这是一篇来自已证抗体库的有关小鼠 Ki67的综述,是根据958篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ki67 抗体。
Ki67 同义词: D630048A14Rik; Ki-67; Ki67

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s2a
  • 免疫细胞化学; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2a) 和 被用于免疫细胞化学在小鼠样本上 (图 3d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:350; 图 1d, 1s2a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:350 (图 1d, 1s2a). elife (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 人类; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, KI67 (ab16667)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 5c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 5c). elife (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1b, 2c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1b, 2c). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4a). Stem Cell Reports (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). Cell (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 人类; 图 3m
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫印迹在人类样本上 (图 3m). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4h
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4h). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2d). elife (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 7i
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Cambridge, UK, #ab15580)被用于被用于流式细胞仪在人类样本上 (图 7i). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在大鼠样本上浓度为1:500. Biol Proced Online (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3d). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 10d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 10d). Front Oncol (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4g). Cancer Cell Int (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 7a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 7a). Biores Open Access (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s10b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s10b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 7a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 7a). Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2g). EMBO Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s1). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2c). Cancer Cell Int (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4a). Cancer Manag Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 猕猴; 1:500; 图 e1c
  • 免疫组化; 小鼠; 1:500; 图 1g, 1h, e1a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在猕猴样本上浓度为1:500 (图 e1c) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 1g, 1h, e1a). EMBO Mol Med (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1b). Oncotarget (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 6d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6d). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 2a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 2a). Clin Epigenetics (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 4 ug/ml; 图 2e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为4 ug/ml (图 2e). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3c, d, 6d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 3c, d, 6d). Cancer Med (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 4c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s6e
  • 免疫细胞化学; 人类; 1:500; 图 4c
艾博抗(上海)贸易有限公司 Ki67抗体(AbCam, Ab16667)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s6e) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1j
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1j). JCI Insight (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4f). J Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s6d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s6d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4a). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3d, 6d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d, 6d). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上 (图 6e). J Exp Clin Cancer Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4a). J Ovarian Res (2020) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s10c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB16667)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s10c). PLoS Biol (2020) ncbi
小鼠 单克隆(B126.1)
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab8191)被用于被用于免疫组化在小鼠样本上 (图 5c). Int J Biol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 3b, 3c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3b, 3c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 1e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1f). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4h). elife (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab166667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3f). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 7b). Cell Rep (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Biol Sex Differ (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, RRID:AB_302459)被用于被用于免疫组化在人类样本上 (图 5a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3a). elife (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 e6e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 e6e). Nature (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab-16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3f). EMBO J (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s4c
艾博抗(上海)贸易有限公司 Ki67抗体(AbCam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s4c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 s1e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 s1e). Cell (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:400
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab21700)被用于被用于免疫组化在小鼠样本上浓度为1:400. J Immunother Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s11f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s11f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1s1e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1s1e). elife (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab1558)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4a). Autophagy (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1d
艾博抗(上海)贸易有限公司 Ki67抗体(AbCam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab21700)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 1d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Cell (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 4c). Cell Mol Life Sci (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 ex1f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 ex1f). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 e5i
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 e5i). Nature (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6h
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6h). Cell (2019) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于. Stem Cell Reports (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1s1f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1s1f). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:50; 图 4d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 4d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s5c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s5c). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Cell Signaling, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6a). World J Gastroenterol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4a). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 7b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b). Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:250; 图 ev2d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 ev2d). EMBO J (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6i
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 6i). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5e). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5g). Development (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b). elife (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:600; 图 6g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 6g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s9c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s9c). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5h
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5h). Cell Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5g). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 2c). J Neurosci (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6c). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3k
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3k). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 s10b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s10b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1b). J Exp Med (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 3d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d). J Cell Biochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s17b
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s14f, s15g, s17d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s17b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s14f, s15g, s17d). Nat Med (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:800; 图 1b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:800 (图 1b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(B126.1)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫细胞化学; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab8191)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a) 和 被用于免疫细胞化学在小鼠样本上 (图 3c). Mol Cancer Res (2018) ncbi
小鼠 单克隆(B126.1)
  • 免疫组化-石蜡切片; 人类; 图 3d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab8191)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5c). Nat Med (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 1f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). Nature (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 s5g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上 (图 s5g). Cell (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). Cell Mol Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 s1f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s1f). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 s6a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 e2k
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 e2k). Nature (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:100; 图 2l-n
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2l-n). Cereb Cortex (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 1h). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7i
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7i). Dev Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e). EMBO J (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 15c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 15c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 3c
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s6a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6a). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 7f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab15580)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 7f). Development (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4i
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4i). Diabetologia (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 s2c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s2c). Cell (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3i
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3i). Development (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 10k
  • 免疫组化; 小鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上 (图 10k) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 7a). Development (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 1a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 6d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在人类样本上 (图 6d). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1d). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:100; 图 1c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1c). J Pineal Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 1c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s8c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s8c). Nature (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:5000; 图 3d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 3d). Int J Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 8a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab-15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 8a). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1d
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s8b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s4a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2h
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2h). Sci Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; domestic rabbit; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在domestic rabbit样本上 (图 4). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50; 图 2a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2a). Development (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s3d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3d). Nature (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4e). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1f). Breast Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 s7d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上 (图 s7d). Mol Cancer (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7f
  • 免疫细胞化学; 大鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7f) 和 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2b). Theranostics (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Int J Clin Oncol (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st10
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st10
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st10) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st10). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3h
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3h). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5a). Sci Adv (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4h
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4h). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 6b). BMC Genomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Oncogene (2017) ncbi
小鼠 单克隆(B126.1)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab8191)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4b). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s7a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s7a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 4a). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2a
  • 免疫组化; 大鼠; 1:100; 图 4g
  • 免疫印迹; 大鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2a), 被用于免疫组化在大鼠样本上浓度为1:100 (图 4g) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4g). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在大鼠样本上. Tissue Cell (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 4d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 16,667)被用于被用于免疫组化在小鼠样本上 (图 4d). Atherosclerosis (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 s3k
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3k). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 4d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在大鼠样本上 (图 4d). J Tissue Eng Regen Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 S2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 S2). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s8d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s8d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5a). Oncogene (2017) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
  • 免疫细胞化学; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a) 和 被用于免疫细胞化学在小鼠样本上 (图 3). Biotechnol Prog (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样本上 (图 3a). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5c
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 表 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:400 (表 2). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 3d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 3d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2500; 图 4e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上浓度为1:2500 (图 4e). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:50; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Mol Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 3b). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 5b). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 2a). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫组化在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Laryngoscope (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s2). Transl Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 8n
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8n). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 图 7
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫组化在人类样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:200; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB16667)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3a). Fertil Steril (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 10 mg/ml; 图 5a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10 mg/ml (图 5a). Biol Reprod (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:200; 图 3e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 表 1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (表 1). World J Nephrol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:10,000; 图 6
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:10,000 (图 6). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6k
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6k). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
  • 免疫细胞化学; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6) 和 被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; domestic rabbit; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司 Ki67抗体(AbCam, Ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, Ab15580)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 7). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 st1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 st1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫细胞化学在小鼠样本上 (图 1e). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 2). J Neurochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6B
  • 免疫组化; 小鼠; 1:100; 图 5C
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上 (图 6B) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 5C). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4g
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4g). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4c). Dev Growth Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 s3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 s3a). Carcinogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 s6c). Nat Med (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
  • 免疫细胞化学; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Tissue Eng Part C Methods (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 2b). Dev Growth Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 大鼠; 1:50; 图 1b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1b). Lab Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 3g). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab155580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 5). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3). BMC Mol Biol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Oncogene (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4). Hepatology (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 1f
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上 (图 1f). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 1). Fertil Steril (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 3). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:20,000; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20,000 (图 4). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s15b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s15b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3j
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3j). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab15580)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠; 1:300; 图 s4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 6
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3a). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 表 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 2). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5b). Development (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化基因敲除验证; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7a). J Neuropathol Exp Neurol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 15580)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6b). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 5 ug/ml; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab15580)被用于被用于免疫组化在人类样本上浓度为5 ug/ml (图 4). J Transl Med (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s7a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s7a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1j-m
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上 (图 1j-m). Oncotarget (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Neoplasia (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 4a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 4a). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上 (图 3). Tissue Eng Part C Methods (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300; 图 s3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s3). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 1
  • 免疫组化-冰冻切片; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(ABCAM, ab15580)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上. J Neurosci (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:50. J Clin Invest (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1), 被用于免疫组化-石蜡切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 7). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 1:200; 图 1
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(Sigma, ab15580)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 1) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). Oncol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫印迹在人类样本上浓度为1:100. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 3g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, abl5580)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3g). Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 6e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6e). Nat Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab15580)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 图 1d
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫细胞化学在人类样本上 (图 1d). Int J Mol Sci (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3a). Ophthalmology (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 7
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB16667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 7). Nat Commun (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 16667)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:1000; 图 4 A-ii
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4 A-ii). J Appl Physiol (1985) (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 s3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 s3). Development (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 图 8b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8b). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 6
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6). Stem Cells (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Biomolecules (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Physiol Sci (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 3). Lab Invest (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:300; 图 2
  • 免疫细胞化学; 小鼠; 1:300; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 2). PLoS Biol (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, a16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s3a). Carcinogenesis (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Dig Dis Sci (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7). Oncotarget (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Ki67抗体(abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). BMC Nephrol (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:300; 图 5f.5g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5f.5g). Cancer Res (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5). J Toxicol Environ Health A (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 流式细胞仪; 人类; 1:50
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam;, ab16667)被用于被用于流式细胞仪在人类样本上浓度为1:50. Protoplasma (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:400
艾博抗(上海)贸易有限公司 Ki67抗体(AbCam, AB16667)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Control Release (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:150
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:150. Lab Invest (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b). Nat Biotechnol (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:150
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在人类样本上浓度为1:150. Breast Cancer Res Treat (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Analyst (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Ann Clin Transl Neurol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Br J Cancer (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 表 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (表 2). Physiol Rep (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). FASEB J (2015) ncbi
小鼠 单克隆(B126.1)
  • 流式细胞仪; domestic rabbit; 1:100
  • 免疫细胞化学; domestic rabbit; 1:100
  • 流式细胞仪; 小鼠; 1:100
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab8191)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:100, 被用于免疫细胞化学在domestic rabbit样本上浓度为1:100, 被用于流式细胞仪在小鼠样本上浓度为1:100 和 被用于免疫细胞化学在小鼠样本上浓度为1:100. Tissue Eng Part C Methods (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上 (图 5). Development (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, Ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. J Pineal Res (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Stem Cell Reports (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:50
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Oncogene (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在小鼠样本上浓度为1:200. Mol Endocrinol (2014) ncbi
小鼠 单克隆(B126.1)
  • 免疫组化; 人类
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab8191)被用于被用于免疫组化在人类样本上 和 被用于免疫组化在小鼠样本上. J Cell Physiol (2015) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于. Nat Neurosci (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫印迹; 小鼠; 1:200; 图 2g
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2g). J Cell Mol Med (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:1,000
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, AB16667)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1,000. J Comp Neurol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 人类; 1:250
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, SP6)被用于被用于免疫组化在人类样本上浓度为1:250. Gut (2015) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Lab Invest (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Biomaterials (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 Ki67抗体(AbCam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Mol Oncol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cancer Res (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化在大鼠样本上. Reprod Toxicol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫细胞化学在小鼠样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, 16667)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Clin Cancer Res (2013) ncbi
domestic rabbit 单克隆(SP6)
  • 抑制或激活实验; 人类
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于抑制或激活实验在人类样本上, 被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-冰冻切片在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Diabetes Res (2013) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab15580)被用于. Dev Biol (2013) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Ki67抗体(Abcam, ab16667)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Histochem Cell Biol (2012) ncbi
赛默飞世尔
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; black ferret; 1:200; 图 1h
赛默飞世尔 Ki67抗体(Thermo Fisher, 14-5698-80)被用于被用于免疫组化-冰冻切片在black ferret样本上浓度为1:200 (图 1h). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:200; 图 3b
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:100; 图 8i
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 8i). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 3f
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 家羊; 1:200; 图 3k
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:200 (图 3k). Front Physiol (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 6s1a
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 6s1a). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:300; 图 s7b
赛默飞世尔 Ki67抗体(Invitrogen, 12-5698-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s7b). Cell Res (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-80)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). elife (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3b
赛默飞世尔 Ki67抗体(Invitrogen, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3b). Eneuro (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4p, e4j, e9q
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3e, e5l, e10n
赛默飞世尔 Ki67抗体(Thermofisher, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4p, e4j, e9q) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3e, e5l, e10n). Nature (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔 Ki67抗体(Thermo Fisher, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Sci Adv (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1j
赛默飞世尔 Ki67抗体(ThermoFisher, 14-5698-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1j). Front Immunol (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:100; 图 s7c, s7d
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7c, s7d). Nat Commun (2020) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1c). Cancer Cell (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s10d
赛默飞世尔 Ki67抗体(Thermo Fischer, 14-5698-80)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s10d). PLoS Biol (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Ki67抗体(Thermofisher, 17-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cell Rep (2019) ncbi
大鼠 单克隆(SolA15)
  • mass cytometry; 小鼠; 0.75 ug/ml; 图 5d
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于mass cytometry在小鼠样本上浓度为0.75 ug/ml (图 5d). Science (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4c
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 6c
赛默飞世尔 Ki67抗体(Thermo Fisher, MA5-14520)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4c) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 6c). elife (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Am J Pathol (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
赛默飞世尔 Ki67抗体(Thermo Fisher, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Nature (2020) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Ki67抗体(eBioscience, 12569882)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Rep (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Science (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 s3b
赛默飞世尔 Ki67抗体(Thermo-Scientific, RM-9106-S1)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3b). Nature (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 2b
赛默飞世尔 Ki67抗体(ThermoFisher, MA5-14520)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). elife (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠; 1:200; 图 4f
  • 免疫组化; 小鼠; 1:200; 图 1c
赛默飞世尔 Ki67抗体(ThermoScientific, RM-9106-R7)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4f) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 1c). elife (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 8i
赛默飞世尔 Ki67抗体(Invitrogen, MA5-14520)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 8i). Nat Commun (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 5d
赛默飞世尔 Ki67抗体(Invitrogen, 17-5698-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5d). Nat Immunol (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 e4d
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 e4d). EMBO Mol Med (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e). Nature (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s1k
赛默飞世尔 Ki67抗体(Lab Vision, RM-9106-R7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s1k). Cell (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s6a, s6b
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s6a, s6b). Sci Adv (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 5f
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Sci Rep (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
赛默飞世尔 Ki67抗体(Thermo Scientific, 14-5698-82)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b). Development (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
赛默飞世尔 Ki67抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 大鼠; 1:200; 图 1a
赛默飞世尔 Ki67抗体(Invitrogen, MA5-14520)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1a). Glia (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5c
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5c). Gut (2020) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 4b
赛默飞世尔 Ki67抗体(eBioscience, 14-5698)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). J Clin Invest (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2d
赛默飞世尔 Ki67抗体(ThermoFisher, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2d). Nat Commun (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1c
赛默飞世尔 Ki67抗体(eBioscience, 14-5698)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1c). Nat Neurosci (2019) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
  • 免疫细胞化学; 小鼠; 图 1b
赛默飞世尔 Ki67抗体(Thermo Fisher, MA5-14520)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a) 和 被用于免疫细胞化学在小鼠样本上 (图 1b). J Comp Neurol (2019) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:50; 图 3s1d
赛默飞世尔 Ki67抗体(eBioscience, 50-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3s1d). elife (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:400; 图 1c
赛默飞世尔 Ki67抗体(Thermo Fisher, 25-5698-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1c). Front Immunol (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-80)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d). Nat Commun (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 小鼠; 图 3e
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, SolA15)被用于被用于免疫细胞化学在小鼠样本上 (图 3e). J Cell Physiol (2019) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s7g
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, 25-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 s7g). Immunity (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100; 图 3b
赛默飞世尔 Ki67抗体(eBiosciences, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3b). Invest Ophthalmol Vis Sci (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s3c
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Eur J Immunol (2018) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 3i
赛默飞世尔 Ki67抗体(Thermo Fischer Scientific, Sp6)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3i). Nature (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 s5a
  • 免疫组化-石蜡切片; 小鼠; 图 s5a
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5a) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 s5a). J Cell Biol (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Death Dis (2018) ncbi
大鼠 单克隆(SolA15)
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-80)被用于. elife (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ki67抗体(eBioscience, 25-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cell Death Dis (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 小鼠; 1:200; 图 s5a
赛默飞世尔 Ki67抗体(eBioscience, 50-245-56)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s5a). Science (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Clin Invest (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Exp Med (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
赛默飞世尔 Ki67抗体(Affymetrix/eBioscience, SOIA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). J Clin Invest (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Front Immunol (2018) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
赛默飞世尔 Ki67抗体(eBiosciences, 48-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell (2018) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Ki67抗体(eBiosciences, 11-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
赛默飞世尔 Ki67抗体(ThermoFisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c). Cell (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ki67抗体(Invitrogen, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:400; 图 e6a
赛默飞世尔 Ki67抗体(Thermo Scientific, MA5-14520)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 e6a). Nature (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4c
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4c). Development (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 4f
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化在小鼠样本上 (图 4f). Nature (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3f
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3f). Dev Biol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Ki67抗体(eBioscience, SOLA15)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-80)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Ki67抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s14c
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s14c). J Clin Invest (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 8c
赛默飞世尔 Ki67抗体(eBioscience, 14-5698)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8c). PLoS Biol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Ki67抗体(eBiosciences, 12-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Exp Med (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
赛默飞世尔 Ki67抗体(Pierce, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 2g
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2g). Sci Rep (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔 Ki67抗体(Thermo scientific, RM-9106)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6h
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6h). Nat Commun (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:100; 图 S2f
赛默飞世尔 Ki67抗体(Thermo, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 S2f). Nat Commun (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 6c
赛默飞世尔 Ki67抗体(Thermo, MA5-14520)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 6c). Cell Cycle (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
赛默飞世尔 Ki67抗体(Thermo Fisher, RM-9106)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). Cell (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 1:25; 图 6
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM 9106-S)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 6). Oncotarget (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
赛默飞世尔 Ki67抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Mol Cell Biol (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2e
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2e). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Tuberculosis (Edinb) (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 6b
赛默飞世尔 Ki67抗体(Thermoscientific, RM-9106S1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 6b). PLoS ONE (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s9i
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s9i). Nature (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 大鼠; 图 1f
赛默飞世尔 Ki67抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在大鼠样本上 (图 1f). Eur J Immunol (2017) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:400; 图 s1c
赛默飞世尔 Ki67抗体(eBioscience, SOLA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1c). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 人类; 图 1d
赛默飞世尔 Ki67抗体(Invitrogen, MA5?\14520)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1d). EMBO Mol Med (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3e
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3e). Oncotarget (2017) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:400; 图 2h
赛默飞世尔 Ki67抗体(Ebioscience, 11-5698-80)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2h). Development (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
赛默飞世尔 Ki67抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Acta Histochem (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:400; 图 st4
赛默飞世尔 Ki67抗体(Thermo, RM-9106-S1)被用于被用于免疫组化在人类样本上浓度为1:400 (图 st4). Development (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 3b
赛默飞世尔 Ki67抗体(Thermo Scientific, RM9106)被用于被用于免疫组化在小鼠样本上 (图 3b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
赛默飞世尔 Ki67抗体(Thermo, PA1-21520)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Respir Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:400; 表 1
赛默飞世尔 Ki67抗体(eBioscience, 11-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:400 (表 1). Brain Struct Funct (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s7a
赛默飞世尔 Ki67抗体(lab vision, RM-9106-F1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s7a). Nat Commun (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2B
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-80)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2B). J Clin Invest (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 5e
赛默飞世尔 Ki67抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 5e). Biomed Res Int (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2f
赛默飞世尔 Ki67抗体(Labvision, RM9106)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f). Oncogene (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 3
赛默飞世尔 Ki67抗体(Neo Markers, RM-9106-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 3). Pituitary (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔 Ki67抗体(Lab-Vision, RM-9106-S)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Kaohsiung J Med Sci (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 Ki67抗体(eBioscience, 41-5698-80)被用于被用于免疫细胞化学在人类样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Ki67抗体(eBiosciences, 48-5698-80)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Immunol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔 Ki67抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Sci Rep (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6j
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S 0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6j). Nat Cell Biol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6d
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM9106-SO)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:500; 图 4e
赛默飞世尔 Ki67抗体(Lab Vision, SP6)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4e). Nat Med (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3b
赛默飞世尔 Ki67抗体(Thermo Fisher, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3b). Front Cell Neurosci (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:100; 表 1
  • 免疫细胞化学; 小鼠; 1:100; 表 1
赛默飞世尔 Ki67抗体(eBiosciences, SolA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (表 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 1). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 s4a
赛默飞世尔 Ki67抗体(Thermo Scientific, SP-6)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4a). JCI Insight (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔 Ki67抗体(eBiosciences, 11-5698-82)被用于被用于流式细胞仪在小鼠样本上 (图 7b). J Clin Invest (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:300; 图 s3
赛默飞世尔 Ki67抗体(eBiosciences, 25-5698-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9601-S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔 Ki67抗体(Thermo Fisher, RM9106-S1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Mol Diagn Ther (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Clin Invest (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 8b
赛默飞世尔 Ki67抗体(Affymetrix eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 8b). J Exp Med (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 2B
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM9106)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2B). Toxicol Lett (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 6). Clin Cancer Res (2017) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:250; 图 2d
赛默飞世尔 Ki67抗体(Lab Vision, SP6)被用于被用于免疫组化在人类样本上浓度为1:250 (图 2d). Kaohsiung J Med Sci (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200; 图 4b
赛默飞世尔 Ki67抗体(ThermoFisher Scientific, RM-9106)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4b). JCI Insight (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔 Ki67抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Oncol Lett (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 3
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 3). Ann Surg Oncol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 5d
赛默飞世尔 Ki67抗体(LabVision, RM-9128-R1)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 5d). Acta Histochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 Ki67抗体(Thermo Fisher, PA5-19462)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫组化在小鼠样本上浓度为1:300. Nat Med (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:2000; 图 s1
赛默飞世尔 Ki67抗体(eBioscience, 14-5698)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫印迹; 小鼠; 图 S5
赛默飞世尔 Ki67抗体(Thermo Fisher, MA5-14520)被用于被用于免疫印迹在小鼠样本上 (图 S5). Sci Rep (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Science (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a). Cancer Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s4d
赛默飞世尔 Ki67抗体(eBioscience, 14-5698)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s4d). Nature (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:100; 图 1d
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1d). Cell Death Dis (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 5a
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). Breast Cancer Res Treat (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1d
赛默飞世尔 Ki67抗体(Affymetrix E-bioscience, 14-5698)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1d). Cell Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4d
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4d). Acta Neuropathol (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4
赛默飞世尔 Ki67抗体(eBiosciences, A15)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4). Development (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Virchows Arch (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 s3i
赛默飞世尔 Ki67抗体(Thermo Scientific, MA5-14520)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3i). Nat Cell Biol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 图 6f
赛默飞世尔 Ki67抗体(Lab Vision, RT-9106-R7)被用于被用于免疫组化在人类样本上 (图 6f). Cancer Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 人类
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在人类样本上. Nat Commun (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s14a
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s14a). Circ Res (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
赛默飞世尔 Ki67抗体(NeoMarkers, RM9106-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1
赛默飞世尔 Ki67抗体(Pierce, PA5-19462)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1). Oncotarget (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 4c
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4c). Clin Cancer Res (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫印迹基因敲除验证; 小鼠; 1:300; 图 3
  • 免疫细胞化学; 小鼠; 1:300; 图 2
赛默飞世尔 Ki67抗体(Ebioscience, 14-5698-80)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:300 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 2). elife (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛默飞世尔 Ki67抗体(Thermo Fischer, SP 6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Oncotarget (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Ki67抗体(eBioscience, 5698)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Cell Cycle (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:100; 图 3h
赛默飞世尔 Ki67抗体(Lab Vision, RM-9106-F1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3h). Development (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 s4c
赛默飞世尔 Ki67抗体(eBioscience, 50-5698- 80)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4c). Cell (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于免疫组化在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, PA5-19462)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3). PLoS ONE (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:30; 表 1
赛默飞世尔 Ki67抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30 (表 1). Am J Dermatopathol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 6
赛默飞世尔 Ki67抗体(Thermo Fisher, RM-9106-R7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Tissue Eng Part C Methods (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Ki67抗体(eBioscience, solA15)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Arthritis Rheumatol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 猕猴; 图 3
赛默飞世尔 Ki67抗体(ThermoFisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在猕猴样本上 (图 3). J Immunol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Ki67抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c). PLoS ONE (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1c
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5
赛默飞世尔 Ki67抗体(Thermo, PA5-19462)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Cereb Cortex (2017) ncbi
domestic rabbit 重组(SP6)
  • 流式细胞仪; 小鼠; 图 s2b
  • 免疫组化; 小鼠; 图 s2a
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于流式细胞仪在小鼠样本上 (图 s2b) 和 被用于免疫组化在小鼠样本上 (图 s2a). Nat Med (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔 Ki67抗体(eBioscience, 48-5698)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Nat Neurosci (2016) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, PA5-19462)被用于. Sci Rep (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 大鼠; 1:500; 图 8a
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 8a). Exp Eye Res (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 1:500; 图 2c
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2c). Gastric Cancer (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:100; 图 4
赛默飞世尔 Ki67抗体(Thermo Scientific Lab Vision, SP6)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4). Nat Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ki67抗体(Pierce, PA5-19462)被用于. Oncotarget (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 Ki67抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Biomed Res Int (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200; 图 13
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化在人类样本上浓度为1:200 (图 13). Rom J Morphol Embryol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
赛默飞世尔 Ki67抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). FASEB J (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 大鼠; 图 7e
赛默飞世尔 Ki67抗体(Thermo fisher Scientific, 9106)被用于被用于免疫细胞化学在大鼠样本上 (图 7e). Diabetes (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Ki67抗体(Thermo, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Clin Invest (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔 Ki67抗体(Thermo Scientific, RM9106)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Reprod Sci (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:500; 图 3e
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). J Cell Sci (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200; 图 2
赛默飞世尔 Ki67抗体(eBioscience, 12-5698)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Stem Cell Reports (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:400; 图 s5a
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫组化在人类样本上浓度为1:400 (图 s5a). Glia (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 1e
赛默飞世尔 Ki67抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Appl Immunohistochem Mol Morphol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, PA5-19462)被用于. PLoS ONE (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Cell Rep (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:300; 图 5a
赛默飞世尔 Ki67抗体(ThermoFisher Scientific, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5a). Brain Struct Funct (2016) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔 Ki67抗体(eBioscience, 42-5698)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Nat Commun (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-R7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). PLoS Genet (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Development (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s8b
赛默飞世尔 Ki67抗体(eBioscience, 14-5698-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s8b). Nature (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Appl Immunohistochem Mol Morphol (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔 Ki67抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. Biomark Cancer (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4). Oncotarget (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Stem Cell Reports (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, PA5-19462)被用于. J Magn Reson Imaging (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Ki67抗体(NeoMarker, sp6)被用于被用于免疫组化-石蜡切片在人类样本上. Invest Clin (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Ki67抗体(Thermo Scientific, clone SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cell Death Differ (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类
赛默飞世尔 Ki67抗体(Lab Vision, clone SP6)被用于被用于免疫组化在人类样本上. Brain Tumor Pathol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Genome Biol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(Lab Vision, Sp6)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ki67抗体(Thermo Scientific, PA5-19462)被用于. J Physiol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
赛默飞世尔 Ki67抗体(NEOmarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Ki67抗体(Thermo scientific, RM-9106)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Breast Cancer Res Treat (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ki67抗体(eBioscience, SOlA15)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Ki67抗体(LabVision, RM-9106-S)被用于被用于免疫组化-石蜡切片在小鼠样本上. Toxicol Sci (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Ki67抗体(THERMO, SP6)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Clin Exp Pathol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ki67抗体(Thermo Scientific, PA5-19462)被用于. Prostate (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 4a
  • 免疫细胞化学; 人类; 图 s3a
赛默飞世尔 Ki67抗体(Thermo, RM-9106-s1)被用于被用于免疫组化在小鼠样本上 (图 4a) 和 被用于免疫细胞化学在人类样本上 (图 s3a). Nat Med (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛默飞世尔 Ki67抗体(Thermo scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Neurobiol Dis (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化在小鼠样本上. J Neurosci (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔 Ki67抗体(Thermo Scientific, 9106)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Clin Invest (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Tumour Biol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔 Ki67抗体(NeoMarkers, RM-9106-S0)被用于被用于免疫组化在大鼠样本上浓度为1:200. Nanomedicine (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔 Ki67抗体(Thermo, RM-9106)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Mol Cancer Ther (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). J Cell Biol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔 Ki67抗体(Thermo Fischer Scientific, RM-9106)被用于被用于免疫组化-石蜡切片在大鼠样本上. Prostate (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100; 图 5
赛默飞世尔 Ki67抗体(Affymetrix eBioscience, 14-5698-80)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Ki67抗体(LabVisio, SP6)被用于被用于免疫组化-石蜡切片在人类样本上. APMIS (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 犬; 1:50; 图 2
赛默飞世尔 Ki67抗体(LabVision, SP6)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (图 2). BMC Vet Res (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3b
赛默飞世尔 Ki67抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3b). Oral Surg Oral Med Oral Pathol Oral Radiol (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM-9106-R7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔 Ki67抗体(Labvision, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Int J Gynecol Pathol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:400
赛默飞世尔 Ki67抗体(ThermoScientific, SP6)被用于被用于免疫组化在人类样本上浓度为1:400. Pathol Res Pract (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫细胞化学在人类样本上 (图 4). Neuromuscul Disord (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Ki67抗体(Lab Vision, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Ki67抗体(Labvision/Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. AIDS (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Ki67抗体(Thermo, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nature (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:500; 图 6
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于免疫组化在小鼠样本上. Immunology (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 大鼠; 1:200
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM9106-S)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. J Neurosci (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Ki67抗体(Thermo, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncotarget (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 大鼠; 1:1000; 图 4a
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4a). Brain Struct Funct (2016) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200
赛默飞世尔 Ki67抗体(LabVision, SP6)被用于被用于免疫组化在人类样本上浓度为1:200. Arch Dermatol Res (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 图 1
赛默飞世尔 Ki67抗体(Thermo, SP6)被用于被用于免疫组化在人类样本上 (图 1). Genes Dev (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Ki67抗体(NeoMarkers, RM-9106-S0)被用于被用于免疫组化在小鼠样本上浓度为1:200. Am J Pathol (2014) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔 Ki67抗体(Lab Vision, RM-9106-S)被用于. Front Aging Neurosci (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM-9106-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2014) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛默飞世尔 Ki67抗体(eBioscience, solA15)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Mol Pharm (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Rom J Morphol Embryol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200; 图 3
赛默飞世尔 Ki67抗体(Neo Markers, SP6)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3). J Gastroenterol (2015) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:250
赛默飞世尔 Ki67抗体(LabVision/Thermo Scientific, #RM-9106, clone SP6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Aging (Albany NY) (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Ki67抗体(Lab Vision, SP6)被用于被用于免疫细胞化学在小鼠样本上. Cancer Res (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔 Ki67抗体(Thermo Fisher, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). J Am Soc Nephrol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 人类; 1:200
赛默飞世尔 Ki67抗体(Thermoscientific, SP6)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. Dev Cell (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠
赛默飞世尔 Ki67抗体(Lab Vision/Thermo Scientific, Clone SP6)被用于被用于免疫组化在小鼠样本上. Mol Psychiatry (2015) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Ki67抗体(Fisher/Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔 Ki67抗体(Thermo, RM-9106-s1)被用于. Clin Cancer Res (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Ki67抗体(LabVision Corporation, SP6)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:200. Front Cell Neurosci (2014) ncbi
大鼠 单克隆(SolA15)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 Ki67抗体(eBioscience, solA15)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔 Ki67抗体(Thermo Scientific, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛默飞世尔 Ki67抗体(Thermo, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Nat Genet (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 大鼠; 1:300
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在大鼠样本上浓度为1:300. Neurochem Int (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 人类; 1:25
  • 免疫组化; 人类; 1:25
赛默飞世尔 Ki67抗体(Thermo Scientific, Sp6)被用于被用于免疫细胞化学在人类样本上浓度为1:25 和 被用于免疫组化在人类样本上浓度为1:25. Am J Pathol (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Ki67抗体(Neomarkers, SP6)被用于被用于免疫组化-石蜡切片在人类样本上. Gastroenterology (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Ki67抗体(Thermo, RM-9106-F)被用于被用于免疫细胞化学在小鼠样本上. PLoS Genet (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔 Ki67抗体(Thermo Scientific, RM910 6S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Anat Rec (Hoboken) (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔 Ki67抗体(LabVision, SP6)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔 Ki67抗体(Thermo Scientific, RM9106)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Cell Stem Cell (2014) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 Ki67抗体(Neomarkers, Sp6)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Acta Neuropathol Commun (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:500; 图 2
赛默飞世尔 Ki67抗体(Neomarkers, M-9106-S1)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2). Cancers (Basel) (2012) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔 Ki67抗体(Thermo Fisher Scientific, RM9106)被用于. J Control Release (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Ki67抗体(Thermo, RM-9106-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:200. Cell Reprogram (2013) ncbi
大鼠 单克隆(SolA15)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ki67抗体(eBioscience, SolA15)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:300
赛默飞世尔 Ki67抗体(Neomarkers, RM-9106-S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. Mol Endocrinol (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔 Ki67抗体(NeoMarkers, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:300. Glia (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫细胞化学; 小鼠; 1:200; 图 5
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Ki67抗体(LabVision Corporation, SP6)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200, 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:200. Neurobiol Aging (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Ki67抗体(Neomarkers / LabVision, SP6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:200. Genes Dev (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS ONE (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Ki67抗体(Thermo Fisher, RM9106_S0)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔 Ki67抗体(ThermoScientific, RM-9106-S)被用于. Biol Reprod (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔 Ki67抗体(thermo scientific, rm-9106-s1)被用于被用于免疫组化在小鼠样本上 (图 6). BMC Cancer (2012) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于被用于免疫组化在小鼠样本上. Am J Pathol (2012) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:200; 图 4
赛默飞世尔 Ki67抗体(LabVision Corporation, SP6)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). Front Neurosci (2012) ncbi
domestic rabbit 重组(SP6)
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106)被用于. J Comp Neurol (2013) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:15,000; 图 3
赛默飞世尔 Ki67抗体(Thermo Fisher, RM-9106-s1)被用于被用于免疫组化在小鼠样本上浓度为1:15,000 (图 3). PLoS ONE (2012) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:200
赛默飞世尔 Ki67抗体(Neomarkers, RM-9106-S1)被用于被用于免疫组化在人类样本上浓度为1:200. PLoS Pathog (2012) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔 Ki67抗体(Labvision, RM-9106-S1)被用于被用于免疫组化-石蜡切片在大鼠样本上. Med Sci Monit (2011) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Ki67抗体(Thermoscientific, RM-9106-S1)被用于被用于免疫组化在小鼠样本上 (图 4). BMC Cancer (2011) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠; 1:1000; 图 1
赛默飞世尔 Ki67抗体(Thermo, RM-9106)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Cancer Res (2011) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 小鼠
赛默飞世尔 Ki67抗体(Lab Vision Corporation, Clone SP6)被用于被用于免疫组化在小鼠样本上. J Pathol (2011) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 3
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 Ki67抗体(LabVision, SP6)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2009) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化; 人类; 1:50; 图 5
赛默飞世尔 Ki67抗体(Thermo Scientific, RM-9106-S0)被用于被用于免疫组化在人类样本上浓度为1:50 (图 5). Prostate (2009) ncbi
domestic rabbit 重组(SP6)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4
  • 免疫组化; 人类; 1:300
赛默飞世尔 Ki67抗体(LabVision, Sp6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 4) 和 被用于免疫组化在人类样本上浓度为1:300. Cancer Res (2008) ncbi
BioLegend
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 2s1b
BioLegend Ki67抗体(Biolegend, 652413)被用于被用于流式细胞仪在小鼠样本上 (图 2s1b). elife (2020) ncbi
大鼠 单克隆(11F6)
  • 流式细胞仪; 小鼠; 1:300; 图 3d
BioLegend Ki67抗体(Biolegend, 151209)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3d). Cell (2020) ncbi
大鼠 单克隆(11F6)
  • 流式细胞仪; 小鼠; 1:100; 图 4e
BioLegend Ki67抗体(BioLegend, 11F6)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4e). elife (2020) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 s2f
BioLegend Ki67抗体(BioLegend, 652424)被用于被用于流式细胞仪在小鼠样本上 (图 s2f). Cell Rep (2020) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 1:200; 图 3d
BioLegend Ki67抗体(BioLegend, 652425)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3d). elife (2019) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 s4c
BioLegend Ki67抗体(Biolegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). Nature (2019) ncbi
大鼠 单克隆(16A8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
BioLegend Ki67抗体(BioLegend, 652407)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). Nature (2019) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 s5c
BioLegend Ki67抗体(Biolegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). J Clin Invest (2019) ncbi
大鼠 单克隆(11F6)
  • 流式细胞仪; 小鼠; 图 s16b
BioLegend Ki67抗体(Biolegend, 11F6)被用于被用于流式细胞仪在小鼠样本上 (图 s16b). Science (2019) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Ki67抗体(Biolegend, 652408)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Cell Rep (2019) ncbi
大鼠 单克隆(11F6)
  • 免疫组化; 小鼠; 1:100; 图 s5b
BioLegend Ki67抗体(BioLegend, 151206)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5b). Cell (2019) ncbi
大鼠 单克隆(11F6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1e
BioLegend Ki67抗体(Biolegend, 151202)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1e). Acta Neuropathol Commun (2018) ncbi
大鼠 单克隆(11F6)
  • 免疫组化-冰冻切片; 小鼠; 图 9d
BioLegend Ki67抗体(Biolegend, 11F6)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9d). PLoS ONE (2018) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Ki67抗体(Biolegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Cancer Sci (2018) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Ki67抗体(BioLegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Clin Invest (2018) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 2i
BioLegend Ki67抗体(BioLegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 2i). Mol Cell Biol (2018) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Ki67抗体(bioLegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Exp Med (2018) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 人类; 图 1c
BioLegend Ki67抗体(Biolegend, 16A8)被用于被用于流式细胞仪在人类样本上 (图 1c). J Biol Chem (2018) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Ki67抗体(BioLegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Sci Rep (2017) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 1:100; 图 s6b
BioLegend Ki67抗体(BioLegend, 652410)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6b). Leukemia (2018) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Ki67抗体(Biolegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Science (2017) ncbi
大鼠 单克隆(16A8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8c
BioLegend Ki67抗体(BioLegend, 652402)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8c). Nat Commun (2017) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Ki67抗体(BioLegend, 652403)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Immunity (2017) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 2i
BioLegend Ki67抗体(BioLegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 2i). J Clin Invest (2017) ncbi
大鼠 单克隆(16A8)
BioLegend Ki67抗体(BioLegend, 652402)被用于. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ki67抗体(BioLegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2016) ncbi
大鼠 单克隆(16A8)
  • 免疫组化; 小鼠; 图 1a
BioLegend Ki67抗体(Biolegendt, 652402)被用于被用于免疫组化在小鼠样本上 (图 1a). Radiat Res (2016) ncbi
大鼠 单克隆(16A8)
BioLegend Ki67抗体(BioLegend, 652410)被用于. PLoS ONE (2016) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 人类; 图 s3
BioLegend Ki67抗体(Biolegend, 16A8)被用于被用于流式细胞仪在人类样本上 (图 s3). Nature (2016) ncbi
大鼠 单克隆(16A8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
BioLegend Ki67抗体(Biolegend, 652402)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Cell Death Differ (2016) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Ki67抗体(Biolegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Arterioscler Thromb Vasc Biol (2016) ncbi
大鼠 单克隆(16A8)
  • 免疫印迹; 人类; 1:1000; 图 s1e
BioLegend Ki67抗体(Bioledgend, 652401)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1e). Sci Rep (2016) ncbi
大鼠 单克隆(16A8)
  • 免疫组化; 小鼠; 1:100; 图 3
BioLegend Ki67抗体(Biolegend, 16A8)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Nature (2016) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 人类; 图 1c,f
BioLegend Ki67抗体(biolegend, 652413)被用于被用于流式细胞仪在人类样本上 (图 1c,f). PLoS Pathog (2015) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ki67抗体(BioLegend, 16A8)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠
BioLegend Ki67抗体(BioLegend, 652404)被用于被用于流式细胞仪在小鼠样本上. Cardiovasc Res (2015) ncbi
大鼠 单克隆(16A8)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
BioLegend Ki67抗体(BioLegend, 652402)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Ki67抗体(BioLegend, 652404)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Shock (2015) ncbi
大鼠 单克隆(16A8)
  • 免疫组化; 人类; 图 8
BioLegend Ki67抗体(Biolegend, 652402)被用于被用于免疫组化在人类样本上 (图 8). Environ Res (2015) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠; 0.4 ug/ml
BioLegend Ki67抗体(Biolegend, 16A8)被用于被用于流式细胞仪在小鼠样本上浓度为0.4 ug/ml. Am J Physiol Lung Cell Mol Physiol (2014) ncbi
大鼠 单克隆(16A8)
  • 流式细胞仪; 小鼠
BioLegend Ki67抗体(BioLegend, 16A8)被用于被用于流式细胞仪在小鼠样本上. Dis Model Mech (2014) ncbi
大鼠 单克隆(16A8)
  • 免疫组化-冰冻切片; 小鼠
BioLegend Ki67抗体(Biolegend, 652402)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2014) ncbi
Novus Biologicals
domestic rabbit 多克隆(TU-20)
  • 免疫组化; 人类; 1:2000; 图 s3d
Novus Biologicals Ki67抗体(Novus, NB110-90592)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 s3d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s1c
Novus Biologicals Ki67抗体(Novus, NB 600-1252)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s1c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6j
Novus Biologicals Ki67抗体(Novus Biologicals, NB110-89717)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6j). Dev Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 s12a
  • 免疫细胞化学; 小鼠; 1:100; 图 5a
Novus Biologicals Ki67抗体(Novus, NB110-89717)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s12a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1e
Novus Biologicals Ki67抗体(Novus, NB500-170)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1e). Science (2018) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 7b
Novus Biologicals Ki67抗体(Novus Biologicals, NB600-1252)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7b). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
Novus Biologicals Ki67抗体(Novus Biologicals, NB500-170)被用于被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆(31A1067)
  • 免疫组化-石蜡切片; 小鼠; 图 9f
Novus Biologicals Ki67抗体(Novus Biologicals, NB110-89719)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 9f). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
Novus Biologicals Ki67抗体(Novus Biologicals, NB110-89717)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). J Pathol (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals Ki67抗体(Novus Biologicals, NB110-89717)被用于. Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆(31A1067)
Novus Biologicals Ki67抗体(Novus, NB110-89719)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Ki67抗体(Novus, NB110-89717)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Ki67抗体(Novus Biologicals, NB110-89717)被用于. J Hepatol (2015) ncbi
GeneTex
domestic rabbit 单克隆(SP6)
  • 免疫细胞化学; 人类; 1:100; 图 1d
GeneTex Ki67抗体(GeneTex, GTX16667)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
GeneTex Ki67抗体(GeneTex, SP6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). J Cancer (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
GeneTex Ki67抗体(Genetex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 3
GeneTex Ki67抗体(GeneTex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化; 小鼠; 1:200; 图 3
GeneTex Ki67抗体(GeneTex, GTX16667)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP6)
  • 免疫组化-石蜡切片; 小鼠; 图 1
GeneTex Ki67抗体(GeneTex, GTX16667)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
西格玛奥德里奇
单克隆(275R-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5b
西格玛奥德里奇 Ki67抗体(Sigma-Aldrich, 275R-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5b). Nature (2019) ncbi
单克隆(275R-1)
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
西格玛奥德里奇 Ki67抗体(Sigma-Aldrich, 275R)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1a). J Histochem Cytochem (2017) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). Am J Cancer Res (2020) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5h, 2h
赛信通(上海)生物试剂有限公司 Ki67抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5h, 2h). Nat Commun (2020) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 Ki67抗体(CST, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). Dev Cell (2019) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司 Ki67抗体(CST, 9129)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4c). elife (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Stem Cells Transl Med (2019) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4d
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4d). Cell Metab (2019) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449S)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1j
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signalling, 12202S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1j). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technology, 9129)被用于被用于免疫组化在小鼠样本上 (图 3e). Cell Rep (2019) ncbi
小鼠 单克隆(8D5)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technologies, 9449)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 1:100; 图 5a
赛信通(上海)生物试剂有限公司 Ki67抗体(CST, 9129S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). Cell Death Dis (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Cell (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6g
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6g). Am J Physiol Cell Physiol (2019) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9129)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Oncogene (2019) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cell (2018) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9129s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Cell Mol Med (2018) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4a). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3g
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3g). Nat Cell Biol (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Ki67抗体(CST, 9449)被用于被用于免疫组化在小鼠样本上 (图 2c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:500; 图 s6a
  • 免疫印迹; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9129)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6a) 和 被用于免疫印迹在小鼠样本上 (图 s6c). Sci Adv (2018) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1e
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9129S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1e). J Clin Invest (2018) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 12202)被用于被用于免疫组化在小鼠样本上 (图 1a). PLoS Biol (2018) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7b). Cancer Cell (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449S)被用于被用于免疫细胞化学在人类样本上 (图 3f). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 1:200; 图 5a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technologies, 9129)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5a). J Cell Biol (2018) ncbi
小鼠 单克隆(8D5)
  • 免疫组化; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signalling, 9449)被用于被用于免疫组化在人类样本上 (图 5c). Nat Commun (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5f
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3d
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3d). J Cell Biol (2017) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 1d, 1c
赛信通(上海)生物试剂有限公司 Ki67抗体(CST, 9449)被用于被用于免疫细胞化学在人类样本上 (图 1d, 1c). Oncotarget (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 12202)被用于被用于免疫组化在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 4F
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 4F). Oncotarget (2017) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 s5b
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s5b). Mol Syst Biol (2017) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 小鼠; 图 s2b
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell signaling, 9129)被用于被用于免疫细胞化学在小鼠样本上 (图 s2b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 5a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9129)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 5a). Neural Dev (2016) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell signalling, 12202)被用于被用于免疫组化在小鼠样本上 (图 3a). Neural Dev (2016) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9129)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). FASEB J (2017) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化; 小鼠; 图 3s1
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell signaling, 12202)被用于被用于免疫组化在小鼠样本上 (图 3s1). elife (2016) ncbi
domestic rabbit 单克隆(D3B5)
  • 流式细胞仪; 人类; 1:200; 图 4
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell signaling, 9129)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4) 和 被用于免疫细胞化学在人类样本上. Sci Rep (2016) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2). Nature (2016) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9129)被用于被用于免疫细胞化学在人类样本上 (图 4). Hum Mol Genet (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 4a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449S)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4a). Biomaterials (2016) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化; 小鼠; 1:400; 图 4
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9129)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4). Development (2016) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell signaling, 9449)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 9). Oncotarget (2015) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2a). Oncogenesis (2015) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 1:400; 图 7a
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technologies, 9129)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Tech, 9449)被用于被用于免疫细胞化学在人类样本上 (图 s2). BMC Cancer (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫细胞化学; 人类; 1:400; 图 5
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technology, 9449S)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5). Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1f
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technology, 9129)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1f). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样本上. Stem Cells (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3). Nat Med (2015) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s9
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, D3B5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s9). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D3B5)
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9129)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Cancer Res (2015) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell signaling, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(D3B5)
  • 免疫组化-石蜡切片; 小鼠; 1:400
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling Technology, 12202)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. J Biol Chem (2014) ncbi
小鼠 单克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:400
赛信通(上海)生物试剂有限公司 Ki67抗体(Cell Signaling, 9449)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. PLoS ONE (2014) ncbi
Vector Laboratories
  • 免疫组化-石蜡切片; 小鼠; 图 2e
载体实验室 Ki67抗体(载体, VP-K452)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). EMBO Mol Med (2017) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:100
载体实验室 Ki67抗体(载体实验室, VP-K452)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Neoplasia (2015) ncbi
载体实验室 Ki67抗体(Vector Labs, VP-k452)被用于. Anim Reprod Sci (2015) ncbi
  • 免疫细胞化学; 小鼠
载体实验室 Ki67抗体(Vector labs, VP-K452)被用于被用于免疫细胞化学在小鼠样本上. J Clin Invest (2014) ncbi
  • 免疫组化-石蜡切片; 小鼠; 1:100
载体实验室 Ki67抗体(载体实验室, VP-K452)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Hum Mol Genet (2015) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s3
载体实验室 Ki67抗体(载体实验室, VP-K452)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s3). Nat Commun (2014) ncbi
Agilent Technologies
单克隆(MIB-1)
  • 免疫组化-石蜡切片; 人类; 图 2
Agilent Technologies Ki67抗体(Agilent, M724001)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Clin Invest (2019) ncbi
Biocare Medical
单克隆(SP6)
  • 免疫组化; 小鼠; 图 6d
Biocare Medical Ki67抗体(Biocare Medica, CRM325)被用于被用于免疫组化在小鼠样本上 (图 6d). Gastroenterology (2018) ncbi
碧迪BD
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 4a). BMC Immunol (2020) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5c, 5d
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上 (图 5c, 5d). BMC Biol (2020) ncbi
  • 流式细胞仪; African green monkey; 图 3a
碧迪BD Ki67抗体(BD Pharmingen, 556026)被用于被用于流式细胞仪在African green monkey样本上 (图 3a). PLoS Pathog (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s12a
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s12a). Science (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 s4c
碧迪BD Ki67抗体(BD, B56)被用于被用于免疫组化在人类样本上 (图 s4c). Cell Death Dis (2020) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 2b, g
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 2b, g). JCI Insight (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 4b
碧迪BD Ki67抗体(BD Bioscience, B56)被用于被用于流式细胞仪在人类样本上 (图 4b). Aging Cell (2020) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Am J Pathol (2020) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:50; 图 4f
  • 免疫组化; 小鼠; 1:50; 图 1c
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 4f) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 1c). elife (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 s1i
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1i). Nature (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4d
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4d). Nature (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2c
碧迪BD Ki67抗体(BD Bioscience, 550609)被用于被用于免疫组化在小鼠样本上 (图 2c). EBioMedicine (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 ex2b
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 ex2b). Nature (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). elife (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 大鼠; 1:50; 图 1a
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 1a). PLoS Genet (2019) ncbi
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD Ki67抗体(BD Pharmingen, 556026)被用于被用于流式细胞仪在小鼠样本上 (图 2c). EMBO J (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Exp Med (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 大鼠; 图 s4g
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在大鼠样本上 (图 s4g). Nature (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 6e
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 6e). Dev Cell (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6c
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6c). Cell (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 3a
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 3a). J Comp Neurol (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 s7c
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上 (图 s7c). Cell (2019) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 3e, 3f
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 3e, 3f). JCI Insight (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 4d
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 4d). J Virol (2019) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 4a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4a). J Infect Dis (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s6
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在人类样本上 (图 s6). J Clin Invest (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Sci Rep (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:20; 图 s1a
碧迪BD Ki67抗体(BD PharMingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 s1a). Nat Commun (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 6i
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在人类样本上 (图 6i). Cancer Res (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 4a
  • 免疫组化; 人类; 图 2a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 4a) 和 被用于免疫组化在人类样本上 (图 2a). J Clin Invest (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 图 7h
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7h). J Clin Invest (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 2a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2a). J Exp Med (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; ; 图 s2d
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为 (图 s2d). Nat Commun (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 5f
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在人类样本上 (图 5f). J Exp Med (2018) ncbi
  • 流式细胞仪; 小鼠; 图 s1a
  • 流式细胞仪; 人类; 图 s1a
碧迪BD Ki67抗体(BD, 556026)被用于被用于流式细胞仪在小鼠样本上 (图 s1a) 和 被用于流式细胞仪在人类样本上 (图 s1a). Nat Med (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s1d
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1g
碧迪BD Ki67抗体(eBioscience, B56)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Science (2018) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Ki67抗体(BD Bioscience, B56)被用于被用于流式细胞仪在小鼠样本上 (图 1a). EMBO J (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 1a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于免疫组化在人类样本上 (图 1a). J Immunol (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化; domestic rabbit; 图 5d
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化在domestic rabbit样本上 (图 5d). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 4i
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4i). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2e
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2e). Diabetes (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s1d
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样本上 (图 s1d). J Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 8a
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8a). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Front Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 1:200; 图 s3d
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s3d). Nature (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 s1g
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1g). PLoS Genet (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200; 表 1
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). J Comp Neurol (2017) ncbi
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD Ki67抗体(BD, 556027)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Immun Inflamm Dis (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immun Ageing (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:50; 图 7a
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7a). Sci Rep (2017) ncbi
  • 流式细胞仪; 人类; 表 s9
碧迪BD Ki67抗体(BD, 556026)被用于被用于流式细胞仪在人类样本上 (表 s9). Nature (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3b
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样本上 (图 3b). Stem Cells Int (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:50; 图 7a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7a). Nat Commun (2017) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 1f
碧迪BD Ki67抗体(BD PharMingen, 550609)被用于被用于免疫细胞化学在人类样本上 (图 1f). Cell Stem Cell (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 图 2b
碧迪BD Ki67抗体(BD Biosciences, 556027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Int J Mol Sci (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BD Ki67抗体(BD Bioscience, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Oncoscience (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 2C;2D
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2C;2D). Oncoscience (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:1000; 图 7h
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7h). Nat Commun (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:50; 图 5a
碧迪BD Ki67抗体(BD Pharmigen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BD Ki67抗体(BD Bioscience, B56)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 4a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 4a). Vaccine (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 3a
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a). Development (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1a
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1a). BMC Biol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500; 图 3b
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3b). Neoplasia (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:100
碧迪BD Ki67抗体(BD Biosciences, 550,609)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Cancer Microenviron (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 4-s1
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4-s1). elife (2016) ncbi
  • 流式细胞仪; 小鼠; 图 s4
碧迪BD Ki67抗体(BD PharMingen, 556026)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Cell (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:250; 图 2
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 1:50
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上浓度为1:50. Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 表 1
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (表 1). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 人类; 图 1
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 1). Neoplasia (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2a
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 1a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 1a). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 2a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 3g
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3g). Science (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 5
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 4
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 6f
碧迪BD Ki67抗体(BD Bioscience, 550609)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Science (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s7e
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在人类样本上 (图 s7e). J Clin Invest (2016) ncbi
  • 流式细胞仪; 猕猴; 1:25
碧迪BD Ki67抗体(BD Biosciences, 556027)被用于被用于流式细胞仪在猕猴样本上浓度为1:25. Nat Med (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; African green monkey; 图 s1
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). J Med Primatol (2016) ncbi
  • 流式细胞仪; 人类; 1:100; 表 2
碧迪BD Ki67抗体(BD PharMingen, 556026)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于免疫组化在小鼠样本上 (图 2). Cell Mol Immunol (2017) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:200; 图 3c
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3c). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:200; 图 5
碧迪BD Ki67抗体(Becton Dickinson, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Dev Cell (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 1h
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 1h). J Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; domestic rabbit; 图 3e
碧迪BD Ki67抗体(BD科学, 550609)被用于被用于免疫组化在domestic rabbit样本上 (图 3e). Nature (2016) ncbi
  • 流式细胞仪; 人类; 1:5; 图 2
碧迪BD Ki67抗体(BD Biosciences, 556027)被用于被用于流式细胞仪在人类样本上浓度为1:5 (图 2). Oncotarget (2016) ncbi
  • 流式细胞仪; 人类; 图 1
碧迪BD Ki67抗体(BD Biosciences, 556026)被用于被用于流式细胞仪在人类样本上 (图 1). Immunity (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 2
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 2). Int Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 1:100; 图 4
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; African green monkey; 图 4
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在African green monkey样本上 (图 4). J Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 4b
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 4b). PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 图 6e
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6e). Oncotarget (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 图 2s1
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上 (图 2s1). elife (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴; 图 s2b
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上 (图 s2b). PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BD Ki67抗体(Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 图 6e
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6e). Nat Methods (2016) ncbi
  • 流式细胞仪; 人类; 图 3
碧迪BD Ki67抗体(BD Pharmingen, 556026)被用于被用于流式细胞仪在人类样本上 (图 3). Oncotarget (2015) ncbi
  • 流式细胞仪; 小鼠; 图 7
碧迪BD Ki67抗体(BD Pharmingen, 556027)被用于被用于流式细胞仪在小鼠样本上 (图 7). Infect Immun (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 2a
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 2a). J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s12c
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s11h
碧迪BD Ki67抗体(BD Bioscience, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s12c) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s11h). Nat Med (2015) ncbi
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Ki67抗体(BD Biosciences, 556026)被用于被用于流式细胞仪在小鼠样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Mucosal Immunol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 2
碧迪BD Ki67抗体(BD Bioscience, B56)被用于被用于免疫细胞化学在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5a
碧迪BD Ki67抗体(Becton Dickinson, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5a). Front Neuroanat (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
碧迪BD Ki67抗体(BD biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Int J Biol Sci (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 大鼠; 1:50
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化在大鼠样本上浓度为1:50. Neuroscience (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2). elife (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Dev Biol (2016) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 犬
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在犬样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上. Vaccine (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Ki67抗体(BD PharMingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 1:100
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Pancreas (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:50; 图 s3a
  • 免疫组化; 小鼠; 1:50; 图 1a
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s3a) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 1a). Nat Neurosci (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上 (图 4). Stem Cell Res (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 s4
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于流式细胞仪在人类样本上 (图 s4). Infect Immun (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 1 ul/test
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上浓度为1 ul/test. J Immunol Methods (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 表 s3
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (表 s3). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 3
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 3). Cancer Immunol Res (2015) ncbi
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Ki67抗体(eBioscience, 556026)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 6
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 6). Am J Hum Genet (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 表 s5
碧迪BD Ki67抗体(BD Bioscience, B56)被用于被用于流式细胞仪在人类样本上 (表 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:100; 图 5
碧迪BD Ki67抗体(BD Bioscience, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 小鼠; 1:400; 图 4
碧迪BD Ki67抗体(BD-PharMingen, 550609)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上. J Infect Dis (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BD Ki67抗体(BD Bioscience, 550 609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Endocrinology (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Ki67抗体(BD PharMingen, B56)被用于被用于流式细胞仪在小鼠样本上 (图 5). Cell Cycle (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; pigs
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在pigs 样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 食蟹猴; 图 6
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在食蟹猴样本上 (图 6). J Autoimmun (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD Ki67抗体(BD Pharmingen, B56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nucl Recept Signal (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4b
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4b). Development (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 图 4
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Int J Biol Sci (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. Cereb Cortex (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:50; 图 2
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2). Glia (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). J Urol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7). Nat Cell Biol (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BD Ki67抗体(BD, B56)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类; 图 1
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Endocrinology (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 人类; 图 1
碧迪BD Ki67抗体(BD BioSciences, 550609)被用于被用于免疫组化在人类样本上 (图 1). Nature (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). Oncogene (2015) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 猕猴
碧迪BD Ki67抗体(BD Bioscience, B56)被用于被用于流式细胞仪在猕猴样本上. Clin Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Discov (2014) ncbi
小鼠 单克隆(B56)
  • 免疫细胞化学; 人类; 图 4a
碧迪BD Ki67抗体(bd, 550609)被用于被用于免疫细胞化学在人类样本上 (图 4a). J Cell Mol Med (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BD Ki67抗体(BD Bioscience, clone B56)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:50
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS Genet (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 人类; 1:25; 图 4b
碧迪BD Ki67抗体(BD, 550609)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:25 (图 4b). Nature (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-自由浮动切片; 大鼠; 1:50
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:50. Hippocampus (2014) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠; 1:400
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. J Pediatr Surg (2013) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 人类
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(B56)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上. Neural Dev (2013) ncbi
小鼠 单克隆(B56)
  • 流式细胞仪; 小鼠
碧迪BD Ki67抗体(BD Biosciences, B56)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠
  • 免疫组化-冰冻切片; 小鼠; 1:100
碧迪BD Ki67抗体(BD Pharmingen, 550609)被用于被用于免疫组化-冰冻切片在大鼠样本上 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Stem Cells Transl Med (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:20
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:20. Cancer Res (2013) ncbi
小鼠 单克隆(B56)
  • 免疫组化; 小鼠; 1:500
碧迪BD Ki67抗体(BD Pharm, 550609)被用于被用于免疫组化在小鼠样本上浓度为1:500. PLoS ONE (2012) ncbi
小鼠 单克隆(B56)
  • 免疫组化-冰冻切片; 大鼠; 1:600
碧迪BD Ki67抗体(BD Biosciences, 550609)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:600. J Comp Neurol (2007) ncbi
徕卡显微系统(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1a
徕卡显微系统(上海)贸易有限公司 Ki67抗体(Leica, KI67P-CE)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Exp Dermatol (2017) ncbi
单克隆(MM1)
徕卡显微系统(上海)贸易有限公司 Ki67抗体(Novocastra, MM1)被用于. elife (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
徕卡显微系统(上海)贸易有限公司 Ki67抗体(Novacastra, NCL-ki67)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). Stem Cells (2015) ncbi
单克隆(MM1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
徕卡显微系统(上海)贸易有限公司 Ki67抗体(Novacastra, NCL-ki67)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). Stem Cells (2015) ncbi
文章列表
  1. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  2. La Rosa C, Cavallo F, Pecora A, Chincarini M, Ala U, Faulkes C, et al. Phylogenetic variation in cortical layer II immature neuron reservoir of mammals. elife. 2020;9: pubmed 出版商
  3. Oguri Y, Shinoda K, Kim H, Alba D, Bolus W, Wang Q, et al. CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell. 2020;: pubmed 出版商
  4. Manils J, Webb L, Howes A, Janzen J, Boeing S, Bowcock A, et al. CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. elife. 2020;9: pubmed 出版商
  5. BURNS J, Cotleur B, Walther D, Bajrami B, Rubino S, Wei R, et al. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. elife. 2020;9: pubmed 出版商
  6. Zhou S, Wu W, Wang Z, Wang Z, Su Q, Li X, et al. RelB regulates the homeostatic proliferation but not the function of Tregs. BMC Immunol. 2020;21:37 pubmed 出版商
  7. Liu H, Guo D, Sha Y, Zhang C, Jiang Y, Hong L, et al. ANXA7 promotes the cell cycle, proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells by up-regulating CDC5L. Aging (Albany NY). 2020;12:11100-11115 pubmed 出版商
  8. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  9. van Dijk B, Hogeweg P, Doekes H, Takeuchi N. Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. elife. 2020;9: pubmed 出版商
  10. Dubey R, van Kerkhof P, Jordens I, Malinauskas T, Pusapati G, McKenna J, et al. R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. elife. 2020;9: pubmed 出版商
  11. Matsumoto N, Tanaka S, Horiike T, Shinmyo Y, Kawasaki H. A discrete subtype of neural progenitor crucial for cortical folding in the gyrencephalic mammalian brain. elife. 2020;9: pubmed 出版商
  12. Jo H, Park Y, Kim T, Kim J, Lee J, Kim S, et al. Modulation of SIRT3 expression through CDK4/6 enhances the anti-cancer effect of sorafenib in hepatocellular carcinoma cells. BMC Cancer. 2020;20:332 pubmed 出版商
  13. Mayerl S, Heuer H, Ffrench Constant C. Hippocampal Neurogenesis Requires Cell-Autonomous Thyroid Hormone Signaling. Stem Cell Reports. 2020;14:845-860 pubmed 出版商
  14. Ide S, Yahara Y, Kobayashi Y, Strausser S, Ide K, Watwe A, et al. Yolk-sac-derived macrophages progressively expand in the mouse kidney with age. elife. 2020;9: pubmed 出版商
  15. Ruscetti M, Morris J, Mezzadra R, Russell J, Leibold J, Romesser P, et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 2020;181:424-441.e21 pubmed 出版商
  16. Liu F, Hu L, Pei Y, Zheng K, Wang W, Li S, et al. Long non-coding RNA AFAP1-AS1 accelerates the progression of melanoma by targeting miR-653-5p/RAI14 axis. BMC Cancer. 2020;20:258 pubmed 出版商
  17. Chu J, Niu X, Chang J, Shao M, Peng L, Xi Y, et al. Metabolic remodeling by TIGAR overexpression is a therapeutic target in esophageal squamous-cell carcinoma. Theranostics. 2020;10:3488-3502 pubmed 出版商
  18. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  19. Pein M, Insua Rodríguez J, Hongu T, Riedel A, Meier J, Wiedmann L, et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat Commun. 2020;11:1494 pubmed 出版商
  20. Gremlich S, Roth Kleiner M, Equey L, Fytianos K, Schittny J, Cremona T. Tenascin-C inactivation impacts lung structure and function beyond lung development. Sci Rep. 2020;10:5118 pubmed 出版商
  21. Guven A, Kalebic N, Long K, Florio M, Vaid S, Brandl H, et al. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. elife. 2020;9: pubmed 出版商
  22. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  23. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  24. Mukhtar T, Breda J, Grison A, Karimaddini Z, Grobecker P, Iber D, et al. Tead transcription factors differentially regulate cortical development. Sci Rep. 2020;10:4625 pubmed 出版商
  25. Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, et al. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol. 2020;10:170 pubmed 出版商
  26. Smith M, Chan K, Papagianis P, Nitsos I, Zahra V, Allison B, et al. Umbilical Cord Blood Cells Do Not Reduce Ventilation-Induced Lung Injury in Preterm Lambs. Front Physiol. 2020;11:119 pubmed 出版商
  27. Wang X, Shan Y, Tan Q, Tan C, Zhang H, Liu J, et al. MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020;20:63 pubmed 出版商
  28. Che H, Li J, Li Y, Ma C, Liu H, Qin J, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. elife. 2020;9: pubmed 出版商
  29. Kumar A, Chamoto K, Chowdhury P, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. elife. 2020;9: pubmed 出版商
  30. Raehtz K, Barrenas F, Xu C, Busman Sahay K, Valentine A, Law L, et al. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog. 2020;16:e1008333 pubmed 出版商
  31. Nayakawde N, Methe K, Banerjee D, Berg M, Premaratne G, Olausson M. In Vitro Regeneration of Decellularized Pig Esophagus Using Human Amniotic Stem Cells. Biores Open Access. 2020;9:22-36 pubmed 出版商
  32. Wu Z, Parry M, Hou X, Liu M, Wang H, Cain R, et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nat Commun. 2020;11:1105 pubmed 出版商
  33. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  34. Pittala S, Levy I, De S, Kumar Pandey S, Melnikov N, Hyman T, et al. The VDAC1-based R-Tf-D-LP4 Peptide as a Potential Treatment for Diabetes Mellitus. Cells. 2020;9: pubmed 出版商
  35. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  36. Dause T, KIRBY E. Poor Concordance of Floxed Sequence Recombination in Single Neural Stem Cells: Implications for Cell Autonomous Studies. Eneuro. 2020;7: pubmed 出版商
  37. Zhao Z, Wang Y, Yun D, Huang Q, Meng D, Li Q, et al. TRIM21 overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. Am J Cancer Res. 2020;10:114-130 pubmed
  38. Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11:900 pubmed 出版商
  39. Eom T, Han S, Kim J, Blundon J, Wang Y, Yu J, et al. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun. 2020;11:912 pubmed 出版商
  40. Pereira B, Amaral A, Dias A, Mendes N, Muncan V, Silva A, et al. MEX3A regulates Lgr5+ stem cell maintenance in the developing intestinal epithelium. EMBO Rep. 2020;21:e48938 pubmed 出版商
  41. Durrant C, Ruscher K, Sheppard O, Coleman M, Ozen I. Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis. 2020;11:98 pubmed 出版商
  42. Tan S, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578:437-443 pubmed 出版商
  43. Kang H, Kwon H, Kim I, Ban W, Kim S, Kang H, et al. Intermittent hypoxia exacerbates tumor progression in a mouse model of lung cancer. Sci Rep. 2020;10:1854 pubmed 出版商
  44. Li K, Zhao S, Long J, Su J, Wu L, Tao J, et al. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int. 2020;20:36 pubmed 出版商
  45. You F, Li J, Zhang P, Zhang H, Cao X. miR106a Promotes the Growth of Transplanted Breast Cancer and Decreases the Sensitivity of Transplanted Tumors to Cisplatin. Cancer Manag Res. 2020;12:233-246 pubmed 出版商
  46. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  47. Bell L, Lenhart A, Rosenwald A, Monoranu C, Berberich Siebelt F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol. 2019;10:3090 pubmed 出版商
  48. Parisi G, Saco J, Salazar F, Tsoi J, Krystofinski P, Puig Saus C, et al. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat Commun. 2020;11:660 pubmed 出版商
  49. Mei X, Qi D, Zhang T, Zhao Y, Jin L, Hou J, et al. Inhibiting MARSs reduces hyperhomocysteinemia-associated neural tube and congenital heart defects. EMBO Mol Med. 2020;12:e9469 pubmed 出版商
  50. Jaiprasart P, Dogra S, Neelakantan D, Devapatla B, Woo S. Identification of signature genes associated with therapeutic resistance to anti-VEGF therapy. Oncotarget. 2020;11:99-114 pubmed 出版商
  51. Brill Karniely Y, Dror D, Duanis Assaf T, Goldstein Y, Schwob O, Millo T, et al. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. Sci Adv. 2020;6:eaax2861 pubmed 出版商
  52. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  53. Wu T, Zhang Z, Li S, Wang B, Yang Z, Li P, et al. Characterization of global 5-hydroxymethylcytosine in pediatric posterior fossa ependymoma. Clin Epigenetics. 2020;12:19 pubmed 出版商
  54. Chang W, Xu J, Lin T, Hsu J, Hsieh Li H, Hwu Y, et al. Survival Motor Neuron Protein Participates in Mouse Germ Cell Development and Spermatogonium Maintenance. Int J Mol Sci. 2020;21: pubmed 出版商
  55. Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med. 2020;9:2201-2212 pubmed 出版商
  56. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  57. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  58. Zhu K, Lai Y, Cao H, Bai X, Liu C, Yan Q, et al. Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice. Nat Commun. 2020;11:484 pubmed 出版商
  59. Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed 出版商
  60. Trevino A, Sinnott Armstrong N, Andersen J, Yoon S, Huber N, Pritchard J, et al. Chromatin accessibility dynamics in a model of human forebrain development. Science. 2020;367: pubmed 出版商
  61. Tessier S, Doolittle A, Sao K, Rotty J, Bear J, Ulici V, et al. Arp2/3 inactivation causes intervertebral disc and cartilage degeneration with dysregulated TonEBP-mediated osmoadaptation. JCI Insight. 2020;5: pubmed 出版商
  62. Liu T, Guo Z, Song X, Liu L, Dong W, Wang S, et al. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J Cell Mol Med. 2020;24:2648-2662 pubmed 出版商
  63. Qiao H, Tan X, Lv D, Xing R, Shu F, Zhong C, et al. Phosphoribosyl pyrophosphate synthetases 2 knockdown inhibits prostate cancer progression by suppressing cell cycle and inducing cell apoptosis. J Cancer. 2020;11:1027-1037 pubmed 出版商
  64. Zhao L, Ke H, Xu H, Wang G, Zhang H, Zou L, et al. TDP-43 facilitates milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh. Nat Commun. 2020;11:341 pubmed 出版商
  65. Kim J, Byun M, Maeng C, Kim Y, Choi J. Selective Targeting of Cancer Stem Cells (CSCs) Based on Photodynamic Therapy (PDT) Penetration Depth Inhibits Colon Polyp Formation in Mice. Cancers (Basel). 2020;12: pubmed 出版商
  66. Aldaz P, Otaegi Ugartemendia M, Sáenz Antoñanzas A, Garcia Puga M, Moreno Valladares M, Flores J, et al. SOX9 promotes tumor progression through the axis BMI1-p21CIP. Sci Rep. 2020;10:357 pubmed 出版商
  67. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  68. Mus L, Lambertz I, Claeys S, Kumps C, Van Loocke W, Van Neste C, et al. The ETS transcription factor ETV5 is a target of activated ALK in neuroblastoma contributing to increased tumour aggressiveness. Sci Rep. 2020;10:218 pubmed 出版商
  69. Deng G, Mou T, He J, Chen D, Lv D, Liu H, et al. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res. 2020;39:1 pubmed 出版商
  70. Sarić N, Selby M, Ramaswamy V, Kool M, Stockinger B, Hogstrand C, et al. The AHR pathway represses TGFβ-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Sci Rep. 2020;10:148 pubmed 出版商
  71. Pavlidis I, Spiller O, Sammut Demarco G, MacPherson H, Howie S, Norman J, et al. Cervical epithelial damage promotes Ureaplasma parvum ascending infection, intrauterine inflammation and preterm birth induction in mice. Nat Commun. 2020;11:199 pubmed 出版商
  72. Laukoter S, Beattie R, Pauler F, Amberg N, Nakayama K, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nat Commun. 2020;11:195 pubmed 出版商
  73. Urata Y, Salehi R, Lima P, Osuga Y, Tsang B. Neuropeptide Y regulates proliferation and apoptosis in granulosa cells in a follicular stage-dependent manner. J Ovarian Res. 2020;13:5 pubmed 出版商
  74. Rabé M, Dumont S, Álvarez Arenas A, Janati H, Belmonte Beitia J, Calvo G, et al. Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis. 2020;11:19 pubmed 出版商
  75. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  76. Wang H, Chen B, Lin Y, Zhou Y, Li X. Legumain Promotes Gastric Cancer Progression Through Tumor-associated Macrophages In vitro and In vivo. Int J Biol Sci. 2020;16:172-180 pubmed 出版商
  77. Hurrell B, Galle Treger L, Jahani P, Howard E, Helou D, Banie H, et al. TNFR2 Signaling Enhances ILC2 Survival, Function, and Induction of Airway Hyperreactivity. Cell Rep. 2019;29:4509-4524.e5 pubmed 出版商
  78. Robison L, Albert N, Camargo L, Anderson B, Salinero A, Riccio D, et al. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. Eneuro. 2020;7: pubmed 出版商
  79. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  80. Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed 出版商
  81. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  82. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  83. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  84. Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed 出版商
  85. Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, et al. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun. 2019;7:199 pubmed 出版商
  86. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  87. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  88. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  89. Callender L, Carroll E, Bober E, Akbar A, Solito E, Henson S. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2020;19:e13067 pubmed 出版商
  90. Zhang X, Olsavszky V, Yin Y, Wang B, Engleitner T, Ollinger R, et al. Angiocrine Hepatocyte Growth Factor Signaling Controls Physiological Organ and Body Size and Dynamic Hepatocyte Proliferation to Prevent Liver Damage during Regeneration. Am J Pathol. 2020;190:358-371 pubmed 出版商
  91. Vagnozzi R, Maillet M, Sargent M, Khalil H, Johansen A, Schwanekamp J, et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577:405-409 pubmed 出版商
  92. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  93. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  94. Sun C, Guo E, Zhou B, Shan W, Huang J, Weng D, et al. A reactive oxygen species scoring system predicts cisplatin sensitivity and prognosis in ovarian cancer patients. BMC Cancer. 2019;19:1061 pubmed 出版商
  95. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  96. Shen J, Zhou Y, Zhang X, Peng W, Peng C, Zhou Q, et al. Loss of FoxA2 accelerates neoplastic changes in the intrahepatic bile duct partly via the MAPK signaling pathway. Aging (Albany NY). 2019;11:9280-9294 pubmed 出版商
  97. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  98. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  99. Momcilovic M, Jones A, Bailey S, Waldmann C, Li R, Lee J, et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature. 2019;575:380-384 pubmed 出版商
  100. Stupnikov M, Yang Y, Mori M, LU J, Cardoso W. Jagged and Delta-like ligands control distinct events during airway progenitor cell differentiation. elife. 2019;8: pubmed 出版商
  101. Thomson B, Carota I, Souma T, Soman S, Vestweber D, Quaggin S. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. elife. 2019;8: pubmed 出版商
  102. Varuzhanyan G, Rojansky R, Sweredoski M, Graham R, Hess S, Ladinsky M, et al. Mitochondrial fusion is required for spermatogonial differentiation and meiosis. elife. 2019;8: pubmed 出版商
  103. Neumann B, Baror R, Zhao C, SEGEL M, Dietmann S, Rawji K, et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell. 2019;25:473-485.e8 pubmed 出版商
  104. Blomfield I, Rocamonde B, Masdeu M, Mulugeta E, Vaga S, van den Berg D, et al. Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. elife. 2019;8: pubmed 出版商
  105. Morris J, Yashinskie J, Koche R, Chandwani R, Tian S, Chen C, et al. α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature. 2019;573:595-599 pubmed 出版商
  106. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  107. Abels E, Maas S, Nieland L, Wei Z, Cheah P, Tai E, et al. Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21. Cell Rep. 2019;28:3105-3119.e7 pubmed 出版商
  108. Chen M, Reed R, Lane A. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell Stem Cell. 2019;25:501-513.e5 pubmed 出版商
  109. Noguerol J, Roustan P, N Taye M, Delcombel L, Rolland C, Guiraud L, et al. Sexual dimorphism in PAR2-dependent regulation of primitive colonic cells. Biol Sex Differ. 2019;10:47 pubmed 出版商
  110. Sang Y, Li Y, Zhang Y, Alvarez A, Yu B, Zhang W, et al. CDK5-dependent phosphorylation and nuclear translocation of TRIM59 promotes macroH2A1 ubiquitination and tumorigenicity. Nat Commun. 2019;10:4013 pubmed 出版商
  111. DiTroia S, Percharde M, Guerquin M, Wall E, Collignon E, Ebata K, et al. Maternal vitamin C regulates reprogramming of DNA methylation and germline development. Nature. 2019;573:271-275 pubmed 出版商
  112. Xu J, Wang Y, Hsu C, Gao Y, Meyers C, Chang L, et al. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. elife. 2019;8: pubmed 出版商
  113. Diaz Osterman C, Ozmadenci D, Kleinschmidt E, Taylor K, Barrie A, Jiang S, et al. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. elife. 2019;8: pubmed 出版商
  114. Duhachek Muggy S, Bhat K, Medina P, Cheng F, He L, Alli C, et al. Radiation Mitigation of the Intestinal Acute Radiation Injury in Mice by 1-[(4-Nitrophenyl)Sulfonyl]-4-Phenylpiperazine. Stem Cells Transl Med. 2019;: pubmed 出版商
  115. Ombrato L, Nolan E, Kurelac I, Mavousian A, Bridgeman V, Heinze I, et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature. 2019;572:603-608 pubmed 出版商
  116. Gal H, Lysenko M, Stroganov S, Vadai E, Youssef S, Tzadikevitch Geffen K, et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 2019;38:e100849 pubmed 出版商
  117. Costa T, Zhuang T, Lorent J, Turco E, Olofsson H, Masià Balagué M, et al. PAK4 suppresses RELB to prevent senescence-like growth arrest in breast cancer. Nat Commun. 2019;10:3589 pubmed 出版商
  118. Sanghvi V, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, et al. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell. 2019;178:807-819.e21 pubmed 出版商
  119. Culemann S, Grüneboom A, Nicolás Ávila J, Weidner D, Lämmle K, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572:670-675 pubmed 出版商
  120. Lou Q, Liu R, Yang X, Li W, Huang L, Wei L, et al. miR-448 targets IDO1 and regulates CD8+ T cell response in human colon cancer. J Immunother Cancer. 2019;7:210 pubmed 出版商
  121. Verma V, Shrimali R, Ahmad S, Dai W, Wang H, Lu S, et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat Immunol. 2019;20:1231-1243 pubmed 出版商
  122. Chung K, Hsu C, Fan L, Huang Z, Bhatia D, Chen Y, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019;10:3390 pubmed 出版商
  123. Li K, Jain P, He C, Eun F, Kang S, Tumbar T. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. elife. 2019;8: pubmed 出版商
  124. Morabito M, Larcher M, Cavalli F, Foray C, Forget A, Mirabal Ortega L, et al. An autocrine ActivinB mechanism drives TGFβ/Activin signaling in Group 3 medulloblastoma. EMBO Mol Med. 2019;11:e9830 pubmed 出版商
  125. Bi J, Ichu T, Zanca C, Yang H, Zhang W, Gu Y, et al. Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab. 2019;30:525-538.e8 pubmed 出版商
  126. Burgermeister E, Battaglin F, Eladly F, Wu W, Herweck F, Schulte N, et al. Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. EBioMedicine. 2019;45:139-154 pubmed 出版商
  127. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  128. Papaioannou E, Yanez D, Ross S, Lau C, Solanki A, Chawda M, et al. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest. 2019;129:3153-3170 pubmed 出版商
  129. Wiel C, Le Gal K, Ibrahim M, Jahangir C, Kashif M, Yao H, et al. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell. 2019;: pubmed 出版商
  130. Pei G, Yao Y, Yang Q, Wang M, Wang Y, Wu J, et al. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci Adv. 2019;5:eaaw5075 pubmed 出版商
  131. Cibi D, Mia M, Guna Shekeran S, Yun L, Sandireddy R, Gupta P, et al. Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. elife. 2019;8: pubmed 出版商
  132. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  133. Zheng H, Zhao Y, Xu Y, Zhang Z, Zhu J, Fan Y, et al. Long-time qingyan formula extract treatment exerts estrogenic activities on reproductive tissues without side effects in ovariectomized rats and via active ER to ERE-independent gene regulation. Aging (Albany NY). 2019;11:4032-4049 pubmed 出版商
  134. Hsu C, Altschuler S, Wu L. Patterns of Early p21 Dynamics Determine Proliferation-Senescence Cell Fate after Chemotherapy. Cell. 2019;: pubmed 出版商
  135. Galino J, Cervellini I, Zhu N, Stöberl N, Hütte M, Fricker F, et al. RalGTPases contribute to Schwann cell repair after nerve injury via regulation of process formation. J Cell Biol. 2019;: pubmed 出版商
  136. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  137. Hari P, Millar F, Tarrats N, Birch J, Quintanilla A, Rink C, et al. The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci Adv. 2019;5:eaaw0254 pubmed 出版商
  138. Velasco S, Kedaigle A, Simmons S, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;: pubmed 出版商
  139. Lüscher Firzlaff J, Chatain N, Kuo C, Braunschweig T, Bochynska A, Ullius A, et al. Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Sci Rep. 2019;9:8262 pubmed 出版商
  140. Prior N, Hindley C, Rost F, Meléndez E, Lau W, Gottgens B, et al. Lgr5+ stem and progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development. 2019;146: pubmed 出版商
  141. Merve A, Zhang X, Pomella N, Acquati S, Hoeck J, Dumas A, et al. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun. 2019;7:2 pubmed 出版商
  142. Yin M, Zhou H, Lin C, Long L, Yang X, Zhang H, et al. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019;27:2709-2724.e3 pubmed 出版商
  143. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  144. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  145. Liu J, Cao L, Zhao N, Feng Y, Yu Z, Li Y, et al. miR‑338‑3p inhibits A549 lung cancer cell proliferation and invasion by targeting AKT and β‑catenin signaling pathways. Mol Med Rep. 2019;20:33-40 pubmed 出版商
  146. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta S, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129:2251-2265 pubmed 出版商
  147. Li J, Khankan R, Caneda C, Godoy M, Haney M, Krawczyk M, et al. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia. 2019;67:1571-1597 pubmed 出版商
  148. Yan C, Brunson D, Tang Q, Do D, Iftimia N, Moore J, et al. Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell. 2019;: pubmed 出版商
  149. Szvicsek Z, Oszvald Á, Szabó L, Sándor G, Kelemen A, Soós A, et al. Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors. Cell Mol Life Sci. 2019;76:2463-2476 pubmed 出版商
  150. Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 2019;569:66-72 pubmed 出版商
  151. Sugiura D, Maruhashi T, Okazaki I, Shimizu K, Maeda T, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364:558-566 pubmed 出版商
  152. Shi Y, Gao W, Lytle N, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131-135 pubmed 出版商
  153. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  154. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  155. Montalbán Loro R, Lozano Ureña A, Ito M, Krueger C, Reik W, Ferguson Smith A, et al. TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn. Nat Commun. 2019;10:1726 pubmed 出版商
  156. Noguchi H, Castillo J, Nakashima K, Pleasure S. Suppressor of fused controls perinatal expansion and quiescence of future dentate adult neural stem cells. elife. 2019;8: pubmed 出版商
  157. Zhu M, Lu T, Jia Y, Luo X, Gopal P, Li L, et al. Somatic Mutations Increase Hepatic Clonal Fitness and Regeneration in Chronic Liver Disease. Cell. 2019;177:608-621.e12 pubmed 出版商
  158. Che L, Chi W, Qiao Y, Zhang J, Song X, Liu Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut. 2020;69:177-186 pubmed 出版商
  159. Katsura H, Kobayashi Y, Tata P, Hogan B. IL-1 and TNFα Contribute to the Inflammatory Niche to Enhance Alveolar Regeneration. Stem Cell Reports. 2019;12:657-666 pubmed 出版商
  160. Lima Fernandes E, Murison A, da Silva Medina T, Wang Y, Ma A, Leung C, et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat Commun. 2019;10:1436 pubmed 出版商
  161. Li L, Kang H, Zhang Q, D Agati V, Al Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129:2374-2389 pubmed 出版商
  162. Lodge E, Santambrogio A, Russell J, Xekouki P, Jacques T, Johnson R, et al. Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade. elife. 2019;8: pubmed 出版商
  163. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  164. Ding L, Shunkwiler L, Harper N, Zhao Y, Hinohara K, Huh S, et al. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genet. 2019;15:e1008002 pubmed 出版商
  165. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  166. Demetriadou C, Pavlou D, Mpekris F, Achilleos C, Stylianopoulos T, Zaravinos A, et al. NAA40 contributes to colorectal cancer growth by controlling PRMT5 expression. Cell Death Dis. 2019;10:236 pubmed 出版商
  167. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  168. Dey A, Yang W, Gegonne A, Nishiyama A, Pan R, Yagi R, et al. BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO J. 2019;38: pubmed 出版商
  169. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  170. Kalamakis G, Brune D, Ravichandran S, Bolz J, Fan W, Ziebell F, et al. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell. 2019;: pubmed 出版商
  171. Guillon J, Petit C, Moreau M, Toutain B, Henry C, Roche H, et al. Regulation of senescence escape by TSP1 and CD47 following chemotherapy treatment. Cell Death Dis. 2019;10:199 pubmed 出版商
  172. Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim B, et al. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS ONE. 2019;14:e0212017 pubmed 出版商
  173. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  174. Xu C, Wang K, Ding Y, Li W, Ding L. Claudin-7 gene knockout causes destruction of intestinal structure and animal death in mice. World J Gastroenterol. 2019;25:584-599 pubmed 出版商
  175. Wu W, Zhang W, Choi M, Zhao J, Gao P, Xue M, et al. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol. 2019;22:101137 pubmed 出版商
  176. Garg G, Muschaweckh A, Moreno H, Vasanthakumar A, Floess S, Lepennetier G, et al. Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Rep. 2019;26:1854-1868.e5 pubmed 出版商
  177. Lee J, Sung J, Choi E, Yoon H, Kang B, Hong E, et al. C/EBPβ Is a Transcriptional Regulator of Wee1 at the G₂/M Phase of the Cell Cycle. Cells. 2019;8: pubmed 出版商
  178. Shen M, Wang F, Li M, Sah N, Stockton M, Tidei J, et al. Reduced mitochondrial fusion and Huntingtin levels contribute to impaired dendritic maturation and behavioral deficits in Fmr1-mutant mice. Nat Neurosci. 2019;22:386-400 pubmed 出版商
  179. Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 2019;38: pubmed 出版商
  180. Suzuki T, Kikuguchi C, Nishijima S, Nagashima T, Takahashi A, Okada M, et al. Postnatal liver functional maturation requires Cnot complex-mediated decay of mRNAs encoding cell cycle and immature liver genes. Development. 2019;146: pubmed 出版商
  181. Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed 出版商
  182. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  183. Kobayashi T, Voisin B, Kim D, Kennedy E, Jo J, Shih H, et al. Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell. 2019;176:982-997.e16 pubmed 出版商
  184. Yin C, Zhu B, Zhang T, Liu T, Chen S, Liu Y, et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;176:1113-1127.e16 pubmed 出版商
  185. Fousse J, Gautier E, Patti D, Dehay C. Developmental changes in interkinetic nuclear migration dynamics with respect to cell-cycle progression in the mouse cerebral cortex ventricular zone. J Comp Neurol. 2019;527:1545-1557 pubmed 出版商
  186. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  187. Fenderico N, van Scherpenzeel R, Goldflam M, Proverbio D, Jordens I, Kralj T, et al. Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nat Commun. 2019;10:365 pubmed 出版商
  188. Shinozuka T, Takada R, Yoshida S, Yonemura S, Takada S. Wnt produced by stretched roof-plate cells is required for the promotion of cell proliferation around the central canal of the spinal cord. Development. 2019;146: pubmed 出版商
  189. Mahmoud M, Evans I, Mehta V, Pellet Many C, Paliashvili K, Zachary I. Smooth muscle cell-specific knockout of neuropilin-1 impairs postnatal lung development and pathological vascular smooth muscle cell accumulation. Am J Physiol Cell Physiol. 2019;316:C424-C433 pubmed 出版商
  190. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  191. Chen H, Hu B, Lv X, Zhu S, Zhen G, Wan M, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 2019;10:181 pubmed 出版商
  192. Naito H, Iba T, Wakabayashi T, Tai Nagara I, Suehiro J, Jia W, et al. TAK1 Prevents Endothelial Apoptosis and Maintains Vascular Integrity. Dev Cell. 2019;48:151-166.e7 pubmed 出版商
  193. Liu S, Hausmann S, CARLSON S, Fuentes M, Francis J, Pillai R, et al. METTL13 Methylation of eEF1A Increases Translational Output to Promote Tumorigenesis. Cell. 2019;176:491-504.e21 pubmed 出版商
  194. Angelova A, Platel J, B clin C, Cremer H, Cor N. Characterization of perinatally born glutamatergic neurons of the mouse olfactory bulb based on NeuroD6 expression reveals their resistance to sensory deprivation. J Comp Neurol. 2019;527:1245-1260 pubmed 出版商
  195. Moon S, Huang C, Houlihan S, Regunath K, Freed Pastor W, Morris J, et al. p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression. Cell. 2019;176:564-580.e19 pubmed 出版商
  196. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  197. Pan W, Moroishi T, Koo J, Guan K. Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene. 2019;38:2595-2610 pubmed 出版商
  198. Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129:1047-1060 pubmed 出版商
  199. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  200. Wu R, Li A, Sun B, Sun J, Zhang J, Zhang T, et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29:23-41 pubmed 出版商
  201. Chen R, Miao Y, Hu Z. Dynamic Nestin expression during hair follicle maturation and the normal hair cycle. Mol Med Rep. 2019;19:549-554 pubmed 出版商
  202. Coover R, Healy T, Guo L, Chaney K, Hennigan R, Thomson C, et al. Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1. Acta Neuropathol Commun. 2018;6:127 pubmed 出版商
  203. Glal D, Sudhakar J, Lu H, Liu M, Chiang H, Liu Y, et al. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol. 2018;9:2522 pubmed 出版商
  204. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  205. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  206. Chen X, Chanda A, Ikeuchi Y, Zhang X, Goodman J, Reddy N, et al. The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci. 2019;39:44-62 pubmed 出版商
  207. Koren E, Yosefzon Y, Ankawa R, Soteriou D, Jacob A, Nevelsky A, et al. ARTS mediates apoptosis and regeneration of the intestinal stem cell niche. Nat Commun. 2018;9:4582 pubmed 出版商
  208. Bartolomé A, Zhu C, Sussel L, Pajvani U. Notch signaling dynamically regulates adult β cell proliferation and maturity. J Clin Invest. 2019;129:268-280 pubmed 出版商
  209. Zhang C, Jiang M, Zhou H, Liu W, Wang C, Kang Z, et al. TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. J Clin Invest. 2018;128:5399-5412 pubmed 出版商
  210. Goldie S, Cottle D, Tan F, Roslan S, Srivastava S, Brady R, et al. Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell Death Dis. 2018;9:1072 pubmed 出版商
  211. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  212. Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91-95 pubmed 出版商
  213. Peng Y. B cell responses to apoptotic cells in MFG-E8-/- mice. PLoS ONE. 2018;13:e0205172 pubmed 出版商
  214. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  215. Shi H, Han X, Sun Y, Shang C, Wei M, Ba X, et al. Chemokine (C-X-C motif) ligand 1 and CXCL2 produced by tumor promote the generation of monocytic myeloid-derived suppressor cells. Cancer Sci. 2018;109:3826-3839 pubmed 出版商
  216. Patel N, Vukmanovic Stejic M, Suárez Fariñas M, Chambers E, Sandhu D, Fuentes Duculan J, et al. Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen-Specific Challenge. J Infect Dis. 2018;218:S88-S98 pubmed 出版商
  217. Petrelli A, Mijnheer G, Hoytema van Konijnenburg D, van der Wal M, Giovannone B, Mocholí E, et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J Clin Invest. 2018;128:4669-4681 pubmed 出版商
  218. Takemoto Y, Inaba S, Zhang L, Tsujikawa K, Uezumi A, Fukada S. Implication of basal lamina dependency in survival of Nrf2-null muscle stem cells via an antioxidative-independent mechanism. J Cell Physiol. 2019;234:1689-1698 pubmed 出版商
  219. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  220. Kiang L, Ross B, Yao J, Shanmugam S, Andrews C, Hansen S, et al. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci. 2018;59:3767-3778 pubmed 出版商
  221. Heshmati Y, Kharazi S, Türköz G, Chang D, Kamali Dolatabadi E, Boström J, et al. The histone chaperone NAP1L3 is required for haematopoietic stem cell maintenance and differentiation. Sci Rep. 2018;8:11202 pubmed 出版商
  222. Xiao D, Liu X, Zhang M, Zou M, Deng Q, Sun D, et al. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun. 2018;9:2865 pubmed 出版商
  223. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  224. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  225. Pinzon Guzman C, Meyer A, Wise R, Choi E, Muthupalani S, Wang T, et al. Evaluation of Lineage Changes in the Gastric Mucosa Following Infection With Helicobacter pylori and Specified Intestinal Flora in INS-GAS Mice. J Histochem Cytochem. 2018;:22155418785621 pubmed 出版商
  226. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  227. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  228. Nusse Y, Savage A, Marangoni P, Rosendahl Huber A, Landman T, De Sauvage F, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018;559:109-113 pubmed 出版商
  229. Norris G, Smirnov I, Filiano A, Shadowen H, Cody K, Thompson J, et al. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789-1801 pubmed 出版商
  230. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  231. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  232. Moysi E, Pallikkuth S, de Armas L, Gonzalez L, Ambrozak D, George V, et al. Altered immune cell follicular dynamics in HIV infection following influenza vaccination. J Clin Invest. 2018;128:3171-3185 pubmed 出版商
  233. Song J, Zhang X, Ge Q, Yuan C, Chu L, Liang H, et al. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. J Cell Biochem. 2018;119:8419-8431 pubmed 出版商
  234. Liu T, Kong W, Tang X, Xu M, Wang Q, Zhang B, et al. The transcription factor Zfp90 regulates the self-renewal and differentiation of hematopoietic stem cells. Cell Death Dis. 2018;9:677 pubmed 出版商
  235. Giera S, Luo R, Ying Y, Ackerman S, Jeong S, Stoveken H, et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. elife. 2018;7: pubmed 出版商
  236. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  237. Vera Ramirez L, Vodnala S, Nini R, Hunter K, Green J. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944 pubmed 出版商
  238. Kityo C, Makamdop K, Rothenberger M, Chipman J, Hoskuldsson T, Beilman G, et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J Clin Invest. 2018;128:2763-2773 pubmed 出版商
  239. Rossow L, Veitl S, Vorlova S, Wax J, Kuhn A, Maltzahn V, et al. LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy. Oncogene. 2018;37:4921-4940 pubmed 出版商
  240. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  241. Sayin I, Radtke A, Vella L, Jin W, Wherry E, Buggert M, et al. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J Exp Med. 2018;215:1531-1542 pubmed 出版商
  242. Barwick B, Scharer C, Martinez R, Price M, Wein A, Haines R, et al. B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nat Commun. 2018;9:1900 pubmed 出版商
  243. Marcucci F, Soares C, Mason C. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. J Comp Neurol. 2019;527:212-224 pubmed 出版商
  244. Li M, Yang X, LU X, Dai N, Zhang S, Cheng Y, et al. APE1 deficiency promotes cellular senescence and premature aging features. Nucleic Acids Res. 2018;46:5664-5677 pubmed 出版商
  245. Miyamoto Y, Torii T, Tago K, Tanoue A, Takashima S, Yamauchi J. BIG1/Arfgef1 and Arf1 regulate the initiation of myelination by Schwann cells in mice. Sci Adv. 2018;4:eaar4471 pubmed 出版商
  246. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  247. Fan L, Zhang F, Xu S, Cui X, Hussain A, Fazli L, et al. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A. 2018;115:E4584-E4593 pubmed 出版商
  248. Baba O, Horie T, Nakao T, Hakuno D, Nakashima Y, Nishi H, et al. MicroRNA 33 Regulates the Population of Peripheral Inflammatory Ly6Chigh Monocytes through Dual Pathways. Mol Cell Biol. 2018;38: pubmed 出版商
  249. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  250. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  251. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  252. Liakath Ali K, Mills E, Sequeira I, Lichtenberger B, Pisco A, Sipilä K, et al. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature. 2018;556:376-380 pubmed 出版商
  253. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  254. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  255. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  256. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  257. Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K, Mouhieddine T, et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest. 2018;128:2487-2499 pubmed 出版商
  258. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33:512-526.e8 pubmed 出版商
  259. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  260. Li N, van Unen V, Höllt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J Exp Med. 2018;215:1383-1396 pubmed 出版商
  261. Zhang B, Nguyen L, Li L, Zhao D, Kumar B, Wu H, et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med. 2018;24:450-462 pubmed 出版商
  262. Huang L, Nazarova E, Tan S, Liu Y, Russell D. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215:1135-1152 pubmed 出版商
  263. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  264. Zacharias W, Frank D, Zepp J, Morley M, Alkhaleel F, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555:251-255 pubmed 出版商
  265. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  266. Panduro M, Benoist C, Mathis D. Treg cells limit IFN-? production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2018;115:E2585-E2593 pubmed 出版商
  267. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  268. Xu M, Han X, Liu R, Li Y, Qi C, Yang Z, et al. PDK1 Deficit Impairs the Development of the Dentate Gyrus in Mice. Cereb Cortex. 2019;29:1185-1198 pubmed 出版商
  269. Ellestad K, Thangavelu G, Haile Y, Lin J, Boon L, Anderson C. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol. 2018;9:12 pubmed 出版商
  270. Le Duff M, Gouju J, Jonchère B, Guillon J, Toutain B, Boissard A, et al. Regulation of senescence escape by the cdk4-EZH2-AP2M1 pathway in response to chemotherapy. Cell Death Dis. 2018;9:199 pubmed 出版商
  271. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  272. Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies L, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37:2022-2036 pubmed 出版商
  273. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  274. Mitroulis I, Ruppova K, Wang B, Chen L, Grzybek M, Grinenko T, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172:147-161.e12 pubmed 出版商
  275. Huang Y, Mao K, Chen X, Sun M, Kawabe T, Li W, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359:114-119 pubmed 出版商
  276. Cribbs A, Hookway E, Wells G, Lindow M, Obad S, Oerum H, et al. Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem. 2018;293:2422-2437 pubmed 出版商
  277. Smith M, Harley M, Kemp A, Wills J, Lee M, Arends M, et al. CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Dev Cell. 2018;44:217-232.e11 pubmed 出版商
  278. Fontaine M, Vogel I, Van Eycke Y, Galuppo A, Ajouaou Y, Decaestecker C, et al. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J. 2018;37:398-412 pubmed 出版商
  279. Pleiner T, Bates M, Gorlich D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol. 2018;217:1143-1154 pubmed 出版商
  280. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  281. Amodio D, Cotugno N, Macchiarulo G, Rocca S, Dimopoulos Y, Castrucci M, et al. Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. J Immunol. 2018;200:538-550 pubmed 出版商
  282. Ziegler Waldkirch S, d Errico P, Sauer J, Erny D, Savanthrapadian S, Loreth D, et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO J. 2018;37:167-182 pubmed 出版商
  283. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  284. Mailer R, Gisterå A, Polyzos K, Ketelhuth D, Hansson G. Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Sci Rep. 2017;7:15655 pubmed 出版商
  285. Chung J, Song J, Ylaya K, Sears J, Choi L, Cho H, et al. Histomorphological and Molecular Assessments of the Fixation Times Comparing Formalin and Ethanol-Based Fixatives. J Histochem Cytochem. 2017;:22155417741467 pubmed 出版商
  286. Li Y, Yang Y, Yang L, Zeng Y, Gao X, Xu H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther. 2017;8:256 pubmed 出版商
  287. Wasiuk A, Testa J, Weidlick J, Sisson C, Vitale L, Widger J, et al. CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy. J Immunol. 2017;199:4110-4123 pubmed 出版商
  288. Escamilla C, Filonova I, Walker A, Xuan Z, Holehonnur R, Espinosa F, et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017;551:227-231 pubmed 出版商
  289. Kannan M, Bayam E, Wagner C, Rinaldi B, Kretz P, Tilly P, et al. WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proc Natl Acad Sci U S A. 2017;114:E9308-E9317 pubmed 出版商
  290. Berrout J, Kyriakopoulou E, Moparthi L, Hogea A, Berrout L, Ivan C, et al. TRPA1-FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nat Commun. 2017;8:947 pubmed 出版商
  291. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  292. Otto T, Candido S, Pilarz M, Sicinska E, Bronson R, Bowden M, et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A. 2017;114:10660-10665 pubmed 出版商
  293. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  294. Yanai H, Atsumi N, Tanaka T, Nakamura N, Komai Y, Omachi T, et al. Intestinal stem cells contribute to the maturation of the neonatal small intestine and colon independently of digestive activity. Sci Rep. 2017;7:9891 pubmed 出版商
  295. Kuroda M, Muramatsu R, Maedera N, Koyama Y, Hamaguchi M, Fujimura H, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127:3496-3509 pubmed 出版商
  296. Kumar B, Garcia M, Weng L, Jung X, Murakami J, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575-587 pubmed 出版商
  297. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  298. Guo H, Kazadaeva Y, Ortega F, Manjunath N, Desai T. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol. 2017;430:214-223 pubmed 出版商
  299. Minguet S, Kläsener K, Schaffer A, Fiala G, Osteso Ibanez T, Raute K, et al. Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nat Immunol. 2017;18:1150-1159 pubmed 出版商
  300. Brown S, Pineda C, Xin T, Boucher J, Suozzi K, Park S, et al. Correction of aberrant growth preserves tissue homeostasis. Nature. 2017;548:334-337 pubmed 出版商
  301. Roberts S, Dun X, Doddrell R, Mindos T, Drake L, Onaitis M, et al. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development. 2017;144:3114-3125 pubmed 出版商
  302. Nikolaidis N, Noel J, Pitstick L, Gardner J, Uehara Y, Wu H, et al. Mitogenic stimulation accelerates influenza-induced mortality by increasing susceptibility of alveolar type II cells to infection. Proc Natl Acad Sci U S A. 2017;114:E6613-E6622 pubmed 出版商
  303. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  304. Spaeth J, Gupte M, Perelis M, Yang Y, CYPHERT H, Guo S, et al. Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes. 2017;66:2830-2839 pubmed 出版商
  305. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  306. Capurro M, Izumikawa T, Suarez P, Shi W, Cydzik M, Kaneiwa T, et al. Glypican-6 promotes the growth of developing long bones by stimulating Hedgehog signaling. J Cell Biol. 2017;216:2911-2926 pubmed 出版商
  307. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  308. Lee S, Park H, Suh Y, Yoon E, Kim J, Jang W, et al. Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc Natl Acad Sci U S A. 2017;114:E5881-E5890 pubmed 出版商
  309. Ida S, Morino K, Sekine O, Ohashi N, Kume S, Chano T, et al. Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice. Diabetologia. 2017;60:1761-1769 pubmed 出版商
  310. Guo T, Zhao S, Wang P, Xue X, Zhang Y, Yang M, et al. YB-1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma. Oncotarget. 2017;8:48110-48125 pubmed 出版商
  311. Nozawa R, Boteva L, Soares D, Naughton C, Dun A, Buckle A, et al. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell. 2017;169:1214-1227.e18 pubmed 出版商
  312. Feng J, Jing J, Li J, Zhao H, Punj V, Zhang T, et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development. 2017;144:2560-2569 pubmed 出版商
  313. Nielsen C, van Putten S, Lund I, Melander M, Nørregaard K, Jürgensen H, et al. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers. Oncotarget. 2017;8:44605-44624 pubmed 出版商
  314. Xia H, Gilbertsen A, Herrera J, Racila E, Smith K, Peterson M, et al. Calcium-binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. J Clin Invest. 2017;127:2586-2597 pubmed 出版商
  315. Miyazaki M, Miyazaki K, Chen K, Jin Y, Turner J, Moore A, et al. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development. Immunity. 2017;46:818-834.e4 pubmed 出版商
  316. Haston S, Pozzi S, Carreno G, Manshaei S, Panousopoulos L, González Meljem J, et al. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development. 2017;144:2141-2152 pubmed 出版商
  317. Barazzuol L, Ju L, Jeggo P. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol. 2017;15:e2001264 pubmed 出版商
  318. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  319. Giroux V, Lento A, Islam M, Pitarresi J, Kharbanda A, Hamilton K, et al. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Invest. 2017;127:2378-2391 pubmed 出版商
  320. Marsboom G, Chen Z, Yuan Y, Zhang Y, Tiruppathi C, Loyd J, et al. Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Mol Biol Cell. 2017;28:1177-1185 pubmed 出版商
  321. Olvedy M, Tisserand J, Luciani F, Boeckx B, Wouters J, Lopez S, et al. Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. J Clin Invest. 2017;127:2310-2325 pubmed 出版商
  322. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  323. Mendivil Perez M, Soto Mercado V, Guerra Librero A, Fernandez Gil B, Florido J, Shen Y, et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. 2017;63: pubmed 出版商
  324. Melis D, Carbone F, Minopoli G, La Rocca C, Perna F, De Rosa V, et al. Cutting Edge: Increased Autoimmunity Risk in Glycogen Storage Disease Type 1b Is Associated with a Reduced Engagement of Glycolysis in T Cells and an Impaired Regulatory T Cell Function. J Immunol. 2017;198:3803-3808 pubmed 出版商
  325. Cong Q, Jia H, Li P, Qiu S, Yeh J, Wang Y, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964 pubmed 出版商
  326. Sosunov A, McKhann G, Goldman J. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathol Commun. 2017;5:27 pubmed 出版商
  327. Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature. 2017;545:187-192 pubmed 出版商
  328. Li X, Liu F, Lin B, Luo H, Liu M, Wu J, et al. miR?150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma. Int J Oncol. 2017;: pubmed 出版商
  329. Sindhava V, Oropallo M, Moody K, Naradikian M, Higdon L, Zhou L, et al. A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. J Clin Invest. 2017;127:1651-1663 pubmed 出版商
  330. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  331. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  332. Ohgaki R, Ohmori T, Hara S, Nakagomi S, Kanai Azuma M, Kaneda Nakashima K, et al. Essential Roles of L-Type Amino Acid Transporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc. Mol Cell Biol. 2017;37: pubmed 出版商
  333. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  334. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  335. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  336. Jin Z, Liang F, Yang J, Mei W. hnRNP I regulates neonatal immune adaptation and prevents colitis and colorectal cancer. PLoS Genet. 2017;13:e1006672 pubmed 出版商
  337. Chen K, Harris L, Lim J, Harvey T, Piper M, Gronostajski R, et al. Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice. J Comp Neurol. 2017;525:2465-2483 pubmed 出版商
  338. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  339. Halim D, Wilson M, Oliver D, Brosens E, Verheij J, Han Y, et al. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proc Natl Acad Sci U S A. 2017;114:E2739-E2747 pubmed 出版商
  340. Liu J, Hu F, Tang J, Tang S, Xia K, Wu S, et al. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling. Int J Mol Med. 2017;39:879-888 pubmed 出版商
  341. Martín Ibáñez R, Pardo M, Giralt A, Miguez A, Guardia I, Marion Poll L, et al. Helios expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development. 2017;144:1566-1577 pubmed 出版商
  342. Coni S, Mancuso A, Di Magno L, Sdruscia G, Manni S, Serrao S, et al. Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma. Sci Rep. 2017;7:44079 pubmed 出版商
  343. Mosialou I, Shikhel S, Liu J, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543:385-390 pubmed 出版商
  344. Sgourdou P, Mishra Gorur K, Saotome I, Henagariu O, Tuysuz B, Campos C, et al. Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep. 2017;7:43708 pubmed 出版商
  345. Fumagalli A, Drost J, Suijkerbuijk S, van Boxtel R, de Ligt J, Offerhaus G, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci U S A. 2017;114:E2357-E2364 pubmed 出版商
  346. Ubellacker J, Haider M, Decristo M, Allocca G, Brown N, Silver D, et al. Zoledronic acid alters hematopoiesis and generates breast tumor-suppressive bone marrow cells. Breast Cancer Res. 2017;19:23 pubmed 出版商
  347. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  348. Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, et al. miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer. 2017;16:53 pubmed 出版商
  349. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  350. Fisher S, Aston W, Chee J, Khong A, Cleaver A, Solin J, et al. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun Inflamm Dis. 2017;5:16-28 pubmed 出版商
  351. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed 出版商
  352. Malchenko S, Sredni S, Bi Y, Margaryan N, Boyineni J, Mohanam I, et al. Stabilization of HIF-1α and HIF-2α, up-regulation of MYCC and accumulation of stabilized p53 constitute hallmarks of CNS-PNET animal model. PLoS ONE. 2017;12:e0173106 pubmed 出版商
  353. Cai Z, Zhang C, Zou Y, Lu C, Hu H, Qian J, et al. Tissue thioredoxin-interacting protein expression predicted recurrence in patients with meningiomas. Int J Clin Oncol. 2017;22:660-666 pubmed 出版商
  354. Ju H, Ying H, Tian T, Ling J, Fu J, Lu Y, et al. Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma. Nat Commun. 2017;8:14437 pubmed 出版商
  355. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  356. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  357. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  358. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka A, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445-449 pubmed 出版商
  359. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  360. Chierico L, Rizzello L, Guan L, Joseph A, Lewis A, Battaglia G. The role of the two splice variants and extranuclear pathway on Ki-67 regulation in non-cancer and cancer cells. PLoS ONE. 2017;12:e0171815 pubmed 出版商
  361. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  362. Duelen R, Gilbert G, Patel A, de Schaetzen N, de Waele L, Roderick L, et al. Activin A Modulates CRIPTO-1/HNF4?+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells Int. 2017;2017:4651238 pubmed 出版商
  363. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells M, Morton J, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183 pubmed 出版商
  364. Chen W, Wang Z, Missinato M, Park D, Long D, Liu H, et al. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv. 2016;2:e1600844 pubmed 出版商
  365. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  366. Beaumont M, Andriamihaja M, Armand L, Grauso M, Jaffrézic F, Laloë D, et al. Epithelial response to a high-protein diet in rat colon. BMC Genomics. 2017;18:116 pubmed 出版商
  367. He Y, Northey J, Pelletier A, Kos Z, Meunier L, Haibe Kains B, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene. 2017;36:3490-3503 pubmed 出版商
  368. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186 pubmed 出版商
  369. Che L, Pilo M, Cigliano A, Latte G, Simile M, Ribback S, et al. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle. 2017;16:499-507 pubmed 出版商
  370. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  371. Han X, Zha H, Yang F, Guo B, Zhu B. Tumor-Derived Tissue Factor Aberrantly Activates Complement and Facilitates Lung Tumor Progression via Recruitment of Myeloid-Derived Suppressor Cells. Int J Mol Sci. 2017;18: pubmed 出版商
  372. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience. 2016;3:337-350 pubmed 出版商
  373. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. Loss of the SWI/SNF ATPase subunits BRM and BRG1 drives lung cancer development. Oncoscience. 2016;3:322-336 pubmed 出版商
  374. Huang Y, Chen N, Miao D. Radioprotective effects of pyrroloquinoline quinone on parotid glands in C57BL/6J mice. Exp Ther Med. 2016;12:3685-3693 pubmed 出版商
  375. Kawakami K, Takeshita A, Furushima K, Miyajima M, Hatamura I, Kuro O M, et al. Persistent fibroblast growth factor 23 signalling in the parathyroid glands for secondary hyperparathyroidism in mice with chronic kidney disease. Sci Rep. 2017;7:40534 pubmed 出版商
  376. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff T, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328 pubmed 出版商
  377. Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 2017;8:14002 pubmed 出版商
  378. Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, Sagar -, et al. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas. Cell. 2016;167:1264-1280.e18 pubmed 出版商
  379. Hopkinson B, Klitgaard M, Petersen O, Villadsen R, Rønnov Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget. 2017;8:10580-10593 pubmed 出版商
  380. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  381. Benevento M, Oomen C, Horner A, Amiri H, Jacobs T, Pauwels C, et al. Haploinsufficiency of EHMT1 improves pattern separation and increases hippocampal cell proliferation. Sci Rep. 2017;7:40284 pubmed 出版商
  382. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  383. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  384. Fallahi Sichani M, Becker V, Izar B, Baker G, Lin J, Boswell S, et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol Syst Biol. 2017;13:905 pubmed 出版商
  385. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  386. Niu X, Pi S, Baral S, Xia Y, He Q, Li Y, et al. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:515-524 pubmed 出版商
  387. Linge I, Dyatlov A, Kondratieva E, Avdienko V, Apt A, Kondratieva T. B-lymphocytes forming follicle-like structures in the lung tissue of tuberculosis-infected mice: Dynamics, phenotypes and functional activity. Tuberculosis (Edinb). 2017;102:16-23 pubmed 出版商
  388. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  389. Hennika T, Hu G, Olaciregui N, Barton K, Ehteda A, Chitranjan A, et al. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models. PLoS ONE. 2017;12:e0169485 pubmed 出版商
  390. Monaghan C, Nechiporuk T, Jeng S, McWeeney S, Wang J, Rosenfeld M, et al. REST corepressors RCOR1 and RCOR2 and the repressor INSM1 regulate the proliferation-differentiation balance in the developing brain. Proc Natl Acad Sci U S A. 2017;114:E406-E415 pubmed 出版商
  391. Engler J, Kursawe N, Solano M, Patas K, Wehrmann S, Heckmann N, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A. 2017;114:E181-E190 pubmed 出版商
  392. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  393. Dergilev K, Makarevich P, Tsokolaeva Z, Boldyreva M, Beloglazova I, Zubkova E, et al. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue Cell. 2017;49:64-71 pubmed 出版商
  394. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  395. Rath N, Morton J, Julian L, Helbig L, Kadir S, McGhee E, et al. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Mol Med. 2017;9:198-218 pubmed 出版商
  396. Penna I, Gigoni A, Costa D, Vella S, Russo D, Poggi A, et al. The inhibition of 45A ncRNA expression reduces tumor formation, affecting tumor nodules compactness and metastatic potential in neuroblastoma cells. Oncotarget. 2017;8:8189-8205 pubmed 出版商
  397. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  398. Stanfield B, Pahar B, Chouljenko V, Veazey R, Kousoulas K. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine. 2017;35:536-543 pubmed 出版商
  399. Baumer Y, McCurdy S, Alcala M, Mehta N, Lee B, Ginsberg M, et al. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis. 2017;256:105-114 pubmed 出版商
  400. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  401. Wang C, Wang M, Arrington J, Shan T, Yue F, Nie Y, et al. Ascl2 inhibits myogenesis by antagonizing the transcriptional activity of myogenic regulatory factors. Development. 2017;144:235-247 pubmed 出版商
  402. Ohs I, Van Den Broek M, Nussbaum K, MUNZ C, Arnold S, Quezada S, et al. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat Commun. 2016;7:13708 pubmed 出版商
  403. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  404. Lazaro S, Perez Crespo M, Enguita A, Hernandez P, Martínez Palacio J, Oteo M, et al. Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation. Oncotarget. 2017;8:4373-4386 pubmed 出版商
  405. Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey T, et al. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development. 2016;143:4620-4630 pubmed
  406. Scarritt M, Pashos N, Motherwell J, Eagle Z, Burkett B, Gregory A, et al. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells. J Tissue Eng Regen Med. 2018;12:e786-e806 pubmed 出版商
  407. Revandkar A, Perciato M, Toso A, Alajati A, Chen J, Gerber H, et al. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nat Commun. 2016;7:13719 pubmed 出版商
  408. Burnett L, LeDuc C, Sulsona C, Paull D, Rausch R, Eddiry S, et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest. 2017;127:293-305 pubmed 出版商
  409. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  410. Cai H, Liu A. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling. Proc Natl Acad Sci U S A. 2016;113:14751-14756 pubmed 出版商
  411. Tsai Y, Nattiv R, Dedhia P, Nagy M, Chin A, Thomson M, et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development. 2017;144:1045-1055 pubmed 出版商
  412. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  413. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  414. Goreczny G, Ouderkirk Pecone J, Olson E, Krendel M, Turner C. Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene. 2017;36:2693-2703 pubmed 出版商
  415. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  416. Rebo J, Mehdipour M, Gathwala R, Causey K, Liu Y, Conboy M, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7:13363 pubmed 出版商
  417. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  418. Lu W, Liu S, Li B, Xie Y, Izban M, Ballard B, et al. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene. 2017;36:1364-1373 pubmed 出版商
  419. Sharp J, Vermette P. An In-situ glucose-stimulated insulin secretion assay under perfusion bioreactor conditions. Biotechnol Prog. 2017;33:454-462 pubmed 出版商
  420. Pu W, Zhang H, Huang X, Tian X, He L, Wang Y, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun. 2016;7:13369 pubmed 出版商
  421. Qiu X, Jiao J, Li Y, Tian T. Overexpression of FZD7 promotes glioma cell proliferation by upregulating TAZ. Oncotarget. 2016;7:85987-85999 pubmed 出版商
  422. Shatirishvili M, Burk A, Franz C, Pace G, Kastilan T, Breuhahn K, et al. Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death Dis. 2016;7:e2461 pubmed 出版商
  423. Strietz J, Stepputtis S, Preca B, Vannier C, Kim M, Castro D, et al. ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget. 2016;7:83278-83293 pubmed 出版商
  424. Lacaille H, Duterte Boucher D, Vaudry H, Zerdoumi Y, Flaman J, Hashimoto H, et al. PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol. 2017;54:7534-7548 pubmed 出版商
  425. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  426. Pamarthy S, Mao L, Katara G, Fleetwood S, Kulshreshta A, Gilman Sachs A, et al. The V-ATPase a2 isoform controls mammary gland development through Notch and TGF-β signaling. Cell Death Dis. 2016;7:e2443 pubmed 出版商
  427. Tirosh I, Venteicher A, Hebert C, Escalante L, Patel A, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309-313 pubmed 出版商
  428. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  429. Junge H, Yung A, Goodrich L, Chen Z. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord. Neural Dev. 2016;11:19 pubmed
  430. Reinfeldt Engberg G, Chamorro C, Nordenskjold A, Fossum M. Expansion of Submucosal Bladder Wall Tissue In Vitro and In Vivo. Biomed Res Int. 2016;2016:5415012 pubmed
  431. Konstantinidou C, Taraviras S, Pachnis V. Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biol. 2016;14:94 pubmed
  432. Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A, et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016;18:1233-1243 pubmed 出版商
  433. Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 2017;36:2355-2365 pubmed 出版商
  434. Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, et al. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol. 2016;311:H1485-H1497 pubmed 出版商
  435. Fielitz K, Althoff K, De Preter K, Nonnekens J, Ohli J, Elges S, et al. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells. Oncotarget. 2016;7:74415-74426 pubmed 出版商
  436. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  437. Hagel C, Buslei R, Buchfelder M, Fahlbusch R, Bergmann M, Giese A, et al. Immunoprofiling of glial tumours of the neurohypophysis suggests a common pituicytic origin of neoplastic cells. Pituitary. 2017;20:211-217 pubmed 出版商
  438. Barut F, Udul P, Kokturk F, Kandemir N, Keser S, Ozdamar S. Clinicopathological features and pituitary homeobox 1 gene expression in the progression and prognosis of cutaneous malignant melanoma. Kaohsiung J Med Sci. 2016;32:494-500 pubmed 出版商
  439. Andriani G, Almeida V, Faggioli F, Mauro M, Tsai W, Santambrogio L, et al. Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep. 2016;6:35218 pubmed 出版商
  440. Parween S, Kostromina E, Nord C, Eriksson M, Lindstrom P, Ahlgren U. Intra-islet lesions and lobular variations in ?-cell mass expansion in ob/ob mice revealed by 3D imaging of intact pancreas. Sci Rep. 2016;6:34885 pubmed 出版商
  441. Zhang C, Wang H, Bao Q, Wang L, Guo T, Chen W, et al. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget. 2016;7:73593-73606 pubmed 出版商
  442. Figueroa González G, García Castillo V, Coronel Hernández J, López Urrutia E, León Cabrera S, Arias Romero L, et al. Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer. J Cancer. 2016;7:1632-1644 pubmed
  443. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  444. Zhou L, Dai H, Wu J, Zhou M, Yuan H, Du J, et al. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development. FASEB J. 2017;31:132-147 pubmed 出版商
  445. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  446. Fogarty L, Song B, Suppiah Y, Hasan S, Martin H, Hogan S, et al. Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci. 2016;77:34-46 pubmed 出版商
  447. Xiong J, Zhou M, Wang Y, Chen L, Xu W, Wang Y, et al. Protein Kinase D2 Protects against Acute Colitis Induced by Dextran Sulfate Sodium in Mice. Sci Rep. 2016;6:34079 pubmed 出版商
  448. Subbarayal B, Chauhan S, Di Zazzo A, Dana R. IL-17 Augments B Cell Activation in Ocular Surface Autoimmunity. J Immunol. 2016;197:3464-3470 pubmed
  449. McLane J, Ligon L. Stiffened Extracellular Matrix and Signaling from Stromal Fibroblasts via Osteoprotegerin Regulate Tumor Cell Invasion in a 3-D Tumor in Situ Model. Cancer Microenviron. 2016;9:127-139 pubmed 出版商
  450. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  451. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  452. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  453. Borgs L, Peyre E, Alix P, Hanon K, Grobarczyk B, Godin J, et al. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Sci Rep. 2016;6:33377 pubmed 出版商
  454. Lopez C, Miller B, Rivera Chávez F, Velazquez E, Byndloss M, Chávez Arroyo A, et al. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science. 2016;353:1249-53 pubmed 出版商
  455. Drelon C, Berthon A, Sahut Barnola I, Mathieu M, Dumontet T, Rodriguez S, et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat Commun. 2016;7:12751 pubmed 出版商
  456. Tavana O, Li D, Dai C, Lopez G, Banerjee D, Kon N, et al. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med. 2016;22:1180-1186 pubmed 出版商
  457. Czerwinska A, Nowacka J, Aszer M, Gawrzak S, Archacka K, Fogtman A, et al. Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle. 2016;15:2931-2942 pubmed
  458. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  459. Huang H, Huang Q, Wang F, Milner R, Li L. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins. J Neuroinflammation. 2016;13:227 pubmed 出版商
  460. Magalhães A, Rivera C. NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence. Front Cell Neurosci. 2016;10:200 pubmed 出版商
  461. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  462. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  463. Jiang L, Wang L, Chen C, Li M, Liao X. Lgr6 is dispensable for epidermal cell proliferation and wound repair. Exp Dermatol. 2017;26:105-107 pubmed 出版商
  464. Sweeny L, Prince A, Patel N, Moore L, Rosenthal E, Hughley B, et al. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope. 2016;126:E387-E395 pubmed 出版商
  465. Waters A, Stafman L, Garner E, Mruthyunjayappa S, Stewart J, Mroczek Musulman E, et al. Targeting Focal Adhesion Kinase Suppresses the Malignant Phenotype in Rhabdomyosarcoma Cells. Transl Oncol. 2016;9:263-73 pubmed 出版商
  466. Hinsenkamp I, Schulz S, Roscher M, Suhr A, Meyer B, Munteanu B, et al. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer. Neoplasia. 2016;18:500-11 pubmed 出版商
  467. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  468. Otsuka K, Suzuki K. Differences in Radiation Dose Response between Small and Large Intestinal Crypts. Radiat Res. 2016;186:302-14 pubmed 出版商
  469. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  470. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  471. Belinson H, Savage A, Fadrosh D, Kuo Y, Lin D, Valladares R, et al. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCI Insight. 2016;1: pubmed 出版商
  472. Gallini R, Huusko J, Yla Herttuala S, Betsholtz C, Andrae J. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart. PLoS ONE. 2016;11:e0160930 pubmed 出版商
  473. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  474. Chrenek R, Magnotti L, Herrera G, Jha R, Cardozo D. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans. J Comp Neurol. 2017;525:661-675 pubmed 出版商
  475. Alexovič Matiašová A, Sevc J, Tomori Z, Gombalová Z, Gedrová S, Daxnerova Z. Quantitative analyses of cellularity and proliferative activity reveals the dynamics of the central canal lining during postnatal development of the rat. J Comp Neurol. 2017;525:693-707 pubmed 出版商
  476. Saatcioglu H, Cuevas I, Castrillon D. Control of Oocyte Reawakening by Kit. PLoS Genet. 2016;12:e1006215 pubmed 出版商
  477. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  478. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  479. Liou A, Wu S, Liao C, Chang Y, Chang C, Shih C. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep. 2016;6:31151 pubmed 出版商
  480. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  481. Johansson E, Rönö B, Johansson M, Lindgren D, Möller C, Axelson H, et al. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice. Sci Rep. 2016;6:30739 pubmed 出版商
  482. Medrano J, Rombaut C, Simon C, Pellicer A, Goossens E. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril. 2016;106:1539-1549.e8 pubmed 出版商
  483. Petrovic N, Davidovic R, Jovanovic Cupic S, Krajnovic M, Lukic S, Petrovic M, et al. Changes in miR-221/222 Levels in Invasive and In Situ Carcinomas of the Breast: Differences in Association with Estrogen Receptor and TIMP3 Expression Levels. Mol Diagn Ther. 2016;20:603-615 pubmed
  484. Agrimson K, Onken J, Mitchell D, Topping T, Chiarini Garcia H, Hogarth C, et al. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis. Biol Reprod. 2016;95:81 pubmed
  485. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  486. Hwang S, Cobb D, Bhadra R, Youngblood B, Khan I. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016;213:1799-818 pubmed 出版商
  487. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  488. Komada M, Gendai Y, Kagawa N, Nagao T. Prenatal exposure to di(2-ethylhexyl) phthalate impairs development of the mouse neocortex. Toxicol Lett. 2016;259:69-79 pubmed 出版商
  489. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  490. Wiley L, Burnight E, DeLuca A, Anfinson K, Cranston C, Kaalberg E, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep. 2016;6:30742 pubmed 出版商
  491. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  492. Ta M, Schwensen K, Liuwantara D, Huso D, Watnick T, Rangan G. Constitutive renal Rel/nuclear factor-?B expression in Lewis polycystic kidney disease rats. World J Nephrol. 2016;5:339-57 pubmed 出版商
  493. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  494. Ugras N, Yerci O, Coşkun S, Ocakoglu G, Sarkut P, Dündar H. Retrospective analysis of clinicopathological features of solid pseudopapillary neoplasm of the pancreas. Kaohsiung J Med Sci. 2016;32:356-61 pubmed 出版商
  495. Zhou Y, Xu H, Ding Y, Lu Q, Zou M, Song P. AMPK?1 deletion in fibroblasts promotes tumorigenesis in athymic nude mice by p52-mediated elevation of erythropoietin and CDK2. Oncotarget. 2016;7:53654-53667 pubmed 出版商
  496. Stergiopoulos A, Politis P. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development. Nat Commun. 2016;7:12230 pubmed 出版商
  497. Deléage C, Schuetz A, Alvord W, Johnston L, Hao X, Morcock D, et al. Impact of early cART in the gut during acute HIV infection. JCI Insight. 2016;1: pubmed
  498. Liu Y, Wang K, Xing H, Zhai X, Wang L, Wang W. Attempt towards a novel classification of triple-negative breast cancer using immunohistochemical markers. Oncol Lett. 2016;12:1240-1256 pubmed
  499. Sauter K, Waddell L, Lisowski Z, Young R, Lefèvre L, Davis G, et al. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs. Am J Physiol Gastrointest Liver Physiol. 2016;311:G533-47 pubmed 出版商
  500. Choi J, Park S, Khang S, Suh Y, Kim S, Lee Y, et al. Hemangiopericytomas in the Central Nervous System: A Multicenter Study of Korean Cases with Validation of the Usage of STAT6 Immunohistochemistry for Diagnosis of Disease. Ann Surg Oncol. 2016;23:954-961 pubmed
  501. Metz H, Kargl J, Busch S, Kim K, Kurland B, Abberbock S, et al. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proc Natl Acad Sci U S A. 2016;113:8795-800 pubmed 出版商
  502. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  503. DeGottardi M, Okoye A, Vaidya M, Talla A, Konfe A, Reyes M, et al. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. J Immunol. 2016;197:1183-98 pubmed 出版商
  504. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  505. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  506. Iwasaki Y, Sugita S, Mandai M, Yonemura S, Onishi A, Ito S, et al. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool. PLoS ONE. 2016;11:e0158282 pubmed 出版商
  507. Nooh H, Nour Eldien N. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016;118:588-595 pubmed 出版商
  508. Liang Y, Zhu F, Zhang H, Chen D, Zhang X, Gao Q, et al. Conditional ablation of TGF-? signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci Rep. 2016;6:29479 pubmed 出版商
  509. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016;22:861-8 pubmed 出版商
  510. Li Y, Jalili R, Ghahary A. Accelerating skin wound healing by M-CSF through generating SSEA-1 and -3 stem cells in the injured sites. Sci Rep. 2016;6:28979 pubmed 出版商
  511. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  512. Gulhane M, Murray L, Lourie R, Tong H, Sheng Y, Wang R, et al. High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22. Sci Rep. 2016;6:28990 pubmed 出版商
  513. Li Y, Zhang J, Xu Y, Han Y, Jiang B, Huang L, et al. The Histopathological Investigation of Red and Blue Light Emitting Diode on Treating Skin Wounds in Japanese Big-Ear White Rabbit. PLoS ONE. 2016;11:e0157898 pubmed 出版商
  514. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  515. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  516. Dai Y, Miao Y, Wu W, Li Y, D Errico F, Su W, et al. Ablation of Liver X receptors ? and ? leads to spontaneous peripheral squamous cell lung cancer in mice. Proc Natl Acad Sci U S A. 2016;113:7614-9 pubmed 出版商
  517. Hall Z, Ament Z, Wilson C, Burkhart D, Ashmore T, Koulman A, et al. Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer. Cancer Res. 2016;76:4608-18 pubmed 出版商
  518. Wu J, Hussaini S, Bastille I, Rodriguez G, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085-92 pubmed 出版商
  519. Papafotiou G, Paraskevopoulou V, Vasilaki E, Kanaki Z, Paschalidis N, Klinakis A. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat Commun. 2016;7:11914 pubmed 出版商
  520. Borowiec A, Sion B, Chalmel F, D Rolland A, Lemonnier L, De Clerck T, et al. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. FASEB J. 2016;30:3155-70 pubmed 出版商
  521. Arbore G, West E, Spolski R, Robertson A, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells. Science. 2016;352:aad1210 pubmed 出版商
  522. Fame R, MacDonald J, Dunwoodie S, Takahashi E, Macklis J. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. J Neurosci. 2016;36:6403-19 pubmed 出版商
  523. Muroyama A, Seldin L, Lechler T. Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J Cell Biol. 2016;213:679-92 pubmed 出版商
  524. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  525. Huber M, Falkenberg N, Hauck S, Priller M, Braselmann H, Feuchtinger A, et al. Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget. 2016;7:44062-44075 pubmed 出版商
  526. Bouchard G, Therriault H, Geha S, Bérubé Lauzière Y, Bujold R, Saucier C, et al. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer. 2016;16:361 pubmed 出版商
  527. Fox R, Lytle N, Jaquish D, Park F, Ito T, Bajaj J, et al. Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature. 2016;534:407-411 pubmed 出版商
  528. Hanna J, Garcia M, Go J, Finkelstein D, Kodali K, Pagala V, et al. PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma. Cell Death Dis. 2016;7:e2256 pubmed 出版商
  529. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  530. Sigl V, Owusu Boaitey K, Joshi P, Kavirayani A, Wirnsberger G, Novatchkova M, et al. RANKL/RANK control Brca1 mutation- . Cell Res. 2016;26:761-74 pubmed 出版商
  531. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  532. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  533. Schulz A, Büttner R, Hagel C, Baader S, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132:289-307 pubmed 出版商
  534. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  535. Kanda M, Nagai T, Takahashi T, Liu M, Kondou N, Naito A, et al. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS ONE. 2016;11:e0156562 pubmed 出版商
  536. Roth Flach R, Danai L, DiStefano M, Kelly M, Menendez L, Jurczyk A, et al. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia. J Biol Chem. 2016;291:16221-30 pubmed 出版商
  537. Elbaz B, Traka M, Kunjamma R, Dukala D, Brosius Lutz A, Anton E, et al. Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS. Development. 2016;143:2356-66 pubmed 出版商
  538. Yajima H, Kawakami K. Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. Dev Growth Differ. 2016;58:546-61 pubmed 出版商
  539. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  540. Leggere J, Saito Y, Darnell R, Tessier Lavigne M, Junge H, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. elife. 2016;5: pubmed 出版商
  541. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  542. Leo F, Bartels S, Mägel L, Framke T, Büsche G, Jonigk D, et al. Prognostic factors in the myoepithelial-like spindle cell type of metaplastic breast cancer. Virchows Arch. 2016;469:191-201 pubmed 出版商
  543. Torrano V, Valcarcel Jimenez L, Cortazar A, Liu X, Urosevic J, Castillo Martin M, et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18:645-656 pubmed 出版商
  544. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  545. Albino D, Civenni G, Dallavalle C, Roos M, Jahns H, Curti L, et al. Activation of the Lin28/let-7 Axis by Loss of ESE3/EHF Promotes a Tumorigenic and Stem-like Phenotype in Prostate Cancer. Cancer Res. 2016;76:3629-43 pubmed 出版商
  546. Zhang X, Ye C, Sun F, Wei W, Hu B, Wang J. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation. PLoS ONE. 2016;11:e0155725 pubmed 出版商
  547. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  548. Cherepanova O, Gomez D, Shankman L, Swiatlowska P, Williams J, Sarmento O, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. 2016;22:657-65 pubmed 出版商
  549. Kriegbaum M, Jacobsen B, Füchtbauer A, Hansen G, Christensen I, Rundsten C, et al. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes. Sci Rep. 2016;6:25833 pubmed 出版商
  550. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  551. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  552. Ruibal P, Oestereich L, Lüdtke A, Becker Ziaja B, Wozniak D, Kerber R, et al. Unique human immune signature of Ebola virus disease in Guinea. Nature. 2016;533:100-4 pubmed 出版商
  553. Wang L, Lee K, Malonis R, SANCHEZ I, Dynlacht B. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. elife. 2016;5: pubmed 出版商
  554. Cook A, McDonnell A, Lake R, Nowak A. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2016;5:e1066062 pubmed
  555. Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, et al. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods. 2016;22:621-35 pubmed 出版商
  556. Xu X, Meng Q, Erben U, Wang P, Glauben R, Kuhl A, et al. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol. 2017;14:597-606 pubmed 出版商
  557. Nakamura R, Koshiba Takeuchi K, Tsuchiya M, Kojima M, Miyazawa A, Ito K, et al. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice. Dev Growth Differ. 2016;58:367-82 pubmed 出版商
  558. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  559. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  560. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  561. Kishimoto Y, Kishimoto A, Ye S, Kendziorski C, Welham N. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds. Lab Invest. 2016;96:807-16 pubmed 出版商
  562. Yasuda T, Fukada T, Nishida K, Nakayama M, Matsuda M, Miura I, et al. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis. J Clin Invest. 2016;126:2064-76 pubmed 出版商
  563. Titmarsh D, Glass N, Mills R, Hidalgo A, Wolvetang E, Porrello E, et al. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep. 2016;6:24637 pubmed 出版商
  564. Wilkinson R, Young A, Burden R, Williams R, Scott C. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol Cancer. 2016;15:29 pubmed 出版商
  565. Bartram M, Amendola E, Benzing T, Schermer B, De Vita G, Muller R. Mice lacking microRNAs in Pax8-expressing cells develop hypothyroidism and end-stage renal failure. BMC Mol Biol. 2016;17:11 pubmed 出版商
  566. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  567. Lu C, Thoeni C, Connor A, Kawabe H, Gallinger S, Rotin D. Intestinal knockout of Nedd4 enhances growth of Apcmin tumors. Oncogene. 2016;35:5839-5849 pubmed 出版商
  568. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  569. Timraz S, Farhat I, Alhussein G, Christoforou N, Teo J. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering. Exp Cell Res. 2016;343:168-176 pubmed 出版商
  570. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  571. Ma Z, Shou K, Li Z, Jian C, Qi B, Yu A. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med. 2016;11:1307-1317 pubmed
  572. Dührsen L, Emami P, Matschke J, Abboud T, Westphal M, Regelsberger J. Meninigiomas of the Craniocervical Junction--A Distinctive Subgroup of Meningiomas. PLoS ONE. 2016;11:e0153405 pubmed 出版商
  573. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  574. Wezel A, De Vries M, Maassen J, Kip P, Peters E, Karper J, et al. Deficiency of the TLR4 analogue RP105 aggravates vein graft disease by inducing a pro-inflammatory response. Sci Rep. 2016;6:24248 pubmed 出版商
  575. Chen G, Luo Y, Eriksson D, Meng X, Qian C, Bauerle T, et al. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget. 2016;7:26653-69 pubmed 出版商
  576. Balasooriya G, Johnson J, Basson M, Rawlins E. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell. 2016;37:85-97 pubmed 出版商
  577. Rhee M, Lee S, Kim J, Ham D, Park H, Yang H, et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 2016;6:23960 pubmed 出版商
  578. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  579. Fossmark R, Rao S, Mjønes P, Munkvold B, Flatberg A, Varro A, et al. PAI-1 deficiency increases the trophic effects of hypergastrinemia in the gastric corpus mucosa. Peptides. 2016;79:83-94 pubmed 出版商
  580. Rueda C, Presicce P, Jackson C, Miller L, Kallapur S, Jobe A, et al. Lipopolysaccharide-Induced Chorioamnionitis Promotes IL-1-Dependent Inflammatory FOXP3+ CD4+ T Cells in the Fetal Rhesus Macaque. J Immunol. 2016;196:3706-15 pubmed 出版商
  581. Lee J, Han A, Lee S, Min W, Kim H. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment. Mol Med Rep. 2016;13:3849-57 pubmed 出版商
  582. Lian Y, Yuan J, Cui Q, Feng Q, Xu M, Bei J, et al. Upregulation of KLHDC4 Predicts a Poor Prognosis in Human Nasopharyngeal Carcinoma. PLoS ONE. 2016;11:e0152820 pubmed 出版商
  583. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  584. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  585. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  586. Lee I, Maniar K, Lydon J, Kim J. Akt regulates progesterone receptor B-dependent transcription and angiogenesis in endometrial cancer cells. Oncogene. 2016;35:5191-201 pubmed 出版商
  587. Yuan X, Cao J, He X, Serra R, Qu J, Cao X, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 2016;7:11024 pubmed 出版商
  588. Mohammad G, Olde Damink S, Malago M, Dhar D, Pereira S. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS ONE. 2016;11:e0151635 pubmed 出版商
  589. Panousopoulou E, Hobbs C, Mason I, Green J, Formstone C. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci. 2016;129:1915-27 pubmed 出版商
  590. Ravindran R, Loebbermann J, Nakaya H, Khan N, Ma H, Gama L, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523-527 pubmed 出版商
  591. Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, et al. Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation. Sci Rep. 2016;6:23188 pubmed 出版商
  592. Murai K, Sun G, Ye P, Tian E, Yang S, Cui Q, et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun. 2016;7:10965 pubmed 出版商
  593. Simitsidellis I, Gibson D, Cousins F, Esnal Zufiaurre A, Saunders P. A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus. Endocrinology. 2016;157:2116-28 pubmed 出版商
  594. Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature. 2016;531:323-8 pubmed 出版商
  595. Dadiani M, Bossel Ben Moshe N, Paluch Shimon S, Perry G, Balint N, Marin I, et al. Tumor Evolution Inferred by Patterns of microRNA Expression through the Course of Disease, Therapy, and Recurrence in Breast Cancer. Clin Cancer Res. 2016;22:3651-62 pubmed 出版商
  596. Luque R, Villa Osaba A, L López F, Pozo Salas A, Sánchez Sánchez R, Ortega Salas R, et al. Lack of cortistatin or somatostatin differentially influences DMBA-induced mammary gland tumorigenesis in mice in an obesity-dependent mode. Breast Cancer Res. 2016;18:29 pubmed 出版商
  597. Tomann P, Paus R, Millar S, Scheidereit C, Schmidt Ullrich R. Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development. 2016;143:1512-22 pubmed 出版商
  598. Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, et al. The cell proliferation antigen Ki-67 organises heterochromatin. elife. 2016;5:e13722 pubmed 出版商
  599. Loewen J, Barker Haliski M, Dahle E, White H, Wilcox K. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol. 2016;75:366-78 pubmed 出版商
  600. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  601. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  602. Lee E, Oh J, Selvaraj S, Park S, Choi M, Spanel R, et al. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice. Oncotarget. 2016;7:14983-5017 pubmed 出版商
  603. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  604. Kai T, Tsukamoto Y, Hijiya N, Tokunaga A, Nakada C, Uchida T, et al. Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol. 2016;239:97-108 pubmed 出版商
  605. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  606. Lanza D, Dawson E, Rao P, Heaney J. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation. Cell Cycle. 2016;15:919-30 pubmed 出版商
  607. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  608. Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936-49 pubmed 出版商
  609. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, et al. The Proteomic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements. Immunity. 2016;44:406-21 pubmed 出版商
  610. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  611. Li X, Wu J, Li Q, Shigemura K, Chung L, Huang W. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget. 2016;7:12869-84 pubmed 出版商
  612. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  613. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  614. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of UAB30 in Pediatric Renal and Hepatic Malignancies. Mol Cancer Ther. 2016;15:911-21 pubmed 出版商
  615. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  616. Farin H, Jordens I, Mosa M, Basak O, Korving J, Tauriello D, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530:340-3 pubmed 出版商
  617. Malanga D, Belmonte S, Colelli F, Scarfò M, De Marco C, Oliveira D, et al. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer. PLoS ONE. 2016;11:e0147334 pubmed 出版商
  618. Su R, Strug M, Jeong J, Miele L, Fazleabas A. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility. Proc Natl Acad Sci U S A. 2016;113:2300-5 pubmed 出版商
  619. Setoguchi R. IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. Int Immunol. 2016;28:293-305 pubmed 出版商
  620. Nakagawa A, Adams C, Huang Y, Hamarneh S, Liu W, Von Alt K, et al. Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains. Sci Rep. 2016;6:20390 pubmed 出版商
  621. Ha D, Carpenter L, Koutakis P, Swanson S, Zhu Z, Hanna M, et al. Transforming growth factor-beta 1 produced by vascular smooth muscle cells predicts fibrosis in the gastrocnemius of patients with peripheral artery disease. J Transl Med. 2016;14:39 pubmed 出版商
  622. Sundarkrishnan L, Bradish J, Oliai B, Hosler G. Cutaneous Cellular Pseudoglandular Schwannoma: An Unusual Histopathologic Variant. Am J Dermatopathol. 2016;38:315-8 pubmed 出版商
  623. Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed 出版商
  624. Sun H, Luo L, Lal B, Ma X, Chen L, Hann C, et al. A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis. Nat Commun. 2016;7:10339 pubmed 出版商
  625. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  626. Ramasamy S, Saez B, Mukhopadhyay S, Ding D, Ahmed A, Chen X, et al. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proc Natl Acad Sci U S A. 2016;113:1871-6 pubmed 出版商
  627. Ware M, Colbert K, Keshishian V, Ho J, Corr S, Curley S, et al. Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique. Tissue Eng Part C Methods. 2016;22:312-21 pubmed 出版商
  628. Wang Y, Cui R, Zhang X, Qiao Y, Liu X, Chang Y, et al. SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma. Oncotarget. 2016;7:11284-98 pubmed 出版商
  629. Foks A, Engelbertsen D, Kuperwaser F, Alberts Grill N, Gonen A, Witztum J, et al. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol. 2016;36:456-65 pubmed 出版商
  630. Chandrasekaran U, Yi W, Gupta S, Weng C, Giannopoulou E, Chinenov Y, et al. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol. 2016;68:1454-66 pubmed 出版商
  631. Scott C, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7:10321 pubmed 出版商
  632. Misuraca K, Hu G, Barton K, Chung A, Becher O. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia. 2016;18:60-70 pubmed 出版商
  633. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  634. Iyer N, Huettner J, Butts J, Brown C, Sakiyama Elbert S. Generation of highly enriched V2a interneurons from mouse embryonic stem cells. Exp Neurol. 2016;277:305-316 pubmed 出版商
  635. Vargas Inchaustegui D, Demers A, Shaw J, Kang G, Ball D, Tuero I, et al. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. J Immunol. 2016;196:1700-10 pubmed 出版商
  636. Baptista P, Moran E, Vyas D, Ribeiro M, Atala A, Sparks J, et al. Fluid Flow Regulation of Revascularization and Cellular Organization in a Bioengineered Liver Platform. Tissue Eng Part C Methods. 2016;22:199-207 pubmed 出版商
  637. Loebel D, Plageman T, Tang T, Jones V, Muccioli M, Tam P. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open. 2016;5:130-9 pubmed 出版商
  638. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  639. Chen X, Wei S, Li J, Zhang Q, Wang Y, Zhao S, et al. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction. PLoS ONE. 2016;11:e0147084 pubmed 出版商
  640. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  641. Lalli M, Jang J, Park J, Wang Y, Guzman E, Zhou H, et al. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum Mol Genet. 2016;25:1294-306 pubmed 出版商
  642. Nechiporuk T, MCGANN J, Mullendorff K, Hsieh J, Wurst W, Floss T, et al. The REST remodeling complex protects genomic integrity during embryonic neurogenesis. elife. 2016;5:e09584 pubmed 出版商
  643. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  644. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商
  645. Wu Z, Li D, Huang Y, Chen X, Huang W, Liu C, et al. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex. Cereb Cortex. 2017;27:1369-1385 pubmed 出版商
  646. Chen Y, Statt S, Wu R, Chang H, Liao J, Wang C, et al. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep. 2016;6:18815 pubmed 出版商
  647. Kim T, Jin F, Shin S, Oh S, Lightfoot S, Grande J, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest. 2016;126:706-20 pubmed 出版商
  648. Kindy M, Yu J, Zhu H, Smith M, Gattoni Celli S. A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med. 2016;14:1 pubmed 出版商
  649. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med. 2016;22:183-93 pubmed 出版商
  650. Yin P, Shah S, Pasquale N, Garbuzenko O, Minko T, Lee K. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer. Biomaterials. 2016;81:46-57 pubmed 出版商
  651. Mardaryev A, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, et al. Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol. 2016;212:77-89 pubmed 出版商
  652. Jia H, Shi Y, Luo L, Jiang G, Zhou Q, Xu S, et al. Asymmetric stem-cell division ensures sustained keratinocyte hyperproliferation in psoriatic skin lesions. Int J Mol Med. 2016;37:359-68 pubmed 出版商
  653. Palazzolo G, Quattrocelli M, Toelen J, Dominici R, Anastasia L, Tettamenti G, et al. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int. 2016;2016:4969430 pubmed 出版商
  654. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  655. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  656. Márquez J, Mena J, Hernandez Unzueta I, Benedicto A, Sanz E, Arteta B, et al. Ocoxin® oral solution slows down tumor growth in an experimental model of colorectal cancer metastasis to the liver in Balb/c mice. Oncol Rep. 2016;35:1265-72 pubmed 出版商
  657. von Moltke J, Ji M, Liang H, Locksley R. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221-5 pubmed 出版商
  658. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  659. Lagarrigue S, Lopez Mejia I, Denechaud P, Escoté X, Castillo Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest. 2016;126:335-48 pubmed 出版商
  660. Traka M, Podojil J, McCarthy D, Miller S, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci. 2016;19:65-74 pubmed 出版商
  661. Ho S, Hartley B, TCW J, Beaumont M, Stafford K, Slesinger P, et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods. 2016;101:113-24 pubmed 出版商
  662. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  663. Li G, Guo W, Zhang Y, Seng J, Zhang H, Ma X, et al. Suppression of BRD4 inhibits human hepatocellular carcinoma by repressing MYC and enhancing BIM expression. Oncotarget. 2016;7:2462-74 pubmed 出版商
  664. Zylicz J, Dietmann S, Günesdogan U, Hackett J, Cougot D, Lee C, et al. Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. elife. 2015;4: pubmed 出版商
  665. Javed A, Leuchte N, Neumann B, Sopper S, Sauermann U. Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS ONE. 2015;10:e0142086 pubmed 出版商
  666. Trikha P, Sharma N, Pena C, Reyes A, Pécot T, Khurshid S, et al. E2f3 in tumor macrophages promotes lung metastasis. Oncogene. 2016;35:3636-46 pubmed 出版商
  667. Bhate A, Parker D, Bebee T, Ahn J, Arif W, Rashan E, et al. ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat Commun. 2015;6:8768 pubmed 出版商
  668. Thomsen E, Mich J, Yao Z, Hodge R, Doyle A, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13:87-93 pubmed 出版商
  669. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  670. Judd L, Heine R, Menheniott T, Buzzelli J, O Brien Simpson N, Pavlic D, et al. Elevated IL-33 expression is associated with pediatric eosinophilic esophagitis, and exogenous IL-33 promotes eosinophilic esophagitis development in mice. Am J Physiol Gastrointest Liver Physiol. 2016;310:G13-25 pubmed 出版商
  671. Wu Y, Zhao H, Zhou L, Zhao C, Wu Y, Zhen L, et al. miR-134 Modulates the Proliferation of Human Cardiomyocyte Progenitor Cells by Targeting Meis2. Int J Mol Sci. 2015;16:25199-213 pubmed 出版商
  672. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  673. Small K, DeLuca A, Whitmore S, Rosenberg T, Silva Garcia R, Udar N, et al. North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology. 2016;123:9-18 pubmed 出版商
  674. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  675. Nakano A, Nakahara T, Mori A, Ushikubo H, Sakamoto K, Ishii K. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Exp Eye Res. 2016;143:120-31 pubmed 出版商
  676. Mikami J, Kurokawa Y, Takahashi T, Miyazaki Y, Yamasaki M, Miyata H, et al. Antitumor effect of antiplatelet agents in gastric cancer cells: an in vivo and in vitro study. Gastric Cancer. 2016;19:817-26 pubmed 出版商
  677. Vétillard A, Jonchère B, Moreau M, Toutain B, Henry C, Fontanel S, et al. Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis. Oncotarget. 2015;6:43342-62 pubmed 出版商
  678. Ruan S, Samuelson D, Assouline B, Morre M, Shellito J. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect Immun. 2016;84:108-19 pubmed 出版商
  679. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  680. Minas T, Han J, Javaheri T, Hong S, Schlederer M, SaygideÄŸer Kont Y, et al. YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget. 2015;6:37678-94 pubmed 出版商
  681. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  682. Witalison E, Cui X, Causey C, Thompson P, Hofseth L. Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer. Oncotarget. 2015;6:36053-62 pubmed 出版商
  683. Gautier H, Evans K, Volbracht K, James R, Sitnikov S, Lundgaard I, et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat Commun. 2015;6:8518 pubmed 出版商
  684. Payne S, Maher M, Tran N, Van De Hey D, Foley T, Yueh A, et al. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis. 2015;4:e169 pubmed 出版商
  685. Panvichian R, Tantiwetrueangdet A, Sornmayura P, Leelaudomlipi S. Missense Mutations in Exons 18-24 of EGFR in Hepatocellular Carcinoma Tissues. Biomed Res Int. 2015;2015:171845 pubmed 出版商
  686. Costache M, Dumitru A, Pătraşcu O, Popa Cherecheanu D, Bădilă P, Miu J, et al. A challenging case of ocular melanoma. Rom J Morphol Embryol. 2015;56:817-22 pubmed
  687. Gamat M, Malinowski R, Parkhurst L, Steinke L, Marker P. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate. PLoS ONE. 2015;10:e0139522 pubmed 出版商
  688. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  689. Perez Aso M, Mediero A, Low Y, Levine J, Cronstein B. Adenosine A2A receptor plays an important role in radiation-induced dermal injury. FASEB J. 2016;30:457-65 pubmed 出版商
  690. Farup J, De Lisio M, Rahbek S, Bjerre J, Vendelbo M, Boppart M, et al. Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol (1985). 2015;119:1053-63 pubmed 出版商
  691. Chen F, Rosiene J, Che A, Becker A, LoTurco J. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling. Development. 2015;142:3601-11 pubmed 出版商
  692. Martin E, Buzza M, Driesbaugh K, Liu S, Fortenberry Y, Leppla S, et al. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden. Oncotarget. 2015;6:33534-53 pubmed 出版商
  693. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  694. Baligar P, Mukherjee S, Kochat V, Rastogi A, Mukhopadhyay A. Molecular and Cellular Functions Distinguish Superior Therapeutic Efficiency of Bone Marrow CD45 Cells Over Mesenchymal Stem Cells in Liver Cirrhosis. Stem Cells. 2016;34:135-47 pubmed 出版商
  695. Sheikh B, Bechtel Walz W, Lucci J, Karpiuk O, Hild I, Hartleben B, et al. MOF maintains transcriptional programs regulating cellular stress response. Oncogene. 2016;35:2698-710 pubmed 出版商
  696. Zhang P, Kumar A, Katz L, Li L, Paulynice M, Herman M, et al. Induction of the ChREBPβ Isoform Is Essential for Glucose-Stimulated β-Cell Proliferation. Diabetes. 2015;64:4158-70 pubmed 出版商
  697. Brasseit J, Althaus Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, et al. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol. 2016;9:689-701 pubmed 出版商
  698. Machado Neto J, de Melo Campos P, Favaro P, Lazarini M, da Silva Santos Duarte A, Lorand Metze I, et al. Stathmin 1 inhibition amplifies ruxolitinib-induced apoptosis in JAK2V617F cells. Oncotarget. 2015;6:29573-84 pubmed 出版商
  699. Mu X, Español Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891-903 pubmed 出版商
  700. Sobolewski C, Sanduja S, Blanco F, Hu L, Dixon D. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells. Biomolecules. 2015;5:2035-55 pubmed 出版商
  701. Lan M, Li H, Bao L, Li M, Lye S, Dong X. In Vivo Evidence of the Androgen Receptor in Association With Myometrial Cell Proliferation and Apoptosis. Reprod Sci. 2016;23:264-71 pubmed 出版商
  702. Yoshida S, Yamamoto H, Tetsui T, Kobayakawa Y, Hatano R, Mukaisho K, et al. Effects of ezrin knockdown on the structure of gastric glandular epithelia. J Physiol Sci. 2016;66:53-65 pubmed 出版商
  703. Sin S, Kim Y, Eason A, Dittmer D. KSHV Latency Locus Cooperates with Myc to Drive Lymphoma in Mice. PLoS Pathog. 2015;11:e1005135 pubmed 出版商
  704. Heide M, Zhang Y, Zhou X, Zhao T, Miquelajáuregui A, Varela Echavarría A, et al. Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse. Front Neuroanat. 2015;9:113 pubmed 出版商
  705. Khiati S, Baechler S, Factor V, Zhang H, Huang S, Dalla Rosa I, et al. Lack of mitochondrial topoisomerase I (TOP1mt) impairs liver regeneration. Proc Natl Acad Sci U S A. 2015;112:11282-7 pubmed 出版商
  706. Barazzuol L, Rickett N, Ju L, Jeggo P. Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells. J Cell Sci. 2015;128:3597-606 pubmed 出版商
  707. Chang C, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports. 2015;5:378-91 pubmed 出版商
  708. Zhang P, Haidet Phillips A, Pham J, Lee Y, Huo Y, Tienari P, et al. Generation of GFAP::GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology. Glia. 2016;64:63-75 pubmed 出版商
  709. Qu D, Weygant N, May R, Chandrakesan P, Madhoun M, Ali N, et al. Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis. PLoS ONE. 2015;10:e0134212 pubmed 出版商
  710. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Kyne B, Saban D, Stepp M. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. Lab Invest. 2015;95:1305-18 pubmed 出版商
  711. Wang D, Pang Z, Clarke G, Nofech Mozes S, Liu K, Cheung A, et al. Ki-67 Membranous Staining: Biologically Relevant or an Artifact of Multiplexed Immunofluorescent Staining. Appl Immunohistochem Mol Morphol. 2016;24:447-52 pubmed 出版商
  712. Wong F, Fei J, Mora Bermúdez F, Taverna E, Haffner C, Fu J, et al. Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biol. 2015;13:e1002217 pubmed 出版商
  713. Coutinho de Souza P, Mallory S, Smith N, Saunders D, Li X, McNall Knapp R, et al. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts. PLoS ONE. 2015;10:e0134276 pubmed 出版商
  714. Velarde M, Demaria M, Melov S, Campisi J. Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells. Proc Natl Acad Sci U S A. 2015;112:10407-12 pubmed 出版商
  715. He S, Zhao Z, Yang Y, O Connell D, Zhang X, Oh S, et al. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers. Nat Commun. 2015;6:7839 pubmed 出版商
  716. Chen X, Qin L, Liu Z, Liao L, Martin J, Xu J. Knockout of SRC-1 and SRC-3 in Mice Decreases Cardiomyocyte Proliferation and Causes a Noncompaction Cardiomyopathy Phenotype. Int J Biol Sci. 2015;11:1056-72 pubmed 出版商
  717. Lee S, Johnson D, Luong R, Yu E, Cunha G, Nusse R, et al. Wnt/β-Catenin-Responsive Cells in Prostatic Development and Regeneration. Stem Cells. 2015;33:3356-67 pubmed 出版商
  718. Massey A. Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE. 2015;10:e0134306 pubmed 出版商
  719. Parchem R, Moore N, Fish J, Parchem J, Braga T, Shenoy A, et al. miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep. 2015;12:760-73 pubmed 出版商
  720. Brown A, Simmen R, Raj V, Van T, MacLeod S, Simmen F. Krüppel-like factor 9 (KLF9) prevents colorectal cancer through inhibition of interferon-related signaling. Carcinogenesis. 2015;36:946-55 pubmed 出版商
  721. Zheng Y, Smithies H, Aitken P, Gliddon C, Stiles L, Darlington C, et al. Cell proliferation in the cochlear nucleus following acoustic trauma in rat. Neuroscience. 2015;303:524-34 pubmed 出版商
  722. Jiao L, Inhoffen J, Gan Schreier H, Tuma Kellner S, Stremmel W, Sun Z, et al. Deficiency of Group VIA Phospholipase A2 (iPLA2β) Renders Susceptibility for Chemical-Induced Colitis. Dig Dis Sci. 2015;60:3590-602 pubmed 出版商
  723. Garcia Calero E, Botella Lopez A, Bahamonde O, Perez Balaguer A, Martinez S. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct. 2016;221:2905-17 pubmed 出版商
  724. Krah N, De La O J, Swift G, Hoang C, Willet S, Chen Pan F, et al. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. elife. 2015;4: pubmed 出版商
  725. Yan S, Xu Z, Lou F, Zhang L, Ke F, Bai J, et al. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun. 2015;6:7652 pubmed 出版商
  726. Evason K, Francisco M, Juric V, Balakrishnan S, Lopez Pazmino M, Gordan J, et al. Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish. PLoS Genet. 2015;11:e1005305 pubmed 出版商
  727. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  728. Noda K, Mishina Y, Komatsu Y. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice. Dev Biol. 2016;415:306-313 pubmed 出版商
  729. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  730. Kimura W, Xiao F, Canseco D, Muralidhar S, Thet S, Zhang H, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226-30 pubmed 出版商
  731. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  732. Scalia C, Gendusa R, Cattoretti G. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection. Appl Immunohistochem Mol Morphol. 2016;24:436-46 pubmed 出版商
  733. Shields E, Lam C, Cox A, Rankin M, Van Winkle T, Hess R, et al. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes. PLoS ONE. 2015;10:e0129809 pubmed 出版商
  734. Koumarianou A, Economopoulou P, Katsaounis P, Laschos K, Arapantoni Dadioti P, Martikos G, et al. Gastrointestinal Stromal Tumors (GIST): A Prospective Analysis and an Update on Biomarkers and Current Treatment Concepts. Biomark Cancer. 2015;7:1-7 pubmed 出版商
  735. Soares A, Müller T, Chege G, Williamson A, Burgers W. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV. Vaccine. 2015;33:3435-9 pubmed 出版商
  736. Mandriota S, Valentijn L, Lesne L, Betts D, Marino D, Boudal Khoshbeen M, et al. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism. Oncotarget. 2015;6:18558-76 pubmed
  737. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  738. Adomako A, Calvo V, Biran N, Osman K, Chari A, Paton J, et al. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer. 2015;15:444 pubmed 出版商
  739. McArthur M, Fresnay S, Magder L, Darton T, Jones C, Waddington C, et al. Activation of Salmonella Typhi-specific regulatory T cells in typhoid disease in a wild-type S. Typhi challenge model. PLoS Pathog. 2015;11:e1004914 pubmed 出版商
  740. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  741. Li W, Zhang C, Ren A, Li T, Jin R, Li G, et al. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS ONE. 2015;10:e0126459 pubmed 出版商
  742. Wang B, Wang X, Long J, Eastham Anderson J, Firestein R, Junttila M. Castration-resistant Lgr5(+) cells are long-lived stem cells required for prostatic regeneration. Stem Cell Reports. 2015;4:768-79 pubmed 出版商
  743. Brindle N, Joyce J, Rostker F, Lawlor E, Swigart Brown L, Evan G, et al. Deficiency for the cysteine protease cathepsin L impairs Myc-induced tumorigenesis in a mouse model of pancreatic neuroendocrine cancer. PLoS ONE. 2015;10:e0120348 pubmed 出版商
  744. Pei B, Zhao M, Miller B, Véla J, Bruinsma M, Virgin H, et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J Immunol. 2015;194:5872-84 pubmed 出版商
  745. Gabrusiewicz K, Hossain M, Cortes Santiago N, Fan X, Kaminska B, Marini F, et al. Macrophage Ablation Reduces M2-Like Populations and Jeopardizes Tumor Growth in a MAFIA-Based Glioma Model. Neoplasia. 2015;17:374-84 pubmed 出版商
  746. De Souza P, Balasubramanian K, Njoku C, Smith N, Gillespie D, Schwager A, et al. OKN-007 decreases tumor necrosis and tumor cell proliferation and increases apoptosis in a preclinical F98 rat glioma model. J Magn Reson Imaging. 2015;42:1582-91 pubmed 出版商
  747. Gültekin S, Sengüven B, Klussmann J, Dienes H. P16(INK 4a) and Ki-67 expression in human papilloma virus-related head and neck mucosal lesions. Invest Clin. 2015;56:47-59 pubmed
  748. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  749. Sharma S, Chintala N, Vadrevu S, Patel J, Karbowniczek M, Markiewski M. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol. 2015;194:5529-38 pubmed 出版商
  750. Aghababaei M, Hogg K, Perdu S, Robinson W, Beristain A. ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion. Cell Death Differ. 2015;22:1970-84 pubmed 出版商
  751. Kim S, Lahmy R, Riha C, Yang C, Jakubison B, van Niekerk J, et al. The basic helix-loop-helix transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential. Pancreas. 2015;44:718-27 pubmed 出版商
  752. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  753. Sommer F, Nookaew I, Sommer N, Fogelstrand P, Bäckhed F. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol. 2015;16:62 pubmed 出版商
  754. Bartram M, Dafinger C, Habbig S, Benzing T, Schermer B, Müller R. Loss of Dgcr8-mediated microRNA expression in the kidney results in hydronephrosis and renal malformation. BMC Nephrol. 2015;16:55 pubmed 出版商
  755. Stroo I, Claessen N, Teske G, Butter L, Florquin S, Leemans J. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury. PLoS ONE. 2015;10:e0123203 pubmed 出版商
  756. Wan W, Liu Q, Lionakis M, Marino A, Anderson S, Swamydas M, et al. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res. 2015;106:478-87 pubmed 出版商
  757. Cohen T, Kollias H, Liu N, Ward C, Wagner K. Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. J Physiol. 2015;593:2479-97 pubmed 出版商
  758. Frank C, Liu F, Wijayatunge R, Song L, Biegler M, Yang M, et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 2015;18:647-56 pubmed 出版商
  759. Sadok A, McCarthy A, Caldwell J, Collins I, Garrett M, Yeo M, et al. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 2015;75:2272-84 pubmed 出版商
  760. Rao T, Marks Bluth J, Sullivan J, Gupta M, Chandrakanthan V, Fitch S, et al. High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res. 2015;14:307-22 pubmed 出版商
  761. Dodbiba L, Teichman J, Fleet A, Thai H, Starmans M, Navab R, et al. Appropriateness of using patient-derived xenograft models for pharmacologic evaluation of novel therapies for esophageal/gastro-esophageal junction cancers. PLoS ONE. 2015;10:e0121872 pubmed 出版商
  762. Malchenko S, Sredni S, Hashimoto H, Kasai A, Nagayasu K, Xie J, et al. A mouse model of human primitive neuroectodermal tumors resulting from microenvironmentally-driven malignant transformation of orthotopically transplanted radial glial cells. PLoS ONE. 2015;10:e0121707 pubmed 出版商
  763. Savci Heijink C, Halfwerk H, Hooijer G, Horlings H, Wesseling J, van de Vijver M. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat. 2015;150:547-57 pubmed 出版商
  764. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  765. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  766. Charlton J, Tsoukatou D, Mamalaki C, Chatzidakis I. Programmed death 1 regulates memory phenotype CD4 T cell accumulation, inhibits expansion of the effector memory phenotype subset and modulates production of effector cytokines. PLoS ONE. 2015;10:e0119200 pubmed 出版商
  767. Povinelli B, Kokolus K, Eng J, Dougher C, Curtin L, Capitano M, et al. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells. PLoS ONE. 2015;10:e0120078 pubmed 出版商
  768. Said M, Hassan N, Schlicht M, Bosland M. Flaxseed suppressed prostatic epithelial proliferation in a rat model of benign prostatic hyperplasia. J Toxicol Environ Health A. 2015;78:453-65 pubmed 出版商
  769. Obiero J, Shekalaghe S, Hermsen C, Mpina M, Bijker E, Roestenberg M, et al. Impact of malaria preexposure on antiparasite cellular and humoral immune responses after controlled human malaria infection. Infect Immun. 2015;83:2185-96 pubmed 出版商
  770. Bowcutt R, Malter L, Chen L, Wolff M, Robertson I, Rifkin D, et al. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015;421:27-35 pubmed 出版商
  771. Rizzi N, Manni I, Vantaggiato C, Delledonne G, Gentileschi M, Maggi A, et al. In vivo imaging of cell proliferation for a dynamic, whole body, analysis of undesired drug effects. Toxicol Sci. 2015;145:296-306 pubmed 出版商
  772. Chen Q, Gu Y, Liu B. Clinicopathological characteristics of kidney mucinous tubular and spindle cell carcinoma. Int J Clin Exp Pathol. 2015;8:1007-12 pubmed
  773. Fang X, Gyabaah K, Nickkholgh B, Cline J, Balaji K. Novel In Vivo model for combinatorial fluorescence labeling in mouse prostate. Prostate. 2015;75:988-1000 pubmed 出版商
  774. Wang P, Alvarez Perez J, Felsenfeld D, Liu H, Sivendran S, Bender A, et al. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med. 2015;21:383-8 pubmed 出版商
  775. Resnik N, Mavrič A, KeÅ¡e D, Veranič P, Zupančič D. The effect of LDL particles on the behaviour of epithelial noncancer and cancer cell lines after in vitro induced injury. Protoplasma. 2015;252:1537-50 pubmed 出版商
  776. Liu W, Zhou H, Liu L, Zhao C, Deng Y, Chen L, et al. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region. Neurobiol Dis. 2015;77:106-16 pubmed 出版商
  777. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  778. Thomas A, Palma J, Shea L. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release. 2015;204:1-10 pubmed 出版商
  779. Tam N, Zhang X, Xiao H, Song D, Levin L, Meller J, et al. Increased susceptibility of estrogen-induced bladder outlet obstruction in a novel mouse model. Lab Invest. 2015;95:546-60 pubmed 出版商
  780. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  781. Okamoto M, Iguchi T, Hattori T, Matsuzaki S, Koyama Y, Taniguchi M, et al. DBZ regulates cortical cell positioning and neurite development by sustaining the anterograde transport of Lis1 and DISC1 through control of Ndel1 dual-phosphorylation. J Neurosci. 2015;35:2942-58 pubmed 出版商
  782. Kitajima S, Kohno S, Kondoh A, Sasaki N, Nishimoto Y, Li F, et al. Undifferentiated State Induced by Rb-p53 Double Inactivation in Mouse Thyroid Neuroendocrine Cells and Embryonic Fibroblasts. Stem Cells. 2015;33:1657-69 pubmed 出版商
  783. Dow L, Fisher J, O Rourke K, Muley A, Kastenhuber E, Livshits G, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33:390-394 pubmed 出版商
  784. Licht T, Dor Wollman T, Ben Zvi A, Rothe G, Keshet E. Vessel maturation schedule determines vulnerability to neuronal injuries of prematurity. J Clin Invest. 2015;125:1319-28 pubmed 出版商
  785. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  786. Abdelzaher E, Mostafa M. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) upregulation in breast carcinoma contributes to tumor progression and predicts early tumor recurrence. Tumour Biol. 2015;36:5473-83 pubmed 出版商
  787. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:2473-8 pubmed 出版商
  788. Park S, Kim H, Koo J. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727-41 pubmed 出版商
  789. Zhou Y, Rychahou P, Wang Q, Weiss H, Evers B. TSC2/mTORC1 signaling controls Paneth and goblet cell differentiation in the intestinal epithelium. Cell Death Dis. 2015;6:e1631 pubmed 出版商
  790. Valle A, Barbagiovanni G, Jofra T, Stabilini A, Pérol L, Baeyens A, et al. Heterogeneous CD3 expression levels in differing T cell subsets correlate with the in vivo anti-CD3-mediated T cell modulation. J Immunol. 2015;194:2117-27 pubmed 出版商
  791. Bechet D, Auger F, Couleaud P, Marty E, Ravasi L, Durieux N, et al. Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine. 2015;11:657-70 pubmed 出版商
  792. Lewis M, Vyse S, Shields A, Boeltz S, Gordon P, Spector T, et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet. 2015;96:221-34 pubmed 出版商
  793. Kinose Y, Sawada K, Makino H, Ogura T, Mizuno T, Suzuki N, et al. IKKβ Regulates VEGF Expression and Is a Potential Therapeutic Target for Ovarian Cancer as an Antiangiogenic Treatment. Mol Cancer Ther. 2015;14:909-19 pubmed 出版商
  794. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A. 2015;112:1809-14 pubmed 出版商
  795. Wright M, Reed Geaghan E, Bolock A, Fujiyama T, Hoshino M, Maricich S. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. J Cell Biol. 2015;208:367-79 pubmed 出版商
  796. Ammar A, Esmat A, Hassona M, Tadros M, Abdel Naim A, Guns E. The effect of pomegranate fruit extract on testosterone-induced BPH in rats. Prostate. 2015;75:679-92 pubmed 出版商
  797. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed 出版商
  798. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  799. Giera S, Deng Y, Luo R, Ackerman S, Mogha A, Monk K, et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun. 2015;6:6121 pubmed 出版商
  800. Eifert A, Wilson M, Vonnahme K, Camacho L, Borowicz P, Redmer D, et al. Effect of melatonin or maternal nutrient restriction on vascularity and cell proliferation in the ovine placenta. Anim Reprod Sci. 2015;153:13-21 pubmed 出版商
  801. Wald N, Goormaghtigh E. Infrared imaging of primary melanomas reveals hints of regional and distant metastases. Analyst. 2015;140:2144-55 pubmed 出版商
  802. Kumar M, Csaba Z, Peineau S, Srivastava R, Rasika S, Mani S, et al. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann Clin Transl Neurol. 2014;1:968-81 pubmed 出版商
  803. Moyon S, Dubessy A, Aigrot M, Trotter M, Huang J, Dauphinot L, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci. 2015;35:4-20 pubmed 出版商
  804. Shindo Y, Unsinger J, Burnham C, Green J, Hotchkiss R. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015;43:334-43 pubmed 出版商
  805. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  806. Schotanus B, Kruitwagen H, van den Ingh T, van Wolferen M, Rothuizen J, Penning L, et al. Enhanced Wnt/β-catenin and Notch signalling in the activated canine hepatic progenitor cell niche. BMC Vet Res. 2014;10:309 pubmed 出版商
  807. Akrish S, Ben Izhak O, Sabo E, Rachmiel A. Oral squamous cell carcinoma associated with proliferative verrucous leukoplakia compared with conventional squamous cell carcinoma--a clinical, histologic and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119:318-25 pubmed 出版商
  808. Cebulla J, Huuse E, Pettersen K, van der Veen A, Kim E, Andersen S, et al. MRI reveals the in vivo cellular and vascular response to BEZ235 in ovarian cancer xenografts with different PI3-kinase pathway activity. Br J Cancer. 2015;112:504-13 pubmed 出版商
  809. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  810. Ta M, Rao P, Korgaonkar M, Foster S, Peduto A, Harris D, et al. Pyrrolidine dithiocarbamate reduces the progression of total kidney volume and cyst enlargement in experimental polycystic kidney disease. Physiol Rep. 2014;2: pubmed 出版商
  811. Li H, Evans T, Gillis J, Connole M, Reeves R. Bone marrow-imprinted gut-homing of plasmacytoid dendritic cells (pDCs) in acute simian immunodeficiency virus infection results in massive accumulation of hyperfunctional CD4+ pDCs in the mucosae. J Infect Dis. 2015;211:1717-25 pubmed 出版商
  812. Smid J, Faulkes S, Rudnicki M. Periostin induces pancreatic regeneration. Endocrinology. 2015;156:824-36 pubmed 出版商
  813. Pekkonen P, Järviluoma A, Zinovkina N, Cvrljevic A, Prakash S, Westermarck J, et al. KSHV viral cyclin interferes with T-cell development and induces lymphoma through Cdk6 and Notch activation in vivo. Cell Cycle. 2014;13:3670-84 pubmed 出版商
  814. Stoycheva D, Deiser K, Stärck L, Nishanth G, Schlüter D, Uckert W, et al. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J Immunol. 2015;194:553-9 pubmed 出版商
  815. Bae W, Kang K, Yu J, Yoo K, Factor V, Kaji K, et al. The methyltransferases enhancer of zeste homolog (EZH) 1 and EZH2 control hepatocyte homeostasis and regeneration. FASEB J. 2015;29:1653-62 pubmed 出版商
  816. Sundberg J, Stearns T, Joh J, Proctor M, Ingle A, Silva K, et al. Immune status, strain background, and anatomic site of inoculation affect mouse papillomavirus (MmuPV1) induction of exophytic papillomas or endophytic trichoblastomas. PLoS ONE. 2014;9:e113582 pubmed 出版商
  817. Buell Gutbrod R, Cavallo A, Lee N, Montag A, Gwin K. Heart and Neural Crest Derivatives Expressed Transcript 2 (HAND2): a novel biomarker for the identification of atypical hyperplasia and Type I endometrial carcinoma. Int J Gynecol Pathol. 2015;34:65-73 pubmed 出版商
  818. Gerner W, Talker S, Koinig H, Sedlak C, Mair K, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol. 2015;66:3-13 pubmed 出版商
  819. Chow L. Primary intraosseous hybrid nerve sheath tumor of femur: a hitherto undescribed occurrence in bone with secondary aneurysmal bone cyst formation resulting in pathological fracture. Pathol Res Pract. 2015;211:409-14 pubmed 出版商
  820. Rachidi S, Sun S, Wu B, Jones E, Drake R, Ogretmen B, et al. Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J Hepatol. 2015;62:879-88 pubmed 出版商
  821. Medina Reyes E, Déciga Alcaraz A, Freyre Fonseca V, Delgado Buenrostro N, Flores Flores J, Gutiérrez López G, et al. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane. Environ Res. 2015;136:424-34 pubmed 出版商
  822. Bell C, Sun Y, Nowak U, Clark J, Howlett S, Pekalski M, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun. 2015;56:66-80 pubmed 出版商
  823. Meinke P, Schneiderat P, Srsen V, Korfali N, Lê Thành P, Cowan G, et al. Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord. 2015;25:127-36 pubmed 出版商
  824. Zhou Q, Liu Z, Wu Z, Wang X, Wang B, Li C, et al. Reconstruction of Highly Proliferative Auto-Tissue-Engineered Lamellar Cornea Enhanced by Embryonic Stem Cell. Tissue Eng Part C Methods. 2015;21:639-48 pubmed 出版商
  825. Liu X, Giguère V. Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transitions. Nucl Recept Signal. 2014;12:e004 pubmed 出版商
  826. Huss D, Mehta D, Sharma A, You X, Riester K, Sheridan J, et al. In vivo maintenance of human regulatory T cells during CD25 blockade. J Immunol. 2015;194:84-92 pubmed
  827. Scheving L, Zhang X, Stevenson M, Threadgill D, Russell W. Loss of hepatocyte EGFR has no effect alone but exacerbates carbon tetrachloride-induced liver injury and impairs regeneration in hepatocyte Met-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G364-77 pubmed 出版商
  828. WANG Y, McAllister F, Bailey J, Scott S, Hendley A, Leach S, et al. Dicer is required for maintenance of adult pancreatic acinar cell identity and plays a role in Kras-driven pancreatic neoplasia. PLoS ONE. 2014;9:e113127 pubmed 出版商
  829. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  830. Ortiz F, Acuña Castroviejo D, Doerrier C, Dayoub J, López L, Venegas C, et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res. 2015;58:34-49 pubmed 出版商
  831. Somsouk M, Estes J, Deléage C, Dunham R, Albright R, Inadomi J, et al. Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS. 2015;29:43-51 pubmed 出版商
  832. Akgul Y, Word R, Ensign L, Yamaguchi Y, Lydon J, Hanes J, et al. Hyaluronan in cervical epithelia protects against infection-mediated preterm birth. J Clin Invest. 2014;124:5481-9 pubmed 出版商
  833. Zuo W, Zhang T, Wu D, Guan S, Liew A, Yamamoto Y, et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature. 2015;517:616-20 pubmed 出版商
  834. Ciamporcero E, Miles K, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101-10 pubmed 出版商
  835. Mouchacca P, Chasson L, Frick M, Foray C, Schmitt Verhulst A, Boyer C. Visualization of granzyme B-expressing CD8 T cells during primary and secondary immune responses to Listeria monocytogenes. Immunology. 2015;145:24-33 pubmed 出版商
  836. Kretzschmar K, Cottle D, Donati G, Chiang M, Quist S, Gollnick H, et al. BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Reports. 2014;3:620-33 pubmed 出版商
  837. Fujita T, Burwitz B, Chew G, Reed J, Pathak R, Seger E, et al. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. J Immunol. 2014;193:5576-83 pubmed 出版商
  838. Vanhoutteghem A, Messiaen S, Hervé F, Delhomme B, Moison D, Petit J, et al. The zinc-finger protein basonuclin 2 is required for proper mitotic arrest, prevention of premature meiotic initiation and meiotic progression in mouse male germ cells. Development. 2014;141:4298-310 pubmed 出版商
  839. Baek J, Schmidt E, Viceconte N, Strandgren C, Pernold K, Richard T, et al. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum Mol Genet. 2015;24:1305-21 pubmed 出版商
  840. Tien J, Liao L, Liu Y, Liu Z, Lee D, Wang F, et al. The steroid receptor coactivator-3 is required for developing neuroendocrine tumor in the mouse prostate. Int J Biol Sci. 2014;10:1116-27 pubmed 出版商
  841. Heng Y, Zhou B, Harris L, Harvey T, Smith A, Horne E, et al. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche. Cereb Cortex. 2015;25:3758-78 pubmed 出版商
  842. Falcone C, Filippis C, Granzotto M, Mallamaci A. Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9. Glia. 2015;63:412-22 pubmed 出版商
  843. Steward O, Sharp K, Yee K, Hatch M, Bonner J. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J Neurosci. 2014;34:14013-21 pubmed 出版商
  844. Li R, Vannitamby A, Meijer J, Southwell B, Hutson J. Postnatal germ cell development during mini-puberty in the mouse does not require androgen receptor: implications for managing cryptorchidism. J Urol. 2015;193:1361-7 pubmed 出版商
  845. Kim W, Barron D, San Martin R, Chan K, Tran L, Yang F, et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A. 2014;111:16389-94 pubmed 出版商
  846. Kocher B, White L, Piwnica Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015;13:358-67 pubmed 出版商
  847. Wang T, Guo S, Liu Z, Wu L, Li M, Yang J, et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget. 2014;5:10293-306 pubmed
  848. Sobieraj J, Kim A, Fannon M, Mandyam C. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons. Brain Struct Funct. 2016;221:261-76 pubmed 出版商
  849. PFISTER S, Weber T, Härtig W, Schwerdel C, Elsaesser R, Knuesel I, et al. Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis. J Comp Neurol. 2015;523:406-30 pubmed 出版商
  850. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  851. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  852. Pooya S, Liu X, Kumar V, Anderson J, Imai F, Zhang W, et al. The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun. 2014;5:4993 pubmed 出版商
  853. Chibly A, Querin L, Harris Z, Limesand K. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS ONE. 2014;9:e107893 pubmed 出版商
  854. Boxer L, Barajas B, Tao S, Zhang J, Khavari P. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev. 2014;28:2013-26 pubmed 出版商
  855. ZasÅ‚ona Z, Przybranowski S, Wilke C, Van Rooijen N, Teitz Tennenbaum S, Osterholzer J, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014;193:4245-53 pubmed 出版商
  856. Ressler S, Dang T, Wu S, Tse D, Gilbert B, Vyakarnam A, et al. WFDC1 is a key modulator of inflammatory and wound repair responses. Am J Pathol. 2014;184:2951-64 pubmed 出版商
  857. Cutuli D, De Bartolo P, Caporali P, Laricchiuta D, Foti F, Ronci M, et al. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice. Front Aging Neurosci. 2014;6:220 pubmed 出版商
  858. Sackmann Sala L, Chiche A, Mosquera Garrote N, Boutillon F, Cordier C, Pourmir I, et al. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol. 2014;184:3105-19 pubmed 出版商
  859. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  860. Meraz I, Savage D, Segura Ibarra V, Li J, Rhudy J, Gu J, et al. Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm. 2014;11:3484-91 pubmed 出版商
  861. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  862. McGowan S, McCoy D. Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2014;307:L618-31 pubmed 出版商
  863. Hijioka S, Hosoda W, Mizuno N, Hara K, Imaoka H, Bhatia V, et al. Does the WHO 2010 classification of pancreatic neuroendocrine neoplasms accurately characterize pancreatic neuroendocrine carcinomas?. J Gastroenterol. 2015;50:564-72 pubmed 出版商
  864. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  865. Riemer P, Sreekumar A, Reinke S, Rad R, Schäfer R, Sers C, et al. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene. 2015;34:3164-75 pubmed 出版商
  866. Tchakoute C, Hesseling A, Kidzeru E, Gamieldien H, Passmore J, Jones C, et al. Delaying BCG vaccination until 8 weeks of age results in robust BCG-specific T-cell responses in HIV-exposed infants. J Infect Dis. 2015;211:338-46 pubmed 出版商
  867. Xie Y, Lu W, Liu S, Yang Q, Carver B, Li E, et al. Crosstalk between nuclear MET and SOX9/?-catenin correlates with castration-resistant prostate cancer. Mol Endocrinol. 2014;28:1629-39 pubmed 出版商
  868. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  869. LeBlanc K, Walcott M, Gaur T, O Connell S, Basil K, Tadiri C, et al. Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading. J Cell Physiol. 2015;230:440-8 pubmed 出版商
  870. Laos M, Anttonen T, Kirjavainen A, af Hällström T, Laiho M, Pirvola U. DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells. Aging (Albany NY). 2014;6:496-510 pubmed
  871. Inada A, Inada O, Fujii N, Fujishima K, Inai T, Fujii H, et al. ?-cell induction in vivo in severely diabetic male mice by changing the circulating levels and pattern of the ratios of estradiol to androgens. Endocrinology. 2014;155:3829-42 pubmed 出版商
  872. Johannesson B, Sattler S, Semenova E, Pastore S, Kennedy Lydon T, Sampson R, et al. Insulin-like growth factor-1 induces regulatory T cell-mediated suppression of allergic contact dermatitis in mice. Dis Model Mech. 2014;7:977-85 pubmed 出版商
  873. Ouyang H, Xue Y, Lin Y, Zhang X, Xi L, Patel S, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014;511:358-61 pubmed 出版商
  874. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  875. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  876. Tabor V, Bocci M, Alikhani N, Kuiper R, Larsson L. MYC synergizes with activated BRAFV600E in mouse lung tumor development by suppressing senescence. Cancer Res. 2014;74:4222-9 pubmed 出版商
  877. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  878. Soares F, Tattoli I, Rahman M, Robertson S, Belcheva A, Liu D, et al. The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J Biol Chem. 2014;289:19317-30 pubmed 出版商
  879. Lindberg K, Amin R, Moe O, Hu M, Erben R, Östman Wernerson A, et al. The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol. 2014;25:2169-75 pubmed 出版商
  880. Naldi I, Taranta M, Gherardini L, Pelosi G, Viglione F, Grimaldi S, et al. Novel epigenetic target therapy for prostate cancer: a preclinical study. PLoS ONE. 2014;9:e98101 pubmed 出版商
  881. Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014;29:340-9 pubmed 出版商
  882. Durak O, de Anda F, Singh K, Leussis M, Petryshen T, Sklar P, et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of ?-catenin. Mol Psychiatry. 2015;20:388-97 pubmed 出版商
  883. Demberg T, Mohanram V, Venzon D, Robert Guroff M. Phenotypes and distribution of mucosal memory B-cell populations in the SIV/SHIV rhesus macaque model. Clin Immunol. 2014;153:264-76 pubmed 出版商
  884. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  885. Li Q, Wijesekera O, Salas S, Wang J, Zhu M, ApRhys C, et al. Mesenchymal stem cells from human fat engineered to secrete BMP4 are nononcogenic, suppress brain cancer, and prolong survival. Clin Cancer Res. 2014;20:2375-87 pubmed 出版商
  886. Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18:1429-43 pubmed 出版商
  887. Farioli Vecchioli S, Ceccarelli M, Saraulli D, Micheli L, Cannas S, D Alessandro F, et al. Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids. Front Cell Neurosci. 2014;8:98 pubmed 出版商
  888. Caswell D, Chuang C, Yang D, Chiou S, Cheemalavagu S, Kim Kiselak C, et al. Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov. 2014;4:781-9 pubmed 出版商
  889. Meraz I, Hearnden C, Liu X, Yang M, Williams L, Savage D, et al. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes. PLoS ONE. 2014;9:e94703 pubmed 出版商
  890. Kabaroff L, Gupta A, Menezes S, Babichev Y, Kandel R, Swallow C, et al. Development of genetically flexible mouse models of sarcoma using RCAS-TVA mediated gene delivery. PLoS ONE. 2014;9:e94817 pubmed 出版商
  891. Zhong A, Wang G, Yang J, Xu Q, Yuan Q, Yang Y, et al. Stromal-epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands. J Cell Mol Med. 2014;18:1257-66 pubmed 出版商
  892. Mirzaa G, Parry D, Fry A, Giamanco K, Schwartzentruber J, Vanstone M, et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet. 2014;46:510-515 pubmed 出版商
  893. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  894. Sevc J, Matiašová A, Kútna V, Daxnerova Z. Evidence that the central canal lining of the spinal cord contributes to oligodendrogenesis during postnatal development and adulthood in intact rats. J Comp Neurol. 2014;522:3194-207 pubmed 出版商
  895. Kassis H, Chopp M, Liu X, Shehadah A, Roberts C, Zhang Z. Histone deacetylase expression in white matter oligodendrocytes after stroke. Neurochem Int. 2014;77:17-23 pubmed 出版商
  896. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  897. Vessey K, Greferath U, Aplin F, Jobling A, Phipps J, Ho T, et al. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats. J Comp Neurol. 2014;522:2928-50 pubmed 出版商
  898. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10:e1004177 pubmed 出版商
  899. Zhu S, Rezvani M, Harbell J, Mattis A, Wolfe A, Benet L, et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014;508:93-7 pubmed 出版商
  900. Barbera M, Di Pietro M, Walker E, Brierley C, Macrae S, Simons B, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64:11-9 pubmed 出版商
  901. Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed 出版商
  902. Dorn C, Engelmann J, Saugspier M, Koch A, Hartmann A, Müller M, et al. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Invest. 2014;94:394-408 pubmed 出版商
  903. Li A, Morton J, Ma Y, Karim S, Zhou Y, Faller W, et al. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology. 2014;146:1386-96.e1-17 pubmed 出版商
  904. Wagner D, Bonenfant N, Parsons C, Sokocevic D, Brooks E, Borg Z, et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials. 2014;35:3281-97 pubmed 出版商
  905. Kanemura H, Go M, Shikamura M, Nishishita N, Sakai N, Kamao H, et al. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS ONE. 2014;9:e85336 pubmed 出版商
  906. Kikuchi K, Hettmer S, Aslam M, Michalek J, Laub W, Wilky B, et al. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma. PLoS Genet. 2014;10:e1004107 pubmed 出版商
  907. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  908. Zheng Y, Geddes L, Sato G, Stiles L, Darlington C, Smith P. Galvanic vestibular stimulation impairs cell proliferation and neurogenesis in the rat hippocampus but not spatial memory. Hippocampus. 2014;24:541-52 pubmed 出版商
  909. O Reilly M, Hansbro P, Horvat J, Beckett E, Harding R, Sozo F. Bronchiolar remodeling in adult mice following neonatal exposure to hyperoxia: relation to growth. Anat Rec (Hoboken). 2014;297:758-69 pubmed 出版商
  910. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  911. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  912. Osada M, Singh V, Wu K, Sant Angelo D, Pezzano M. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus. PLoS ONE. 2013;8:e83024 pubmed 出版商
  913. Pishas K, Neuhaus S, Clayer M, Schreiber A, Lawrence D, Perugini M, et al. Nutlin-3a efficacy in sarcoma predicted by transcriptomic and epigenetic profiling. Cancer Res. 2014;74:921-31 pubmed 出版商
  914. Metcalfe C, Kljavin N, Ybarra R, De Sauvage F. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14:149-59 pubmed 出版商
  915. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  916. Harisis G, Lewis A, Southwell B, Hutson J. Hoxa-11 maintains cell proliferation in the mouse gubernaculum to facilitate testicular descent. J Pediatr Surg. 2013;48:2431-6 pubmed 出版商
  917. Brandt J, Silveira L, Grassi T, Anselmo Franci J, Fávaro W, Felisbino S, et al. Indole-3-carbinol attenuates the deleterious gestational effects of bisphenol A exposure on the prostate gland of male F1 rats. Reprod Toxicol. 2014;43:56-66 pubmed 出版商
  918. Navis A, Niclou S, Fack F, Stieber D, van Lith S, Verrijp K, et al. Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and ?-KG. Acta Neuropathol Commun. 2013;1:18 pubmed 出版商
  919. Chaudary N, Pintilie M, Schwock J, Dhani N, Clarke B, Milosevic M, et al. Characterization of the Tumor-Microenvironment in Patient-Derived Cervix Xenografts (OCICx). Cancers (Basel). 2012;4:821-45 pubmed 出版商
  920. Formiga F, Pelacho B, Garbayo E, Imbuluzqueta I, Díaz Herráez P, Abizanda G, et al. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J Control Release. 2014;173:132-9 pubmed 出版商
  921. Blanco F, Sanduja S, Deane N, Blackshear P, Dixon D. Transforming growth factor ? regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol Cell Biol. 2014;34:180-95 pubmed 出版商
  922. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  923. Sun X, Zhang M, El Zataari M, Owyang S, Eaton K, Liu M, et al. TLR2 mediates Helicobacter pylori-induced tolerogenic immune response in mice. PLoS ONE. 2013;8:e74595 pubmed 出版商
  924. Rader J, Russell M, Hart L, Nakazawa M, Belcastro L, Martinez D, et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res. 2013;19:6173-82 pubmed 出版商
  925. Absalon S, Kochanek D, Raghavan V, Krichevsky A. MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33:14645-59 pubmed 出版商
  926. Rungarunlert S, Klincumhom N, Tharasanit T, Techakumphu M, Pirity M, Dinnyes A. Slow turning lateral vessel bioreactor improves embryoid body formation and cardiogenic differentiation of mouse embryonic stem cells. Cell Reprogram. 2013;15:443-58 pubmed 出版商
  927. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  928. Dai J, Brooks Y, Lefort K, Getsios S, Dotto G. The retinoid-related orphan receptor ROR? promotes keratinocyte differentiation via FOXN1. PLoS ONE. 2013;8:e70392 pubmed 出版商
  929. Xu Y, Xu Y, Liao L, Zhou N, Theissen S, Liao X, et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am J Pathol. 2013;183:1281-1292 pubmed 出版商
  930. Saurat N, Andersson T, Vasistha N, Molnár Z, Livesey F. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 2013;8:14 pubmed 出版商
  931. Sun X, Bartos A, Whitsett J, Dey S. Uterine deletion of Gp130 or Stat3 shows implantation failure with increased estrogenic responses. Mol Endocrinol. 2013;27:1492-501 pubmed 出版商
  932. Nobs L, Nestel S, Kulik A, Nitsch C, Atanasoski S. Cyclin D1 is required for proliferation of Olig2-expressing progenitor cells in the injured cerebral cortex. Glia. 2013;61:1443-55 pubmed 出版商
  933. Pristerà A, Saraulli D, Farioli Vecchioli S, Strimpakos G, Costanzi M, Di Certo M, et al. Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory. Neurobiol Aging. 2013;34:2551-63 pubmed 出版商
  934. Novikova L, Smirnova I, Rawal S, Dotson A, Benedict S, Stehno Bittel L. Variations in rodent models of type 1 diabetes: islet morphology. J Diabetes Res. 2013;2013:965832 pubmed 出版商
  935. Yucel G, Altindag B, Gomez Ospina N, Rana A, Panagiotakos G, Lara M, et al. State-dependent signaling by Cav1.2 regulates hair follicle stem cell function. Genes Dev. 2013;27:1217-22 pubmed 出版商
  936. El Zaatari M, Kao J, Tessier A, Bai L, Hayes M, Fontaine C, et al. Gli1 deletion prevents Helicobacter-induced gastric metaplasia and expansion of myeloid cell subsets. PLoS ONE. 2013;8:e58935 pubmed 出版商
  937. Michael S, Sorg H, Peck C, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE. 2013;8:e57741 pubmed 出版商
  938. DeFalco T, Saraswathula A, Briot A, Iruela Arispe M, Capel B. Testosterone levels influence mouse fetal Leydig cell progenitors through notch signaling. Biol Reprod. 2013;88:91 pubmed 出版商
  939. Toker A, Engelbert D, Garg G, Polansky J, Floess S, Miyao T, et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol. 2013;190:3180-8 pubmed 出版商
  940. Chun J, O Brien R, Song M, Wondrasch B, Berry S. Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn-/- but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl Med. 2013;2:68-80 pubmed 出版商
  941. Kishida S, Mu P, Miyakawa S, Fujiwara M, Abe T, Sakamoto K, et al. Midkine promotes neuroblastoma through Notch2 signaling. Cancer Res. 2013;73:1318-27 pubmed 出版商
  942. Azim K, Fiorelli R, Zweifel S, Hurtado Chong A, Yoshikawa K, Slomianka L, et al. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains. PLoS ONE. 2012;7:e49087 pubmed 出版商
  943. Nguyen L, Fifis T, Malcontenti Wilson C, Chan L, Costa P, Nikfarjam M, et al. Spatial morphological and molecular differences within solid tumors may contribute to the failure of vascular disruptive agent treatments. BMC Cancer. 2012;12:522 pubmed 出版商
  944. Gallagher S, Kofman A, Huszar J, Dannenberg J, Depinho R, Braun R, et al. Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol. 2013;373:83-94 pubmed 出版商
  945. Syu L, El Zaatari M, Eaton K, Liu Z, Tetarbe M, Keeley T, et al. Transgenic expression of interferon-? in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am J Pathol. 2012;181:2114-25 pubmed 出版商
  946. Farioli Vecchioli S, Micheli L, Saraulli D, Ceccarelli M, Cannas S, Scardigli R, et al. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone. Front Neurosci. 2012;6:124 pubmed 出版商
  947. Garcia Ovejero D, Arevalo Martin A, Paniagua Torija B, Sierra Palomares Y, Molina Holgado E. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord. J Comp Neurol. 2013;521:233-51 pubmed 出版商
  948. Zogbi C, Tesser R, Encinas G, Miraglia S, Stumpp T. Gonocyte development in rats: proliferation, distribution and death revisited. Histochem Cell Biol. 2012;138:305-22 pubmed 出版商
  949. Sui Y, Horne M, Stanić D. Reduced proliferation in the adult mouse subventricular zone increases survival of olfactory bulb interneurons. PLoS ONE. 2012;7:e31549 pubmed 出版商
  950. Zeng M, Southern P, Reilly C, Beilman G, Chipman J, Schacker T, et al. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8:e1002437 pubmed 出版商
  951. Augustin M, Ali Asim Mahar M, Lakkisto P, Tikkanen I, Vento A, Pätilä T, et al. Heat shock attenuates VEGF expression in three-dimensional myoblast sheets deteriorating therapeutic efficacy in heart failure. Med Sci Monit. 2011;17:BR345-53 pubmed
  952. Ager E, Wen S, Chan J, Chong W, Neo J, Christophi C. Altered efficacy of AT1R-targeted treatment after spontaneous cancer cell-AT1R upregulation. BMC Cancer. 2011;11:274 pubmed 出版商
  953. Meyer D, Brinkhaus H, Müller U, Muller M, Cardiff R, Bentires Alj M. Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res. 2011;71:4344-51 pubmed 出版商
  954. Navis A, Hamans B, Claes A, Heerschap A, Jeuken J, Wesseling P, et al. Effects of targeting the VEGF and PDGF pathways in diffuse orthotopic glioma models. J Pathol. 2011;223:626-34 pubmed 出版商
  955. Farioli Vecchioli S, Saraulli D, Costanzi M, Leonardi L, Cinà I, Micheli L, et al. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS ONE. 2009;4:e8339 pubmed 出版商
  956. Schauer I, Ressler S, Rowley D. Keratinocyte-derived chemokine induces prostate epithelial hyperplasia and reactive stroma in a novel transgenic mouse model. Prostate. 2009;69:373-84 pubmed 出版商
  957. Sawada K, Mitra A, Radjabi A, Bhaskar V, Kistner E, Tretiakova M, et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res. 2008;68:2329-39 pubmed 出版商
  958. Pecchi E, Dallaporta M, Charrier C, Pio J, Jean A, Moyse E, et al. Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat. J Comp Neurol. 2007;501:353-68 pubmed