插入区受体抗体(eBioscience, 12-5821)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(B.309.4)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
赛默飞世尔激酶插入区受体抗体(Thermofisher, B.309.4)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(H.266.3)
  • 免疫细胞化学; 人类; 图 5f
赛默飞世尔激酶插入区受体抗体(Pierce, QE2026123)被用于被用于免疫细胞化学在人类样本上 (图 5f). Acta Histochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2b
赛默飞世尔激酶插入区受体抗体(Thermo Scientific, PA5-16487)被用于被用于免疫组化在人类样本上 (图 2b). Ann Oncol (2017) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠
赛默飞世尔激酶插入区受体抗体(eBioscience, Avas12a1)被用于被用于流式细胞仪在小鼠样本上. J Vasc Surg (2017) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠; 1:100; 图 6
赛默飞世尔激酶插入区受体抗体(eBioscience, 12-5821-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠; 1:100; 图 1l
赛默飞世尔激酶插入区受体抗体(eBioscience, Avas12a1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1l). J Cell Biol (2016) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔激酶插入区受体抗体(eBioscience, 13-5821)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Dev Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 图 3
赛默飞世尔激酶插入区受体抗体(Thermo Fisher, PA5-16487)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔激酶插入区受体抗体(eBioscience, 17-5821-81)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔激酶插入区受体抗体(eBioscience, 12-5821-83)被用于被用于流式细胞仪在小鼠样本上 (表 2). Dev Biol (2015) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔激酶插入区受体抗体(e-biosciences, 17-5821)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Biol Open (2015) ncbi
大鼠 单克隆(Avas12a1)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔激酶插入区受体抗体(eBioscience, #14-5821-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mol Carcinog (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔激酶插入区受体抗体(Invitrogen, 44-1047G)被用于. J Cell Biol (2015) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠; 1:125
赛默飞世尔激酶插入区受体抗体(eBioscience, 13-5821)被用于被用于流式细胞仪在小鼠样本上浓度为1:125. Stem Cells (2014) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠
赛默飞世尔激酶插入区受体抗体(eBioscience, Avas12a1)被用于被用于流式细胞仪在小鼠样本上. Biomed Res Int (2013) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠
赛默飞世尔激酶插入区受体抗体(eBiosciences, 12-5821-83)被用于被用于流式细胞仪在小鼠样本上. Stem Cells Dev (2013) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔激酶插入区受体抗体(eBioscience, Avas12a1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2010) ncbi
大鼠 单克隆(Avas12a1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 1
赛默飞世尔激酶插入区受体抗体(eBioscience, 14-5821)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 1). Hepatology (2009) ncbi
大鼠 单克隆(Avas12a1)
  • 流式细胞仪; 小鼠
赛默飞世尔激酶插入区受体抗体(eBioscience, Avas12a1)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2008) ncbi
大鼠 单克隆(Avas12a1)
  • 其他; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔激酶插入区受体抗体(eBioscience, 12-5821-83)被用于被用于其他在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Methods Mol Biol (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab38473)被用于被用于免疫印迹在人类样本上 (图 5d). J Hematol Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab5473)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Cell Rep (2021) ncbi
domestic rabbit 单克隆(EPR21884-290)
  • 免疫印迹; 大鼠; 1:2000; 图 2h, 3g
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab221679)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2h, 3g). Exp Ther Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab11939)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Int J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab39638)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Orthop Surg Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1e, 2d, 5h
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab11939)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e, 2d, 5h). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 牛; 图 1b
  • 免疫印迹; 牛; 图 1b
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab39638)被用于被用于免疫组化在牛样本上 (图 1b) 和 被用于免疫印迹在牛样本上 (图 1b). Theriogenology (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8b
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab5473)被用于被用于免疫印迹在人类样本上 (图 8b). Int J Biochem Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab2349)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 1
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab11939)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab2349)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1d
艾博抗(上海)贸易有限公司激酶插入区受体抗体(Abcam, ab39638)被用于被用于免疫印迹在人类样本上 (图 s1d). Gene (2016) ncbi
BioLegend
大鼠 单克隆(Avas12)
  • 流式细胞仪; 小鼠; 1:100; 图 1e
BioLegend激酶插入区受体抗体(Biolegend, 136406)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1e). Stem Cell Res Ther (2022) ncbi
大鼠 单克隆(Avas12)
  • 免疫组化-冰冻切片; 小鼠; 图 s5d
BioLegend激酶插入区受体抗体(BioLegend, 136406)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5d). EBioMedicine (2021) ncbi
大鼠 单克隆(89B3A5)
  • 流式细胞仪; 小鼠; 图 s6e
BioLegend激酶插入区受体抗体(BioLegend, 121909)被用于被用于流式细胞仪在小鼠样本上 (图 s6e). FASEB J (2018) ncbi
大鼠 单克隆(Avas12)
  • 流式细胞仪; 小鼠; 图 6j
BioLegend激酶插入区受体抗体(Biolegend, Avas12)被用于被用于流式细胞仪在小鼠样本上 (图 6j). Haematologica (2017) ncbi
大鼠 单克隆(89B3A5)
  • 流式细胞仪; 小鼠; 1:200; 图  1
BioLegend激酶插入区受体抗体(BioLegend, 121905)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图  1). Angiogenesis (2015) ncbi
大鼠 单克隆(Avas12)
  • 流式细胞仪; 小鼠
BioLegend激酶插入区受体抗体(Biolegend, 136413)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
安迪生物R&D
domestic goat 多克隆
  • proximity ligation assay; 小鼠; 1:50; 图 3a
安迪生物R&D激酶插入区受体抗体(R & D Systems, AF644)被用于被用于proximity ligation assay在小鼠样本上浓度为1:50 (图 3a). elife (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 7j
安迪生物R&D激酶插入区受体抗体(R&D, AF644)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7j). Nat Commun (2019) ncbi
domestic goat 多克隆
  • proximity ligation assay; 人类; 1:80; 图 2b
安迪生物R&D激酶插入区受体抗体(R&D, AF644)被用于被用于proximity ligation assay在人类样本上浓度为1:80 (图 2b). Science (2018) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s4a
安迪生物R&D激酶插入区受体抗体(R&D Systems, AF644)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s4a). Cell (2018) ncbi
domestic goat 多克隆
  • 免疫组化基因敲除验证; 小鼠; 图 s3c
  • 免疫组化-冰冻切片; 小鼠; 图 s3c
安迪生物R&D激酶插入区受体抗体(R&D Systems, AF644)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 s3c) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 s3c). J Clin Invest (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s2d
安迪生物R&D激酶插入区受体抗体(R&D Systems, AF644)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s2d). J Clin Invest (2017) ncbi
大鼠 单克隆(522302)
  • 流式细胞仪; 小鼠; 图 2c
安迪生物R&D激酶插入区受体抗体(R&D, 522302)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Circ Res (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1b
安迪生物R&D激酶插入区受体抗体(R&D Systems, AF644)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Dev Biol (2017) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:300; 图 5c
安迪生物R&D激酶插入区受体抗体(R&D Systems, AF644)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5c). Stroke (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3p
安迪生物R&D激酶插入区受体抗体(R&D Systems, AF644)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3p). J Am Soc Nephrol (2016) ncbi
domestic goat 多克隆
安迪生物R&D激酶插入区受体抗体(R&D Systems, AF644)被用于. Sci Rep (2015) ncbi
Bio X Cell
大鼠 单克隆(DC101)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s16a
Bio X Cell激酶插入区受体抗体(BioXCell, BP0060)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s16a). Science (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D5B1)
  • 免疫细胞化学; 小鼠; 1:200; 图 4c
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 9698)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). BMC Med (2022) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(CST, 2479)被用于被用于免疫印迹在人类样本上 (图 2f). Molecules (2022) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(CST, 2478)被用于被用于免疫印迹在人类样本上 (图 2f). Molecules (2022) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上 (图 4d). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479s)被用于被用于免疫印迹在人类样本上 (图 5d). J Hematol Oncol (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Cell Rep (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-冰冻切片; 小鼠; 图 6
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Biomolecules (2021) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫组化-石蜡切片; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(CST, 9698)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Oncogene (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫印迹在小鼠样本上 (图 6e). Biomolecules (2021) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 3j, s10c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(CST, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3j, s10c). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫印迹; 人类; 1:1000; 图 3j, s10c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(CST, 9698)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3j, s10c). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Nat Commun (2021) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technologies, 2478)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technologies, 9698)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫印迹; 小鼠; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signalling, 9698)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). Nat Commun (2020) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signalling, 2478)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). Nat Commun (2020) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). elife (2019) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). elife (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2019) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在小鼠样本上浓度为1:500. elife (2019) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 1:800; 图 5a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 5a). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D5B11)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 3770)被用于被用于免疫印迹在人类样本上 (图 3c). Am J Transl Res (2019) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫组化-石蜡切片; 小鼠; 图 s3o
  • 免疫组化-石蜡切片; 人类; 图 s3o
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 9698)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3o) 和 被用于免疫组化-石蜡切片在人类样本上 (图 s3o). Cell (2019) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 图 s4t
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 s4t). Cell (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 s4t
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 s4t). Cell (2019) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(CST, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). elife (2019) ncbi
domestic rabbit 单克隆(15D2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 4991)被用于被用于免疫印迹在人类样本上 (图 5c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 5c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 图 5h
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫组化在人类样本上 (图 5h) 和 被用于免疫印迹在人类样本上 (图 5c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(11A3)
  • 免疫印迹; 人类; 1:250; 图 3g
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2477)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫沉淀; 人类; 图 5a
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 9698)被用于被用于免疫沉淀在人类样本上 (图 5a), 被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 1:500; 图 3g
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠; 1:2000; 图 8b
  • 免疫印迹; 人类; 1:2000; 图 8a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(CST, 2478S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 8a). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:2000; 图 8a
  • 免疫印迹; 小鼠; 1:2000; 图 8b
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(CST, 2479S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8b). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫沉淀; 猕猴; 1:100; 图 1c
  • 免疫印迹; 猕猴; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫沉淀在猕猴样本上浓度为1:100 (图 1c) 和 被用于免疫印迹在猕猴样本上浓度为1:1000 (图 1c). Sci Rep (2019) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). EMBO J (2019) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Science (2018) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫沉淀; 人类; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫沉淀在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Science (2018) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠; 图 s6o
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在小鼠样本上 (图 s6o). Cell (2018) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-冰冻切片; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6a). Brain Behav Immun (2018) ncbi
domestic rabbit 单克隆(55B11)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 8b). Int J Biochem Cell Biol (2018) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 s8a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8a). Nature (2017) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 8c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 8c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D5B1)
  • 流式细胞仪; 人类; 图 2a
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 9698)被用于被用于流式细胞仪在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2d). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫细胞化学; 人类; 1:100; 图 10b
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signalling, 2478)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 10b). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(11A3)
  • 免疫细胞化学; 人类; 1:100; 图 10b
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signalling, 2477)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 10b). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(D5B11)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 3770)被用于被用于免疫印迹在小鼠样本上 (图 3b). Nature (2017) ncbi
domestic rabbit 单克隆(55B11)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(CST, 2479)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). FASEB J (2017) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). FASEB J (2017) ncbi
domestic rabbit 单克隆(55B11)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell signaling, 55B11)被用于被用于免疫细胞化学在小鼠样本上 (图 3i). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 5c). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫沉淀; 人类; 图 5c
  • 免疫印迹; 人类; 图 4a
  • 免疫沉淀; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479S)被用于被用于免疫沉淀在人类样本上 (图 5c), 被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫沉淀在小鼠样本上 (图 5d). Cardiovasc Res (2017) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 4a). Cardiovasc Res (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 s7c
  • 免疫组化-冰冻切片; 小鼠; 图 s5c
  • 免疫印迹; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 s7c), 被用于免疫组化-冰冻切片在小鼠样本上 (图 s5c) 和 被用于免疫印迹在小鼠样本上 (图 3i). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 图 s7c
  • 免疫印迹; 小鼠; 图 3i
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 s7c) 和 被用于免疫印迹在小鼠样本上 (图 3i). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫沉淀; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫沉淀在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3a). Circ Res (2017) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 5). Mol Clin Oncol (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 1d). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在人类样本上 (图 7a). Cell (2016) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478S)被用于被用于免疫印迹在人类样本上 (图 s1). Cell (2016) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 9698)被用于被用于免疫印迹在人类样本上 (图 2d). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫印迹; 大鼠; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell signaling, D5B1)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7g). Mol Hum Reprod (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2471)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 s4e
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4e). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2472)被用于被用于免疫印迹在大鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Histopathology (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell signaling, 2479)被用于被用于免疫印迹在人类样本上 (图 4). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 图 1
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 55B11)被用于被用于免疫组化在人类样本上 (图 1). Mol Imaging Biol (2016) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Tech, 2478S)被用于被用于免疫印迹在人类样本上 (图 1). Biol Open (2016) ncbi
domestic rabbit 单克隆(15D2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Tech, 4991S)被用于被用于免疫印迹在人类样本上 (图 1). Biol Open (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 图 s1o
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1o). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 9698)被用于被用于免疫印迹在人类样本上 (图 2). Onco Targets Ther (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell signaling, 2479)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell signaling, 2478)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 人类; 图 4a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(cell signalling, 2479S)被用于被用于免疫细胞化学在人类样本上 (图 4a). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 图 5n
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5n). J Pathol (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 24790)被用于被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2016) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Tech, 2478S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D5B11)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 3770)被用于被用于免疫印迹在人类样本上 (图 8). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 流式细胞仪; 人类; 图 5
  • 免疫沉淀; 人类; 图 7
  • 免疫细胞化学; 人类; 图 6
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于流式细胞仪在人类样本上 (图 5), 被用于免疫沉淀在人类样本上 (图 7) 和 被用于免疫细胞化学在人类样本上 (图 6). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2474)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Ozyme, 2479)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). EJNMMI Res (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell signaling, 2479)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Am J Respir Crit Care Med (2016) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000. Development (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:5000
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上浓度为1:5000. Development (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:500; 图 2a
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signalling Technology, 24795)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). J Neurooncol (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5b). Nature (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 大鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 7a). Exp Eye Res (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 人类; 1:300
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(D5B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 3770)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(15D2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 4991)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 19A10)被用于被用于免疫印迹在小鼠样本上. J Cereb Blood Flow Metab (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, # 2479L)被用于被用于免疫组化在小鼠样本上浓度为1:300. Reprod Sci (2016) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Ther Med (2015) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signalling Technologies, 2478)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(D5B1)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signalling Technologies, 9698)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2478)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(D5B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 3770)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D5B11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 3770S)被用于被用于免疫印迹在人类样本上 (图 3a). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上 (图 3a). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479S)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Front Pharmacol (2015) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2478)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 6
  • 免疫印迹; 人类; 1:200; 表 4
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 6) 和 被用于免疫印迹在人类样本上浓度为1:200 (表 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2478)被用于被用于免疫印迹在人类样本上. J Cell Biol (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在人类样本上. J Cell Biol (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 小鼠; 1:500; 图 8
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 55B11)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2478)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 2479)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 小鼠; 图 2
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell signaling, 55B11)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Exp Med (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:750
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在大鼠样本上浓度为1:750. Ann Anat (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technologies, 2479)被用于被用于免疫印迹在小鼠样本上 (图 7). Diabetes (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 流式细胞仪; 人类; 图 5c
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479S)被用于被用于流式细胞仪在人类样本上 (图 5c). Invest New Drugs (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signalling, 2479)被用于被用于免疫组化在人类样本上浓度为1:100. Mol Oncol (2015) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 大鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 55B11)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). J Steroid Biochem Mol Biol (2014) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 19A10)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Steroid Biochem Mol Biol (2014) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 55B11)被用于被用于免疫组化在人类样本上浓度为1:100. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(15D2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 4991)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479S)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
domestic rabbit 单克隆(15D2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 4991)被用于被用于免疫印迹在人类样本上. J Vasc Interv Radiol (2014) ncbi
domestic rabbit 单克隆(55B11)
  • 免疫组化; 人类; 1:150
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2479)被用于被用于免疫组化在人类样本上浓度为1:150. Pathol Res Pract (2014) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫组化-冰冻切片; 小鼠
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 2478)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D5B11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling Technology, 3770)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Blood (2013) ncbi
domestic rabbit 单克隆(19A10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司激酶插入区受体抗体(Cell Signaling, 19A10)被用于被用于免疫印迹在人类样本上. FEBS J (2013) ncbi
碧迪BD
大鼠 单克隆(Avas 12alpha1)
  • 流式细胞仪; 小鼠; 图 s6d
碧迪BD激酶插入区受体抗体(BD Pharmingen, 550549)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). Science (2019) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 免疫细胞化学; 小鼠; 1:20
碧迪BD激酶插入区受体抗体(BD, 555308)被用于被用于免疫细胞化学在小鼠样本上浓度为1:20. Nat Protoc (2017) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD激酶插入区受体抗体(BD Pharmingen, 561252)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Exp Ther Med (2017) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
碧迪BD激酶插入区受体抗体(BD Pharminogen, 555307)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). PLoS ONE (2016) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 免疫组化; 小鼠; 图 2c
碧迪BD激酶插入区受体抗体(BD biosciences, 561993)被用于被用于免疫组化在小鼠样本上 (图 2c). Circulation (2017) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD激酶插入区受体抗体(BD Biosciences, 561252)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD激酶插入区受体抗体(BD Biosciences, 561259)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int J Mol Med (2016) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
碧迪BD激酶插入区受体抗体(BD Biosciences, 560070)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Stem Cells (2016) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 免疫组化-冰冻切片; 小鼠; 图 3
碧迪BD激酶插入区受体抗体(BD Pharmingen, 550549)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). EJNMMI Res (2016) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 流式细胞仪; 小鼠; 1:200; 图  1
碧迪BD激酶插入区受体抗体(BD Pharmingen, 555308)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图  1). Angiogenesis (2015) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 免疫组化; 小鼠; 图 7
碧迪BD激酶插入区受体抗体(BD Biosciences, 550549)被用于被用于免疫组化在小鼠样本上 (图 7). Mar Drugs (2015) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 免疫细胞化学; 小鼠; 1:200; 图 5a
碧迪BD激酶插入区受体抗体(BD Pharmingen, 555307)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5a). PLoS ONE (2015) ncbi
大鼠 单克隆(Avas 12alpha1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s7
碧迪BD激酶插入区受体抗体(BD Pharmingen, 550549)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s7). Nat Commun (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 4c
  • 免疫印迹; 小鼠
西格玛奥德里奇激酶插入区受体抗体(Sigma, SAB4504567)被用于被用于流式细胞仪在人类样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上. Circ Res (2017) ncbi
文章列表
  1. Chen T, Shi Z, Zhao Y, Meng X, Zhao S, Zheng L, et al. LncRNA Airn maintains LSEC differentiation to alleviate liver fibrosis via the KLF2-eNOS-sGC pathway. BMC Med. 2022;20:335 pubmed 出版商
  2. Ye G, Xu M, Shu Y, Sun X, Mai Y, Hong Y, et al. A Quassinoid Diterpenoid Eurycomanone from Eurycoma longifolia Jack Exerts Anti-Cancer Effect through Autophagy Inhibition. Molecules. 2022;27: pubmed 出版商
  3. Veron D, Aggarwal P, Li Q, Moeckel G, Kashgarian M, Tufro A. Podocyte VEGF-A Knockdown Induces Diffuse Glomerulosclerosis in Diabetic and in eNOS Knockout Mice. Front Pharmacol. 2021;12:788886 pubmed 出版商
  4. Zhu H, Liu X, DING Y, Tan K, Ni W, Ouyang W, et al. IL-6 coaxes cellular dedifferentiation as a pro-regenerative intermediate that contributes to pericardial ADSC-induced cardiac repair. Stem Cell Res Ther. 2022;13:44 pubmed 出版商
  5. Xie A, Iguchi N, Clarkson T, Malykhina A. Pharmacogenetic inhibition of lumbosacral sensory neurons alleviates visceral hypersensitivity in a mouse model of chronic pelvic pain. PLoS ONE. 2022;17:e0262769 pubmed 出版商
  6. Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, et al. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine. 2021;73:103632 pubmed 出版商
  7. Lee J, Hur J, Kwon Y, Chae C, Choi J, Hwang I, et al. KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state. J Hematol Oncol. 2021;14:148 pubmed 出版商
  8. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  9. Hu J, Zhu M, Li D, Wu Q, Le Y. VEGF as a Direct Functional Regulator of Photoreceptors and Contributing Factor to Diabetes-Induced Alteration of Photoreceptor Function. Biomolecules. 2021;11: pubmed 出版商
  10. Yuan S, Zhang P, Wen L, Jia S, Wu Y, Zhang Z, et al. miR-22 promotes stem cell traits via activating Wnt/β-catenin signaling in cutaneous squamous cell carcinoma. Oncogene. 2021;40:5799-5813 pubmed 出版商
  11. Zhan C, Sun Y, Pan J, Chen L, Yuan T. Effect of the Notch4/Dll4 signaling pathway in early gestational intrauterine infection on lung development. Exp Ther Med. 2021;22:972 pubmed 出版商
  12. Zou S, Gao Y, Zhang S. lncRNA HCP5 acts as a ceRNA to regulate EZH2 by sponging miR‑138‑5p in cutaneous squamous cell carcinoma. Int J Oncol. 2021;59: pubmed 出版商
  13. Qian J, Xu Q, Xu W, Cai R, Huang G. Expression of VEGF-A Signaling Pathway in Cartilage of ACLT-induced Osteoarthritis Mouse Model. J Orthop Surg Res. 2021;16:379 pubmed 出版商
  14. He B, Chen P, Zambrano S, Dabaghie D, Hu Y, Möller Hackbarth K, et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat Commun. 2021;12:2141 pubmed 出版商
  15. Tirronen A, Downes N, Huusko J, Laakkonen J, Tuomainen T, Tavi P, et al. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules. 2021;11: pubmed 出版商
  16. He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, et al. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med. 2021;11:e289 pubmed 出版商
  17. Zhou H, Qin L, Jiang Q, Murray K, Zhang H, Li B, et al. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun. 2021;12:504 pubmed 出版商
  18. Lian C, Zhao L, Qiu J, Wang Y, Chen R, Liu Z, et al. miR-25-3p promotes endothelial cell angiogenesis in aging mice via TULA-2/SYK/VEGFR-2 downregulation. Aging (Albany NY). 2020;12:22599-22613 pubmed 出版商
  19. Yang C, Eleftheriadou M, Kelaini S, Morrison T, González M, Caines R, et al. Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nat Commun. 2020;11:3812 pubmed 出版商
  20. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  21. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  22. Harde E, Nicholson L, Furones Cuadrado B, Bissen D, Wigge S, Urban S, et al. EphrinB2 regulates VEGFR2 during dendritogenesis and hippocampal circuitry development. elife. 2019;8: pubmed 出版商
  23. Luck R, Urban S, Karakatsani A, Harde E, Sambandan S, Nicholson L, et al. VEGF/VEGFR2 signaling regulates hippocampal axon branching during development. elife. 2019;8: pubmed 出版商
  24. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  25. Liu H, Feng X, Yang B, Tong R, Lu Y, Chen D, et al. Dimethyl fumarate suppresses hepatocellular carcinoma progression via activating SOCS3/JAK1/STAT3 signaling pathway. Am J Transl Res. 2019;11:4713-4725 pubmed
  26. Xu M, Xu H, Lin Y, Sun X, Wang L, Fang Z, et al. LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis. Cell. 2019;178:1478-1492.e20 pubmed 出版商
  27. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  28. Hori A, Shimoda M, Naoi Y, Kagara N, Tanei T, Miyake T, et al. Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer. Breast Cancer Res. 2019;21:88 pubmed 出版商
  29. Njah K, Chakraborty S, Qiu B, Arumugam S, Raju A, Pobbati A, et al. A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis. Cell Rep. 2019;28:949-965.e7 pubmed 出版商
  30. Stassi A, Gasser F, Velázquez M, Belotti E, Gareis N, Rey F, et al. Contribution of the VEGF system to the follicular persistence associated with bovine cystic ovaries. Theriogenology. 2019;138:52-65 pubmed 出版商
  31. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  32. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  33. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  34. Hayashi H, Mamun A, Takeyama M, Yamamura A, Zako M, Yagasaki R, et al. Activator of G-protein signaling 8 is involved in VEGF-induced choroidal neovascularization. Sci Rep. 2019;9:1560 pubmed 出版商
  35. Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L, et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019;363:294-297 pubmed 出版商
  36. Urner S, Planas Paz L, Hilger L, Henning C, Branopolski A, Kelly Goss M, et al. Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth. EMBO J. 2019;38: pubmed 出版商
  37. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  38. Zhang F, Zarkada G, Han J, Li J, Dubrac A, Ola R, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361:599-603 pubmed 出版商
  39. Phakdeedindan P, Setthawong P, Tiptanavattana N, Rungarunlert S, Ingrungruanglert P, Israsena N, et al. Rabbit induced pluripotent stem cells retain capability of in vitro cardiac differentiation. Exp Anim. 2019;68:35-47 pubmed 出版商
  40. Das A, Huang G, Bonkowski M, Longchamp A, Li C, Schultz M, et al. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell. 2018;173:74-89.e20 pubmed 出版商
  41. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  42. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  43. Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol. 2018;97:43-51 pubmed 出版商
  44. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  45. Thion M, Low D, Silvin A, Chen J, Grisel P, Schulte Schrepping J, et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell. 2018;172:500-516.e16 pubmed 出版商
  46. Polacheck W, Kutys M, Yang J, Eyckmans J, Wu Y, Vasavada H, et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature. 2017;552:258-262 pubmed 出版商
  47. Xie X, Almuzzaini B, Drou N, Kremb S, Yousif A, Farrants A, et al. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 2018;32:1296-1314 pubmed 出版商
  48. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  49. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  50. Lalit P, Rodriguez A, Downs K, Kamp T. Generation of multipotent induced cardiac progenitor cells from mouse fibroblasts and potency testing in ex vivo mouse embryos. Nat Protoc. 2017;12:1029-1054 pubmed 出版商
  51. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  52. Huang Y, Rajappa P, Hu W, Hoffman C, CISSE B, Kim J, et al. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma. J Clin Invest. 2017;127:1826-1838 pubmed 出版商
  53. Kilpatrick L, Friedman Ohana R, Alcobia D, Riching K, Peach C, Wheal A, et al. Real-time analysis of the binding of fluorescent VEGF165a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes. Biochem Pharmacol. 2017;136:62-75 pubmed 出版商
  54. Li Q, Xia S, Fang H, Pan J, Jia Y, Deng G. VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells. Exp Ther Med. 2017;13:449-454 pubmed 出版商
  55. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  56. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  57. Taoka R, Jinesh G, Xue W, Safe S, Kamat A. CF3DODA-Me induces apoptosis, degrades Sp1, and blocks the transformation phase of the blebbishield emergency program. Apoptosis. 2017;22:719-729 pubmed 出版商
  58. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  59. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  60. Yang G, Zhao Z, Qin T, Wang D, Chen L, Xiang R, et al. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J. 2017;31:2001-2012 pubmed 出版商
  61. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  62. Tang M, Gao G, Rueda C, Yu H, Thibodeaux D, Awano T, et al. Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun. 2017;8:14152 pubmed 出版商
  63. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  64. Indrakusuma I, Romacho T, Eckel J. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells. Front Pharmacol. 2016;7:497 pubmed 出版商
  65. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  66. Wu Q, Ma Y, Ruan C, Yang Y, Liu X, Ge Q, et al. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway. Cardiovasc Res. 2017;113:70-80 pubmed 出版商
  67. Hirai M, Arita Y, McGlade C, Lee K, Chen J, Evans S. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest. 2017;127:569-582 pubmed 出版商
  68. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  69. Tancharoen W, Aungsuchawan S, Pothacharoen P, Markmee R, Narakornsak S, Kieodee J, et al. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells. Acta Histochem. 2017;119:113-121 pubmed 出版商
  70. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  71. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  72. Wang X, Chen D, Chen K, Jubran A, Ramirez A, Astrof S. Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field. Dev Biol. 2017;421:108-117 pubmed 出版商
  73. Galoian K, Luo S, Qureshi A, Patel P, Price R, Morse A, et al. Effect of cytostatic proline rich polypeptide-1 on tumor suppressors of inflammation pathway signaling in chondrosarcoma. Mol Clin Oncol. 2016;5:618-624 pubmed
  74. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  75. Lucitti J, Sealock R, Buckley B, Zhang H, Xiao L, Dudley A, et al. Variants of Rab GTPase-Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke. Stroke. 2016;47:3022-3031 pubmed
  76. Zangi L, Oliveira M, Ye L, Ma Q, Sultana N, Hadas Y, et al. Insulin-Like Growth Factor 1 Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury. Circulation. 2017;135:59-72 pubmed 出版商
  77. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527-4536 pubmed 出版商
  78. Agulnik M, Costa R, Milhem M, Rademaker A, Prunder B, Daniels D, et al. A phase II study of tivozanib in patients with metastatic and nonresectable soft-tissue sarcomas. Ann Oncol. 2017;28:121-127 pubmed 出版商
  79. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  80. Prendergast A, Kück A, van Essen M, Haas S, Blaszkiewicz S, Essers M. IFN?-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica. 2017;102:445-453 pubmed 出版商
  81. Liu Z, Tian R, Li Y, Zhang L, Shao H, Yang C, et al. SDF-1?-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia. Sci Rep. 2016;6:34416 pubmed 出版商
  82. Xin H, ZHONG C, Nudleman E, Ferrara N. Evidence for Pro-angiogenic Functions of VEGF-Ax. Cell. 2016;167:275-284.e6 pubmed 出版商
  83. Baeyens N, Larrivee B, Ola R, Hayward Piatkowskyi B, Dubrac A, Huang B, et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol. 2016;214:807-16 pubmed 出版商
  84. Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga -, Gomez Peña M, et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod. 2016;22:852-866 pubmed
  85. Bao X, Lian X, Palecek S. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions. Methods Mol Biol. 2016;1481:183-96 pubmed 出版商
  86. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 2016;7:12680 pubmed 出版商
  87. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  88. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  89. Yerlikaya G, Balendran S, Pröstling K, Reischer T, Birner P, Wenzl R, et al. Comprehensive study of angiogenic factors in women with endometriosis compared to women without endometriosis. Eur J Obstet Gynecol Reprod Biol. 2016;204:88-98 pubmed 出版商
  90. Liu L, Jiang Y, Steinle J. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion. PLoS ONE. 2016;11:e0159532 pubmed 出版商
  91. Xia X, Yu Y, Zhang L, Ma Y, Wang H. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression. Mol Med Rep. 2016;14:2016-24 pubmed 出版商
  92. Peckova K, Michal M, Hadravsky L, Suster S, Damjanov I, Miesbauerova M, et al. Littoral cell angioma of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology. 2016;69:762-774 pubmed 出版商
  93. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  94. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  95. Zhou X, Patel D, Sen S, Shanmugam V, Sidawy A, Mishra L, et al. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis. J Vasc Surg. 2017;65:1161-1169 pubmed 出版商
  96. Chen I, Caprioli A, Ohnuki H, Kwak H, Porcher C, Tosato G. EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta. Sci Rep. 2016;6:27195 pubmed 出版商
  97. Chiapparo G, Lin X, Lescroart F, Chabab S, Paulissen C, Pitisci L, et al. Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. J Cell Biol. 2016;213:463-77 pubmed 出版商
  98. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  99. Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed 出版商
  100. de Geus S, Boogerd L, Swijnenburg R, Mieog J, Tummers W, Prevoo H, et al. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol. 2016;18:807-819 pubmed
  101. Fearnley G, Smith G, Abdul Zani I, Yuldasheva N, Mughal N, Homer Vanniasinkam S, et al. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol Open. 2016;5:571-83 pubmed 出版商
  102. Takeuchi H, Taoka R, Mmeje C, Jinesh G, Safe S, Kamat A. CDODA-Me decreases specificity protein transcription factors and induces apoptosis in bladder cancer cells through induction of reactive oxygen species. Urol Oncol. 2016;34:337.e11-8 pubmed 出版商
  103. Krampitz G, George B, Willingham S, Volkmer J, Weiskopf K, Jahchan N, et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A. 2016;113:4464-9 pubmed 出版商
  104. Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou J, et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med. 2016;37:1299-309 pubmed 出版商
  105. Ding X, Qiu L, Zhang L, Xi J, Li D, Huang X, et al. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer. Onco Targets Ther. 2016;9:1189-204 pubmed 出版商
  106. Nishida Fukuda H, Araki R, Shudou M, Okazaki H, Tomono Y, Nakayama H, et al. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A). J Biol Chem. 2016;291:10490-500 pubmed 出版商
  107. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  108. Jung O, Trapp Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson R, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogenesis. 2016;5:e202 pubmed 出版商
  109. Sato T, Paquet Fifield S, Harris N, Roufail S, Turner D, Yuan Y, et al. VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury. J Pathol. 2016;239:152-61 pubmed 出版商
  110. Goode D, Obier N, Vijayabaskar M, Lie A Ling M, Lilly A, Hannah R, et al. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation. Dev Cell. 2016;36:572-87 pubmed 出版商
  111. Wu G, Zeng G. METCAM/MUC18 is a novel tumor and metastasis suppressor for the human ovarian cancer SKOV3 cells. BMC Cancer. 2016;16:136 pubmed 出版商
  112. Song D, Ko G, Lee J, Lee J, Lee G, Kim H, et al. Myoferlin expression in non-small cell lung cancer: Prognostic role and correlation with VEGFR-2 expression. Oncol Lett. 2016;11:998-1006 pubmed
  113. Vargel O, Zhang Y, Kosim K, Ganter K, Foehr S, Mardenborough Y, et al. Activation of the TGFβ pathway impairs endothelial to haematopoietic transition. Sci Rep. 2016;6:21518 pubmed 出版商
  114. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  115. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  116. Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett. 2016;11:610-618 pubmed
  117. Tang Y, Hong Y, Bai H, Wu Q, Chen C, Lang J, et al. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells. 2016;34:1527-40 pubmed 出版商
  118. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  119. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  120. Rusckowski M, Wang Y, Blankenberg F, Levashova Z, Backer M, Backer J. Targeted scVEGF/(177)Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy. EJNMMI Res. 2016;6:4 pubmed 出版商
  121. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  122. Wang X, Dai Z, Wu X, Wang K, Wang X. Distinct RNA transcriptome patterns are potentially associated with angiogenesis in Tie2-expressing monocytes. Gene. 2016;580:1-7 pubmed 出版商
  123. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  124. Ulrich F, Carretero Ortega J, Menendez J, Narvaez C, Sun B, Lancaster E, et al. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development. 2016;143:147-59 pubmed 出版商
  125. Koudelkova P, Weber G, Mikulits W. Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF. PLoS ONE. 2015;10:e0142134 pubmed 出版商
  126. Taïeb D, Barlier A, Yang C, Pertuit M, Tchoghandjian A, Rochette C, et al. Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. J Neurooncol. 2016;126:473-81 pubmed 出版商
  127. He W, Bai G, Zhou H, Wei N, White N, Lauer J, et al. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature. 2015;526:710-4 pubmed 出版商
  128. Nakano A, Nakahara T, Mori A, Ushikubo H, Sakamoto K, Ishii K. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Exp Eye Res. 2016;143:120-31 pubmed 出版商
  129. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  130. Litwin M, RadwaÅ„ska A, Paprocka M, Kieda C, Dobosz T, Witkiewicz W, et al. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production. Mol Cell Biochem. 2015;410:131-42 pubmed 出版商
  131. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  132. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  133. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  134. Suzuki Y, Nagai N, Yamakawa K, Muranaka Y, Hokamura K, Umemura K. Recombinant tissue-type plasminogen activator transiently enhances blood-brain barrier permeability during cerebral ischemia through vascular endothelial growth factor-mediated endothelial endocytosis in mice. J Cereb Blood Flow Metab. 2015;35:2021-31 pubmed 出版商
  135. Yanagida A, Chikada H, Ito K, Umino A, Kato Itoh M, Yamazaki Y, et al. Liver maturation deficiency in p57(Kip2)-/- mice occurs in a hepatocytic p57(Kip2) expression-independent manner. Dev Biol. 2015;407:331-43 pubmed 出版商
  136. Regan J, Kannan P, Kemp M, Kramer B, Newnham J, Jobe A, et al. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod Sci. 2016;23:69-80 pubmed 出版商
  137. Bian Y, Qian W, Li H, Zhao R, Shan W, Weng X. Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. Int J Mol Med. 2015;36:678-84 pubmed 出版商
  138. Jing L, Li S, Li Q. Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model. Exp Ther Med. 2015;9:2141-2146 pubmed
  139. Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, et al. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res. 2015;107:478-86 pubmed 出版商
  140. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  141. Huang J, Woolf A, Kolatsi Joannou M, Baluk P, Sandford R, Peters D, et al. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol. 2016;27:69-77 pubmed 出版商
  142. Fagiani E, Bill R, Pisarsky L, Ivanek R, Rüegg C, Christofori G. An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models. Angiogenesis. 2015;18:327-45 pubmed 出版商
  143. Huang H, Rajanbabu V, Pan C, Chan Y, Chen J, Wu C. Enhanced Control of Bladder-Associated Tumors Using Shrimp Anti-Lipopolysaccharide Factor (SALF) Antimicrobial Peptide as a Cancer Vaccine Adjuvant in Mice. Mar Drugs. 2015;13:3241-58 pubmed 出版商
  144. Nasrallah R, Knezevic K, Thai T, Thomas S, Göttgens B, Lacaud G, et al. Endoglin potentiates nitric oxide synthesis to enhance definitive hematopoiesis. Biol Open. 2015;4:819-29 pubmed 出版商
  145. Wang J, Xiao J, Wen D, Wu X, Mao Z, Zhang J, et al. Endothelial cell-anchored tissue factor pathway inhibitor regulates tumor metastasis to the lung in mice. Mol Carcinog. 2016;55:882-96 pubmed 出版商
  146. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  147. Kim B, Lee J, Choi J, Park D, Song H, Park T, et al. Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization. Br J Pharmacol. 2015;172:3875-89 pubmed 出版商
  148. Yamana S, Tokiyama A, Mizutani K, Hirata K, Takai Y, Rikitake Y. The Cell Adhesion Molecule Necl-4/CADM4 Serves as a Novel Regulator for Contact Inhibition of Cell Movement and Proliferation. PLoS ONE. 2015;10:e0124259 pubmed 出版商
  149. Liu L, Yu H, Huang X, Tan H, Li S, Luo Y, et al. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity. BMC Cancer. 2015;15:170 pubmed 出版商
  150. Majumder A, Syed K, Joseph S, Scambler P, Dutta D. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. J Biol Chem. 2015;290:13053-63 pubmed 出版商
  151. Khayati F, Pérez Cano L, Maouche K, Sadoux A, Boutalbi Z, Podgorniak M, et al. EMMPRIN/CD147 is a novel coreceptor of VEGFR-2 mediating its activation by VEGF. Oncotarget. 2015;6:9766-80 pubmed
  152. Lee I, Hüttemann M, Kruger A, Bollig Fischer A, Malek M. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol. 2015;6:43 pubmed 出版商
  153. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  154. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  155. Coon B, Baeyens N, Han J, Budatha M, Ross T, Fang J, et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol. 2015;208:975-86 pubmed 出版商
  156. Shi X, Zirbes K, Rasmussen T, Ferdous A, Garry M, Koyano Nakagawa N, et al. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem. 2015;290:9614-25 pubmed 出版商
  157. Lin S, Huang S, Kuo H, Chen C, Ma Y, Chu T, et al. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs. 2015;13:861-78 pubmed 出版商
  158. Choi S, Lee H, Choi J, Kim J, Park C, Joo H, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS ONE. 2015;10:e0117410 pubmed 出版商
  159. Hou S, Nilchi L, Li X, Gangaraju S, Jiang S, Aylsworth A, et al. Semaphorin3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage. Sci Rep. 2015;5:7890 pubmed 出版商
  160. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet A, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139-48 pubmed 出版商
  161. Li Z, Liu Y, Liu X, Xue Y, Wang P, Liu L. Low-dose endothelial monocyte-activating polypeptide-II increases permeability of blood-tumor barrier via a PKC-ζ/PP2A-dependent signaling mechanism. Exp Cell Res. 2015;331:257-66 pubmed 出版商
  162. Cao H, Zheng L, Wang N, Wang L, Li Y, Li D, et al. Src blockage by siRNA inhibits VEGF-induced vascular hyperpemeability and osteoclast activity - an in vitro mechanism study for preventing destructive repair of osteonecrosis. Bone. 2015;74:58-68 pubmed 出版商
  163. Ozmen A, Unek G, Kipmen Korgun D, Cetinkaya B, Avcil Z, Korgun E. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat. 2015;198:34-40 pubmed 出版商
  164. Aggarwal P, Veron D, Thomas D, Siegel D, Moeckel G, Kashgarian M, et al. Semaphorin3a promotes advanced diabetic nephropathy. Diabetes. 2015;64:1743-59 pubmed 出版商
  165. Guzmán E, Maers K, Roberts J, Kemami Wangun H, Harmody D, Wright A. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 2015;33:86-94 pubmed 出版商
  166. Hamdollah Zadeh M, Amin E, Hoareau Aveilla C, Domingo E, Symonds K, Ye X, et al. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance. Mol Oncol. 2015;9:167-78 pubmed 出版商
  167. Scotti L, Abramovich D, Pascuali N, Irusta G, Meresman G, Tesone M, et al. Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome. J Steroid Biochem Mol Biol. 2014;144 Pt B:392-401 pubmed 出版商
  168. Shen W, Chung S, Irhimeh M, Li S, Lee S, Gillies M. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS ONE. 2014;9:e104759 pubmed 出版商
  169. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  170. Arita Y, Nakaoka Y, Matsunaga T, Kidoya H, Yamamizu K, Arima Y, et al. Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nat Commun. 2014;5:4552 pubmed 出版商
  171. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  172. Styring E, Seinen J, Dominguez Valentin M, Domanski H, Jonsson M, von Steyern F, et al. Key roles for MYC, KIT and RET signaling in secondary angiosarcomas. Br J Cancer. 2014;111:407-12 pubmed 出版商
  173. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  174. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  175. Ferreira C, Siqueira D, Romitti M, Ceolin L, Brasil B, Meurer L, et al. Role of VEGF-A and its receptors in sporadic and MEN2-associated pheochromocytoma. Int J Mol Sci. 2014;15:5323-36 pubmed 出版商
  176. Fuchs K, Bize P, Dormond O, Denys A, Doelker E, Borchard G, et al. Drug-eluting beads loaded with antiangiogenic agents for chemoembolization: in vitro sunitinib loading and release and in vivo pharmacokinetics in an animal model. J Vasc Interv Radiol. 2014;25:379-87, 387.e1-2 pubmed 出版商
  177. Knösel T, Werner M, Jung A, Kirchner T, Dürr H. Dedifferentiated chondrosarcoma mimicking a giant cell tumor. Is this low grade dedifferentiated chondrosarcoma?. Pathol Res Pract. 2014;210:194-7 pubmed 出版商
  178. Zhong W, Gu B, Gu Y, Groome L, Sun J, Wang Y. Activation of vitamin D receptor promotes VEGF and CuZn-SOD expression in endothelial cells. J Steroid Biochem Mol Biol. 2014;140:56-62 pubmed 出版商
  179. Zhang H, Nieves J, Fraser S, Isern J, Douvaras P, Papatsenko D, et al. Expression of podocalyxin separates the hematopoietic and vascular potentials of mouse embryonic stem cell-derived mesoderm. Stem Cells. 2014;32:191-203 pubmed 出版商
  180. Christoforou N, Liau B, Chakraborty S, Chellapan M, Bursac N, Leong K. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues. PLoS ONE. 2013;8:e65963 pubmed 出版商
  181. Chatterjee S, Wang Y, Duncan M, Naik U. Junctional adhesion molecule-A regulates vascular endothelial growth factor receptor-2 signaling-dependent mouse corneal wound healing. PLoS ONE. 2013;8:e63674 pubmed 出版商
  182. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  183. Behrens A, Iacovino M, Lohr J, Ren Y, Zierold C, Harvey R, et al. Nkx2-5 mediates differential cardiac differentiation through interaction with Hoxa10. Stem Cells Dev. 2013;22:2211-20 pubmed 出版商
  184. Singh N, Tiem M, Watkins R, Cho Y, Wang Y, Olsen T, et al. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood. 2013;121:4242-9 pubmed 出版商
  185. Rapraeger A, Ell B, Roy M, Li X, Morrison O, Thomas G, et al. Vascular endothelial-cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between ?V?3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesi. FEBS J. 2013;280:2194-206 pubmed 出版商
  186. Paz H, Lynch M, Bogue C, Gasson J. The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. Blood. 2010;116:1254-62 pubmed 出版商
  187. Asahina K, Tsai S, Li P, Ishii M, Maxson R, Sucov H, et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology. 2009;49:998-1011 pubmed 出版商
  188. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  189. Watabe T, Yamashita J, Mishima K, Miyazono K. TGF-beta signaling in embryonic stem cell-derived endothelial cells. Methods Mol Biol. 2006;330:341-51 pubmed