这是一篇来自已证抗体库的有关小鼠 Krt18的综述,是根据85篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Krt18 抗体。
Krt18 同义词: CK18; K18; Krt1-18

赛默飞世尔
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 猕猴; 0.2 ug/ml; 图 4g
赛默飞世尔 Krt18抗体(Thermo Fisher, 41-9003-82)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为0.2 ug/ml (图 4g). Science (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 Krt18抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(RGE53)
  • 免疫细胞化学; 斑马鱼; 图 1e
赛默飞世尔 Krt18抗体(Invitrogen, MA1-06326)被用于被用于免疫细胞化学在斑马鱼样本上 (图 1e). Cell (2019) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔 Krt18抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 Krt18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔 Krt18抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
小鼠 单克隆(DC10)
  • 免疫组化-石蜡切片; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2e
赛默飞世尔 Krt18抗体(Thermo Fisher, DC10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b), 被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2016) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔 Krt18抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 Krt18抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(DC10)
  • 免疫细胞化学; 人类; 图 3g
  • 免疫印迹; 人类; 图 3h
赛默飞世尔 Krt18抗体(Thermo Scientific, DC10)被用于被用于免疫细胞化学在人类样本上 (图 3g) 和 被用于免疫印迹在人类样本上 (图 3h). Sci Rep (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 Krt18抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(DC10)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Krt18抗体(Thermofisher, MS-142-P)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔 Krt18抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 s3
赛默飞世尔 Krt18抗体(Neomarkers, MS-343-P)被用于被用于免疫组化在人类样本上 (图 s3). Mol Cancer (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 Krt18抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 Krt18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔 Krt18抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔 Krt18抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔 Krt18抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔 Krt18抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔 Krt18抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(DC10)
  • 免疫细胞化学; 人类; 图 s10
赛默飞世尔 Krt18抗体(Neomarkers/Thermo, DC10)被用于被用于免疫细胞化学在人类样本上 (图 s10). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔 Krt18抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 国内马; 1:100
赛默飞世尔 Krt18抗体(Fisher Scientific, MA1-82041)被用于被用于免疫细胞化学在国内马样本上浓度为1:100. Equine Vet J (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔 Krt18抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 Krt18抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 Krt18抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 斑马鱼; 1:100; 图 5
赛默飞世尔 Krt18抗体(Thermo Fisher Scientific, MA1-82041)被用于被用于流式细胞仪在斑马鱼样本上浓度为1:100 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 Krt18抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
小鼠 单克隆(AE1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 Krt18抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(DC10)
  • 免疫组化; 人类; 1:100
赛默飞世尔 Krt18抗体(Thermo Scientific, DC10)被用于被用于免疫组化在人类样本上浓度为1:100. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化; 人类; ready-to-use
赛默飞世尔 Krt18抗体(Thermo Scientific, AE1)被用于被用于免疫组化在人类样本上浓度为ready-to-use. Medicine (Baltimore) (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Krt18抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 Krt18抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Krt18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(DC10)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Krt18抗体(NeoMarker, MS-142R7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Digestion (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Krt18抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 Krt18抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔 Krt18抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 Krt18抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Krt18抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 Krt18抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
domestic rabbit 单克隆(E431-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5d
赛默飞世尔 Krt18抗体(Thermo, E431-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5d). Oncogene (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔 Krt18抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔 Krt18抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 Krt18抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔 Krt18抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔 Krt18抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Krt18抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Krt18抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 Krt18抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Krt18抗体(Neomarkers, MS 343-P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2011) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 0.4 ug/ul; 图 1
赛默飞世尔 Krt18抗体(NeoMarkers, MS-343)被用于被用于免疫组化在人类样本上浓度为0.4 ug/ul (图 1). Eur J Oral Sci (2010) ncbi
小鼠 单克隆(AE-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 Krt18抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(AE1)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 Krt18抗体(Zymed, AE1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 Krt18抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Krt18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Krt18抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 Krt18抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔 Krt18抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 Krt18抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(C-04)
  • 免疫组化; 小鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, C-04)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). Science (2018) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 人类; 图 6i
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫组化在人类样本上 (图 6i) 和 被用于免疫印迹在人类样本上. J Biol Chem (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 小鼠; 1:100; 图 3E
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3E). elife (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 猫; 1:100; 图 st6
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:100 (图 st6). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫组化在小鼠样本上浓度为1:250. Nat Commun (2016) ncbi
小鼠 单克隆(C-04)
  • 流式细胞仪; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab52459)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). elife (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 7
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab52948)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 7). Oncogene (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C-04)
  • 其他; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于其他在人类样本上浓度为1:100 (图 6). Cancer Cell Int (2015) ncbi
小鼠 单克隆(C-04)
  • 流式细胞仪; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Prostate (2015) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; pigs ; 1:200
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫组化-石蜡切片在大鼠样本上. Hum Reprod (2015) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 大鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, Ab668)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3d). Am J Pathol (2015) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3a). PLoS ONE (2014) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Krt18抗体(Abcam, ab668)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. Sci Rep (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-04)
  • 免疫组化; 牛; 1:200; 图 1a
圣克鲁斯生物技术 Krt18抗体(Santa Cruz, sc-51582)被用于被用于免疫组化在牛样本上浓度为1:200 (图 1a). Cell Biol Int (2018) ncbi
小鼠 单克隆(C-04)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫组化; 大鼠; 图 92
圣克鲁斯生物技术 Krt18抗体(Santa Cruz, sc-51582)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 和 被用于免疫组化在大鼠样本上 (图 92). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(RGE53)
  • 流式细胞仪; domestic rabbit; 1:100; 图 2
圣克鲁斯生物技术 Krt18抗体(Santa Cruz, sc-32329)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:100 (图 2). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(C-04)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Krt18抗体(Santa Cruz Biotechnologies, C-04)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(RGE53)
  • 免疫印迹; 人类; 1:100; 图 2d
圣克鲁斯生物技术 Krt18抗体(Santa Cruz, sc-32329)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2d). Oncotarget (2016) ncbi
小鼠 单克隆(RGE53)
  • 免疫细胞化学; 人类; 1:400; 图 1
圣克鲁斯生物技术 Krt18抗体(Santa Cruz, sc-32329)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; domestic goat; 图 6
圣克鲁斯生物技术 Krt18抗体(Santa Cruz, sc-51582)被用于被用于免疫细胞化学在domestic goat样本上 (图 6). Anim Sci J (2016) ncbi
小鼠 单克隆(C-04)
圣克鲁斯生物技术 Krt18抗体(Santa Cruz Biotechnology, sc-51582)被用于. Int J Mol Sci (2015) ncbi
小鼠 单克隆(RGE53)
  • 免疫细胞化学; 小鼠; 1:200; 图 s12
  • 免疫组化; 小鼠; 1:200; 图 6
圣克鲁斯生物技术 Krt18抗体(Santa Cruz Biotechnology, sc-32329)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s12) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 6). Stem Cells (2016) ncbi
小鼠 单克隆(RGE53)
  • 免疫细胞化学; domestic water buffalo; 1:200; 图 6
圣克鲁斯生物技术 Krt18抗体(santa Cruz, sc-32329)被用于被用于免疫细胞化学在domestic water buffalo样本上浓度为1:200 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(RGE53)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Krt18抗体(Santa Cruz Biotechnology, RGE53)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C-04)
  • 免疫细胞化学; 小鼠; 1:100
圣克鲁斯生物技术 Krt18抗体(Santa Cruz, sc-51582)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(5F295)
  • 免疫组化-石蜡切片; 小鼠; 图 3
圣克鲁斯生物技术 Krt18抗体(Santa Cruz, sc-70928)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
文章列表
  1. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  2. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  3. Xia P, Gütl D, Zheden V, Heisenberg C. Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity. Cell. 2019;176:1379-1392.e14 pubmed 出版商
  4. Wilen C, Lee S, Hsieh L, Orchard R, Desai C, Hykes B, et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science. 2018;360:204-208 pubmed 出版商
  5. Chen D, Yuan X, Liu L, Zhang M, Qu B, Zhen Z, et al. Mitochondrial ATAD3A regulates milk biosynthesis and proliferation of mammary epithelial cells from dairy cow via the mTOR pathway. Cell Biol Int. 2018;42:533-542 pubmed 出版商
  6. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  7. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  8. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  9. Pósfai E, Petropoulos S, de Barros F, Schell J, Jurisica I, Sandberg R, et al. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. elife. 2017;6: pubmed 出版商
  10. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  11. Borghesi J, Mario L, Carreira A, Miglino M, Favaron P. Phenotype and multipotency of rabbit (Oryctolagus cuniculus) amniotic stem cells. Stem Cell Res Ther. 2017;8:27 pubmed 出版商
  12. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  13. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  14. Lamballe F, Toscano S, Conti F, Arechederra M, Baeza N, Figarella Branger D, et al. Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells. Oncotarget. 2016;7:74747-74767 pubmed 出版商
  15. Kuga T, Kume H, Adachi J, Kawasaki N, Shimizu M, Hoshino I, et al. Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON. Sci Rep. 2016;6:34472 pubmed 出版商
  16. Nakamichi R, Ito Y, Inui M, Onizuka N, Kayama T, Kataoka K, et al. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun. 2016;7:12503 pubmed 出版商
  17. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  18. Rando G, Tan C, Khaled N, Montagner A, Leuenberger N, Bertrand Michel J, et al. Glucocorticoid receptor-PPAR? axis in fetal mouse liver prepares neonates for milk lipid catabolism. elife. 2016;5: pubmed 出版商
  19. De Cian M, Pauper E, Bandiera R, Vidal V, Sacco S, Gregoire E, et al. Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary. Oncogene. 2017;36:208-218 pubmed 出版商
  20. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  21. Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, et al. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep. 2016;6:26557 pubmed 出版商
  22. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  23. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  24. Li J, Cen B, Chen S, He Y. MicroRNA-29b inhibits TGF-?1-induced fibrosis via regulation of the TGF-?1/Smad pathway in primary human endometrial stromal cells. Mol Med Rep. 2016;13:4229-37 pubmed 出版商
  25. Ogorevc J, Dovc P. Expression of estrogen receptor 1 and progesterone receptor in primary goat mammary epithelial cells. Anim Sci J. 2016;87:1464-1471 pubmed 出版商
  26. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans B, et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Reports. 2016;6:150-62 pubmed 出版商
  27. Ao J, Wei C, Si Y, Luo C, Lv W, Lin Y, et al. Tudor-SN Regulates Milk Synthesis and Proliferation of Bovine Mammary Epithelial Cells. Int J Mol Sci. 2015;16:29936-47 pubmed 出版商
  28. Heller J, Kwok J, Vecino E, Martin K, Fawcett J. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases. Front Cell Neurosci. 2015;9:449 pubmed 出版商
  29. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  30. Stempin S, Engel A, Winkler N, Buhrke T, Lampen A. Morphological and molecular characterization of the human breast epithelial cell line M13SV1 and its tumorigenic derivatives M13SV1-R2-2 and M13SV1-R2-N1. Cancer Cell Int. 2015;15:110 pubmed 出版商
  31. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  32. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  33. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  34. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  35. Baligar P, Mukherjee S, Kochat V, Rastogi A, Mukhopadhyay A. Molecular and Cellular Functions Distinguish Superior Therapeutic Efficiency of Bone Marrow CD45 Cells Over Mesenchymal Stem Cells in Liver Cirrhosis. Stem Cells. 2016;34:135-47 pubmed 出版商
  36. Wang H, Wang L, Jerde T, Chan B, Savran C, Burcham G, et al. Characterization of autoimmune inflammation induced prostate stem cell expansion. Prostate. 2015;75:1620-31 pubmed 出版商
  37. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  38. Mohapatra S, Sandhu A, Singh K, Singla S, Chauhan M, Manik R, et al. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them. PLoS ONE. 2015;10:e0129235 pubmed 出版商
  39. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  40. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  41. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  42. Hines W, Yaswen P, Bissell M. Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias. Nat Commun. 2015;6:6927 pubmed 出版商
  43. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  44. Aguiar C, Therrien J, Lemire P, Segura M, Smith L, Theoret C. Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Vet J. 2016;48:338-45 pubmed 出版商
  45. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  46. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  47. Progatzky F, Sangha N, Yoshida N, McBrien M, Cheung J, Shia A, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun. 2014;5:5864 pubmed 出版商
  48. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  49. BaÅŸak K, KiroÄŸlu K. Multiple oncocytic cystadenoma with intraluminal crystalloids in parotid gland: case report. Medicine (Baltimore). 2014;93:e246 pubmed 出版商
  50. Huang Y, Bertrand V, Bozukova D, Pagnoulle C, Labrugère C, De Pauw E, et al. RGD surface functionalization of the hydrophilic acrylic intraocular lens material to control posterior capsular opacification. PLoS ONE. 2014;9:e114973 pubmed 出版商
  51. Kuramoto G, Takagi S, Ishitani K, Shimizu T, Okano T, Matsui H. Preventive effect of oral mucosal epithelial cell sheets on intrauterine adhesions. Hum Reprod. 2015;30:406-16 pubmed 出版商
  52. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  53. Morisaki T, Yashiro M, Kakehashi A, Inagaki A, Kinoshita H, Fukuoka T, et al. Comparative proteomics analysis of gastric cancer stem cells. PLoS ONE. 2014;9:e110736 pubmed 出版商
  54. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  55. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  56. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  57. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  58. Zollner G, Thueringer A, Lackner C, Fickert P, Trauner M. Alterations of canalicular ATP-binding cassette transporter expression in drug-induced liver injury. Digestion. 2014;90:81-8 pubmed 出版商
  59. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  60. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  61. Munne P, Gu Y, Tumiati M, Gao P, Koopal S, Uusivirta S, et al. TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli. Sci Rep. 2014;4:4663 pubmed 出版商
  62. Mäkelä J, Toppari J, Rivero Muller A, Ventelä S. Reconstruction of mouse testicular cellular microenvironments in long-term seminiferous tubule culture. PLoS ONE. 2014;9:e90088 pubmed 出版商
  63. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  64. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  65. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  66. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  67. Ory V, Tassi E, Cavalli L, Sharif G, Saenz F, Baker T, et al. The nuclear coactivator amplified in breast cancer 1 maintains tumor-initiating cells during development of ductal carcinoma in situ. Oncogene. 2014;33:3033-42 pubmed 出版商
  68. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  69. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  70. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  71. Okumura N, Akutsu H, Sugawara T, Miura T, Takezawa Y, Hosoda A, et al. ?-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells. PLoS ONE. 2013;8:e63265 pubmed 出版商
  72. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  73. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  74. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  75. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  76. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  77. Kap M, Smedts F, Oosterhuis W, Winther R, Christensen N, Reischauer B, et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS ONE. 2011;6:e27704 pubmed 出版商
  78. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed 出版商
  79. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  80. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  81. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  82. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  83. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  84. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  85. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed