这是一篇来自已证抗体库的有关小鼠 LGALS3 (Lgals3) 的综述,是根据58篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合LGALS3 抗体。
LGALS3 同义词: GBP; L-34; Mac-2; gal3

艾博抗(上海)贸易有限公司
小鼠 单克隆(A3A12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab2785)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). J Neuroinflammation (2022) ncbi
domestic rabbit 单克隆(EP2775Y)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab76245)被用于被用于免疫印迹在人类样本上 (图 2b). Thorac Cancer (2022) ncbi
小鼠 单克隆(A3A12)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1h
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab2785)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1h). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab53082)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a). BMC Musculoskelet Disord (2021) ncbi
domestic rabbit 单克隆(EP2775Y)
  • 免疫组化; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab76245)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2). Ren Fail (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司LGALS3抗体(abcam, ab53082)被用于被用于免疫组化在小鼠样本上 (图 6). Theranostics (2021) ncbi
小鼠 单克隆(A3A12)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab2785)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 7a). Theranostics (2020) ncbi
domestic rabbit 单克隆(EP2775Y)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1c
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab76245)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1c). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1a
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab53082)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Front Endocrinol (Lausanne) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab53082)被用于被用于免疫印迹在大鼠样本上 (图 4b). Mol Pain (2020) ncbi
domestic rabbit 单克隆(EP2775Y)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 4a
  • 免疫印迹; 大鼠; 1:5000; 图 4d
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab76245)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4d). Biosci Rep (2019) ncbi
小鼠 单克隆(A3A12)
  • 免疫细胞化学; 小鼠; 图 7a
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, A3A12)被用于被用于免疫细胞化学在小鼠样本上 (图 7a). PLoS Pathog (2016) ncbi
小鼠 单克隆(A3A12)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab2785)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(A3A12)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab2785)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Biomaterials (2015) ncbi
小鼠 单克隆(A3A12)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司LGALS3抗体(Abcam, ab2785)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B2C10)
  • 免疫印迹; 小鼠; 1:500; 图 s6b
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-32790)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s6b). Mol Neurodegener (2022) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s15b
  • 免疫细胞化学; 小鼠; 1:50; 图 2e
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-23938)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s15b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2e). Theranostics (2022) ncbi
小鼠 单克隆(B2C10)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1g
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1g
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-32790)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1g) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1g). Nat Commun (2022) ncbi
大鼠 单克隆(M3/38)
  • 免疫细胞化学; 小鼠; 1:250; 图 2b
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-23938)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 2b). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(M3/38)
  • 免疫细胞化学; 小鼠; 图 6b
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-23938)被用于被用于免疫细胞化学在小鼠样本上 (图 6b). Sci Rep (2017) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-23938)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化基因敲除验证; 小鼠; 图 7
  • 免疫印迹基因敲除验证; 小鼠; 图 5
  • 免疫组化-石蜡切片; 小鼠; 图 7
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, M3/38)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 7), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 5) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Kidney Int (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-23938)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a). Am J Physiol Renal Physiol (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫沉淀; 人类; 图 1
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, M3/38)被用于被用于免疫沉淀在人类样本上 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(B2C10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-32790)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(B2C10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-32790)被用于被用于免疫印迹在人类样本上 (图 1). Glycobiology (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-23938)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Glia (2016) ncbi
小鼠 单克隆(B2C10)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术LGALS3抗体(Santa Cruz Biotechnology, sc-32790)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Thyroid (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫印迹; 小鼠; 1:5000; 图 4.e,f
圣克鲁斯生物技术LGALS3抗体(Santa Cruz, sc-23938)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4.e,f). Nat Commun (2015) ncbi
BioLegend
大鼠 单克隆(M3/38)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 6d
BioLegendLGALS3抗体(BioLegend, 125402)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 6d). Nat Neurosci (2022) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 1:500; 图 3b, 3d
BioLegendLGALS3抗体(BioLegend, 125401)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3b, 3d). elife (2021) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
BioLegendLGALS3抗体(Biolegend, 125402)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Neuron (2021) ncbi
大鼠 单克隆(M3/38)
BioLegendLGALS3抗体(BioLegend, M3/38)被用于. Nature (2020) ncbi
大鼠 单克隆(M3/38)
  • 流式细胞仪; 人类; 0.05 ug/ml
BioLegendLGALS3抗体(Biolegend, 125410)被用于被用于流式细胞仪在人类样本上浓度为0.05 ug/ml. Arterioscler Thromb Vasc Biol (2020) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:500
BioLegendLGALS3抗体(BioLegend, 125,401)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Mol Metab (2020) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 人类; 图 7h
BioLegendLGALS3抗体(BioLegend, 125403)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7h). Cancer Cell (2019) ncbi
大鼠 单克隆(M3/38)
  • 免疫印迹; 小鼠; 图 2
BioLegendLGALS3抗体(Biolegend, M3-38)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化; 小鼠; 图 s9
BioLegendLGALS3抗体(Biolegend, 125401)被用于被用于免疫组化在小鼠样本上 (图 s9). Nat Neurosci (2016) ncbi
大鼠 单克隆(M3/38)
BioLegendLGALS3抗体(BioLegend, 125408)被用于. Nat Commun (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫组化-石蜡切片; 人类; 1:50
BioLegendLGALS3抗体(BioLegend, clone M3/38)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. PLoS ONE (2015) ncbi
大鼠 单克隆(M3/38)
  • 免疫细胞化学; 犬
BioLegendLGALS3抗体(Biolegend, 125401)被用于被用于免疫细胞化学在犬样本上. J Cell Sci (2015) ncbi
赛默飞世尔
大鼠 单克隆(eBioM3/38 (M3/38))
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 3i
赛默飞世尔LGALS3抗体(Invitrogen, 14-5301-82)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 3i). Nat Commun (2022) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 免疫组化; 小鼠; 1:150; 图 2e
赛默飞世尔LGALS3抗体(eBioscience, eBioM3/38 (M3/38))被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 2e). Cell Rep (2021) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛默飞世尔LGALS3抗体(eBioscience, 14-5301-82)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). elife (2021) ncbi
小鼠 单克隆(A3A12)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1c, 4a
赛默飞世尔LGALS3抗体(Thermo Fisher, A3A12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1c, 4a). PLoS ONE (2020) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔LGALS3抗体(eBioscience, eBioM3/38)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Neurosci (2018) ncbi
小鼠 单克隆(B2C10)
  • 抑制或激活实验; 小鼠; 图 st1
赛默飞世尔LGALS3抗体(Thermo, MA1-40229)被用于被用于抑制或激活实验在小鼠样本上 (图 st1). Sci Rep (2017) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔LGALS3抗体(ebioscience, 12-5301-83)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Death Dis (2016) ncbi
大鼠 单克隆(eBioM3/38 (M3/38))
  • 流式细胞仪; 小鼠; 1:300; 表 1
赛默飞世尔LGALS3抗体(eBioscience, 12-5301)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (表 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(A3A12)
  • 免疫印迹; 小鼠; 1:2000
  • 免疫印迹; 人类; 1:2000
赛默飞世尔LGALS3抗体(Affinity Bioreagents, A3A12)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 和 被用于免疫印迹在人类样本上浓度为1:2000. Am J Pathol (2008) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 6b
安迪生物R&DLGALS3抗体(R&D Systems, AF1197)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 6b). Acta Neuropathol Commun (2021) ncbi
大鼠 单克隆(202213)
  • mass cytometry; 小鼠; 图 s3
安迪生物R&DLGALS3抗体(R&D Systems, MAB1197)被用于被用于mass cytometry在小鼠样本上 (图 s3). EMBO J (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠
安迪生物R&DLGALS3抗体(R&D Systems, AF1197)被用于被用于免疫组化在小鼠样本上. J Endocrinol (2021) ncbi
Cedarlanelabs
单克隆(M3/38)
  • 免疫组化; 小鼠; 图 4d
CedarlanelabsLGALS3抗体(Cedarlane, CL8942B)被用于被用于免疫组化在小鼠样本上 (图 4d). Int J Mol Sci (2021) ncbi
单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 图 6
CedarlanelabsLGALS3抗体(Cedarlane, M3/38)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Physiol Rep (2021) ncbi
单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6a
CedarlanelabsLGALS3抗体(Cedarlane, CL8942B)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6a). J Exp Med (2016) ncbi
单克隆(M3/38)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
CedarlanelabsLGALS3抗体(Cedarlane, M3/38)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). PLoS ONE (2015) ncbi
单克隆(M3/38)
  • 免疫组化; 小鼠; 1:100
CedarlanelabsLGALS3抗体(Cedarlane, CL8942B)被用于被用于免疫组化在小鼠样本上浓度为1:100. Tissue Antigens (2014) ncbi
ATCC
大鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 表 1
ATCCLGALS3抗体(American type culture collection, TIB-166)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (表 1). Front Cell Neurosci (2015) ncbi
文章列表
  1. Kaya T, Mattugini N, Liu L, Ji H, Cantuti Castelvetri L, Wu J, et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat Neurosci. 2022;25:1446-1457 pubmed 出版商
  2. O Shea T, Ao Y, Wang S, Wollenberg A, Kim J, Ramos Espinoza R, et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun. 2022;13:5702 pubmed 出版商
  3. Tabel M, Wolf A, Szczepan M, Xu H, J xe4 gle H, Moehle C, et al. Genetic targeting or pharmacological inhibition of galectin-3 dampens microglia reactivity and delays retinal degeneration. J Neuroinflammation. 2022;19:229 pubmed 出版商
  4. Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, et al. Galectin-3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in HER2-positive breast cancer cells. Thorac Cancer. 2022;13:1961-1973 pubmed 出版商
  5. Liu W, Zhou H, Wang H, Zhang Q, Zhang R, Willard B, et al. IL-1R-IRAKM-Slc25a1 signaling axis reprograms lipogenesis in adipocytes to promote diet-induced obesity in mice. Nat Commun. 2022;13:2748 pubmed 出版商
  6. Zhu J, Pittman S, Dhavale D, French R, Patterson J, Kaleelurrrahuman M, et al. VCP suppresses proteopathic seeding in neurons. Mol Neurodegener. 2022;17:30 pubmed 出版商
  7. Maiseyeu A, Di L, Ravodina A, Barajas Espinosa A, Sakamoto A, Chaplin A, et al. Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis. Theranostics. 2022;12:2741-2757 pubmed 出版商
  8. Günes Günsel G, Conlon T, Jeridi A, Kim R, Ertuz Z, Lang N, et al. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun. 2022;13:1303 pubmed 出版商
  9. Liu Y, Zhao Y, Shukha Y, Lu H, Wang L, Liu Z, et al. Dysregulated oxalate metabolism is a driver and therapeutic target in atherosclerosis. Cell Rep. 2021;36:109420 pubmed 出版商
  10. Credendino S, De Menna M, Cantone I, Moccia C, Esposito M, Di Guida L, et al. FOXE1-Dependent Regulation of Macrophage Chemotaxis by Thyroid Cells In Vitro and In Vivo. Int J Mol Sci. 2021;22: pubmed 出版商
  11. Ribeiro T, Delgado García L, Porcionatto M. Notch1 and Galectin-3 Modulate Cortical Reactive Astrocyte Response After Brain Injury. Front Cell Dev Biol. 2021;9:649854 pubmed 出版商
  12. Emre C, Do K, Jun B, Hjorth E, Alcalde S, Kautzmann M, et al. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:116 pubmed 出版商
  13. Chen L, Cheng S, Sun K, Wang J, Liu X, Zhao Y, et al. Changes in macrophage and inflammatory cytokine expressions during fracture healing in an ovariectomized mice model. BMC Musculoskelet Disord. 2021;22:494 pubmed 出版商
  14. Li N, Zhao S, Zhang Z, Zhu Y, Gliniak C, Vishvanath L, et al. Adiponectin preserves metabolic fitness during aging. elife. 2021;10: pubmed 出版商
  15. Lagnado A, Leslie J, Ruchaud Sparagano M, Victorelli S, Hirsova P, Ogrodnik M, et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 2021;40:e106048 pubmed 出版商
  16. Ruan L, Yao X, Li W, Zhang L, Yang H, Sun J, et al. Effect of galectin-3 in the pathogenesis of arteriovenous fistula stenosis formation. Ren Fail. 2021;43:566-576 pubmed 出版商
  17. Wetzel M, Stanley K, Maity S, Madesh M, Bopassa J, Awad A. Homoarginine ameliorates diabetic nephropathy independent of nitric oxide synthase-3. Physiol Rep. 2021;9:e14766 pubmed 出版商
  18. Safaiyan S, Besson Girard S, Kaya T, Cantuti Castelvetri L, Liu L, Ji H, et al. White matter aging drives microglial diversity. Neuron. 2021;109:1100-1117.e10 pubmed 出版商
  19. Tapias A, Lazaro D, Yin B, Rasa S, Krepelova A, Kelmer Sacramento E, et al. HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. elife. 2021;10: pubmed 出版商
  20. Li B, Yin J, Chang J, Zhang J, Wang Y, Huang H, et al. Apelin/APJ relieve diabetic cardiomyopathy by reducing microvascular dysfunction. J Endocrinol. 2021;249:1-18 pubmed 出版商
  21. Varasteh Z, De Rose F, Mohanta S, Li Y, Zhang X, Miritsch B, et al. Imaging atherosclerotic plaques by targeting Galectin-3 and activated macrophages using (89Zr)-DFO- Galectin3-F(ab')2 mAb. Theranostics. 2021;11:1864-1876 pubmed 出版商
  22. Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics. 2020;10:10712-10728 pubmed 出版商
  23. Song H, Xu T, Feng X, Lai Y, Yang Y, Zheng H, et al. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine. 2020;57:102832 pubmed 出版商
  24. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  25. Di Gregoli K, Somerville M, Bianco R, Thomas A, Frankow A, Newby A, et al. Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40:1491-1509 pubmed 出版商
  26. Zhao S, Li N, Zhu Y, Straub L, Zhang Z, Wang M, et al. Partial leptin deficiency confers resistance to diet-induced obesity in mice. Mol Metab. 2020;37:100995 pubmed 出版商
  27. Kasacka I, Piotrowska Z, Niezgoda M, Lewandowska A, Łebkowski W. Ageing-related changes in the levels of β-catenin, CacyBP/SIP, galectin-3 and immunoproteasome subunit LMP7 in the heart of men. PLoS ONE. 2020;15:e0229462 pubmed 出版商
  28. Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I, et al. Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne). 2020;11:30 pubmed 出版商
  29. Yun Z, Wang Y, Feng W, Zang J, Zhang D, Gao Y. Overexpression of microRNA-185 alleviates intervertebral disc degeneration through inactivation of the Wnt/β-catenin signaling pathway and downregulation of Galectin-3. Mol Pain. 2020;16:1744806920902559 pubmed 出版商
  30. Chen P, Zhao D, Li J, Liang X, Li J, Chang A, et al. Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. Cancer Cell. 2019;35:868-884.e6 pubmed 出版商
  31. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  32. Quenum Zangbede F, Chauhan A, Sharma J, Mishra B. Galectin-3 in M2 Macrophages Plays a Protective Role in Resolution of Neuropathology in Brain Parasitic Infection by Regulating Neutrophil Turnover. J Neurosci. 2018;38:6737-6750 pubmed 出版商
  33. Hubber A, Kubori T, Coban C, Matsuzawa T, Ogawa M, Kawabata T, et al. Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep. 2017;7:44795 pubmed 出版商
  34. Yip P, Carrillo Jimenez A, King P, Vilalta A, Nomura K, Chau C, et al. Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration. Sci Rep. 2017;7:41689 pubmed 出版商
  35. Abshire C, Dragoi A, Roy C, Ivanov S. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis. PLoS Pathog. 2016;12:e1006088 pubmed 出版商
  36. Li M, Bozzacco L, Hoffmann H, Breton G, Loschko J, Xiao J, et al. Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion. J Exp Med. 2016;213:2931-2947 pubmed
  37. Cheng X, Boza Serrano A, Turesson M, Deierborg T, Ekblad E, Voss U. Galectin-3 causes enteric neuronal loss in mice after left sided permanent middle cerebral artery occlusion, a model of stroke. Sci Rep. 2016;6:32893 pubmed 出版商
  38. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  39. Ilmer M, Mazurek N, Byrd J, Ramirez K, Hafley M, Alt E, et al. Cell surface galectin-3 defines a subset of chemoresistant gastrointestinal tumor-initiating cancer cells with heightened stem cell characteristics. Cell Death Dis. 2016;7:e2337 pubmed 出版商
  40. Balbo B, Amaral A, Fonseca J, de Castro I, Salemi V, Souza L, et al. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout. Kidney Int. 2016;90:580-97 pubmed 出版商
  41. Yoshioka W, Kawaguchi T, Nishimura N, Akagi T, Fujisawa N, Yanagisawa H, et al. Polyuria-associated hydronephrosis induced by xenobiotic chemical exposure in mice. Am J Physiol Renal Physiol. 2016;311:F752-F762 pubmed 出版商
  42. Fritsch K, Mernberger M, Nist A, Stiewe T, Brehm A, Jacob R. Galectin-3 interacts with components of the nuclear ribonucleoprotein complex. BMC Cancer. 2016;16:502 pubmed 出版商
  43. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 2016;19:995-8 pubmed 出版商
  44. Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, et al. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY). 2016;8:16-33 pubmed
  45. Tiwari A, Swamy S, Gopinath K, Kumar A. Genomic amplification upregulates estrogen-related receptor alpha and its depletion inhibits oral squamous cell carcinoma tumors in vivo. Sci Rep. 2015;5:17621 pubmed 出版商
  46. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  47. Dhondup Y, Sjaastad I, Scott H, Sandanger Ø, Zhang L, Haugstad S, et al. Sustained Toll-Like Receptor 9 Activation Promotes Systemic and Cardiac Inflammation, and Aggravates Diastolic Heart Failure in SERCA2a KO Mice. PLoS ONE. 2015;10:e0139715 pubmed 出版商
  48. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155-65 pubmed 出版商
  49. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  50. Smolders S, Smolders S, Swinnen N, Gärtner A, Rigo J, Legendre P, et al. Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo. Front Cell Neurosci. 2015;9:301 pubmed 出版商
  51. Ralhan R, Veyhl J, Chaker S, Assi J, Alyass A, Jeganathan A, et al. Immunohistochemical Subcellular Localization of Protein Biomarkers Distinguishes Benign from Malignant Thyroid Nodules: Potential for Fine-Needle Aspiration Biopsy Clinical Application. Thyroid. 2015;25:1224-34 pubmed 出版商
  52. Abreu Vieira G, Fischer A, Mattsson C, de Jong J, Shabalina I, Ryden M, et al. Cidea improves the metabolic profile through expansion of adipose tissue. Nat Commun. 2015;6:7433 pubmed 出版商
  53. Punt S, Thijssen V, Vrolijk J, de Kroon C, Gorter A, Jordanova E. Galectin-1, -3 and -9 Expression and Clinical Significance in Squamous Cervical Cancer. PLoS ONE. 2015;10:e0129119 pubmed 出版商
  54. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed 出版商
  55. Luo Z, Jiang L, Xu Y, Li H, Xu W, Wu S, et al. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials. 2015;52:463-75 pubmed 出版商
  56. Lin Y, Liu P, Adhikari N, Hall J, Wei L. RIP140 contributes to foam cell formation and atherosclerosis by regulating cholesterol homeostasis in macrophages. J Mol Cell Cardiol. 2015;79:287-94 pubmed 出版商
  57. Miró Julià C, Escoda Ferran C, Carrasco E, Moeller J, Vadekaer D, Gao X, et al. Expression of the innate defense receptor S5D-SRCRB in the urogenital tract. Tissue Antigens. 2014;83:273-85 pubmed 出版商
  58. Farnworth S, Henderson N, Mackinnon A, Atkinson K, Wilkinson T, Dhaliwal K, et al. Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol. 2008;172:395-405 pubmed 出版商