这是一篇来自已证抗体库的有关小鼠 Krt5的综述,是根据115篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Krt5 抗体。
Krt5 同义词: 3300001P10Rik; AW146334; CK5; K5; Krt2-5; Tfip8

赛默飞世尔
小鼠 单克隆(2C2)
  • 免疫印迹; 人类; 1:100; 图 3c
赛默飞世尔 Krt5抗体(Thermo-Fisher, MA5-17057)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3c). Am J Cancer Res (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6b
赛默飞世尔 Krt5抗体(eBioscience, 53-9003-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6b). Commun Biol (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2, 4a, 4b
赛默飞世尔 Krt5抗体(InVitrogen, MA5-13156)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2, 4a, 4b). Mol Oncol (2022) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2b
赛默飞世尔 Krt5抗体(Lab Vision, MS-343-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2b). Sci Adv (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
赛默飞世尔 Krt5抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上. Nat Commun (2021) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 4a
赛默飞世尔 Krt5抗体(eBioscience, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 猕猴; 0.2 ug/ml; 图 4g
赛默飞世尔 Krt5抗体(Thermo Fisher, 41-9003-82)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为0.2 ug/ml (图 4g). Science (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
赛默飞世尔 Krt5抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Nat Cell Biol (2020) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 图 4, 5
赛默飞世尔 Krt5抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 人类; 图 s1b
赛默飞世尔 Krt5抗体(Thermo Fischer, MA5-13203)被用于被用于免疫细胞化学在人类样本上 (图 s1b). Sci Rep (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:150; 表 2
赛默飞世尔 Krt5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(AE3)
  • 流式细胞仪; 人类
赛默飞世尔 Krt5抗体(eBioscience, 14-900-80)被用于被用于流式细胞仪在人类样本上. F1000Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
赛默飞世尔 Krt5抗体(ThermoFisher Scientific, PA1-37974)被用于被用于免疫细胞化学在人类样本上 (图 1c). Stem Cell Rev (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 3d
赛默飞世尔 Krt5抗体(Thermo Scientific, AE1-AE3)被用于被用于免疫组化在人类样本上 (图 3d). Case Rep Pathol (2016) ncbi
小鼠 单克隆(2C2)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 Krt5抗体(Thermo Fisher, MA5-17057)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫细胞化学; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3d
赛默飞世尔 Krt5抗体(Thermo Scientific, MA5-13203)被用于被用于免疫细胞化学在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3d). Oncogene (2017) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 5b
赛默飞世尔 Krt5抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5b). Breast Cancer Res Treat (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 2 ug/ml; 图 2e
赛默飞世尔 Krt5抗体(ThermoFisher Scientific, PA1-37974)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 2e). Stem Cell Rev (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 Krt5抗体(ThermoFisher Scientific, MA5-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 图 s3
赛默飞世尔 Krt5抗体(分子探针, 985542A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3). Microbiome (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 Krt5抗体(Thermo Scientific, MA5-13203)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔 Krt5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 小鼠; 1:100; 表 2
赛默飞世尔 Krt5抗体(eBioscience, 41-9003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(D5/I6 B4)
  • 免疫组化; 人类; ready to use
赛默飞世尔 Krt5抗体(Thermo Scientific, MS-1814-R7)被用于被用于免疫组化在人类样本上浓度为ready to use. Pathol Res Pract (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 2
赛默飞世尔 Krt5抗体(Thermo Scientific, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 2). Diagn Cytopathol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Krt5抗体(Thermo Scientific, PA1-37974)被用于. J Cell Sci (2015) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 人类; 图 2
赛默飞世尔 Krt5抗体(Thermo Scientific, EP1601Y)被用于被用于免疫组化在人类样本上 (图 2). BMC Med Genomics (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 鲤
赛默飞世尔 Krt5抗体(生活技术, MA5-13156)被用于被用于免疫细胞化学在鲤样本上. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类; 1 ul
赛默飞世尔 Krt5抗体(eBioscience, 53-9003-82)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上浓度为1 ul. Nanomedicine (2015) ncbi
小鼠 单克隆(PAN-CK)
  • 免疫印迹; 人类
赛默飞世尔 Krt5抗体(Thermo Fisher Scientific, MA5-13203)被用于被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(AE1/AE3)
赛默飞世尔 Krt5抗体(Invitrogen, AE1/AE3)被用于. In Vitro Cell Dev Biol Anim (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Krt5抗体(Thermo Scientific, PA1-37974)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 10-20 ug/ml
赛默飞世尔 Krt5抗体(Lab.Vision, Ab-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10-20 ug/ml. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
赛默飞世尔 Krt5抗体(Thermo, MS-34)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛默飞世尔 Krt5抗体(ThermoFisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Development (2015) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Krt5抗体(Thermo, EP1601Y)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nature (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Krt5抗体(Neo Markers, MS343)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 Krt5抗体(eBioscience, 53-9003-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Krt5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Hum Pathol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Krt5抗体(Thermo Fisher Scientific, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 Krt5抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Histopathology (2015) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类
赛默飞世尔 Krt5抗体(Thermo, AE1/AE3)被用于被用于免疫组化在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类
赛默飞世尔 Krt5抗体(Thermo Fisher, AE1/AE3)被用于被用于免疫细胞化学在人类样本上. Biomed Mater (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Krt5抗体(Thermoelectron, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上. BMC Med Imaging (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 Krt5抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔 Krt5抗体(eBioscience, AE1/AE3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 表 1
赛默飞世尔 Krt5抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (表 1). Head Face Med (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 Krt5抗体(Zymed, AE1-AE3)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Surg Neurol Int (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化; 人类; 图 2
赛默飞世尔 Krt5抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫细胞化学; 大西洋鲑鱼; 1:50; 图 2
赛默飞世尔 Krt5抗体(Invitrogen, AE1/AE3)被用于被用于免疫细胞化学在大西洋鲑鱼样本上浓度为1:50 (图 2). Virol J (2013) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Krt5抗体(Invitrogen, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Med Sci Monit (2012) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Krt5抗体(Thermo Scientific, MS-343)被用于被用于免疫组化-石蜡切片在小鼠样本上. Anat Cell Biol (2011) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 Krt5抗体(Labvision, MS-149)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Br J Cancer (2012) ncbi
小鼠 单克隆(D5/I6 B4)
  • 免疫组化; 人类; 1:50
赛默飞世尔 Krt5抗体(Zymed, D5)被用于被用于免疫组化在人类样本上浓度为1:50. Eur J Cancer (2010) ncbi
小鼠 单克隆(AE3)
  • 免疫组化-石蜡切片; 人类; 1:300; 表 2
赛默飞世尔 Krt5抗体(Zymed, AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 Krt5抗体(Invitrogen, C-11)被用于被用于免疫印迹在小鼠样本上. Infect Immun (2009) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Krt5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Cancer (2008) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Krt5抗体(Lab Vision, MS-343-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 小鼠
赛默飞世尔 Krt5抗体(NeoMarkers, C-11)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫组化-石蜡切片; 人类; 1:80; 表 1
赛默飞世尔 Krt5抗体(Zymed, AE1/AE3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80 (表 1). Pathol Int (2004) ncbi
小鼠 单克隆(AE1/AE3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 Krt5抗体(Zymed, AE1/AE3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Gynecol Oncol (2003) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4m
  • 免疫组化; 人类; 1:100; 图 3h
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, Ab53121)被用于被用于免疫组化在小鼠样本上 (图 4m) 和 被用于免疫组化在人类样本上浓度为1:100 (图 3h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 小鼠; 1:500; 图 3e
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab52635)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Cell Rep (2021) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化-石蜡切片; 人类; 图 3c
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab52635)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). Commun Biol (2020) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 小鼠; 1:400; 图 4f
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab52635)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4f). elife (2020) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 小鼠; 1:100; 图 1f
艾博抗(上海)贸易有限公司 Krt5抗体(abcam, ab52635)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f). Nature (2019) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫印迹; 人类; 1:500; 图 4b
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
  • 免疫印迹; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab52635)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Biomol Ther (Seoul) (2019) ncbi
domestic rabbit 单克隆(EP1601Y)
  • mass cytometry; 人类; 图 3a
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab52635)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 3
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab52635)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 3). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 流式细胞仪; 人类; 图 s1b
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab52635)被用于被用于流式细胞仪在人类样本上 (图 s1b). Cell Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4i
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab53121)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4i). Cell Rep (2018) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化-石蜡切片; 人类; 图 2a
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, 52635)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; domestic rabbit; 图 86
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab53121)被用于被用于免疫组化在domestic rabbit样本上 (图 86). J Toxicol Pathol (2017) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab52635)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(EP1601Y)
  • 免疫组化; 人类; 图 s3
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab52635)被用于被用于免疫组化在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, Ab53121)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 Krt5抗体(Abcam, ab53121)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Krt5抗体(abcam, ab53121)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Cell Tissue Res (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(RCK103)
  • 免疫组化-石蜡切片; 小鼠; 图 2e
圣克鲁斯生物技术 Krt5抗体(Santa Cruz Biotechnology Inc, sc-32721)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). Carcinogenesis (2018) ncbi
小鼠 单克隆(RCK103)
  • 流式细胞仪; 人类; 图 5
圣克鲁斯生物技术 Krt5抗体(Santa Cruz, sc-32721)被用于被用于流式细胞仪在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(RCK103)
  • 免疫细胞化学; 人类; 图 6a
圣克鲁斯生物技术 Krt5抗体(Santa Cruz Biotechnology, sc-32721)被用于被用于免疫细胞化学在人类样本上 (图 6a). Biores Open Access (2014) ncbi
小鼠 单克隆(5F295)
  • 免疫组化-石蜡切片; 小鼠; 图 3
圣克鲁斯生物技术 Krt5抗体(Santa Cruz, sc-70928)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
BioLegend
鸡 多克隆(Poly9059)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 s3d
BioLegend Krt5抗体(Biolegend, 905903)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 s3d). PLoS Genet (2021) ncbi
鸡 多克隆(Poly9059)
  • 免疫组化; 人类; 图 4f
BioLegend Krt5抗体(Biolegend, 905904)被用于被用于免疫组化在人类样本上 (图 4f). Commun Biol (2020) ncbi
西格玛奥德里奇
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2h
西格玛奥德里奇 Krt5抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2h). J Clin Invest (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 大鼠; 1:200; 图 2d
  • 免疫组化; 人类; 1:200; 图 7f, s4
西格玛奥德里奇 Krt5抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2d) 和 被用于免疫组化在人类样本上浓度为1:200 (图 7f, s4). Nat Commun (2021) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1a
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1a). Cancer Immunol Immunother (2020) ncbi
小鼠 单克隆(C-11)
  • 免疫组化; 人类; 图 7a
西格玛奥德里奇 Krt5抗体(Sigma, C2931)被用于被用于免疫组化在人类样本上 (图 7a). Cell Rep (2018) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
西格玛奥德里奇 Krt5抗体(Sigma, C-11)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). PLoS ONE (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:50; 图 3a
西格玛奥德里奇 Krt5抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Science (2018) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4a
西格玛奥德里奇 Krt5抗体(Sigma-Aldrich, C2562)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4a). Am J Respir Cell Mol Biol (2017) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 人类; 1:100; 图 6a
西格玛奥德里奇 Krt5抗体(Sigma, C-11)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 小鼠; 图 6
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Am J Pathol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 图 s5a
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5a). Nature (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 5h
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 5h). Biotechnol J (2017) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 图 2b
西格玛奥德里奇 Krt5抗体(Sigma, c2562)被用于被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 人类; 1:200; 图 5
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). BMC Biol (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 人类; 1:4000; 表 2
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫组化在人类样本上浓度为1:4000 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 Krt5抗体(Sigma, C-2931)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 2
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 2). Clin Cancer Res (2016) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化; 小鼠; 1:800; 图 5
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Krt5抗体(Sigma-Aldrich, clone C-11)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 家羊; 10 ug/ml
西格玛奥德里奇 Krt5抗体(Sigma, C2931)被用于被用于免疫细胞化学在家羊样本上浓度为10 ug/ml. Cell Reprogram (2015) ncbi
小鼠 单克隆(C-11)
  • 免疫细胞化学; 非洲爪蛙
西格玛奥德里奇 Krt5抗体(Sigma, C2931)被用于被用于免疫细胞化学在非洲爪蛙样本上. Zygote (2015) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇 Krt5抗体(Sigma-Aldrich, #C2562)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Am J Pathol (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Krt5抗体(Sigma, C2562)被用于被用于免疫印迹在大鼠样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
西格玛奥德里奇 Krt5抗体(Sigma-Aldrich, C-11)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2)
  • 免疫印迹; pigs
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 Krt5抗体(Sigma-Aldrich, C 2562)被用于被用于免疫印迹在pigs 样本上 和 被用于免疫印迹在人类样本上浓度为1:10,000. Mol Oncol (2014) ncbi
小鼠 单克隆(C-11)
  • 免疫组化-石蜡切片; Gallot's lizard; 1:400
西格玛奥德里奇 Krt5抗体(Sigma-Aldrich, C2931)被用于被用于免疫组化-石蜡切片在Gallot's lizard样本上浓度为1:400. J Comp Neurol (2012) ncbi
碧迪BD
小鼠 单克隆(RCK102)
  • 免疫细胞化学; 人类; 1:100; 图 s3c
碧迪BD Krt5抗体(BD Biosciences, 550505)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3c). Sci Adv (2019) ncbi
小鼠 单克隆(RCK102)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
碧迪BD Krt5抗体(BD, 550505)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(RCK102)
  • 免疫印迹; 人类; 图 2b
碧迪BD Krt5抗体(BD Biosciences, 550505)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2016) ncbi
文章列表
  1. Castillo P, Aisagbonhi O, Saenz C, ElShamy W. Novel insights linking BRCA1-IRIS role in mammary gland development to formation of aggressive PABCs: the case for longer breastfeeding. Am J Cancer Res. 2022;12:396-426 pubmed
  2. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  3. Bruun J, Eide P, Bergsland C, Brück O, Svindland A, Arjama M, et al. E-cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Mol Oncol. 2022;16:2312-2329 pubmed 出版商
  4. Zhang X, Tao J, Yu J, Hu N, Zhang X, Wang G, et al. Inhibition of Notch activity promotes pancreatic cytokeratin 5-positive cell differentiation to beta cells and improves glucose homeostasis following acute pancreatitis. Cell Death Dis. 2021;12:867 pubmed 出版商
  5. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed 出版商
  6. Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar O, et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 2021;17:e1009605 pubmed 出版商
  7. Carter P, Schnell U, Chaney C, TONG B, Pan X, ye J, et al. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J Clin Invest. 2021;131: pubmed 出版商
  8. Liberti D, Kremp M, Liberti W, Penkala I, Li S, Zhou S, et al. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep. 2021;35:109092 pubmed 出版商
  9. Rodriguez E, Boelaars K, Brown K, Eveline Li R, Kruijssen L, Bruijns S, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun. 2021;12:1270 pubmed 出版商
  10. McGuire J, Frieling J, Lo C, Li T, Muhammad A, Lawrence H, et al. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nat Commun. 2021;12:723 pubmed 出版商
  11. Dong B, Miao J, Wang Y, Luo W, Ji Z, Lai H, et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun Biol. 2020;3:778 pubmed 出版商
  12. Biasci D, Smoragiewicz M, Connell C, Wang Z, Gao Y, Thaventhiran J, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A. 2020;117:28960-28970 pubmed 出版商
  13. Mevel R, Steiner I, Mason S, Galbraith L, Patel R, Fadlullah M, et al. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. elife. 2020;9: pubmed 出版商
  14. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed 出版商
  15. Costanzo Garvey D, Keeley T, Case A, Watson G, Alsamraae M, Yu Y, et al. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother. 2020;69:1113-1130 pubmed 出版商
  16. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  17. Momcilovic M, Jones A, Bailey S, Waldmann C, Li R, Lee J, et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature. 2019;575:380-384 pubmed 出版商
  18. Jeong H, Lim K, Goldenring J, Nam K. Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice. Biomol Ther (Seoul). 2019;27:553-561 pubmed 出版商
  19. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  20. Ling C, Nishimoto K, Rolfs Z, Smith L, Frey B, Welham N. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. Sci Adv. 2019;5:eaav7384 pubmed 出版商
  21. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  22. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  23. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  24. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  25. Thyagarajan H, Lancaster J, Lira S, Ehrlich L. CCR8 is expressed by post-positive selection CD4-lineage thymocytes but is dispensable for central tolerance induction. PLoS ONE. 2018;13:e0200765 pubmed 出版商
  26. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  27. Chen L, Hayden M, Gilmore E, Alexander Savino C, Oleksyn D, Gillespie K, et al. PKK deletion in basal keratinocytes promotes tumorigenesis after chemical carcinogenesis. Carcinogenesis. 2018;39:418-428 pubmed 出版商
  28. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  29. Aprile F, Källstig E, Limorenko G, Vendruscolo M, Ron D, Hansen C. The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Sci Rep. 2017;7:9039 pubmed 出版商
  30. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  31. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  32. Anderson P, Lynch T, Engelhardt J. Multipotent Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal Gland Development. Am J Respir Cell Mol Biol. 2017;56:716-726 pubmed 出版商
  33. Kwon Y, Stanciu C, Philpott M, Ehrhardt C. Flow cytometry dataset for cells collected from touched surfaces. F1000Res. 2016;5:390 pubmed 出版商
  34. Gomi K, Tang Y, Arbelaez V, Crystal R, Walters M. Endothelial Cell Mediated Promotion of Ciliated Cell Differentiation of Human Airway Basal Cells via Insulin and Insulin-Like Growth Factor 1 Receptor Mediated Signaling. Stem Cell Rev. 2017;13:309-317 pubmed 出版商
  35. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  36. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed 出版商
  37. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  38. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  39. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  40. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  41. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed 出版商
  42. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  43. Ocón B, Aranda C, Gámez Belmonte R, Suárez M, Zarzuelo A, Martinez Augustin O, et al. The glucocorticoid budesonide has protective and deleterious effects in experimental colitis in mice. Biochem Pharmacol. 2016;116:73-88 pubmed 出版商
  44. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  45. Liang Y, Zhu F, Zhang H, Chen D, Zhang X, Gao Q, et al. Conditional ablation of TGF-? signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci Rep. 2016;6:29479 pubmed 出版商
  46. Berens E, Sharif G, Schmidt M, Yan G, Shuptrine C, Weiner L, et al. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene. 2017;36:593-605 pubmed 出版商
  47. Hatem R, El Botty R, Chateau Joubert S, Servely J, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016;7:48206-48219 pubmed 出版商
  48. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  49. Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, et al. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat. 2016;157:461-74 pubmed 出版商
  50. Rigden H, Alias A, Havelock T, O Donnell R, Djukanovic R, Davies D, et al. Squamous Metaplasia Is Increased in the Bronchial Epithelium of Smokers with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2016;11:e0156009 pubmed 出版商
  51. Gomi K, Staudt M, Salit J, Kaner R, Heldrich J, Rogalski A, et al. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium. Stem Cell Rev. 2016;12:454-63 pubmed 出版商
  52. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  53. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  54. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  55. Zhu M, Bakhru P, Conley B, Nelson J, Free M, Martin A, et al. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat Commun. 2016;7:11350 pubmed 出版商
  56. Park S, Kim J, Kim N, Yang K, Shim J, Heo K. Estradiol, TGF-?1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11:1895-1902 pubmed
  57. Roy J, Kim B, Hill E, Visconti P, Krapf D, Vinegoni C, et al. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun. 2016;7:10666 pubmed 出版商
  58. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  59. Shin H, Pei Z, Martinez K, Rivera Viñas J, Méndez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59 pubmed 出版商
  60. Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, et al. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res. 2016;364:319-30 pubmed 出版商
  61. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  62. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  63. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  64. Hurley P, Sundi D, Shinder B, Simons B, Hughes R, Miller R, et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res. 2016;22:448-58 pubmed 出版商
  65. KapucuoÄŸlu N, Bozkurt K, BaÅŸpınar Å, Koçer M, EroÄŸlu H, Akdeniz R, et al. The clinicopathological and prognostic significance of CD24, CD44, CD133, ALDH1 expressions in invasive ductal carcinoma of the breast: CD44/CD24 expression in breast cancer. Pathol Res Pract. 2015;211:740-7 pubmed 出版商
  66. Sauter J, Ambaye A, Mount S. Increased utilization, verification, and clinical implications of immunocytochemistry: Experience in a northern New England hospital. Diagn Cytopathol. 2015;43:688-95 pubmed 出版商
  67. Ding B, Gomi K, Rafii S, Crystal R, Walters M. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci. 2015;128:2983-8 pubmed 出版商
  68. Goodman C, Sato T, Peck A, Girondo M, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2016;35:1373-85 pubmed 出版商
  69. Yuri S, Nishikawa M, Yanagawa N, Jo O, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS ONE. 2015;10:e0129242 pubmed 出版商
  70. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  71. Eriksson P, Aine M, Veerla S, Liedberg F, Sjödahl G, Höglund M. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics. 2015;8:25 pubmed 出版商
  72. Swaminathan T, Basheer V, Kumar R, Kathirvelpandian A, Sood N, Jena J. Establishment and characterization of fin-derived cell line from ornamental carp, Cyprinus carpio koi, for virus isolation in India. In Vitro Cell Dev Biol Anim. 2015;51:705-13 pubmed 出版商
  73. Muhanna N, Mepham A, Mohamadi R, Chan H, Khan T, Akens M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model. Nanomedicine. 2015;11:1613-20 pubmed 出版商
  74. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  75. Sood N, Chaudhary D, Pradhan P, Verma D, Raja Swaminathan T, Kushwaha B, et al. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim. 2015;51:787-96 pubmed 出版商
  76. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  77. Gomi K, Arbelaez V, Crystal R, Walters M. Activation of NOTCH1 or NOTCH3 signaling skews human airway basal cell differentiation toward a secretory pathway. PLoS ONE. 2015;10:e0116507 pubmed 出版商
  78. Ahmed H, Abdul Gader Suliman R, Abd El Aziz M, Alshammari F. Immunohistochemical expression of cytokeratins and epithelial membrane protein 2 in nasopharyngeal carcinoma and its potential implications. Asian Pac J Cancer Prev. 2015;16:653-6 pubmed
  79. Zheng L, Cardaci S, Jerby L, MacKenzie E, Sciacovelli M, Johnson T, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat Commun. 2015;6:6001 pubmed 出版商
  80. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  81. Suzuki D, Sahu R, Leu N, Senoo M. The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development. 2015;142:282-90 pubmed 出版商
  82. Sivan U, Jayakumar K, Krishnan L. Constitution of fibrin-based niche for in vitro differentiation of adipose-derived mesenchymal stem cells to keratinocytes. Biores Open Access. 2014;3:339-47 pubmed 出版商
  83. Zuo W, Zhang T, Wu D, Guan S, Liew A, Yamamoto Y, et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature. 2015;517:616-20 pubmed 出版商
  84. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  85. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  86. Chierchia L, Tussellino M, Guarino D, Carotenuto R, DeMarco N, Campanella C, et al. Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. Zygote. 2015;23:669-82 pubmed 出版商
  87. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  88. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  89. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  90. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed 出版商
  91. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed 出版商
  92. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  93. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  94. Motomura K, Sumino H, Noguchi A, Horinouchi T, Nakanishi K. Sentinel nodes identified by computed tomography-lymphography accurately stage the axilla in patients with breast cancer. BMC Med Imaging. 2013;13:42 pubmed 出版商
  95. Bulysheva A, Bowlin G, Petrova S, Yeudall W. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8:055009 pubmed 出版商
  96. Motomura K, Izumi T, Tateishi S, Sumino H, Noguchi A, Horinouchi T, et al. Correlation between the area of high-signal intensity on SPIO-enhanced MR imaging and the pathologic size of sentinel node metastases in breast cancer patients with positive sentinel nodes. BMC Med Imaging. 2013;13:32 pubmed 出版商
  97. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  98. Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, et al. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE. 2013;8:e67466 pubmed 出版商
  99. Ohta K, Taki M, Ogawa I, Ono S, Mizuta K, Fujimoto S, et al. Malignant ossifying fibromyxoid tumor of the tongue: case report and review of the literature. Head Face Med. 2013;9:16 pubmed 出版商
  100. Nassiri F, Scheithauer B, Corwin D, Kaplan H, Mayberg M, Cusimano M, et al. Invasive thymoma metastatic to the cavernous sinus. Surg Neurol Int. 2013;4:74 pubmed 出版商
  101. Okumura N, Akutsu H, Sugawara T, Miura T, Takezawa Y, Hosoda A, et al. ?-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells. PLoS ONE. 2013;8:e63265 pubmed 出版商
  102. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  103. Weli S, Aamelfot M, Dale O, Koppang E, Falk K. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells. Virol J. 2013;10:5 pubmed 出版商
  104. Lv S, Song Y, Xu J, Shu H, Zhou Z, An N, et al. A novel TP53 somatic mutation involved in the pathogenesis of pediatric choroid plexus carcinoma. Med Sci Monit. 2012;18:CS37-41 pubmed
  105. Sohn W, Gwon G, An C, Moon C, Bae Y, Yamamoto H, et al. Morphological evidences in circumvallate papilla and von Ebners' gland development in mice. Anat Cell Biol. 2011;44:274-83 pubmed 出版商
  106. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106:508-16 pubmed 出版商
  107. Romero Alemán M, Monzon Mayor M, Santos E, Lang D, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol. 2012;520:2163-84 pubmed 出版商
  108. Perrone F, Jocollè G, Pennati M, Deraco M, Baratti D, Brich S, et al. Receptor tyrosine kinase and downstream signalling analysis in diffuse malignant peritoneal mesothelioma. Eur J Cancer. 2010;46:2837-48 pubmed 出版商
  109. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  110. Rhee K, Wu S, Wu X, Huso D, Karim B, Franco A, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009;77:1708-18 pubmed 出版商
  111. Rodriguez F, Scheithauer B, Giannini C, Bryant S, Jenkins R. Epithelial and pseudoepithelial differentiation in glioblastoma and gliosarcoma: a comparative morphologic and molecular genetic study. Cancer. 2008;113:2779-89 pubmed 出版商
  112. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed
  113. Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol. 2004;24:7072-81 pubmed
  114. Song S, Park S, Kim S, Suh Y. Oncocytic adrenocortical carcinomas: a pathological and immunohistochemical study of four cases in comparison with conventional adrenocortical carcinomas. Pathol Int. 2004;54:603-10 pubmed
  115. Kokenyesi R, Murray K, Benshushan A, Huntley E, Kao M. Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol. 2003;89:60-72 pubmed