这是一篇来自已证抗体库的有关小鼠 淋巴细胞型选择素 (L selectin) 的综述,是根据421篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合淋巴细胞型选择素 抗体。
淋巴细胞型选择素 同义词: AI528707; CD62L; L-selectin; LECAM-1; Lnhr; Ly-22; Ly-m22; Lyam-1; Lyam1

其他
淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于. BMC Biol (2020) ncbi
  • 流式细胞仪; 小鼠; 图 s1a
淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Aging (Albany NY) (2020) ncbi
淋巴细胞型选择素抗体(BioLegend, Mel-14)被用于. Aging (Albany NY) (2019) ncbi
  • 流式细胞仪; 小鼠; 图 1a
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
  • 流式细胞仪; 小鼠; 图 s3e
淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). JCI Insight (2019) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. J Immunol (2019) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. Nature (2019) ncbi
淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于. Cell Rep (2019) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. J Exp Med (2018) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. J Clin Invest (2018) ncbi
淋巴细胞型选择素抗体(BioLegend, Mel-14)被用于. J Clin Invest (2018) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. J Exp Med (2018) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. J Virol (2018) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. Nat Immunol (2018) ncbi
淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于. Nat Immunol (2018) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. J Immunol (2018) ncbi
淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于. Nat Commun (2017) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. J Exp Med (2017) ncbi
淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. Proc Natl Acad Sci U S A (2017) ncbi
赛默飞世尔
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 2n
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 56-0621-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2n). Front Immunol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, (MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 11-0621-82)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:800; 图 s5
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, Mel-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s5). Nat Commun (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 10b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 47-0621-82)被用于被用于流式细胞仪在小鼠样本上 (图 10b). Mucosal Immunol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Acta Naturae (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
赛默飞世尔淋巴细胞型选择素抗体(Thermo Fisher Scientific, 17-0621-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). elife (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1a). elife (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4l
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, Mel14)被用于被用于流式细胞仪在小鼠样本上 (图 4l). Aging Cell (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 17-0621-83)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Mucosal Immunol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s5c
赛默飞世尔淋巴细胞型选择素抗体(eBioscience/Thermo Fisher Scientific, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). Sci Adv (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 人类; 1:100; 图 6a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6a). Front Immunol (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 25-0621-81)被用于被用于流式细胞仪在小鼠样本上 (图 3c). elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 1s2a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 17-0621-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1s2a). elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1a, s1c
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1a, s1c). Sci Adv (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 e10
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 e10). Nature (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 11-0621-85)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). J Clin Invest (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Clin Invest (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 3k
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 12-0621-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3k). Nat Commun (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔淋巴细胞型选择素抗体(Thermo Fisher, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Exp Med (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:300; 图 3s2a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 17-0621-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3s2a). elife (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s7d
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 47-0621-82)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Nat Commun (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Blood (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔淋巴细胞型选择素抗体(Thermo Fisher Scientific, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Eur J Immunol (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). Infect Immun (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 e3c
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 e3c). Nature (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Clin Invest (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cancer Res (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1h
赛默飞世尔淋巴细胞型选择素抗体(ebioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Nat Commun (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Exp Med (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Cell Biol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s6b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). PLoS Pathog (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 56-0621)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 25-0621-82)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Nature (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 12-0621-81)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Immunity (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, 12-0621-81)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Infect Immun (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2f
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2f). J Clin Invest (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s3d
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 17-0621-83)被用于被用于流式细胞仪在小鼠样本上 (图 s3d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 4h). Blood (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Mol Life Sci (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS ONE (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Am J Respir Crit Care Med (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 10a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 10a). J Clin Invest (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔淋巴细胞型选择素抗体(ebioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Exp Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3j
赛默飞世尔淋巴细胞型选择素抗体(ebioscience, 12-0621-81)被用于被用于流式细胞仪在小鼠样本上 (图 3j). Front Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s3i
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, 12-0621-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3i). Nat Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 25-0621-82)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Nat Biotechnol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, Mel14)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Leukoc Biol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s3c
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Oncotarget (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6f
赛默飞世尔淋巴细胞型选择素抗体(Affymetrix eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6f). J Exp Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4). Oncotarget (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Eur J Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Diabetes (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 7). elife (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 12-0621)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:300
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Infect Immun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 s6b
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6b). Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4). Dis Model Mech (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔淋巴细胞型选择素抗体(eBiocience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nature (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 4, 7
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4, 7). Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔淋巴细胞型选择素抗体(Invitrogen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (表 1). Am J Pathol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 抑制或激活实验; 小鼠; 图 s7
赛默飞世尔淋巴细胞型选择素抗体(ebioscience, MEL-14)被用于被用于抑制或激活实验在小鼠样本上 (图 s7). Nat Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 47-0621-80)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Int J Cancer (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 56-0621)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Leukemia (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). Oncotarget (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag Laboratories, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Commun (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunity (2015) ncbi
大鼠 单克隆(MEL-14)
  • 免疫组化-石蜡切片; 人类; 图 s8
赛默飞世尔淋巴细胞型选择素抗体(ebiosciences, MEL-14)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s8). Nat Biotechnol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:1000; 图 4
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). PLoS ONE (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s7
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Nat Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL14)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔淋巴细胞型选择素抗体(ebioscience, 11-0621-85)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Nat Commun (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, clone MEL-14)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Mucosal Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2014) ncbi
大鼠 单克隆(MEL-14)
  • 免疫细胞化学; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于免疫细胞化学在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (表 1). Nat Immunol (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Invest Dermatol (2013) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2013) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2012) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2012) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(Invitrogen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2011) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL14)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, 17-0621)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunol Lett (2011) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2, 3
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 2, 3). J Immunol (2010) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2010) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(Invitrogen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). PPAR Res (2010) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). BMC Immunol (2010) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2009) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2009) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Proc Natl Acad Sci U S A (2009) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2009) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔淋巴细胞型选择素抗体(Invitrogen, clone MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5). Vaccine (2009) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2008) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2008) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Virol (2008) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2008) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2007) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Immunology (2008) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Med Microbiol Immunol (2008) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2007) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2D
赛默飞世尔淋巴细胞型选择素抗体(Invitrogen/ Life Technologies/ Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2D). J Immunol (2007) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel 14)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2007) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(E-Bioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Biomed Mater Res A (2007) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int Immunopharmacol (2006) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel-14)被用于被用于流式细胞仪在小鼠样本上. Cytometry A (2006) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 人类
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel-14)被用于被用于流式细胞仪在人类样本上. J Med Genet (2006) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(eBiosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2005) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2005) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔淋巴细胞型选择素抗体(CALTAG实验室, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). Arthritis Res Ther (2005) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4A
赛默飞世尔淋巴细胞型选择素抗体(eBioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4A). J Immunol (2005) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2004) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔淋巴细胞型选择素抗体(Biosource, Mel14)被用于被用于流式细胞仪在小鼠样本上 (图 5). Int Immunol (2004) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2004) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Am J Transplant (2004) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 6). Int Immunol (2004) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2004) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL 14)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2004) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2004) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2003) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Immunology (2003) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel14)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2003) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel-14 RPE)被用于被用于流式细胞仪在小鼠样本上. J Nutr (2002) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4, 5
赛默飞世尔淋巴细胞型选择素抗体(CALTAG, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). J Immunol (2002) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2002) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2001) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔淋巴细胞型选择素抗体(Caltag, clone MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2001) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2001) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(CalTag, MEL 14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, clone MEL14)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2001) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2001) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2000) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel 14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2000) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔淋巴细胞型选择素抗体(CalTag, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (1999) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (1999) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (1999) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (1998) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel-14)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (1998) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (1998) ncbi
大鼠 单克隆(MEL-14)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔淋巴细胞型选择素抗体(caltag, Mel-14)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 3). Eur J Immunol (1995) ncbi
大鼠 单克隆(MEL-14)
  • 抑制或激活实验; 小鼠; 80 ug/mouse
赛默飞世尔淋巴细胞型选择素抗体(noco, MEL-14)被用于被用于抑制或激活实验在小鼠样本上浓度为80 ug/mouse. J Exp Med (1995) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔淋巴细胞型选择素抗体(noco, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (1987) ncbi
大鼠 单克隆(MEL-14)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠
  • 免疫沉淀; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(noco, MEL-14)被用于被用于抑制或激活实验在小鼠样本上, 被用于流式细胞仪在小鼠样本上 和 被用于免疫沉淀在小鼠样本上. Cell (1990) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
赛默飞世尔淋巴细胞型选择素抗体(Caltag, Mel-14)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (1991) ncbi
BioLegend
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 人类; 图 s3a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在人类样本上 (图 s3a). Front Immunol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Commun Biol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200
BioLegend淋巴细胞型选择素抗体(BioLegend, 104405)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:300; 图 3c
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3c). Nat Commun (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Endocrinol Metab (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 3i
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3i). Cancer Res (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 s5-1g
BioLegend淋巴细胞型选择素抗体(BioLegend, 104432)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5-1g). elife (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 s22a
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s22a). Nat Commun (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Front Immunol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend淋巴细胞型选择素抗体(Biolegend, 104418)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Clin Invest (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 2g
BioLegend淋巴细胞型选择素抗体(BioLegend, 104411)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2g). elife (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 10b
BioLegend淋巴细胞型选择素抗体(BioLegend, 104410)被用于被用于流式细胞仪在小鼠样本上 (图 10b). Mucosal Immunol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Front Immunol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
BioLegend淋巴细胞型选择素抗体(BioLegend, 104441)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). elife (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200
BioLegend淋巴细胞型选择素抗体(Biolegend, 104418)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nature (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 3b
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3b). elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2s1a
BioLegend淋巴细胞型选择素抗体(Biolegend, 104427)被用于被用于流式细胞仪在小鼠样本上 (图 2s1a). elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:1000; 图 2s1b
BioLegend淋巴细胞型选择素抗体(BioLegend, 104418)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 2s1b). elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Adv Sci (Weinh) (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Nat Commun (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. BMC Immunol (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s18
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s18). Nat Commun (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). BMC Biol (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend淋巴细胞型选择素抗体(Biolegend, 104412)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Rep (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1c). elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 1a, 2a
BioLegend淋巴细胞型选择素抗体(Biolegend, 104411)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a, 2a). Nat Commun (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1e, 1j
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1e, 1j). Sci Adv (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 3a, 3b
BioLegend淋巴细胞型选择素抗体(Biolegend, 104443)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a, 3b). Nat Commun (2020) ncbi
大鼠 单克隆(MEL-14)
  • mass cytometry; 小鼠; 3.5 ug/ml; 图 5d
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于mass cytometry在小鼠样本上浓度为3.5 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
BioLegend淋巴细胞型选择素抗体(Bio-Legend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). BMC Infect Dis (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend淋巴细胞型选择素抗体(Biolegend, 104441)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell Rep (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2f, s3n
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2f, s3n). Science (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 e2a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 e2a). Nature (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 8a
BioLegend淋巴细胞型选择素抗体(Biolegend, 104438)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 8a). elife (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1h
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Science (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend淋巴细胞型选择素抗体(BioLegend, Mel-14)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Aging (Albany NY) (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend淋巴细胞型选择素抗体(BioLegend, 104443)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s3e
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). JCI Insight (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:120; 图 1a
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:120 (图 1a). elife (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 ex3b
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 ex3b). Nature (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2e
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nature (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cell Rep (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 1b
BioLegend淋巴细胞型选择素抗体(Biolegend, 104417)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1b). Nat Commun (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend淋巴细胞型选择素抗体(Biolegend, 104407)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Cell Rep (2019) ncbi
小鼠 单克隆(OX-85)
  • 流式细胞仪; 大鼠; 图 s1j
BioLegend淋巴细胞型选择素抗体(Biolegend, OX-85)被用于被用于流式细胞仪在大鼠样本上 (图 s1j). Nature (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
BioLegend淋巴细胞型选择素抗体(BioLegend, 104407)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Sci Adv (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Immunol (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 e1b
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 e1b). Nature (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1k
BioLegend淋巴细胞型选择素抗体(Biolegend, 104408)被用于被用于流式细胞仪在小鼠样本上 (图 s1k). Cell Rep (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend淋巴细胞型选择素抗体(Biolegend, 104445)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Rep (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s5d
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). JCI Insight (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2b, 5c
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2b, 5c). J Clin Invest (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend淋巴细胞型选择素抗体(BioLegend, Mel-14)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Clin Invest (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Exp Med (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Circulation (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2j
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Science (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:150; 图 s3a
BioLegend淋巴细胞型选择素抗体(BioLegend, 104408)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s3a). Nat Commun (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Virol (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 4e
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4e). Nat Immunol (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Oncoimmunology (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Nat Immunol (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1f
BioLegend淋巴细胞型选择素抗体(Biolegend, 104405)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). Immunity (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Front Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Nat Commun (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend淋巴细胞型选择素抗体(BioLegend, 104432)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Cell Death Differ (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:400; 图 s3b
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3b). Nat Commun (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nature (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nature (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 7g
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 7g). J Exp Med (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(Biolegend, ME2-14)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Med (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend淋巴细胞型选择素抗体(biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). Science (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend淋巴细胞型选择素抗体(BioLegend, Mel14)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Nat Commun (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Clin Invest (2017) ncbi
大鼠 单克隆(MEL-14)
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Nature (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Mucosal Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6d
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Clin Invest (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 S2a
BioLegend淋巴细胞型选择素抗体(BioLegend, 104405)被用于被用于流式细胞仪在小鼠样本上 (图 S2a). J Exp Clin Cancer Res (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend淋巴细胞型选择素抗体(BioLegend, 104435)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Cell (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:800; 表 s2
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:300; 图 4f
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 4f). Nat Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 1
BioLegend淋巴细胞型选择素抗体(BioLegend, 104424)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Biosci (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(OX-85)
  • 流式细胞仪; 大鼠
BioLegend淋巴细胞型选择素抗体(Biolegend, OX-85)被用于被用于流式细胞仪在大鼠样本上. Nature (2016) ncbi
大鼠 单克隆(MEL-14)
BioLegend淋巴细胞型选择素抗体(Biolegend, 104428)被用于. Clin Cancer Res (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, 104404)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:400; 图 2f
BioLegend淋巴细胞型选择素抗体(BioLegend, 104412)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2f). Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5). Int J Oncol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Nat Genet (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend淋巴细胞型选择素抗体(BioLegend, 104417)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s7). elife (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cancer Res (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Leukoc Biol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(Biolegend, Mel-14)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(MEL-14)
  • 免疫印迹; 小鼠; 1:100; 图 5,6
BioLegend淋巴细胞型选择素抗体(BioLegend, Mel-14)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Brain (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 1). Toxicol Sci (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend淋巴细胞型选择素抗体(biolegend, MEL14)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2014) ncbi
小鼠 单克隆(OX-85)
  • 流式细胞仪; 大鼠; 图 2
BioLegend淋巴细胞型选择素抗体(BioLegend, OX-85)被用于被用于流式细胞仪在大鼠样本上 (图 2). Eur J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2014) ncbi
大鼠 单克隆(MEL-14)
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于. J Immunol (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(Biolegend, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
BioLegend淋巴细胞型选择素抗体(BioLegend, MEL14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
圣克鲁斯生物技术
大鼠 单克隆(MECA-79)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1a
圣克鲁斯生物技术淋巴细胞型选择素抗体(Santa Cruz, sc-19602)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1a). J Clin Invest (2021) ncbi
小鼠 单克隆(LAM1-116)
  • 免疫组化; 人类; 1:250
圣克鲁斯生物技术淋巴细胞型选择素抗体(Santa, Lam1-116)被用于被用于免疫组化在人类样本上浓度为1:250. J Virol (2015) ncbi
美天旎
大鼠 单克隆(MEL14-H2.100)
  • 流式细胞仪; 小鼠; 图 2f
美天旎淋巴细胞型选择素抗体(Miltenyi Biotec, MEL14-H2.100)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Sci Immunol (2018) ncbi
大鼠 单克隆(MEL14-H2.100)
  • 流式细胞仪; 小鼠; 图 s1
美天旎淋巴细胞型选择素抗体(Miltenyi Biotec, 130-102-907)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Cell Mol Med (2018) ncbi
Bio X Cell
大鼠 单克隆(MEL-14)
  • 抑制或激活实验; 小鼠; 图 s2a
Bio X Cell淋巴细胞型选择素抗体(BioXcell, MEL-14)被用于被用于抑制或激活实验在小鼠样本上 (图 s2a). Nature (2019) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 8
伯乐(Bio-Rad)公司淋巴细胞型选择素抗体(AbD Serotec, MCA1259PE)被用于被用于流式细胞仪在小鼠样本上 (图 8). Oncoimmunology (2014) ncbi
碧迪BD
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, 561918)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Signal Transduct Target Ther (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 ds1k
碧迪BD淋巴细胞型选择素抗体(BD, 553151)被用于被用于流式细胞仪在小鼠样本上 (图 ds1k). Cell Rep (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 10b
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 562404)被用于被用于流式细胞仪在小鼠样本上 (图 10b). Mucosal Immunol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 8a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Front Immunol (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 7b
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 553152)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7b). elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD淋巴细胞型选择素抗体(BD Bioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Allergy Clin Immunol (2021) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4e
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, Mel-14)被用于被用于流式细胞仪在小鼠样本上 (图 4e). elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6s1
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6s1). elife (2020) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s5a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Sci Adv (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(Pharmingen, Mel-14)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 4e
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 560517)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4e). Nat Immunol (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 553150)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell Rep (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Clin Invest (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1f
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Immunol (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Front Immunol (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:500; 图 6d
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 6d). Nat Commun (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Clin Invest (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3d
碧迪BD淋巴细胞型选择素抗体(BD, 560514)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cell (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s5). J Clin Invest (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD淋巴细胞型选择素抗体(BD, 553152)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Cell (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s7d
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Cancer Immunol Immunother (2019) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 s7d
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 562404)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7d). Nat Neurosci (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s17a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s17a). J Clin Invest (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Infect Immun (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2h
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 564109)被用于被用于流式细胞仪在小鼠样本上 (图 2h). Nat Immunol (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1e
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Rep (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Clin Invest (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s6g
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s6g). Cell (2018) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s4b
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). J Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4h
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Immunology (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Front Immunol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6d
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD淋巴细胞型选择素抗体(BD PharMingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). PLoS ONE (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD淋巴细胞型选择素抗体(BD PharMingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 人类; 图 3a
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在人类样本上 (图 3a). J Virol (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Brain (2017) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 6c
碧迪BD淋巴细胞型选择素抗体(BD Bioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6c). Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s2a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 562910)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS ONE (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD淋巴细胞型选择素抗体(BD, 553151)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD, 560513)被用于被用于流式细胞仪在小鼠样本上. Cell (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s6a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 560517)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:100; 图 4
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 553150)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 562404)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Immunol Cell Biol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 1:200; 图 2
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s6
碧迪BD淋巴细胞型选择素抗体(BD Bioscience, 553152)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
碧迪BD淋巴细胞型选择素抗体(BD Bioscience, 553147)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Nat Commun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6s
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6s). J Immunol (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s1
碧迪BD淋巴细胞型选择素抗体(BD Bioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 s10
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 553150)被用于被用于流式细胞仪在小鼠样本上 (图 s10). Nat Commun (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, 561917)被用于被用于流式细胞仪在小鼠样本上 (图 7). Infect Immun (2016) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Eur J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD淋巴细胞型选择素抗体(BD Bioscience, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Virol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Vaccine (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Immun Inflamm Dis (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD淋巴细胞型选择素抗体(BD Pharmigen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 7
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 6
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Virol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, ME-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Clin Invest (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Vaccines (Basel) (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 3). Gut (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD淋巴细胞型选择素抗体(BD PharMingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL14)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Pharmingen, MEL-14)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, MEL-14)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠
碧迪BD淋巴细胞型选择素抗体(BD, MEL-14)被用于被用于流式细胞仪在小鼠样本上. Biochim Biophys Acta (2013) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD淋巴细胞型选择素抗体(BD, 553151)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2013) ncbi
大鼠 单克隆(MEL-14)
  • 流式细胞仪; 人类
碧迪BD淋巴细胞型选择素抗体(BD Biosciences, 553152)被用于被用于流式细胞仪在人类样本上. J Immunol (2010) ncbi
文章列表
  1. Fahy N, Palomares Cabeza V, Lolli A, Witte Bouma J, Merino A, Ridwan Y, et al. Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of Endochondral Ossification in an Immunocompetent Xenogeneic Model. Front Immunol. 2021;12:715267 pubmed 出版商
  2. Susukida T, Kuwahara S, Song B, Kazaoka A, Aoki S, Ito K. Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun Biol. 2021;4:1137 pubmed 出版商
  3. Yang M, Long D, Hu L, Zhao Z, Li Q, Guo Y, et al. AIM2 deficiency in B cells ameliorates systemic lupus erythematosus by regulating Blimp-1-Bcl-6 axis-mediated B-cell differentiation. Signal Transduct Target Ther. 2021;6:341 pubmed 出版商
  4. Wright J, Bazile C, Clark E, Carlesso G, Boucher J, Kleiman E, et al. Impaired B Cell Apoptosis Results in Autoimmunity That Is Alleviated by Ablation of Btk. Front Immunol. 2021;12:705307 pubmed 出版商
  5. Wang Z, He L, Li W, Xu C, Zhang J, Wang D, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021;9: pubmed 出版商
  6. Malenica I, Adam J, Corgnac S, Mezquita L, Auclin E, Damei I, et al. Integrin-αV-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat Commun. 2021;12:5209 pubmed 出版商
  7. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  8. Winn N, Wolf E, Cottam M, Bhanot M, Hasty A. Myeloid-specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice. Am J Physiol Endocrinol Metab. 2021;321:E376-E391 pubmed 出版商
  9. Kim G, Kim W, Lim S, Lee H, Koo J, Nam K, et al. In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. Adv Sci (Weinh). 2021;8:2004973 pubmed 出版商
  10. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  11. Ortega Molina A, Lebrero Fernández C, Sanz A, Deleyto Seldas N, Plata Gómez A, Menéndez C, et al. Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36:109372 pubmed 出版商
  12. Bohannon C, Ende Z, Cao W, Mboko W, Ranjan P, Kumar A, et al. Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Adv Sci (Weinh). 2021;8:e2100693 pubmed 出版商
  13. Ryu S, Shchukina I, Youm Y, Qing H, Hilliard B, Dlugos T, et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. elife. 2021;10: pubmed 出版商
  14. Lacy M, Burger C, Shami A, Ahmadsei M, Winkels H, Nitz K, et al. Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun. 2021;12:3754 pubmed 出版商
  15. Ho D, Tsui Y, Chan L, Sze K, Zhang X, Cheu J, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 2021;12:3684 pubmed 出版商
  16. Okunuki Y, Tabor S, Lee M, Connor K. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol. 2021;12:680568 pubmed 出版商
  17. Barker K, Etesami N, Shenoy A, Arafa E, Lyon de Ana C, Smith N, et al. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest. 2021;131: pubmed 出版商
  18. Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch B, et al. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. Adv Sci (Weinh). 2021;8:2003395 pubmed 出版商
  19. Glassman C, Su L, Majri Morrison S, Winkelmann H, Mo F, Li P, et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. elife. 2021;10: pubmed 出版商
  20. Borkner L, Curham L, Wilk M, Moran B, Mills K. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14:1183-1202 pubmed 出版商
  21. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  22. Kalinina A, Khromykh L, Kazansky D, Deykin A, Silaeva Y. Suppression of the Immune Response by Syngeneic Splenocytes Adoptively Transferred to Sublethally Irradiated Mice. Acta Naturae. 2021;13:116-126 pubmed 出版商
  23. Zhang S, Li L, Xie D, Reddy S, Sleasman J, Ma L, et al. Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Front Immunol. 2021;12:620437 pubmed 出版商
  24. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  25. Merkenschlager J, Finkin S, Ramos V, Kraft J, Cipolla M, Nowosad C, et al. Dynamic regulation of TFH selection during the germinal centre reaction. Nature. 2021;591:458-463 pubmed 出版商
  26. Angulo G, Železnjak J, Martínez Vicente P, Puñet Ortiz J, Hengel H, Messerle M, et al. Cytomegalovirus restricts ICOSL expression on antigen-presenting cells disabling T cell co-stimulation and contributing to immune evasion. elife. 2021;10: pubmed 出版商
  27. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  28. Grand M, Waqasi M, Demarta Gatsi C, Wei Y, Peronet R, Commere P, et al. Hepatic Inflammation Confers Protective Immunity Against Liver Stages of Malaria Parasite. Front Immunol. 2020;11:585502 pubmed 出版商
  29. Rundqvist H, Veliça P, Barbieri L, Gameiro P, Bargiela D, Gojkovic M, et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. elife. 2020;9: pubmed 出版商
  30. Ishii K, Pouzolles M, Chien C, Erwin Cohen R, Kohler M, Qin H, et al. Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients. J Clin Invest. 2020;130:5425-5443 pubmed 出版商
  31. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  32. Fernandes R, Li C, Wang G, Yang X, Savvides C, Glassman C, et al. Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. elife. 2020;9: pubmed 出版商
  33. Malacco N, Souza J, Martins F, Rachid M, Simplicio J, Tirapelli C, et al. Chronic ethanol consumption compromises neutrophil function in acute pulmonary Aspergillus fumigatus infection. elife. 2020;9: pubmed 出版商
  34. Peligero Cruz C, Givony T, Sebé Pedrós A, Dobes J, Kadouri N, Nevo S, et al. IL18 signaling promotes homing of mature Tregs into the thymus. elife. 2020;9: pubmed 出版商
  35. Svensson M, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody K, et al. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Sci Adv. 2020;6:eaba4353 pubmed 出版商
  36. Danzer H, Glaesner J, Baerenwaldt A, Reitinger C, Lux A, Heger L, et al. Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. elife. 2020;9: pubmed 出版商
  37. Bekeschus S, Clemen R, Nießner F, Sagwal S, Freund E, Schmidt A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Adv Sci (Weinh). 2020;7:1903438 pubmed 出版商
  38. Castiello M, Bosticardo M, Sacchetti N, Calzoni E, Fontana E, Yamazaki Y, et al. Efficacy and safety of anti-CD45-saporin as conditioning agent for RAG deficiency. J Allergy Clin Immunol. 2021;147:309-320.e6 pubmed 出版商
  39. Zheng D, Gao F, Cheng Q, Bao P, Dong X, Fan J, et al. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat Commun. 2020;11:1985 pubmed 出版商
  40. Zhu M, Ma Y, Tan K, Zhang L, Wang Z, Li Y, et al. Thalidomide with blockade of co-stimulatory molecules prolongs the survival of alloantigen-primed mice with cardiac allografts. BMC Immunol. 2020;21:19 pubmed 出版商
  41. Luoni M, Giannelli S, Indrigo M, Niro A, Massimino L, Iannielli A, et al. Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome. elife. 2020;9: pubmed 出版商
  42. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  43. Gao M, Wang T, Ji L, Bai S, Tian L, Song H. Therapy With Carboplatin and Anti-PD-1 Antibodies Before Surgery Demonstrates Sustainable Anti-Tumor Effects for Secondary Cancers in Mice With Triple-Negative Breast Cancer. Front Immunol. 2020;11:366 pubmed 出版商
  44. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  45. Ramstead A, Wallace J, Lee S, Bauer K, Tang W, Ekiz H, et al. Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Rep. 2020;30:2889-2899.e6 pubmed 出版商
  46. Kumar A, Chamoto K, Chowdhury P, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. elife. 2020;9: pubmed 出版商
  47. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  48. Martens R, Permanyer M, Werth K, Yu K, Braun A, Halle O, et al. Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nat Commun. 2020;11:1114 pubmed 出版商
  49. Chen H, Cong X, Wu C, Wu X, Wang J, Mao K, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9+ T cells. Sci Adv. 2020;6:eaax4690 pubmed 出版商
  50. Angenendt A, Steiner R, Knörck A, Schwär G, Konrad M, Krause E, et al. Orai, STIM, and PMCA contribute to reduced calcium signal generation in CD8+ T cells of elderly mice. Aging (Albany NY). 2020;12:3266-3286 pubmed 出版商
  51. Lee J, Zhang J, Chung Y, Kim J, Kook C, Gonzalez Navajas J, et al. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. elife. 2020;9: pubmed 出版商
  52. Parisi G, Saco J, Salazar F, Tsoi J, Krystofinski P, Puig Saus C, et al. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat Commun. 2020;11:660 pubmed 出版商
  53. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  54. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  55. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  56. Zhao Y, Yang Q, Jin C, Feng Y, Xie S, Xie H, et al. Changes of CD103-expressing pulmonary CD4+ and CD8+ T cells in S. japonicum infected C57BL/6 mice. BMC Infect Dis. 2019;19:999 pubmed 出版商
  57. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  58. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  59. Strickley J, Messerschmidt J, Awad M, Li T, Hasegawa T, Ha D, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature. 2019;: pubmed 出版商
  60. Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, et al. Epigenetic initiation of the TH17 differentiation program is promoted by Cxxc finger protein 1. Sci Adv. 2019;5:eaax1608 pubmed 出版商
  61. Yadava K, Medina C, Ishak H, Gurevich I, Kuipers H, Shamskhou E, et al. Natural Tr1-like cells do not confer long-term tolerogenic memory. elife. 2019;8: pubmed 出版商
  62. Mani V, Bromley S, Aijö T, Mora Buch R, Carrizosa E, Warner R, et al. Migratory DCs activate TGF-β to precondition naïve CD8+ T cells for tissue-resident memory fate. Science. 2019;366: pubmed 出版商
  63. Shikama Y, Kurosawa M, Furukawa M, Ishimaru N, Matsushita K. Involvement of adiponectin in age-related increases in tear production in mice. Aging (Albany NY). 2019;11:8329-8346 pubmed 出版商
  64. Benechet A, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature. 2019;574:200-205 pubmed 出版商
  65. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  66. Sanz Ortega L, Rojas J, Portilla Y, Pérez Yagüe S, Barber D. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol. 2019;10:2073 pubmed 出版商
  67. Rasoulouniriana D, Santana Magal N, Gutwillig A, Farhat Younis L, Wine Y, Saperia C, et al. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest. 2019;129:4151-4164 pubmed 出版商
  68. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  69. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  70. Verma V, Shrimali R, Ahmad S, Dai W, Wang H, Lu S, et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat Immunol. 2019;20:1231-1243 pubmed 出版商
  71. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  72. Papaioannou E, Yanez D, Ross S, Lau C, Solanki A, Chawda M, et al. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest. 2019;129:3153-3170 pubmed 出版商
  73. Khanom U, Ohigashi I, Fujimori S, Kondo K, Takada K, Takahama Y. TCR Affinity for In Vivo Peptide-Induced Thymic Positive Selection Fine-Tunes TCR Responsiveness of Peripheral CD8+ T Cells. J Immunol. 2019;: pubmed 出版商
  74. Koike T, Harada K, Horiuchi S, Kitamura D. The quantity of CD40 signaling determines the differentiation of B cells into functionally distinct memory cell subsets. elife. 2019;8: pubmed 出版商
  75. Khan O, Giles J, McDonald S, Manne S, Ngiow S, Patel K, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;: pubmed 出版商
  76. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  77. von Gamm M, Schaub A, Jones A, Wolf C, Behrens G, Lichti J, et al. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med. 2019;: pubmed 出版商
  78. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  79. Qiu J, Villa M, Sanin D, Buck M, O Sullivan D, Ching R, et al. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27:2063-2074.e5 pubmed 出版商
  80. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  81. Misumi I, Starmer J, Uchimura T, Beck M, Magnuson T, Whitmire J. Obesity Expands a Distinct Population of T Cells in Adipose Tissue and Increases Vulnerability to Infection. Cell Rep. 2019;27:514-524.e5 pubmed 出版商
  82. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  83. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  84. Lee J, Stone M, Porrett P, Thomas S, Komar C, Li J, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249-252 pubmed 出版商
  85. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  86. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  87. Geng S, Zhang Y, Lee C, Li L. Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis. Sci Adv. 2019;5:eaav2309 pubmed 出版商
  88. Yamamoto T, Lee P, Vodnala S, Gurusamy D, Kishton R, Yu Z, et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J Clin Invest. 2019;129:1551-1565 pubmed 出版商
  89. Faliti C, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-336 pubmed 出版商
  90. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  91. Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Front Immunol. 2018;9:2981 pubmed 出版商
  92. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  93. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  94. Chorro L, Suzuki M, Chin S, Williams T, Snapp E, Odagiu L, et al. Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nat Commun. 2018;9:5368 pubmed 出版商
  95. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  96. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  97. Poncette L, Chen X, Lorenz F, Blankenstein T. Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression. J Clin Invest. 2019;129:324-335 pubmed 出版商
  98. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  99. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  100. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  101. Dong S, Harrington B, Hu E, Greene J, Lehman A, Tran M, et al. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest. 2019;129:122-136 pubmed 出版商
  102. Ng K, Yui M, Mehta A, Siu S, Irwin B, Pease S, et al. A stochastic epigenetic switch controls the dynamics of T-cell lineage commitment. elife. 2018;7: pubmed 出版商
  103. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  104. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  105. Klement J, Paschall A, Redd P, Ibrahim M, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128:5549-5560 pubmed 出版商
  106. Singh A, Khare P, Obaid A, Conlon K, Basrur V, Depinho R, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun. 2018;9:4515 pubmed 出版商
  107. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  108. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  109. Qiao G, Bucsek M, Winder N, Chen M, Giridharan T, Olejniczak S, et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2019;68:11-22 pubmed 出版商
  110. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  111. Tilstra J, Avery L, Menk A, Gordon R, Smita S, Kane L, et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J Clin Invest. 2018;128:4884-4897 pubmed 出版商
  112. Singh M, Ni M, Sullivan J, Hamerman J, Campbell D. B cell adaptor for PI3-kinase (BCAP) modulates CD8+ effector and memory T cell differentiation. J Exp Med. 2018;215:2429-2443 pubmed 出版商
  113. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  114. Gisterå A, Klement M, Polyzos K, Mailer R, Duhlin A, Karlsson M, et al. LDL-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation. 2018;: pubmed 出版商
  115. Splitt S, Souza S, Valentine K, Castellanos B, Curd A, Hoyer K, et al. PD-L1, TIM-3, and CTLA-4 Blockade Fails To Promote Resistance to Secondary Infection with Virulent Strains of Toxoplasma gondii. Infect Immun. 2018;86: pubmed 出版商
  116. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  117. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  118. Noguchi N, Nakamura R, Hatano S, Yamada H, Sun X, Ohara N, et al. Interleukin-21 Induces Short-Lived Effector CD8+ T Cells but Does Not Inhibit Their Exhaustion after Mycobacterium bovis BCG Infection in Mice. Infect Immun. 2018;86: pubmed 出版商
  119. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360: pubmed 出版商
  120. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  121. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  122. Hu X, Majchrzak K, Liu X, Wyatt M, Spooner C, Moisan J, et al. In Vitro Priming of Adoptively Transferred T Cells with a RORγ Agonist Confers Durable Memory and Stemness In Vivo. Cancer Res. 2018;78:3888-3898 pubmed 出版商
  123. Borlido J, Sakuma S, Raices M, Carrette F, Tinoco R, Bradley L, et al. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4+ T cell homeostasis. Nat Immunol. 2018;19:594-605 pubmed 出版商
  124. Dipiazza A, Laniewski N, Rattan A, Topham D, Miller J, Sant A. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection. J Virol. 2018;92: pubmed 出版商
  125. Tanaka S, Pfleger C, Lai J, Roan F, Sun S, Ziegler S. KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Rep. 2018;23:796-807 pubmed 出版商
  126. Beutier H, Hechler B, Godon O, Wang Y, Gillis C, de Chaisemartin L, et al. Platelets expressing IgG receptor FcγRIIA/CD32A determine the severity of experimental anaphylaxis. Sci Immunol. 2018;3: pubmed 出版商
  127. Panda S, Facchinetti V, Voynova E, Hanabuchi S, Karnell J, Hanna R, et al. Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models. J Clin Invest. 2018;128:1873-1887 pubmed 出版商
  128. Gaddis D, Padgett L, Wu R, McSkimming C, Romines V, Taylor A, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9:1095 pubmed 出版商
  129. Safya H, Mellouk A, Legrand J, Le Gall S, Benbijja M, Kanellopoulos Langevin C, et al. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol. 2018;9:360 pubmed 出版商
  130. Khan A, Carpenter B, Santos e Sousa P, Pospori C, Khorshed R, Griffin J, et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J Clin Invest. 2018;128:2010-2024 pubmed 出版商
  131. Omilusik K, Nadjsombati M, Shaw L, Yu B, Milner J, Goldrath A. Sustained Id2 regulation of E proteins is required for terminal differentiation of effector CD8+ T cells. J Exp Med. 2018;215:773-783 pubmed 出版商
  132. Zemmour D, Zilionis R, Kiner E, Klein A, Mathis D, Benoist C. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol. 2018;19:291-301 pubmed 出版商
  133. Doorduijn E, Sluijter M, Marijt K, Querido B, van der Burg S, van Hall T. T cells specific for a TAP-independent self-peptide remain naïve in tumor-bearing mice and are fully exploitable for therapy. Oncoimmunology. 2018;7:e1382793 pubmed 出版商
  134. Ehlers L, Rohde S, Ibrahim S, Jaster R. Adoptive transfer of CD3+ T cells and CD4+ CD44high memory T cells induces autoimmune pancreatitis in MRL/MpJ mice. J Cell Mol Med. 2018;22:2404-2412 pubmed 出版商
  135. Koh A, Miller E, Buenrostro J, Moskowitz D, Wang J, Greenleaf W, et al. Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol. 2018;19:162-172 pubmed 出版商
  136. Ferdinand J, Richard A, Meylan F, Al Shamkhani A, Siegel R. Cleavage of TL1A Differentially Regulates Its Effects on Innate and Adaptive Immune Cells. J Immunol. 2018;200:1360-1369 pubmed 出版商
  137. Kaufmann E, Sanz J, Dunn J, Khan N, Mendonça L, Pacis A, et al. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell. 2018;172:176-190.e19 pubmed 出版商
  138. Ibitokou S, Dillon B, Sinha M, Szczesny B, Delgadillo A, Reda Abdelrahman D, et al. Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. J Immunol. 2018;200:643-656 pubmed 出版商
  139. Kishore M, Cheung K, Fu H, Bonacina F, Wang G, Coe D, et al. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47:875-889.e10 pubmed 出版商
  140. Ernszt D, Banfai K, Kellermayer Z, Pap A, Lord J, Pongracz J, et al. PPARgamma Deficiency Counteracts Thymic Senescence. Front Immunol. 2017;8:1515 pubmed 出版商
  141. Singh M, Vianden C, Cantwell M, Dai Z, Xiao Z, Sharma M, et al. Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain. Nat Commun. 2017;8:1447 pubmed 出版商
  142. Capece T, Walling B, Lim K, Kim K, Bae S, Chung H, et al. A novel intracellular pool of LFA-1 is critical for asymmetric CD8+ T cell activation and differentiation. J Cell Biol. 2017;216:3817-3829 pubmed 出版商
  143. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  144. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  145. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  146. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739-1749 pubmed 出版商
  147. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  148. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  149. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  150. Mildner A, Schönheit J, Giladi A, David E, Lara Astiaso D, Lorenzo Vivas E, et al. Genomic Characterization of Murine Monocytes Reveals C/EBP? Transcription Factor Dependence of Ly6C- Cells. Immunity. 2017;46:849-862.e7 pubmed 出版商
  151. Lis R, Karrasch C, Poulos M, Kunar B, Redmond D, Duran J, et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature. 2017;545:439-445 pubmed 出版商
  152. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  153. Chowdhary V, Krogman A, Tilahun A, Alexander M, David C, Rajagopalan G. Concomitant Disruption of CD4 and CD8 Genes Facilitates the Development of Double Negative ?? TCR+ Peripheral T Cells That Respond Robustly to Staphylococcal Superantigen. J Immunol. 2017;198:4413-4424 pubmed 出版商
  154. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  155. Acharya N, Penukonda S, Shcheglova T, Hagymasi A, Basu S, Srivastava P. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc Natl Acad Sci U S A. 2017;114:5005-5010 pubmed 出版商
  156. Gittens B, Bodkin J, Nourshargh S, Perretti M, Cooper D. Galectin-3: A Positive Regulator of Leukocyte Recruitment in the Inflamed Microcirculation. J Immunol. 2017;198:4458-4469 pubmed 出版商
  157. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  158. Claser C, de Souza J, Thorburn S, Grau G, Riley E, Renia L, et al. Host Resistance to Plasmodium-Induced Acute Immune Pathology Is Regulated by Interleukin-10 Receptor Signaling. Infect Immun. 2017;85: pubmed 出版商
  159. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  160. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  161. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  162. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  163. Sindhava V, Oropallo M, Moody K, Naradikian M, Higdon L, Zhou L, et al. A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. J Clin Invest. 2017;127:1651-1663 pubmed 出版商
  164. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  165. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  166. Bhattacharyya M, Penaloza MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology. 2017;151:340-348 pubmed 出版商
  167. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  168. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  169. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  170. Baranek T, Morello E, Valayer A, Aimar R, Bréa D, Henry C, et al. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol. 2017;8:123 pubmed 出版商
  171. Rubtsova K, Rubtsov A, Thurman J, Mennona J, Kappler J, Marrack P. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J Clin Invest. 2017;127:1392-1404 pubmed 出版商
  172. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  173. Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed 出版商
  174. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  175. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  176. Chamoto K, Chowdhury P, Kumar A, Sonomura K, Matsuda F, Fagarasan S, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A. 2017;114:E761-E770 pubmed 出版商
  177. Jiang X, Park C, Geddes Sweeney J, Yoo M, Gaide O, Kupper T. Dermal ?? T Cells Do Not Freely Re-Circulate Out of Skin and Produce IL-17 to Promote Neutrophil Infiltration during Primary Contact Hypersensitivity. PLoS ONE. 2017;12:e0169397 pubmed 出版商
  178. van der Weyden L, Arends M, Campbell A, Bald T, Wardle Jones H, Griggs N, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233-236 pubmed 出版商
  179. Lamprianou S, Gysemans C, Bou Saab J, Pontes H, Mathieu C, Meda P. Glibenclamide Prevents Diabetes in NOD Mice. PLoS ONE. 2016;11:e0168839 pubmed 出版商
  180. Hashimoto Hill S, Friesen L, Kim M, Kim C. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunol. 2017;10:912-923 pubmed 出版商
  181. Nish S, Zens K, Kratchmarov R, Lin W, Adams W, Chen Y, et al. CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. J Exp Med. 2017;214:39-47 pubmed 出版商
  182. Jacobsen E, Ochkur S, Doyle A, Lesuer W, Li W, Protheroe C, et al. Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation. Am J Respir Crit Care Med. 2017;195:1321-1332 pubmed 出版商
  183. Morita K, Okamura T, Inoue M, Komai T, Teruya S, Iwasaki Y, et al. Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production. Proc Natl Acad Sci U S A. 2016;113:E8131-E8140 pubmed
  184. Angela M, Endo Y, Asou H, Yamamoto T, Tumes D, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPAR? directs early activation of T cells. Nat Commun. 2016;7:13683 pubmed 出版商
  185. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  186. Cecchinato V, Bernasconi E, Speck R, Proietti M, Sauermann U, D Agostino G, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol. 2017;198:184-195 pubmed
  187. Brinza L, Djebali S, Tomkowiak M, Mafille J, Loiseau C, Jouve P, et al. Immune signatures of protective spleen memory CD8 T cells. Sci Rep. 2016;6:37651 pubmed 出版商
  188. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  189. Srivastava R, Khan A, Garg S, Syed S, Furness J, Vahed H, et al. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocula. J Virol. 2017;91: pubmed 出版商
  190. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. 2016;126:4626-4639 pubmed 出版商
  191. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  192. Zamora Pineda J, Kumar A, Suh J, Zhang M, Saba J. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med. 2016;213:2773-2791 pubmed
  193. Hirako I, Ataide M, Faustino L, Assis P, Sorensen E, Ueta H, et al. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun. 2016;7:13277 pubmed 出版商
  194. Sen D, Kaminski J, Barnitz R, Kurachi M, Gerdemann U, Yates K, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354:1165-1169 pubmed
  195. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  196. Case A, Roessner C, Tian J, Zimmerman M. Mitochondrial Superoxide Signaling Contributes to Norepinephrine-Mediated T-Lymphocyte Cytokine Profiles. PLoS ONE. 2016;11:e0164609 pubmed 出版商
  197. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  198. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  199. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  200. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  201. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  202. Takeda Y, Azuma M, Matsumoto M, Seya T. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. J Exp Clin Cancer Res. 2016;35:143 pubmed 出版商
  203. Olofsson P, Steinberg B, Sobbi R, Cox M, Ahmed M, Oswald M, et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat Biotechnol. 2016;34:1066-1071 pubmed 出版商
  204. Hoegl S, Ehrentraut H, Brodsky K, Victorino F, Golden Mason L, Eltzschig H, et al. NK cells regulate CXCR2+ neutrophil recruitment during acute lung injury. J Leukoc Biol. 2017;101:471-480 pubmed 出版商
  205. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  206. Ushiki T, Huntington N, Glaser S, Kiu H, Georgiou A, Zhang J, et al. Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells. PLoS ONE. 2016;11:e0162111 pubmed 出版商
  207. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  208. Ulges A, Witsch E, Pramanik G, Klein M, Birkner K, Bühler U, et al. Protein kinase CK2 governs the molecular decision between encephalitogenic TH17 cell and Treg cell development. Proc Natl Acad Sci U S A. 2016;113:10145-50 pubmed 出版商
  209. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  210. Cordova Z, Grönholm A, Kytölä V, Taverniti V, Hämäläinen S, Aittomäki S, et al. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget. 2016;7:54392-54404 pubmed 出版商
  211. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  212. Carow B, Gao Y, Coquet J, Reilly M, Rottenberg M. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. J Immunol. 2016;197:2261-8 pubmed 出版商
  213. Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat Commun. 2016;7:12368 pubmed 出版商
  214. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  215. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  216. Hwang S, Cobb D, Bhadra R, Youngblood B, Khan I. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med. 2016;213:1799-818 pubmed 出版商
  217. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  218. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  219. Parsa R, Lund H, Georgoudaki A, Zhang X, Ortlieb Guerreiro Cacais A, Grommisch D, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med. 2016;213:1537-53 pubmed 出版商
  220. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  221. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  222. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  223. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  224. Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck M, et al. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget. 2016;7:51107-51123 pubmed 出版商
  225. Contreras F, Prado C, Gonzalez H, Franz D, Osorio Barrios F, Osorio F, et al. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. J Immunol. 2016;196:4143-9 pubmed 出版商
  226. Xu A, Bhanumathy K, Wu J, Ye Z, Freywald A, Leary S, et al. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci. 2016;6:30 pubmed 出版商
  227. Reynaldi A, Smith N, Schlub T, Venturi V, Rudd B, Davenport M. Modeling the dynamics of neonatal CD8+ T-cell responses. Immunol Cell Biol. 2016;94:838-848 pubmed 出版商
  228. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  229. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  230. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  231. Holmkvist P, Pool L, Hägerbrand K, Agace W, Rivollier A. IL-18R?-deficient CD4(+) T cells induce intestinal inflammation in the CD45RB(hi) transfer model of colitis despite impaired innate responsiveness. Eur J Immunol. 2016;46:1371-82 pubmed 出版商
  232. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  233. Tosiek M, Fiette L, El Daker S, Eberl G, Freitas A. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun. 2016;7:10888 pubmed 出版商
  234. Leeth C, Racine J, Chapman H, Arpa B, Carrillo J, Carrascal J, et al. B-lymphocytes expressing an Ig specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes. 2016;65:1977-1987 pubmed 出版商
  235. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  236. Buscher K, Wang H, Zhang X, Striewski P, Wirth B, Saggu G, et al. Protection from septic peritonitis by rapid neutrophil recruitment through omental high endothelial venules. Nat Commun. 2016;7:10828 pubmed 出版商
  237. Haribhai D, Ziegelbauer J, Jia S, Upchurch K, Yan K, Schmitt E, et al. Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. J Immunol. 2016;196:3305-17 pubmed 出版商
  238. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  239. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  240. Vila Leahey A, Rogers D, Marshall J. The impact of ranitidine on monocyte responses in the context of solid tumors. Oncotarget. 2016;7:10891-904 pubmed 出版商
  241. Schläger C, Körner H, Krueger M, Vidoli S, Haberl M, Mielke D, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530:349-53 pubmed 出版商
  242. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  243. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  244. Vieyra Garcia P, Wei T, Naym D, Fredholm S, Fink Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res. 2016;22:3328-39 pubmed 出版商
  245. Kim K, Kim N, Lee G. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region. PLoS ONE. 2016;11:e0148576 pubmed 出版商
  246. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  247. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  248. Atkinson S, Hoffmann U, Hamann A, Bach E, Danneskiold Samsøe N, Kristiansen K, et al. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade. Dis Model Mech. 2016;9:427-40 pubmed 出版商
  249. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  250. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  251. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  252. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  253. McDonald P, Read K, Baker C, Anderson A, Powell M, Ballesteros Tato A, et al. IL-7 signalling represses Bcl-6 and the TFH gene program. Nat Commun. 2016;7:10285 pubmed 出版商
  254. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  255. Goldberg G, Cornish A, Murphy J, Pang E, Lim L, Campbell I, et al. G-CSF and Neutrophils Are Nonredundant Mediators of Murine Experimental Autoimmune Uveoretinitis. Am J Pathol. 2016;186:172-84 pubmed 出版商
  256. MikyÅ¡ková R, Å tÄ›pánek I, Indrová M, Bieblová J, Šímová J, Truxová I, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48:953-64 pubmed 出版商
  257. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  258. Sagoo P, Garcia Z, Breart B, Lemaître F, Michonneau D, Albert M, et al. In vivo imaging of inflammasome activation reveals a subcapsular macrophage burst response that mobilizes innate and adaptive immunity. Nat Med. 2016;22:64-71 pubmed 出版商
  259. Ren Y, Wang N, Hu W, Zhang X, Xu J, Wan Y. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination. Sci Rep. 2015;5:18099 pubmed 出版商
  260. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  261. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  262. Andzinski L, Kasnitz N, Stahnke S, Wu C, Gereke M, von Köckritz Blickwede M, et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer. 2016;138:1982-93 pubmed 出版商
  263. Moretto M, Khan I. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. J Immunol. 2016;196:375-84 pubmed 出版商
  264. Chen S, Chang B, Chang S, Tong T, Ham S, Sherry B, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30:833-43 pubmed 出版商
  265. Okada K, Sato S, Sato A, Mandelboim O, Yamasoba T, Kiyono H. Identification and Analysis of Natural Killer Cells in Murine Nasal Passages. PLoS ONE. 2015;10:e0142920 pubmed 出版商
  266. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  267. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  268. Ruan S, Samuelson D, Assouline B, Morre M, Shellito J. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect Immun. 2016;84:108-19 pubmed 出版商
  269. Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, et al. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 2015;21:1272-9 pubmed 出版商
  270. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  271. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  272. McCormack R, de Armas L, Shiratsuchi M, Fiorentino D, Olsson M, Lichtenheld M, et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. elife. 2015;4: pubmed 出版商
  273. Martin Blondel G, Pignolet B, Tietz S, Yshii L, Gebauer C, Périnat T, et al. Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the α4β1-integrin. Eur J Immunol. 2015;45:3302-12 pubmed 出版商
  274. Andersson K, Brisslert M, Cavallini N, Svensson M, Welin A, Erlandsson M, et al. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget. 2015;6:20043-57 pubmed
  275. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  276. Pearce V, Bouabe H, MacQueen A, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206-17 pubmed 出版商
  277. Choi Y, Gullicksrud J, Xing S, Zeng Z, Shan Q, Li F, et al. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol. 2015;16:980-90 pubmed 出版商
  278. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  279. Kaminsky L, Sei J, Parekh N, Davies M, Reider I, Krouse T, et al. Redundant Function of Plasmacytoid and Conventional Dendritic Cells Is Required To Survive a Natural Virus Infection. J Virol. 2015;89:9974-85 pubmed 出版商
  280. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  281. Li Y, Shen C, Zhu B, Shi F, Eisen H, Chen J. Persistent Antigen and Prolonged AKT-mTORC1 Activation Underlie Memory CD8 T Cell Impairment in the Absence of CD4 T Cells. J Immunol. 2015;195:1591-8 pubmed 出版商
  282. Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang J, Bando H, et al. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun. 2015;6:7474 pubmed 出版商
  283. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  284. Deberge M, Ely K, Wright P, Thorp E, Enelow R. Shedding of TNF receptor 2 by effector CD8⁺ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection. J Leukoc Biol. 2015;98:423-34 pubmed 出版商
  285. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  286. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  287. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  288. Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich P, Derouazi M, Walker P. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol. 2015;45:2263-75 pubmed 出版商
  289. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  290. Becker P, Hervouet C, Mason G, KWON S, Klavinskis L. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine. 2015;33:4691-8 pubmed 出版商
  291. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  292. Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 2015;6:6970 pubmed 出版商
  293. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  294. Boding L, Hansen A, Nielsen M, Meroni G, Braunstein T, Woetmann A, et al. Midline 1 controls polarization and migration of murine cytotoxic T cells. Immun Inflamm Dis. 2014;2:262-71 pubmed 出版商
  295. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  296. Vassena L, Giuliani E, Koppensteiner H, Bolduan S, Schindler M, Doria M. HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+ T Lymphocytes. J Virol. 2015;89:5687-700 pubmed 出版商
  297. Charlton J, Tsoukatou D, Mamalaki C, Chatzidakis I. Programmed death 1 regulates memory phenotype CD4 T cell accumulation, inhibits expansion of the effector memory phenotype subset and modulates production of effector cytokines. PLoS ONE. 2015;10:e0119200 pubmed 出版商
  298. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  299. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  300. Talaber G, Tuckermann J, Okret S. ACTH controls thymocyte homeostasis independent of glucocorticoids. FASEB J. 2015;29:2526-34 pubmed 出版商
  301. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  302. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  303. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  304. Huang Y, Clarke F, Karimi M, Roy N, Williamson E, Okumura M, et al. CRK proteins selectively regulate T cell migration into inflamed tissues. J Clin Invest. 2015;125:1019-32 pubmed 出版商
  305. Srivastava R, Khan A, Spencer D, Vahed H, Lopes P, Thai N, et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic. J Immunol. 2015;194:2232-48 pubmed 出版商
  306. Khan A, Srivastava R, Spencer D, Garg S, Fremgen D, Vahed H, et al. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol. 2015;89:3776-92 pubmed 出版商
  307. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  308. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  309. Singh S, Nehete P, Yang G, He H, Nehete B, Hanley P, et al. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant. Vaccines (Basel). 2014;2:686-706 pubmed 出版商
  310. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  311. Krishnamoorthy N, Burkett P, Dalli J, Abdulnour R, Colas R, Ramon S, et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol. 2015;194:863-7 pubmed 出版商
  312. Li Q, Zou J, Wang M, Ding X, Chepelev I, Zhou X, et al. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat Commun. 2014;5:5780 pubmed 出版商
  313. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  314. Skripuletz T, Manzel A, Gropengießer K, Schäfer N, Gudi V, Singh V, et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398-413 pubmed 出版商
  315. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  316. Stoycheva D, Deiser K, Stärck L, Nishanth G, Schlüter D, Uckert W, et al. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J Immunol. 2015;194:553-9 pubmed 出版商
  317. Raker V, Stein J, Montermann E, Maxeiner J, Taube C, Reske Kunz A, et al. Regulation of IgE production and airway reactivity by CD4⁻CD8⁻ regulatory T cells. Immunobiology. 2015;220:490-9 pubmed 出版商
  318. Thueson L, Emmons T, Browning D, Kreitinger J, Shepherd D, Wetzel S. In vitro exposure to the herbicide atrazine inhibits T cell activation, proliferation, and cytokine production and significantly increases the frequency of Foxp3+ regulatory T cells. Toxicol Sci. 2015;143:418-29 pubmed 出版商
  319. Martin P, Dubois C, Jacquier E, Dion S, Mancini Bourgine M, Godon O, et al. TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and exerts an antiviral effect in HBV-persistent mice. Gut. 2015;64:1961-71 pubmed 出版商
  320. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  321. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  322. Mehta P, Nuotio Antar A, Smith C. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J Leukoc Biol. 2015;97:121-34 pubmed 出版商
  323. Kern J, Drutel R, Leanhart S, Bogacz M, Pacholczyk R. Reduction of T cell receptor diversity in NOD mice prevents development of type 1 diabetes but not Sjögren's syndrome. PLoS ONE. 2014;9:e112467 pubmed 出版商
  324. McKinstry K, Strutt T, Bautista B, Zhang W, Kuang Y, Cooper A, et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun. 2014;5:5377 pubmed 出版商
  325. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  326. Bertin S, Lozano Ruiz B, Bachiller V, García Martínez I, Herdman S, Zapater P, et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 2015;8:505-15 pubmed 出版商
  327. Chatterjee S, Thyagarajan K, Kesarwani P, Song J, Soloshchenko M, Fu J, et al. Reducing CD73 expression by IL1?-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res. 2014;74:6048-59 pubmed 出版商
  328. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  329. Schwartz M, Kolhatkar N, Thouvenel C, Khim S, Rawlings D. CD4+ T cells and CD40 participate in selection and homeostasis of peripheral B cells. J Immunol. 2014;193:3492-502 pubmed 出版商
  330. Parker K, Sinha P, Horn L, Clements V, Yang H, Li J, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74:5723-33 pubmed 出版商
  331. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  332. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  333. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  334. Boyoglu Barnum S, Chirkova T, Todd S, Barnum T, Gaston K, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88:10569-83 pubmed 出版商
  335. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  336. Madireddi S, Eun S, Lee S, Nemčovičová I, Mehta A, Zajonc D, et al. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med. 2014;211:1433-48 pubmed 出版商
  337. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258-69 pubmed 出版商
  338. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  339. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  340. Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman C. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE. 2014;9:e95728 pubmed 出版商
  341. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  342. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  343. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  344. Hirayama T, Asano Y, Iida H, Watanabe T, Nakamura T, Goitsuka R. Meis1 is required for the maintenance of postnatal thymic epithelial cells. PLoS ONE. 2014;9:e89885 pubmed 出版商
  345. Lee J, Walsh M, Hoehn K, James D, Wherry E, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-9 pubmed 出版商
  346. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  347. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  348. Erlandsson M, Svensson M, Jonsson I, Bian L, Ambartsumian N, Andersson S, et al. Expression of metastasin S100A4 is essential for bone resorption and regulates osteoclast function. Biochim Biophys Acta. 2013;1833:2653-2663 pubmed 出版商
  349. Yockey L, Demehri S, Turkoz M, Turkoz A, Ahern P, Jassim O, et al. The absence of a microbiota enhances TSLP expression in mice with defective skin barrier but does not affect the severity of their allergic inflammation. J Invest Dermatol. 2013;133:2714-2721 pubmed 出版商
  350. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  351. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  352. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  353. Chevrier S, Genton C, Malissen B, Malissen M, Acha Orbea H. Dominant Role of CD80-CD86 Over CD40 and ICOSL in the Massive Polyclonal B Cell Activation Mediated by LAT(Y136F) CD4(+) T Cells. Front Immunol. 2012;3:27 pubmed 出版商
  354. Mathieu M, Cotta Grand N, Daudelin J, Boulet S, Lapointe R, Labrecque N. CD40-activated B cells can efficiently prime antigen-specific naïve CD8+ T cells to generate effector but not memory T cells. PLoS ONE. 2012;7:e30139 pubmed 出版商
  355. Wojno E, Hosken N, Stumhofer J, O Hara A, Mauldin E, Fang Q, et al. A role for IL-27 in limiting T regulatory cell populations. J Immunol. 2011;187:266-73 pubmed 出版商
  356. Zaragoza B, Evaristo C, Kissenpfennig A, Libri V, Malissen B, Rocha B, et al. Cell-to-cell interactions and signals involved in the reconstitution of peripheral CD8 T(CM) and T(EM) cell pools. PLoS ONE. 2011;6:e17423 pubmed 出版商
  357. Guo Z, Li H, Han M, Xu T, Wu X, Zhuang Y. Modeling Sjögren's syndrome with Id3 conditional knockout mice. Immunol Lett. 2011;135:34-42 pubmed 出版商
  358. Lin P, Sun L, Thibodeaux S, Ludwig S, Vadlamudi R, Hurez V, et al. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol. 2010;185:2747-53 pubmed 出版商
  359. Tait E, Jordan K, Dupont C, Harris T, Gregg B, Wilson E, et al. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. J Immunol. 2010;185:1502-12 pubmed 出版商
  360. Engstrom L, Bober L, Chen S, Fine J, Li Y, Stanton M, et al. Kinetic assessment and therapeutic modulation of metabolic and inflammatory profiles in mice on a high-fat and cholesterol diet. PPAR Res. 2010;2010:970164 pubmed 出版商
  361. Sadri N, Lu J, Badura M, Schneider R. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol. 2010;11:1 pubmed 出版商
  362. Schuhmann M, Stegner D, Berna Erro A, Bittner S, Braun A, Kleinschnitz C, et al. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol. 2010;184:1536-42 pubmed 出版商
  363. Blache C, Adriouch S, Calbo S, Drouot L, Dulauroy S, Arnoult C, et al. Cutting edge: CD4-independent development of functional FoxP3+ regulatory T cells. J Immunol. 2009;183:4182-6 pubmed 出版商
  364. Meyer Bahlburg A, Bandaranayake A, Andrews S, Rawlings D. Reduced c-myc expression levels limit follicular mature B cell cycling in response to TLR signals. J Immunol. 2009;182:4065-75 pubmed 出版商
  365. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  366. Kastenmuller W, Gasteiger G, Stross L, Busch D, Drexler I. Cutting edge: mucosal application of a lyophilized viral vector vaccine confers systemic and protective immunity toward intracellular pathogens. J Immunol. 2009;182:2573-7 pubmed 出版商
  367. Cooper M, Elliott J, Keyel P, Yang L, Carrero J, Yokoyama W. Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A. 2009;106:1915-9 pubmed 出版商
  368. Merck E, Voyle R, MacDonald H. Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. J Immunol. 2009;182:183-92 pubmed
  369. Iyer A, Pahar B, Boudreaux M, Wakamatsu N, Roy A, Chouljenko V, et al. Recombinant vesicular stomatitis virus-based west Nile vaccine elicits strong humoral and cellular immune responses and protects mice against lethal challenge with the virulent west Nile virus strain LSU-AR01. Vaccine. 2009;27:893-903 pubmed 出版商
  370. Wells J, Cowled C, Farzaneh F, Noble A. Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol. 2008;181:3422-31 pubmed
  371. Rana S, Byrne S, MacDonald L, Chan C, Halliday G. Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am J Pathol. 2008;172:993-1004 pubmed 出版商
  372. Sridhar S, Reyes Sandoval A, Draper S, Moore A, Gilbert S, Gao G, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822-33 pubmed 出版商
  373. King S, Knorn A, Ohnmacht C, Voehringer D. Accumulation of effector CD4 T cells during type 2 immune responses is negatively regulated by Stat6. J Immunol. 2008;180:754-63 pubmed
  374. Allard E, Hardy M, Leignadier J, Marquis M, Rooney J, Lehoux D, et al. Overexpression of IL-21 promotes massive CD8+ memory T cell accumulation. Eur J Immunol. 2007;37:3069-77 pubmed
  375. Park S, Han Y, Aleyas A, George J, Yoon H, Lee J, et al. Low-dose antigen-experienced CD4+ T cells display reduced clonal expansion but facilitate an effective memory pool in response to secondary exposure. Immunology. 2008;123:426-37 pubmed
  376. Lepenies B, Cramer J, Burchard G, Wagner H, Kirschning C, Jacobs T. Induction of experimental cerebral malaria is independent of TLR2/4/9. Med Microbiol Immunol. 2008;197:39-44 pubmed
  377. Bliss S, Bliss S, Beiting D, Alcaraz A, Appleton J. IL-10 regulates movement of intestinally derived CD4+ T cells to the liver. J Immunol. 2007;178:7974-83 pubmed
  378. Stephens G, Andersson J, Shevach E. Distinct subsets of FoxP3+ regulatory T cells participate in the control of immune responses. J Immunol. 2007;178:6901-11 pubmed
  379. Agrewala J, Brown D, Lepak N, Duso D, Huston G, Swain S. Unique ability of activated CD4+ T cells but not rested effectors to migrate to non-lymphoid sites in the absence of inflammation. J Biol Chem. 2007;282:6106-15 pubmed
  380. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A. 2007;81:652-62 pubmed
  381. Hofmann M, Brinkmann V, Zerwes H. FTY720 preferentially depletes naive T cells from peripheral and lymphoid organs. Int Immunopharmacol. 2006;6:1902-10 pubmed
  382. Hofmann M, Zerwes H. Identification of organ-specific T cell populations by analysis of multiparameter flow cytometry data using DNA-chip analysis software. Cytometry A. 2006;69:533-40 pubmed
  383. Dawes R, Hennig B, Irving W, Petrova S, Boxall S, Ward V, et al. Altered CD45 expression in C77G carriers influences immune function and outcome of hepatitis C infection. J Med Genet. 2006;43:678-84 pubmed
  384. Irwin S, Izzo A, Dow S, Skeiky Y, Reed S, Alderson M, et al. Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun. 2005;73:5809-16 pubmed
  385. Getahun A, Hjelm F, Heyman B. IgE enhances antibody and T cell responses in vivo via CD23+ B cells. J Immunol. 2005;175:1473-82 pubmed
  386. Ise W, Nakamura K, Shimizu N, Goto H, Fujimoto K, Kaminogawa S, et al. Orally tolerized T cells can form conjugates with APCs but are defective in immunological synapse formation. J Immunol. 2005;175:829-38 pubmed
  387. Kelchtermans H, De Klerck B, Mitera T, Van Balen M, Bullens D, Billiau A, et al. Defective CD4+CD25+ regulatory T cell functioning in collagen-induced arthritis: an important factor in pathogenesis, counter-regulated by endogenous IFN-gamma. Arthritis Res Ther. 2005;7:R402-15 pubmed
  388. Yasumi T, Katamura K, Okafuji I, Yoshioka T, Meguro T, Nishikomori R, et al. Limited ability of antigen-specific Th1 responses to inhibit Th2 cell development in vivo. J Immunol. 2005;174:1325-31 pubmed
  389. Mischenko V, Kapina M, Eruslanov E, Kondratieva E, Lyadova I, Young D, et al. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J Infect Dis. 2004;190:2137-45 pubmed
  390. Alcaide P, Fresno M. The Trypanosoma cruzi membrane mucin AgC10 inhibits T cell activation and IL-2 transcription through L-selectin. Int Immunol. 2004;16:1365-75 pubmed
  391. Tchilian E, Dawes R, Hyland L, Montoya M, Le Bon A, Borrow P, et al. Altered CD45 isoform expression affects lymphocyte function in CD45 Tg mice. Int Immunol. 2004;16:1323-32 pubmed
  392. Hequet O, Vocanson M, Saint Mezard P, Kaiserlian D, Nicolas J, Berard F. CD4+ T cells prevent skin autoimmunity during chronic autologous graft-versus-host-disease. Am J Transplant. 2004;4:872-8 pubmed
  393. Ishihara K, Sawa S, Ikushima H, Hirota S, Atsumi T, Kamimura D, et al. The point mutation of tyrosine 759 of the IL-6 family cytokine receptor gp130 synergizes with HTLV-1 pX in promoting rheumatoid arthritis-like arthritis. Int Immunol. 2004;16:455-65 pubmed
  394. Chen B, Cui X, Sempowski G, Domen J, Chao N. Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood. 2004;103:4344-52 pubmed
  395. Tardivel A, Tinel A, Lens S, Steiner Q, Sauberli E, Wilson A, et al. The anti-apoptotic factor Bcl-2 can functionally substitute for the B cell survival but not for the marginal zone B cell differentiation activity of BAFF. Eur J Immunol. 2004;34:509-18 pubmed
  396. Eruslanov E, Majorov K, Orlova M, Mischenko V, Kondratieva T, Apt A, et al. Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge. Clin Exp Immunol. 2004;135:19-28 pubmed
  397. Maris C, Miller J, Altman J, Jacob J. A transgenic mouse model genetically tags all activated CD8 T cells. J Immunol. 2003;171:2393-401 pubmed
  398. Noble A, Leggat J, Inderberg E. CD8+ immunoregulatory cells in the graft-versus-host reaction: CD8 T cells activate dendritic cells to secrete interleukin-12/interleukin-18 and induce T helper 1 autoantibody. Immunology. 2003;109:476-86 pubmed
  399. Otten L, Tacchini Cottier F, Lohoff M, Annunziato F, Cosmi L, Scarpellino L, et al. Deregulated MHC class II transactivator expression leads to a strong Th2 bias in CD4+ T lymphocytes. J Immunol. 2003;170:1150-7 pubmed
  400. Hoag K, Nashold F, Goverman J, Hayes C. Retinoic acid enhances the T helper 2 cell development that is essential for robust antibody responses through its action on antigen-presenting cells. J Nutr. 2002;132:3736-9 pubmed
  401. Wu T, Lee J, Lai Y, Hsu J, Tsai C, Lee Y, et al. Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15 receptor alpha-chain. J Immunol. 2002;168:705-12 pubmed
  402. Nakayama T, Kasprowicz D, Yamashita M, Schubert L, Gillard G, Kimura M, et al. The generation of mature, single-positive thymocytes in vivo is dysregulated by CD69 blockade or overexpression. J Immunol. 2002;168:87-94 pubmed
  403. Schneider P, Takatsuka H, Wilson A, Mackay F, Tardivel A, Lens S, et al. Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. J Exp Med. 2001;194:1691-7 pubmed
  404. Campbell D, Kim C, Butcher E. Separable effector T cell populations specialized for B cell help or tissue inflammation. Nat Immunol. 2001;2:876-81 pubmed
  405. Zhang J, Kabra N, Cado D, Kang C, Winoto A. FADD-deficient T cells exhibit a disaccord in regulation of the cell cycle machinery. J Biol Chem. 2001;276:29815-8 pubmed
  406. Radoja S, Saio M, Frey A. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol. 2001;166:6074-83 pubmed
  407. Van Stipdonk M, Lemmens E, Schoenberger S. Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol. 2001;2:423-9 pubmed
  408. Attinger A, MacDonald H, Acha Orbea H. Lymphoid environment limits superantigen and antigen-induced T cell proliferation at high precursor frequency. Eur J Immunol. 2001;31:884-93 pubmed
  409. Magner W, Kazim A, Stewart C, Romano M, Catalano G, Grande C, et al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 2000;165:7017-24 pubmed
  410. Jelley Gibbs D, Lepak N, Yen M, Swain S. Two distinct stages in the transition from naive CD4 T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J Immunol. 2000;165:5017-26 pubmed
  411. Ding Z, Babensee J, Simon S, Lu H, Perrard J, Bullard D, et al. Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J Immunol. 1999;163:5029-38 pubmed
  412. Zerrahn J, Volkmann A, Coles M, Held W, Lemonnier F, Raulet D. Class I MHC molecules on hematopoietic cells can support intrathymic positive selection of T cell receptor transgenic T cells. Proc Natl Acad Sci U S A. 1999;96:11470-5 pubmed
  413. Eberl G, Lees R, Smiley S, Taniguchi M, Grusby M, MacDonald H. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J Immunol. 1999;162:6410-9 pubmed
  414. Katakai T, Mori K, Masuda T, Shimizu A. Differential localization of Th1 and Th2 cells in autoimmune gastritis. Int Immunol. 1998;10:1325-34 pubmed
  415. Liu L, Rich B, Inobe J, Chen W, Weiner H. Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4+ T cells to secrete IL-4. Int Immunol. 1998;10:1017-26 pubmed
  416. Shen X, Konig R. Regulation of T cell immunity and tolerance in vivo by CD4. Int Immunol. 1998;10:247-57 pubmed
  417. Lepault F, Gagnerault M, Faveeuw C, Bazin H, Boitard C. Lack of L-selectin expression by cells transferring diabetes in NOD mice: insights into the mechanisms involved in diabetes prevention by Mel-14 antibody treatment. Eur J Immunol. 1995;25:1502-7 pubmed
  418. Ley K, Bullard D, Arbones M, Bosse R, Vestweber D, Tedder T, et al. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J Exp Med. 1995;181:669-75 pubmed
  419. Lewinsohn D, Bargatze R, Butcher E. Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes. J Immunol. 1987;138:4313-21 pubmed
  420. Siegelman M, Cheng I, Weissman I, Wakeland E. The mouse lymph node homing receptor is identical with the lymphocyte cell surface marker Ly-22: role of the EGF domain in endothelial binding. Cell. 1990;61:611-22 pubmed
  421. Chaffin K, Perlmutter R. A pertussis toxin-sensitive process controls thymocyte emigration. Eur J Immunol. 1991;21:2565-73 pubmed