这是一篇来自已证抗体库的有关小鼠 Ly6g的综述,是根据773篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ly6g 抗体。
Ly6g 同义词: Gr-1; Gr1; Ly-6G

其他
Ly6g抗体(BioLegend, RB6-8C5)被用于. J Exp Med (2017) ncbi
Ly6g抗体(BioLegend, RB6-8C5)被用于. J Exp Med (2017) ncbi
Ly6g抗体(BioLegend, RB6-8C5)被用于. Oncogene (2017) ncbi
BioLegend
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:400; 图 1a, 1d, s2f
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1a, 1d, s2f). Commun Biol (2020) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 s3d
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3d). Commun Biol (2020) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 s3a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 s3a). Science (2020) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 s3a, s3b
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 s3a, s3b). Science (2020) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:50; 图 2a
BioLegend Ly6g抗体(BioLegend, 108111)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2a). Stem Cell Res Ther (2020) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Science (2020) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s4e, s6a
BioLegend Ly6g抗体(Biolegend, 108443)被用于被用于流式细胞仪在小鼠样本上 (图 s4e, s6a). Nat Commun (2020) ncbi
大鼠 单克隆(HK1.4)
  • mass cytometry; 小鼠; 1:300; 图 s33c
BioLegend Ly6g抗体(Biolegend, 128002)被用于被用于mass cytometry在小鼠样本上浓度为1:300 (图 s33c). Nat Commun (2020) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s1i
BioLegend Ly6g抗体(BioLegend, 127616)被用于被用于流式细胞仪在小鼠样本上 (图 s1i). Cell Rep (2020) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s16d
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s16d). Nat Commun (2020) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Acta Neuropathol Commun (2020) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Acta Neuropathol Commun (2020) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Acta Neuropathol Commun (2020) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Sci Adv (2019) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
BioLegend Ly6g抗体(Biolegend, 127601)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Cell (2019) ncbi
大鼠 单克隆(E13-161.7)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
BioLegend Ly6g抗体(Biolegend, 122505)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Cell (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 0.1 ug/ml; 图 s1g
BioLegend Ly6g抗体(BioLegend, 127617)被用于被用于流式细胞仪在小鼠样本上浓度为0.1 ug/ml (图 s1g). Sci Adv (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:1000; 图 s2
BioLegend Ly6g抗体(BioLegend, 128037)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s2). Nature (2019) ncbi
大鼠 单克隆(E13-161.7)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
BioLegend Ly6g抗体(Biolegend, 122516)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). Nat Metab (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2s2a
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2s2a). elife (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Ly6g抗体(BioLegend, 127637)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Ly6g抗体(BioLegend, 128039)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(Biolegend, 122514)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cell (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3c). elife (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:400; 图 ex3a
BioLegend Ly6g抗体(BioLegend, 128022)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 ex3a). Nature (2019) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2i
BioLegend Ly6g抗体(BioLegend, 127610)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2i). Nature (2019) ncbi
大鼠 单克隆(1A8)
  • mass cytometry; 小鼠; 图 3, s2
BioLegend Ly6g抗体(Biolegend, 127637)被用于被用于mass cytometry在小鼠样本上 (图 3, s2). Science (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Ly6g抗体(Biolegend, 108420)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2e
BioLegend Ly6g抗体(Biolegend, 108424)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Cell (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ly6g抗体(BioLegend, HK 1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1d). elife (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:150; 图 s3d
BioLegend Ly6g抗体(Biolegend, 128018)被用于被用于流式细胞仪在小鼠样本上浓度为1:150 (图 s3d). Nat Commun (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 s3d
BioLegend Ly6g抗体(Biolegend, 127622)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3d). Nat Commun (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 7a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Clin Invest (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s7c
BioLegend Ly6g抗体(Biolegend, 108431)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1l
BioLegend Ly6g抗体(Biolegend, 108127)被用于被用于流式细胞仪在小鼠样本上 (图 s1l). Cell (2019) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). elife (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 s3b
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3b). J Clin Invest (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). J Clin Invest (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Ly6g抗体(Biolegend, 127618)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2019) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-冰冻切片; 小鼠; 1.25 ug/ml; 图 3b
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1.25 ug/ml (图 3b). Stroke (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:100; 图 e8a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e8a). Nature (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:100; 图 4g
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4g). Nature (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 e8a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e8a). Nature (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. elife (2019) ncbi
大鼠 单克隆(1A8)
  • 免疫细胞化学; 小鼠; 图 s1d
BioLegend Ly6g抗体(BioLegend, 127605)被用于被用于免疫细胞化学在小鼠样本上 (图 s1d). Cell (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫细胞化学; 小鼠; 图 s1f
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于免疫细胞化学在小鼠样本上 (图 s1f). Cell (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Ly6g抗体(Biolegend, 128037)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1 ug/ml; 图 s12
BioLegend Ly6g抗体(BioLegend, 108416)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml (图 s12). Science (2019) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 图 e5c
  • 流式细胞仪; 小鼠; 图 e5b
BioLegend Ly6g抗体(Biolegend, 127602)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e5c) 和 被用于流式细胞仪在小鼠样本上 (图 e5b). Nature (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
BioLegend Ly6g抗体(BioLegend, 108401)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Cancer Cell (2019) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 图 3i
BioLegend Ly6g抗体(Biolegend, 127602)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3i). Nat Commun (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 人类; 1:100; 图 11a
BioLegend Ly6g抗体(BioLegend, 127624)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 11a). Nat Commun (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Ly6g抗体(Biolegend, 108106)被用于被用于流式细胞仪在小鼠样本上 (图 1f). EMBO J (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1a, s9
BioLegend Ly6g抗体(BioLegend, 108119)被用于被用于流式细胞仪在小鼠样本上 (图 1a, s9). Antioxid Redox Signal (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a, s2
BioLegend Ly6g抗体(BioLegend, 108410)被用于被用于流式细胞仪在小鼠样本上 (图 1a, s2). Antioxid Redox Signal (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Ly6g抗体(Biolegend, 128015)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Cell (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Ly6g抗体(Biolegend, 127625)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Cell (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:700; 图 ex2a
BioLegend Ly6g抗体(BioLegend, 128006)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 ex2a). Nature (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:700; 图 ex2a
BioLegend Ly6g抗体(BioLegend, 127614)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 ex2a). Nature (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:700; 图 ex3a
BioLegend Ly6g抗体(BioLegend, 108126)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 ex3a). Nature (2019) ncbi
大鼠 单克隆(D7)
  • 免疫细胞化学; 小鼠; 图 ev3a
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于免疫细胞化学在小鼠样本上 (图 ev3a). EMBO J (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Blood (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Blood (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend Ly6g抗体(Biolegend, 128014)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cell (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Ly6g抗体(Biolegend, 127622)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell (2019) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Ly6g抗体(BioLegend, 122508)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200; 图 6s2
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6s2). elife (2019) ncbi
大鼠 单克隆(HK1.4)
BioLegend Ly6g抗体(Biolegend, 128028)被用于. Cell (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:100; 图 5c
BioLegend Ly6g抗体(Biolegend, 128035)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5c). Nat Cell Biol (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 5c
BioLegend Ly6g抗体(Biolegend, 12761)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5c). Nat Cell Biol (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Glia (2019) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:100; 图 4d
BioLegend Ly6g抗体(Biolegend, 127608)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4d). Neurochem Int (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s5f
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s5f). Science (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 e1b
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 e1b). Nature (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegend Ly6g抗体(biolegend, 108126)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). Cell Rep (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s20b
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s20b). Nat Commun (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2f, s2e
BioLegend Ly6g抗体(Biolegend, 128015)被用于被用于流式细胞仪在小鼠样本上 (图 2f, s2e). Cell Rep (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2f, s2e
BioLegend Ly6g抗体(Biolegend, 127612)被用于被用于流式细胞仪在小鼠样本上 (图 2f, s2e). Cell Rep (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(BioLegend, 127606)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Stem Cell (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ly6g抗体(BioLegend, 108126)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell Stem Cell (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 s13k
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s13k). Nat Commun (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:100; 图 4a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4a). Nat Commun (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). JCI Insight (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s8a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). JCI Insight (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:300; 图 3e, 3h
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 3e, 3h). Front Immunol (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:100; 图 3e, 3h
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3e, 3h). Front Immunol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS ONE (2018) ncbi
大鼠 单克隆(HK1.4)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d). J Clin Invest (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(eBiosciences, E13-161.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). EMBO J (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5p
BioLegend Ly6g抗体(Biolegend, 128028)被用于被用于流式细胞仪在小鼠样本上 (图 5p). Cell Rep (2018) ncbi
大鼠 单克隆(1A8)
  • 免疫组化; 小鼠; 图 s2a
BioLegend Ly6g抗体(Biolegend, 127601)被用于被用于免疫组化在小鼠样本上 (图 s2a). Sci Rep (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Clin Invest (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ly6g抗体(BioLegend, 127624)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ly6g抗体(BioLegend, 128032)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Front Immunol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Front Immunol (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s6b
BioLegend Ly6g抗体(BioLegend, 108412)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Immunity (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Neuroinflammation (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 s4
BioLegend Ly6g抗体(Biolegend, 128011)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 s4). Nat Commun (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Sci Rep (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 人类; 图 s1a
BioLegend Ly6g抗体(Biolegend, 128030)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(E13-161.7)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
BioLegend Ly6g抗体(Biolegend, e13-161.7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). Nature (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2d
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nature (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Nature (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Neurosci (2018) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(BioLegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Cell Biol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Ly6g抗体(Biolegend, 128032)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Clin Invest (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(Biolegend, 108408)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Ly6g抗体(Biolegend, 127608)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Clin Invest (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Immunol (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Immunol (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:1000; 图 s3e
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s3e). Circulation (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:1000; 图 s3e
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s3e). Circulation (2018) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Ly6g抗体(BioLegend, 122505)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). EBioMedicine (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 s2a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2a). J Exp Med (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Immunol (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1s1a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1s1a). elife (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1s3a
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1s3a). elife (2018) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(BioLegend, 122520)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Genet (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncoimmunology (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(BioLegend, 128012)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS Pathog (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(BioLegend, 127608)被用于被用于流式细胞仪在小鼠样本上 (图 2a). PLoS Pathog (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Eur J Immunol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 s1a
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1a). Exp Mol Med (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 s1a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1a). Exp Mol Med (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s11
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s11). Oncoimmunology (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Ly6g抗体(Biolegend, 108113)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:300; 图 s3a
BioLegend Ly6g抗体(BioLegend, 127622)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3a). PLoS Biol (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s2c
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). PLoS ONE (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 1:50; 图 2b
BioLegend Ly6g抗体(BioLegend, 108402)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2b). J Immunol Res (2018) ncbi
大鼠 单克隆(1A8)
  • 免疫组化; 小鼠; 1:50; 图 4b
BioLegend Ly6g抗体(BioLegend, 127605)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4b). J Immunol Res (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 7s1a
BioLegend Ly6g抗体(BioLegend, 127645)被用于被用于流式细胞仪在小鼠样本上 (图 7s1a). elife (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Oncotarget (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Oncotarget (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Oncotarget (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Ly6g抗体(BioLegend, IA8)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell Metab (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Mucosal Immunol (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Front Microbiol (2018) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
BioLegend Ly6g抗体(Biolegend, 127601)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). Int J Cancer (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:100; 图 s4a
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4a). Front Immunol (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:300; 图 6e
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6e). Nat Commun (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend Ly6g抗体(BioLegend, 1A85)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Immunol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Immunol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(Biolegend, 1A-8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:600; 图 1a
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:600 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1c
  • 免疫组化; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1c) 和 被用于免疫组化在小鼠样本上. Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ly6g抗体(BioLegend, 128024)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Nature (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ly6g抗体(BioLegend, 127606)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Nature (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:20; 图 3c
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 3c). Mol Pain (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 1:500; 图 3i
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3i). Mol Pain (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200; 图 s5e
BioLegend Ly6g抗体(BioLegend, 108424)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5e). J Clin Invest (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Ly6g抗体(BioLegend, 128037)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend Ly6g抗体(BioLegend, 108120)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Ly6g抗体(BioLegend, 127605)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Ly6g抗体(BioLegend, 128015)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell (2018) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(BioLegend, 122514)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell (2018) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(Biolegend, El3-161.7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Res (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Nat Commun (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Exp Hematol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Immunol (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ly6g抗体(BioLegend, 108407)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cancer Cell (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(BioLegend, 108111)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cancer Cell (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 5h, 5i
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5h, 5i). J Immunol (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Infect Immun (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Ly6g抗体(Biolegend, 108109)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Stem Cell (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s7g
BioLegend Ly6g抗体(BioLegend, 108120)被用于被用于流式细胞仪在小鼠样本上 (图 s7g). Cell (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s5a
BioLegend Ly6g抗体(BioLegend, 108430)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Cell (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Lipid Res (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Ly6g抗体(Biolegend, Hk1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Science (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Neurol (2018) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3a
BioLegend Ly6g抗体(BioLegend, 127620)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3a). Sci Rep (2017) ncbi
大鼠 单克隆(1A8)
  • 免疫组化; 小鼠; 图 4c
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于免疫组化在小鼠样本上 (图 4c). Science (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200; 图 s1d
BioLegend Ly6g抗体(BioLegend, 108430)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1d). Leukemia (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:100; 图 s1g
BioLegend Ly6g抗体(BioLegend, 108114)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1g). Leukemia (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s4e
BioLegend Ly6g抗体(BioLegend, 108116)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). J Clin Invest (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Ly6g抗体(BioLegend, 127602)被用于被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Science (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. Diabetologia (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. Diabetologia (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cancer Res (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cancer Res (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cancer Res (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:100; 图 s2d
BioLegend Ly6g抗体(BioLegend, 127612)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2d). J Endocrinol (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Ly6g抗体(BioLegend, 127623)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Immunity (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Ly6g抗体(BioLegend, 128006)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Immunity (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nature (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1e
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Nature (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
BioLegend Ly6g抗体(BioLegend, 127613)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 表 s1
BioLegend Ly6g抗体(BioLegend, 108120)被用于被用于流式细胞仪在小鼠样本上 (表 s1). J Clin Invest (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Clin Invest (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cell Mol Immunol (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cell Mol Immunol (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell Mol Immunol (2018) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Science (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(Biolegend, 127624)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 6c). J Clin Invest (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Clin Invest (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s3c
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s3c). J Clin Invest (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1f
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 st1a
BioLegend Ly6g抗体(BioLegend, 108424)被用于被用于流式细胞仪在小鼠样本上 (图 st1a). Nature (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). J Exp Med (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Clin Invest (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Nat Med (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 7a
BioLegend Ly6g抗体(biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Exp Med (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 7a
BioLegend Ly6g抗体(biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Exp Med (2017) ncbi
大鼠 单克隆(1A8)
  • 其他; 小鼠; 图 s2a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于其他在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 s2d
BioLegend Ly6g抗体(BioLegend, 108418)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2d). Nature (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Ly6g抗体(BioLegend, 108120)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nature (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 108405)被用于被用于流式细胞仪在小鼠样本上. Oncogene (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:300; 图 5d
BioLegend Ly6g抗体(BioLegend, 128012)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 5d). Nat Commun (2017) ncbi
大鼠 单克隆(HK1.4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6d
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6d). Nat Commun (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4g
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4g). Nat Commun (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3g, 4a, s8a
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 3g, 4a, s8a). Nature (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 图 s6b
BioLegend Ly6g抗体(BioLegend, 108401)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6b). Nature (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nat Commun (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(Biolegend, 1a8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1g
BioLegend Ly6g抗体(BioLegend, 108120)被用于被用于流式细胞仪在小鼠样本上 (图 s1g). Nature (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 表 2
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (表 2). Methods Mol Biol (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 5). Sci Rep (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 表 2
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (表 2). Sci Rep (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:3000; 图 2b
BioLegend Ly6g抗体(BioLegend, 128017)被用于被用于流式细胞仪在小鼠样本上浓度为1:3000 (图 2b). J Immunol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:2000; 图 2b
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000 (图 2b). J Immunol (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Commun (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 2o
BioLegend Ly6g抗体(BioLegend, 127615)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2o). J Neurosci (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 2p
BioLegend Ly6g抗体(BioLegend, 128033)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2p). J Neurosci (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Eur J Immunol (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Rep (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Rep (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Ly6g抗体(biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Leuk Res (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4a). JCI Insight (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). JCI Insight (2017) ncbi
大鼠 单克隆(E13-161.7)
BioLegend Ly6g抗体(BioLegend, 122520)被用于. PLoS ONE (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Mediators Inflamm (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上. Nature (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3i
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3i). PLoS ONE (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3h
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3h). PLoS ONE (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 3b
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3b). Nat Commun (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4
BioLegend Ly6g抗体(BioLegend, 108401)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4). Mol Cancer Res (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:160; 图 5e
BioLegend Ly6g抗体(Biolegend, 108408)被用于被用于流式细胞仪在小鼠样本上浓度为1:160 (图 5e). Nat Commun (2016) ncbi
大鼠 单克隆(1A8)
  • 其他; 小鼠; 图 3a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于其他在小鼠样本上 (图 3a). Cancer Sci (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Cancer Sci (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:300; 图 s3c
BioLegend Ly6g抗体(BioLegend, 108426)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3c). Nature (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Ly6g抗体(BioLegend, 108418)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nat Med (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s5). PLoS ONE (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s8b
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s8b). J Clin Invest (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 s1a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1a). J Clin Invest (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). J Clin Invest (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 7e
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 7e). J Exp Med (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(BioLegend, RB6-8CJ)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). PLoS Pathog (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS Pathog (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS Pathog (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:25; 图 s8
BioLegend Ly6g抗体(BioLegend, 128003)被用于被用于流式细胞仪在小鼠样本上浓度为1:25 (图 s8). Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Ly6g抗体(BioLegend, RB-6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cancer Res (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1G
BioLegend Ly6g抗体(Biolegend, 108114)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1G
BioLegend Ly6g抗体(Biolegend, 108412)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Exp Med (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Nature (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫组化; 小鼠; 1:15,000; 图 st1
BioLegend Ly6g抗体(Biolegend, 127611)被用于被用于免疫组化在小鼠样本上浓度为1:15,000 (图 st1). Sci Rep (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
BioLegend Ly6g抗体(BioLegend, 128018)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). Nat Commun (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Virol (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. J Virol (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Infect Immun (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 人类; 图 5
BioLegend Ly6g抗体(BioLegend, E13-161.7)被用于被用于流式细胞仪在人类样本上 (图 5). Nature (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 人类; 图 5
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在人类样本上 (图 5). Nature (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 127624)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 128018)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 st2
BioLegend Ly6g抗体(Biolegend, 127633)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(D7)
BioLegend Ly6g抗体(Biolegend, 108112)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Mol Ther (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Mol Ther (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:400; 图 7b
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 7b). Nat Commun (2016) ncbi
大鼠 单克隆(D7)
BioLegend Ly6g抗体(BioLegend, 108133)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
BioLegend Ly6g抗体(Biolegend, 108408)被用于. Stem Cell Reports (2016) ncbi
大鼠 单克隆(D7)
BioLegend Ly6g抗体(Biolegend, 108105)被用于. Stem Cell Reports (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 免疫细胞化学; 小鼠; 图 2
BioLegend Ly6g抗体(Biolegend, E13-61.7)被用于被用于免疫细胞化学在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 6D
BioLegend Ly6g抗体(Biolegend, 127624)被用于被用于流式细胞仪在小鼠样本上 (图 6D). Oncoimmunology (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 6D
BioLegend Ly6g抗体(Biolegend, 108422)被用于被用于流式细胞仪在小鼠样本上 (图 6D). Oncoimmunology (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 8A
BioLegend Ly6g抗体(Biolegend, 12760)被用于被用于流式细胞仪在小鼠样本上 (图 8A). Oncoimmunology (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Ly6g抗体(BioLegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 2b
BioLegend Ly6g抗体(BioLegend, 127611)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2b). Nat Methods (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 表 1
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 表 1
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Ly6g抗体(Biolegend, 127605)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Neurosci (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Ly6g抗体(BioLegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 7f
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 7f). J Immunol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1g
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Exp Med (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Infect Immun (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS Negl Trop Dis (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 5a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5a). PLoS Negl Trop Dis (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Oncogene (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Ly6g抗体(biolegend, 128006)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(BioLegend, 108422)被用于被用于流式细胞仪在小鼠样本上 (图 1). elife (2016) ncbi
大鼠 单克隆(HK1.4)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4e
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(BioLegend, 128017)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4e) 和 被用于流式细胞仪在小鼠样本上 (图 4a). Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫细胞化学; 小鼠; 图 2e
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于免疫细胞化学在小鼠样本上 (图 2e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫细胞化学; 小鼠; 图 s6b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于免疫细胞化学在小鼠样本上 (图 s6b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Antimicrob Agents Chemother (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Am J Pathol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5e
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Am J Pathol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Commun (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Commun (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Ly6g抗体(biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
BioLegend Ly6g抗体(BioLegend, 127601)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s6b
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Nat Med (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s6b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Nat Med (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫组化; 小鼠; 2.5 ug/ml; 图 5f
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于免疫组化在小鼠样本上浓度为2.5 ug/ml (图 5f). Lab Invest (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1e
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Oncogene (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s9
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s9). Oncogene (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. Science (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). PLoS Pathog (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 st2
BioLegend Ly6g抗体(BioLegend, 127613)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Atherosclerosis (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 st2
BioLegend Ly6g抗体(BioLegend, 128017)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Atherosclerosis (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Ly6g抗体(BioLegend, 127620)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Immunol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncotarget (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). Nat Commun (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Infect Immun (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:75
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上浓度为1:75. Nat Biotechnol (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 7
BioLegend Ly6g抗体(BioLegend, 122514)被用于被用于流式细胞仪在小鼠样本上 (图 7). Blood (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Ly6g抗体(Biolegend/Ozyme, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 128012)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ly6g抗体(BioLegend, 108120)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Cell Biol (2016) ncbi
大鼠 单克隆(HK1.4)
BioLegend Ly6g抗体(Biolegend, 128026)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(1A8)
BioLegend Ly6g抗体(Biolegend, 127618)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Leukoc Biol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Leukoc Biol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 st1
  • 免疫细胞化学; 小鼠; 图 st1
BioLegend Ly6g抗体(Biolegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上 (图 st1) 和 被用于免疫细胞化学在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-冰冻切片; 小鼠; 图 4i
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4i). Cancer Discov (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫组化; 小鼠; 1:150
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于免疫组化在小鼠样本上浓度为1:150. Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4i
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4i). Nature (2016) ncbi
大鼠 单克隆(D7)
BioLegend Ly6g抗体(Biolegend, 108113)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 8a
BioLegend Ly6g抗体(BioLegend, 108418)被用于被用于流式细胞仪在小鼠样本上 (图 8a). J Biol Chem (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 8a
BioLegend Ly6g抗体(BioLegend, 122514)被用于被用于流式细胞仪在小鼠样本上 (图 8a). J Biol Chem (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Immunol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s6
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Oncotarget (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Oncotarget (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 S7
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 S7). J Clin Invest (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 S7
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 S7). J Clin Invest (2016) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 8
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 8). Oncotarget (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:500; 图 9
BioLegend Ly6g抗体(Biolegend, 127624)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 9). J Clin Invest (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Oncotarget (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫细胞化学; 小鼠; 0.25 ug/ml; 图 3d
BioLegend Ly6g抗体(BioLegend, 127601)被用于被用于免疫细胞化学在小鼠样本上浓度为0.25 ug/ml (图 3d). J Biol Chem (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Gastroenterology (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Transl Med (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 s5a
BioLegend Ly6g抗体(Biolegend, 128012)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5a). Acta Neuropathol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 大鼠; 图 4
BioLegend Ly6g抗体(biolegend, D7)被用于被用于流式细胞仪在大鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(1A8)
BioLegend Ly6g抗体(Biolegend, 127613)被用于. Nat Commun (2016) ncbi
大鼠 单克隆(D7)
  • 免疫细胞化学; 小鼠; 图 1b
BioLegend Ly6g抗体(biolegend, 108101)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Stem Cells (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(Biolegend, 12760)被用于被用于流式细胞仪在小鼠样本上 (图 1). Oncotarget (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:1000; 图 8a
BioLegend Ly6g抗体(Biolegend, 128028)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 8a). Sci Rep (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:500; 图 8a
BioLegend Ly6g抗体(Biolegend, 127624)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 8a). Sci Rep (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s13
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s13). Science (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. J Thorac Oncol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Thorac Oncol (2016) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 1.5:100; 图 9
BioLegend Ly6g抗体(BioLegend, 122507)被用于被用于流式细胞仪在小鼠样本上浓度为1.5:100 (图 9). Nat Commun (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 10k
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 10k). J Exp Med (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 10k
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 10k). J Exp Med (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Immunol (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-冰冻切片; 小鼠; 图 1
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Dis Model Mech (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 108120)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上. EMBO Mol Med (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 30 ug/ml; 图 s1
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为30 ug/ml (图 s1). EMBO Mol Med (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s5
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Aging (Albany NY) (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上. Aging (Albany NY) (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK1-4)被用于被用于流式细胞仪在小鼠样本上. Aging (Albany NY) (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 108113/14)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(HK1.4)
BioLegend Ly6g抗体(Biolegend, 128006)被用于. PLoS ONE (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Theranostics (2015) ncbi
大鼠 单克隆(D7)
BioLegend Ly6g抗体(Biolegend, 108122)被用于. Nat Commun (2015) ncbi
大鼠 单克隆(D7)
BioLegend Ly6g抗体(BioLegend, 108120)被用于. Nat Commun (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Arthritis Rheumatol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Arthritis Rheumatol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(BioLegend, clone D7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Protoc (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 其他; 小鼠; 1:100; 图 5c
BioLegend Ly6g抗体(Biolegend, RB6-C8C5)被用于被用于其他在小鼠样本上浓度为1:100 (图 5c). Oncotarget (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 1AB)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:400; 图 1
BioLegend Ly6g抗体(Biolegend, 108114)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1). Nature (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:400; 图 1
BioLegend Ly6g抗体(Biolegend, 108416)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1). Nature (2015) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 s3.e,g
BioLegend Ly6g抗体(BioLegend, 122520)被用于被用于流式细胞仪在小鼠样本上 (图 s3.e,g). Nature (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Ly6g抗体(BioLegend, 108422)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nature (2015) ncbi
大鼠 单克隆(HK1.4)
BioLegend Ly6g抗体(Biolegend, 128006)被用于. PLoS ONE (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Ly6g抗体(BioLegend, 127627)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Ly6g抗体(BioLegend, 128011)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 7
BioLegend Ly6g抗体(BioLegend, 127632)被用于被用于抑制或激活实验在小鼠样本上 (图 7). Am J Respir Cell Mol Biol (2016) ncbi
大鼠 单克隆(HK1.4)
BioLegend Ly6g抗体(BioLegend, 128016)被用于. Cancer Res (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:50; 图 1
BioLegend Ly6g抗体(BioLegend, #108402)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1). Exp Ther Med (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Ly6g抗体(biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Immunity (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 9
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9). PLoS ONE (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(Biolegend, 108126)被用于被用于流式细胞仪在小鼠样本上 (图 2). Stem Cell Reports (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4b
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Sci Rep (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(Biolegend, 108412)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2015) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 图 8
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Mol Cancer (2015) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 表 s1
BioLegend Ly6g抗体(BioLegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:100; 图 5g
BioLegend Ly6g抗体(Biolegend, 128007)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5g). Brain (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 2
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:200; 图 s2
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2). PLoS ONE (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(Biolegend, # 108114)被用于被用于流式细胞仪在小鼠样本上 (图 1). Biomaterials (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, # 108406)被用于被用于流式细胞仪在小鼠样本上. Biomaterials (2015) ncbi
大鼠 单克隆(HK1.4)
  • 免疫组化; 小鼠
BioLegend Ly6g抗体(BioLegend, 128011)被用于被用于免疫组化在小鼠样本上. J Virol (2015) ncbi
大鼠 单克隆(1A8)
  • 免疫组化; 小鼠; 图 4
BioLegend Ly6g抗体(BioLegend, 127611)被用于被用于免疫组化在小鼠样本上 (图 4). J Virol (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:300; 图 s3
BioLegend Ly6g抗体(Biolegend, 127617)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3). Nat Commun (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 8
BioLegend Ly6g抗体(BioLegend, 128021)被用于被用于流式细胞仪在小鼠样本上 (图 8). Oncoimmunology (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 8
BioLegend Ly6g抗体(BioLegend, 127618)被用于被用于流式细胞仪在小鼠样本上 (图 8). Oncoimmunology (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ly6g抗体(Biolegend, IA8)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Tuberculosis (Edinb) (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Stem Cell Res (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(Biolegend, 108108)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(E13-161.7)
BioLegend Ly6g抗体(Biolegend, E13-161.7)被用于. Nature (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Exp Dermatol (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Exp Dermatol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Ly6g抗体(Biolegend, 108424)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Ly6g抗体(BioLegend, 108108)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Clin Invest (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:50; 图 4
BioLegend Ly6g抗体(BioLegend, 128030)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 大鼠
BioLegend Ly6g抗体(BioLegend, 108421)被用于被用于流式细胞仪在大鼠样本上. Transpl Immunol (2015) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 表 s3
BioLegend Ly6g抗体(Biolegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2c). EMBO Mol Med (2015) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Ly6g抗体(BioLegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Blood (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 108407)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 127607)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Arthritis Rheumatol (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s12
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s12). Nat Commun (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 6). Cancer Immunol Res (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Ly6g抗体(BioLegend, 108410)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(E13-161.7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, E13-161.7)被用于被用于流式细胞仪在小鼠样本上. J Cell Mol Med (2015) ncbi
大鼠 单克隆(HK1.4)
BioLegend Ly6g抗体(Biolegend, 128012)被用于. J Vis Exp (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 108125)被用于被用于流式细胞仪在小鼠样本上. Lab Anim (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 108406)被用于被用于流式细胞仪在小鼠样本上. Lab Anim (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 表 1
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Neuroinflammation (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Biomed Mater Eng (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Development (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫细胞化学; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于免疫细胞化学在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK 1.4)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 108410)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ly6g抗体(Biolegend, 127612)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3) 和 被用于流式细胞仪在小鼠样本上 (图 4). EMBO Mol Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 5). AAPS J (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Ly6g抗体(Biolegend, RB-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Mol Pharmacol (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 6). FASEB J (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. FASEB J (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上 (图 3). Stem Cells (2015) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Virol (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Virol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Immunology (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4). Am J Respir Cell Mol Biol (2015) ncbi
大鼠 单克隆(HK1.4)
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于. J Immunol (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200; 图 1,3,4,6
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1,3,4,6). PLoS ONE (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 人类
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Ly6g抗体(BioLegend, 108120)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nature (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(RB6-8C5)
BioLegend Ly6g抗体(Biolegend, 108408)被用于. Cancer Res (2014) ncbi
大鼠 单克隆(RB6-8C5)
BioLegend Ly6g抗体(Biolegend, 108423)被用于. J Vis Exp (2014) ncbi
大鼠 单克隆(E13-161.7)
BioLegend Ly6g抗体(Biolegend, 122513)被用于. J Vis Exp (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Virol (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(1A8)
BioLegend Ly6g抗体(BioLegend, 1A8)被用于. J Immunol (2014) ncbi
大鼠 单克隆(HK1.4)
BioLegend Ly6g抗体(Biolegend, 128015)被用于. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(RB6-8C5)
BioLegend Ly6g抗体(Biolegend, 108412)被用于. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(RB6-8C5)
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于. J Exp Med (2014) ncbi
大鼠 单克隆(1A8)
BioLegend Ly6g抗体(BioLegend, 1A8)被用于. J Immunol (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 人类; 图 s1
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在人类样本上 (图 s1) 和 被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2014) ncbi
大鼠 单克隆(RB6-8C5)
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于. PLoS ONE (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 表 1
  • 免疫细胞化学; 小鼠; 表 1
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (表 1) 和 被用于免疫细胞化学在小鼠样本上 (表 1). Nat Immunol (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 108114)被用于被用于流式细胞仪在小鼠样本上. Nature (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. Diabetes (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(BioLegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:60
BioLegend Ly6g抗体(BioLegend, D7)被用于被用于流式细胞仪在小鼠样本上浓度为1:60. J Cell Biol (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:2300; 图 11
BioLegend Ly6g抗体(BioLegend, 108415)被用于被用于流式细胞仪在小鼠样本上浓度为1:2300 (图 11). PLoS ONE (2013) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上. Obesity (Silver Spring) (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上. Obesity (Silver Spring) (2014) ncbi
大鼠 单克隆(D7)
BioLegend Ly6g抗体(Biolegend, 108113)被用于. PLoS ONE (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend Ly6g抗体(Biolegend, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). PLoS ONE (2013) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 3a). PLoS ONE (2013) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Ly6g抗体(Biolegend, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3a). PLoS ONE (2013) ncbi
大鼠 单克隆(1A8)
  • 免疫细胞化学; 小鼠; 0.5 ug/ml
  • 免疫组化; 小鼠; 0.5 ug/ml
BioLegend Ly6g抗体(Biolegend, 1A8)被用于被用于免疫细胞化学在小鼠样本上浓度为0.5 ug/ml 和 被用于免疫组化在小鼠样本上浓度为0.5 ug/ml. Proc Natl Acad Sci U S A (2013) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
BioLegend Ly6g抗体(Biolegend, D7)被用于被用于流式细胞仪在小鼠样本上. Biol Proced Online (2010) ncbi
赛默飞世尔
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1a, 4a
赛默飞世尔 Ly6g抗体(Thermo Fisher, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 4a). Sci Adv (2020) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a, 4a
赛默飞世尔 Ly6g抗体(Thermo Fisher, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 4a). Sci Adv (2020) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1b, 3c
赛默飞世尔 Ly6g抗体(Thermo Fisher, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1b, 3c). Sci Adv (2020) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Ly6g抗体(Invitrogen, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Science (2020) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4e
赛默飞世尔 Ly6g抗体(eBiosciences, 16- 9668-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4e). Nat Microbiol (2020) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Ly6g抗体(Thermo Fisher Scientific, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1g). elife (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s19c
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s19c). Science (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s19c
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s19c). Science (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s2j
赛默飞世尔 Ly6g抗体(Thermo Fisher Scientific, 12-5932-80)被用于被用于流式细胞仪在小鼠样本上 (图 s2j). Sci Adv (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 Ly6g抗体(eBioscience, 17-5931-82)被用于被用于流式细胞仪在人类样本上 (图 3b). Nat Commun (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200; 图 e3b
赛默飞世尔 Ly6g抗体(Invitrogen, 47-5931-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3b). Nature (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). PLoS ONE (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:10; 图 3a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 3a). Sci Adv (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4f, 4k, 4l
赛默飞世尔 Ly6g抗体(eBioscience, 48-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 4f, 4k, 4l). Nature (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:800; 图 e5a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 e5a). Nature (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:500; 图 e2j, e8c
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 e2j, e8c). Nature (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:3000; 图 e2j, 4g
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:3000 (图 e2j, 4g). Nature (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s6f
赛默飞世尔 Ly6g抗体(eBioscience, 11-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6f). Cell (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1s1a
赛默飞世尔 Ly6g抗体(eBioscience, 25-5931-81)被用于被用于流式细胞仪在小鼠样本上 (图 1s1a). elife (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Immune Netw (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Ly6g抗体(eBioscience, HK 1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Immune Netw (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Glia (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:100; 图 4e
赛默飞世尔 Ly6g抗体(eBioscience, 47-5932-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4e). Neurochem Int (2019) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell Rep (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:400; 图 2a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2a). Front Immunol (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Front Immunol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a, s2b
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a, s2b). J Pathol (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:400; 图 8c
赛默飞世尔 Ly6g抗体(Thermo Fisher, 25-5931-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 8c). Front Immunol (2018) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Ly6g抗体(Thermo Fisher, 17-9668-82)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Immunol (2019) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Ly6g抗体(eBioscience, 45-5932-82)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Immunol (2019) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 5r
赛默飞世尔 Ly6g抗体(eBioscience, 17-9668-82)被用于被用于流式细胞仪在小鼠样本上 (图 5r). Cell Rep (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Genome Biol (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cell Stem Cell (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔 Ly6g抗体(eBioscience, 48-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Cell Stem Cell (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Blood (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Blood (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 ev2c
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 ev2c). EMBO J (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nutrients (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 6g
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 6g). Obesity (Silver Spring) (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 2g). Cancer Cell (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:75; 图 3a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:75 (图 3a). Invest Ophthalmol Vis Sci (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
赛默飞世尔 Ly6g抗体(eBiosciences, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). Invest Ophthalmol Vis Sci (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 5d
赛默飞世尔 Ly6g抗体(eBioscience, 12-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Hum Mol Genet (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Dis Model Mech (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Stem Cell Reports (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ly6g抗体(Thermo Fisher Scientific, 255981)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cancer Cell (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:40; 图 8b
赛默飞世尔 Ly6g抗体(ThermoFisher, HK 1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 8b). PLoS Pathog (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:50; 图 7a
赛默飞世尔 Ly6g抗体(eBioscience, 56-5981-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 7a). Mol Cell Biol (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Ly6g抗体(eBiosciences, 17-5931)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). EBioMedicine (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔 Ly6g抗体(eBiosciences, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell Stem Cell (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell Stem Cell (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Exp Med (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(Thermo Fisher Scientific, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Clin Invest (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2i
赛默飞世尔 Ly6g抗体(eBioscience, 25-5931-85)被用于被用于流式细胞仪在小鼠样本上 (图 2i). J Exp Med (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Mol Cell Biol (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Ly6g抗体(Affymetrix eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Sci Rep (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBioscience, 17-5981-83)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Biol Chem (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Cell Death Dis (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Ly6g抗体(eBiosciences, 45-5981-80)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Immunity (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:400; 图 s1a
赛默飞世尔 Ly6g抗体(eBioscience, 12-5931-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1a). J Clin Invest (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 1:50; 图 4b
赛默飞世尔 Ly6g抗体(Thermo Fisher, 11-5931-81)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4b). J Immunol Res (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 7s1a
赛默飞世尔 Ly6g抗体(eBioscience, 45-5932-82)被用于被用于流式细胞仪在小鼠样本上 (图 7s1a). elife (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Ly6g抗体(Affymetrix, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Leukemia (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ly6g抗体(ebioscience, 25-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Nat Med (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 图 8b
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于免疫组化在小鼠样本上 (图 8b). Nat Commun (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Antimicrob Agents Chemother (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2018) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Ly6g抗体(eBioscience, 1A8-Ly6G)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, 56-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBioscience, 45-5932-82)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(D7)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBiosciences, 11-5981-81)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Ly6g抗体(eBioscience, 12-5931-81)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Commun (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2k
赛默飞世尔 Ly6g抗体(eBiosciences, 48-5931)被用于被用于流式细胞仪在小鼠样本上 (图 2k). Cell (2018) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nature (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Nature (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Commun (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
大鼠 单克隆(HK1.4)
赛默飞世尔 Ly6g抗体(eBiosciences, 45-5932-82)被用于. Cell (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200; 图 1j, 8d
赛默飞世尔 Ly6g抗体(Ebioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1j, 8d). J Immunol (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 s2
赛默飞世尔 Ly6g抗体(eBiosciences, 16-5931-82)被用于被用于抑制或激活实验在小鼠样本上 (图 s2). Cell (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s4b
赛默飞世尔 Ly6g抗体(eBioscience, 48-5931)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). J Clin Invest (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 人类; 图 s26e
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在人类样本上 (图 s26e). Science (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Ly6g抗体(ebioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2017) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 抑制或激活实验; 小鼠; 图 s4a
赛默飞世尔 Ly6g抗体(eBiosciences, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 s4a). J Clin Invest (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Ly6g抗体(Invitrogen, RM3028)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Clin Invest (2017) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBioscience, 17-9668-80)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Immunity (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, 45-5932)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immunity (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s6g
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s6g). Nature (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Ly6g抗体(eBiosciences, 11-5931)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Ly6g抗体(eBiosciences, 17-5932)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ly6g抗体(ThermoFisher Scientific, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Clin Invest (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1.4b
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s1.4b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:1000; 图 3a
赛默飞世尔 Ly6g抗体(eBioscience, 45-5981-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3a). Cell (2017) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 2h
赛默飞世尔 Ly6g抗体(eBiosciences, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2h). J Exp Med (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2h
赛默飞世尔 Ly6g抗体(eBiosciences, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2h). J Exp Med (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 4g
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 4g). J Clin Invest (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Eur J Immunol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Clin Invest (2017) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBiosciences, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Clin Invest (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBiosciences, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Clin Invest (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBiosciences, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Clin Invest (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:100; 图 1a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a). Nat Immunol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Ly6g抗体(eBioscience, 48-5931-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Exp Med (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Ly6g抗体(eBioscience, 53-5932)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. J Exp Med (2017) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, IA8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, 12-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). elife (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s8i
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s8i). Nature (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ly6g抗体(eBiosciences, 25-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Orthop Res (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1c,d
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1c,d
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1c,d). EMBO J (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1p
赛默飞世尔 Ly6g抗体(eBiosciences, 25-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1p). Nature (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Ly6g抗体(eBiosciences, 45-5981)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Clin Invest (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s5b
赛默飞世尔 Ly6g抗体(eBioscience, 12-5931)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Nat Commun (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 5e
赛默飞世尔 Ly6g抗体(eBioscience, 35-5931)被用于被用于流式细胞仪在小鼠样本上 (图 5e). J Clin Invest (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:300; 图 5e
赛默飞世尔 Ly6g抗体(eBioscience, 45-5932)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 5e). J Clin Invest (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Skelet Muscle (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Ly6g抗体(eBiosciences, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Ly6g抗体(ebioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Leuk Res (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Ly6g抗体(eBioscience, 48-5932-82)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Methods Mol Biol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6/8C5)被用于被用于流式细胞仪在小鼠样本上. Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(EBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Haematologica (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200; 图 4b
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4b). Mol Vis (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Ly6g抗体(eBioScience, 12-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Stem Cell Reports (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3C
赛默飞世尔 Ly6g抗体(eBioscience, 11-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 3C). J Immunol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Ly6g抗体(eBioscience, 17-5931-81)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Ly6g抗体(eBioscience, 45-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200; 图 s13
赛默飞世尔 Ly6g抗体(eBioscience, 45-5931)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s13). Nat Med (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:200; 图 s13
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s13). Nat Med (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Ly6g抗体(eBioscience, 11-5981)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Med (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s3
  • 免疫组化; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s3) 和 被用于免疫组化在小鼠样本上 (图 5a). PLoS ONE (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 3
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RBC-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3) 和 被用于流式细胞仪在小鼠样本上. Sci Rep (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2l
赛默飞世尔 Ly6g抗体(eBioscience, 11-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 2l). J Exp Med (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). Nat Immunol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Virol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
  • 流式细胞仪; 小鼠; 图 s10c
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b) 和 被用于流式细胞仪在小鼠样本上 (图 s10c). Nature (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:200; 图 6c
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6c). Nat Commun (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Mol Med Rep (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Ly6g抗体(eBioscience, 17-5931)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 1j
赛默飞世尔 Ly6g抗体(eBiosciences, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1j). J Leukoc Biol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1h
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1h). J Leukoc Biol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:50; 图 s2a
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2a). Nat Commun (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Inflammation (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Ly6g抗体(eBioscience, 25-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Sci Rep (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1e,f
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981-81)被用于被用于流式细胞仪在小鼠样本上 (图 1e,f). Stem Cell Reports (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 st1
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 其他; 小鼠; 图 2c
赛默飞世尔 Ly6g抗体(eBiosciences, 1A8)被用于被用于其他在小鼠样本上 (图 2c). Cell Rep (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 8A
赛默飞世尔 Ly6g抗体(eBioscience, 17-5932)被用于被用于流式细胞仪在小鼠样本上 (图 8A). Oncoimmunology (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Ly6g抗体(eBioscience, RB6/8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Leukoc Biol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Ly6g抗体(eBioscience, 12-5932-82)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Neurosci (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBioscience, 11-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Biol Chem (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 7d
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 7d). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Oncotarget (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Oncotarget (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981-81)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cell (2016) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ly6g抗体(eBiosciences, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ly6g抗体(eBiosciences, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Ly6g抗体(eBiosciences, 17-5981-81)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Clin Invest (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Ly6g抗体(eBiosciences, 12-5931-81)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Clin Invest (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:200; 图 7a
赛默飞世尔 Ly6g抗体(eBioscience, 12-5981-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 7a). Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ly6g抗体(Pharmingen, 17-5931)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cell Death Dis (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Ly6g抗体(BD Pharmingen or eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Mol Cell Biol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 Ly6g抗体(Thermo Fisher Scientific, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). J Clin Invest (2016) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 1:1600; 图 s2
赛默飞世尔 Ly6g抗体(eBioscience, 17-9668-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1600 (图 s2). PLoS ONE (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 ex1b
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 ex1b). Nature (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 ex1b
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 ex1b). Nature (2016) ncbi
大鼠 单克隆(D7)
  • 免疫细胞化学; 小鼠; 1:50; 图 3a
赛默飞世尔 Ly6g抗体(eBiosciences, 17-5981-81)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3a). Stem Cell Reports (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1h
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Nature (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 0.25 ug/ml; 图 5e
赛默飞世尔 Ly6g抗体(Invitrogen, RB6-8C5)被用于被用于免疫组化在小鼠样本上浓度为0.25 ug/ml (图 5e). Lab Invest (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1-s1
赛默飞世尔 Ly6g抗体(eBiosciences, 13-5931-86)被用于被用于流式细胞仪在小鼠样本上 (图 1-s1). elife (2016) ncbi
大鼠 单克隆(NIMP-R14)
  • 免疫组化; 小鼠; 1:50; 图 7a
赛默飞世尔 Ly6g抗体(Thermo Fisher, NIMP-R14)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7a). Front Microbiol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell Res (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunity (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ly6g抗体(eBiosciences, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 11-5931-82)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 1:400; 图 2h
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2h). Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Bio Protoc (2016) ncbi
大鼠 单克隆(D7)
  • 免疫组化; 小鼠; 1:100; 图 3A
赛默飞世尔 Ly6g抗体(eBioscience, 14-5981-81)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3A). PLoS ONE (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 1:50; 图 s5
赛默飞世尔 Ly6g抗体(Ebiosciences, 145931)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s5). Sci Rep (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:50; 图 6d
赛默飞世尔 Ly6g抗体(eBioscience, 12-5981-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6d). Nat Cell Biol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). Nat Med (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ly6g抗体(eBioscience, 11-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Leukemia (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ly6g抗体(eBiosciences, 47-5932-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Immunol Cell Biol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:25; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, 17-5932)被用于被用于流式细胞仪在小鼠样本上浓度为1:25 (图 1). J Clin Invest (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:400; 图 s3
赛默飞世尔 Ly6g抗体(eBioscience, 25-5932-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Ly6g抗体(eBioscience, 12-598)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Aging Cell (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 14-5931-85)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2i
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2i). JCI Insight (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3a
  • 免疫组化; 小鼠; 1:500; 图 3c
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3a) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Sci Rep (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 17-5981)被用于被用于流式细胞仪在小鼠样本上. Biol Open (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBiosciences, 12-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Oncogene (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛默飞世尔 Ly6g抗体(Ebioscience, 14-5931)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). PLoS ONE (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:300; 图 s3d
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3d). Nat Immunol (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s18g
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s18g). Science (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 7
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于抑制或激活实验在小鼠样本上 (图 7). Oncotarget (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Innate Immun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔 Ly6g抗体(eBioscience, 14-5931-82)被用于被用于免疫组化在小鼠样本上 (图 6). Oncotarget (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔 Ly6g抗体(eBioscience, 45-5981)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Science (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nat Commun (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Nucleic Acids Res (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(eBioscience, 53-5931)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int J Mol Med (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, 17-5932)被用于被用于流式细胞仪在小鼠样本上 (图 1). Oncotarget (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
大鼠 单克隆(NIMP-R14)
  • 免疫组化-石蜡切片; 小鼠; 1 ug/ml; 图 4
赛默飞世尔 Ly6g抗体(Thermo Scientific, MA1-40038)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1 ug/ml (图 4). Lab Invest (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Ly6g抗体(eBioscience, 45-5931-80)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:100; 图 s7a
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7a). Nat Commun (2016) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 1:500; 图 s3
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s3). Nat Commun (2016) ncbi
大鼠 单克隆(HK1.4)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠; 1:100; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, 12-5932)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Dis Model Mech (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 11-5931-85)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(HK1.4)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s3h
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s3h). Nat Med (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Biol (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:428
赛默飞世尔 Ly6g抗体(eBioscience, 12-5981-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:428. Nat Commun (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 25-5931)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Metab (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1a
赛默飞世尔 Ly6g抗体(eBioscience, 45-5981-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1a). Nat Cell Biol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Immunol (2016) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nat Immunol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Clin Invest (2016) ncbi
大鼠 单克隆(D7)
  • 免疫组化; 小鼠; 1:100-1:200; 图 8
赛默飞世尔 Ly6g抗体(eBioscience, 14-5981-82)被用于被用于免疫组化在小鼠样本上浓度为1:100-1:200 (图 8). PLoS ONE (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Ly6g抗体(eBioscience, RB6.8)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4g
赛默飞世尔 Ly6g抗体(eBioscience, 17-5932-82)被用于被用于流式细胞仪在小鼠样本上 (图 4g). Mediators Inflamm (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nat Med (2015) ncbi
大鼠 单克隆(NIMP-R14)
  • 免疫组化-冰冻切片; 小鼠; 图 8
赛默飞世尔 Ly6g抗体(Thermo Fisher, NIMP-R14)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). J Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 Ly6g抗体(eBioscience, 14-5931)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). PLoS Med (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Exp Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2f
赛默飞世尔 Ly6g抗体(eBioscience, 17-5931)被用于被用于流式细胞仪在小鼠样本上 (图 2f). J Exp Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ly6g抗体(eBioscience, 25-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 6). Blood (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Ly6g抗体(eBioscience, 61-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Sci Rep (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 8a
赛默飞世尔 Ly6g抗体(eBiosciences, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Nat Commun (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(D7)
  • 免疫细胞化学; 人类; 1:50; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, 14-5981-85)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:1000; 图 3c, 3d
赛默飞世尔 Ly6g抗体(eBioscience, 11-5931)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3c, 3d). Endocrinology (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8c5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
大鼠 单克隆(D7)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 17-5981-81)被用于被用于免疫细胞化学在小鼠样本上. Cell Res (2015) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Ly6g抗体(eBioscience, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Immunol (2015) ncbi
大鼠 单克隆(HK1.4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1a
赛默飞世尔 Ly6g抗体(BD, 17-5932)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1a). Cell Physiol Biochem (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2d
  • 流式细胞仪; 小鼠; 1:100; 图 1c
赛默飞世尔 Ly6g抗体(BD, 11-5931)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2d) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1c). Cell Physiol Biochem (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cancer Res (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ly6g抗体(eBioscience, 48-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Am J Respir Cell Mol Biol (2016) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ly6g抗体(eBioscience, 46-9668-80)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Am J Respir Cell Mol Biol (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 人类
赛默飞世尔 Ly6g抗体(eBioscience, 17-5931)被用于被用于流式细胞仪在人类样本上. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 8a
赛默飞世尔 Ly6g抗体(eBiosciences, D7)被用于被用于流式细胞仪在小鼠样本上 (图 8a). elife (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ly6g抗体(Thermo Fisher Scientific, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Immunity (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBiosciences, 115931-82)被用于被用于流式细胞仪在小鼠样本上. Autophagy (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Free Radic Biol Med (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Free Radic Biol Med (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, 25-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8c5)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Cell Res (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ly6g抗体(eBioscience, 11-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell Death Dis (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, 45-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nature (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 17-5931)被用于被用于流式细胞仪在小鼠样本上. elife (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 2b
赛默飞世尔 Ly6g抗体(eBioscience, 16-5931-85)被用于被用于抑制或激活实验在小鼠样本上 (图 2b). Antioxid Redox Signal (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2c
  • 免疫组化; 小鼠; 图 3a
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2c) 和 被用于免疫组化在小鼠样本上 (图 3a). Transplantation (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS Pathog (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 10 ug/ml; 图 4
赛默飞世尔 Ly6g抗体(eBioscience, 14-5931)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10 ug/ml (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Sci Transl Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:4000
赛默飞世尔 Ly6g抗体(eBioscience, 17-5931-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:4000. EMBO Mol Med (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔 Ly6g抗体(生活技术, RM3030)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. J Neurosci (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 表 s3
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (表 s3). PLoS ONE (2015) ncbi
大鼠 单克隆(D7)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(e-Bioscience, D7)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. Oncogene (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Mol Med (Berl) (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Immunother Cancer (2015) ncbi
大鼠 单克隆(NIMP-R14)
  • 免疫组化; 小鼠
赛默飞世尔 Ly6g抗体(Thermo, NIMP-R14)被用于被用于免疫组化在小鼠样本上. Curr Mol Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 3b
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于抑制或激活实验在小鼠样本上 (图 3b) 和 被用于流式细胞仪在小鼠样本上. Curr Mol Med (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 0.4 ug/ml
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为0.4 ug/ml. Immunol Cell Biol (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Hematol (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Hematol (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(1A8-Ly6g)
  • 流式细胞仪; 小鼠; 图 S9i
赛默飞世尔 Ly6g抗体(eBioscience, 17-9668)被用于被用于流式细胞仪在小鼠样本上 (图 S9i). Nat Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 8
赛默飞世尔 Ly6g抗体(eBioscience, 11-5931)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 8). Development (2014) ncbi
大鼠 单克隆(D7)
  • 免疫细胞化学; 小鼠; 1:500
赛默飞世尔 Ly6g抗体(eBioscience, 17-5981-82)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Nat Cell Biol (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 17-5932-80)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 2-5931)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Ly6g抗体(eBioscience, 12-5981-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, 12-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 1). Methods Mol Biol (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 0.17 ug/ul
赛默飞世尔 Ly6g抗体(Invitrogen, clone RB6-8C5)被用于被用于流式细胞仪在小鼠样本上浓度为0.17 ug/ul. Development (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 5). Mucosal Immunol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2014) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, HK1.4)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Leukemia (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (表 1). Nat Immunol (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, 56-5981-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nature (2013) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 56-5981-82)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Br J Cancer (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2014) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 s6a
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Nat Methods (2013) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Ly6g抗体(eBiosciences, D7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Nat Methods (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(Caltag, clone RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cell Death Dis (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(Invitrogen, RB6-8C5)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Gastroenterology (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫细胞化学; 小鼠; 0.5 ug/ml
  • 免疫组化; 小鼠; 0.5 ug/ml
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于免疫细胞化学在小鼠样本上浓度为0.5 ug/ml 和 被用于免疫组化在小鼠样本上浓度为0.5 ug/ml. Proc Natl Acad Sci U S A (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (表 1). PLoS ONE (2013) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 7). PLoS ONE (2013) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 1:250
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上浓度为1:250. Biomed Res Int (2013) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2013) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 7j
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7j). Mucosal Immunol (2013) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Invitrogen, D7)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, 13-5931)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2012) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 人类
赛默飞世尔 Ly6g抗体(Invitrogen, RB6-8C5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(Invitrogen, RM3030)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2011) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Haematologica (2011) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, ebio 25-5931)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Nature (2011) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBiosciences, D7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Cell Biol (2010) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 9
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 9). J Immunol (2009) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2009) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2009) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2009) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2009) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Ly6g抗体(eBioscience, 17-5931-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Immunol (2009) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Invitrogen, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(D7)
  • 免疫组化; 小鼠; 1:200; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, 13-5981-85)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2). Immunol Cell Biol (2009) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Cell Tissue Res (2008) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2008) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2008) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2008) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Lett (2008) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠
赛默飞世尔 Ly6g抗体(Invitrogen, RB6-8C5)被用于被用于免疫组化在小鼠样本上. Int J Parasitol (2008) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(eBiosciences, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Gene Ther (2007) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, Rb6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2007) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(Caltag, RB68C5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Infect Immun (2007) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Exp Dermatol (2006) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 1:20
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20. Orthop Nurs (2005) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Blood (2006) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 8). Blood (2006) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于抑制或激活实验在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2006) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(noco, A14748)被用于被用于流式细胞仪在小鼠样本上 (图 1). FASEB J (2005) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2005) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(eBioscience, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2005) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(Caltag Laboratories, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Infect Immun (2005) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Shock (2005) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2004) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(eBioscience, D7)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2004) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Cell Biol (2004) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 人类; 图 6
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在人类样本上 (图 6) 和 被用于流式细胞仪在小鼠样本上 (图 6). J Exp Med (2004) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6?C8C5)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2003) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Blood (2004) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(Caltag, clone RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Vaccine (2003) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 3). Cell Immunol (2003) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5D
赛默飞世尔 Ly6g抗体(noco, RB6-8C5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5D). J Immunol (2003) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Ly6g抗体(Caltag, clone RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 4). Biol Blood Marrow Transplant (2003) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(Caltag, clone RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1). Vaccine (2003) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Ly6g抗体(Caltag Laboratories, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2001) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 1, 2
赛默飞世尔 Ly6g抗体(Caltag Laboratories, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2). J Immunol (2001) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Ly6g抗体(Caltag, clone RB6-8C5)被用于被用于免疫组化在小鼠样本上 (图 4). Vaccine (2001) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Ly6g抗体(Caltag, clone RB6-8C5)被用于被用于免疫组化在小鼠样本上 (图 4). Vaccine (2001) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2000) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔 Ly6g抗体(Caltag Laboratories, clone RB6-8C5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Leukoc Biol (2000) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 表 4
赛默飞世尔 Ly6g抗体(Caltag, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (表 4). Mech Ageing Dev (1999) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(CalTag, RB6.8C5)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (1996) ncbi
大鼠 单克隆(D7)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Ly6g抗体(noco, D7)被用于被用于免疫印迹在小鼠样本上 (图 3). Immunogenetics (1986) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(noco, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1987) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠
赛默飞世尔 Ly6g抗体(noco, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (1988) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Ly6g抗体(noco, D7)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunogenetics (1989) ncbi
Bio X Cell
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 s7a
Bio X Cell Ly6g抗体(BioXCell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 s7a). Breast Cancer Res (2019) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 2b
Bio X Cell Ly6g抗体(BioX Cell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 2b). elife (2019) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠
Bio X Cell Ly6g抗体(BioXCell, BE0075-1)被用于被用于抑制或激活实验在小鼠样本上. Cell (2019) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 s8
Bio X Cell Ly6g抗体(BioXcel, RB6-8C5)被用于被用于抑制或激活实验在小鼠样本上 (图 s8). Science (2018) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 4c
  • 免疫组化-石蜡切片; 小鼠; 图 4b
  • 流式细胞仪; 小鼠; 0.2 mg/ml; 图 4a
Bio X Cell Ly6g抗体(BioXCell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 4c), 被用于免疫组化-石蜡切片在小鼠样本上 (图 4b) 和 被用于流式细胞仪在小鼠样本上浓度为0.2 mg/ml (图 4a). J Clin Invest (2019) ncbi
大鼠 单克隆(1A8)
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 3c
Bio X Cell Ly6g抗体(BioXCell, BE0075-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 3c). Immunity (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 5a
Bio X Cell Ly6g抗体(BioXCell, RB6-8C5)被用于被用于抑制或激活实验在小鼠样本上 (图 5a). J Clin Invest (2018) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 9a
Bio X Cell Ly6g抗体(BioXCell, BP0075)被用于被用于抑制或激活实验在小鼠样本上 (图 9a). J Clin Invest (2018) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 6b
Bio X Cell Ly6g抗体(BioXcell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 6b). J Exp Med (2017) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 7i
Bio X Cell Ly6g抗体(BioXcell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 7i). J Exp Med (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 6b
Bio X Cell Ly6g抗体(BioXCell, RB6-8C5)被用于被用于抑制或激活实验在小鼠样本上 (图 6b). Nat Commun (2017) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠
Bio X Cell Ly6g抗体(BioXCell, 1A8)被用于被用于抑制或激活实验在小鼠样本上. Exp Dermatol (2017) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s4c
Bio X Cell Ly6g抗体(BioXcell, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). Nat Med (2017) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 4a
Bio X Cell Ly6g抗体(BioXCell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Infect Immun (2017) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 s4
Bio X Cell Ly6g抗体(BioXcell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 3h
  • 流式细胞仪; 小鼠; 图 3c
Bio X Cell Ly6g抗体(BioXCell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 3h) 和 被用于流式细胞仪在小鼠样本上 (图 3c). PLoS Pathog (2016) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 5
Bio X Cell Ly6g抗体(BioXcell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 s2
Bio X Cell Ly6g抗体(Bio X-Cell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 s2). Am J Pathol (2016) ncbi
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 2a
  • 免疫组化; 小鼠; 图 1d
Bio X Cell Ly6g抗体(BioXcell, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 2a) 和 被用于免疫组化在小鼠样本上 (图 1d). Immunity (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 5b
Bio X Cell Ly6g抗体(BioXcell, RB6-8C5)被用于被用于抑制或激活实验在小鼠样本上 (图 5b). Oncoimmunology (2016) ncbi
大鼠 单克隆(1A8)
  • 免疫沉淀; 小鼠; 图 4
Bio X Cell Ly6g抗体(BioXCell, clone 1A8)被用于被用于免疫沉淀在小鼠样本上 (图 4). J Virol (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 3
Bio X Cell Ly6g抗体(BioXcell, RB6?C8C5)被用于被用于抑制或激活实验在小鼠样本上 (图 3). Nat Commun (2015) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 1
Bio X Cell Ly6g抗体(BioXCell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 抑制或激活实验; 小鼠; 图 3e
Bio X Cell Ly6g抗体(BioXCell, R56-86)被用于被用于抑制或激活实验在小鼠样本上 (图 3e). Nat Commun (2015) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠
Bio X Cell Ly6g抗体(Bio X Cell, 1A8)被用于被用于抑制或激活实验在小鼠样本上. J Exp Med (2015) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠
Bio X Cell Ly6g抗体(BioXcell, 1A8)被用于被用于抑制或激活实验在小鼠样本上. Immunity (2015) ncbi
大鼠 单克隆(1A8)
  • 抑制或激活实验; 小鼠; 图 s2
Bio X Cell Ly6g抗体(BioXCell, 1A8)被用于被用于抑制或激活实验在小鼠样本上 (图 s2). J Immunol (2015) ncbi
艾博抗(上海)贸易有限公司
大鼠 单克隆(ER-MP20)
  • 流式细胞仪; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ER-MP20)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Front Immunol (2018) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠; 图 s4a
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, HK1.4)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Leukemia (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4i, 5h
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab25377)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4i, 5h). J Neurovirol (2018) ncbi
大鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab210204)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Am Heart Assoc (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab25024)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). J Am Heart Assoc (2018) ncbi
大鼠 单克隆(ER-MP20)
  • 免疫组化; 小鼠; 1:500; 图 3f
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab15627)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3f). J Neurosci (2018) ncbi
大鼠 单克隆(ER-MP20)
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 5e
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab15627)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 5e). JCI Insight (2017) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab25031)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Med Rep (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 1:250; 图 5e
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab25377)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5e). Mol Vis (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, RB6-8C5)被用于被用于免疫组化在小鼠样本上 (图 4b). Oncotarget (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2a
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab25377)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2a). Nat Commun (2016) ncbi
大鼠 单克隆(E13 161-7)
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, 51317)被用于被用于免疫印迹在小鼠样本上 (图 3b). EMBO Mol Med (2016) ncbi
大鼠 单克隆(E13 161-7)
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab51317)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Nat Med (2015) ncbi
大鼠 单克隆(D7)
  • 流式细胞仪; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, ab25031)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mol Med Rep (2015) ncbi
大鼠 单克隆(HK1.4)
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司 Ly6g抗体(Abcam, HK1.4)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2014) ncbi
安迪生物R&D
大鼠 单克隆(177228)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
安迪生物R&D Ly6g抗体(R&D systems, BAM1226)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Cell Stem Cell (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3a
安迪生物R&D Ly6g抗体(R&D, MAB1037)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3a). Oncol Rep (2018) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 图 2
安迪生物R&D Ly6g抗体(R&D Systems, RB6-8C5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Front Microbiol (2017) ncbi
大鼠 单克隆(177228)
  • 流式细胞仪; 小鼠; 图 st2
安迪生物R&D Ly6g抗体(R&D Systems, FAB1226P)被用于被用于流式细胞仪在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(177228)
  • 流式细胞仪; 小鼠; 0.1 ug/ul; 表 1
安迪生物R&D Ly6g抗体(R&D Systems, MAB1226)被用于被用于流式细胞仪在小鼠样本上浓度为0.1 ug/ul (表 1). Endocrinology (2016) ncbi
大鼠 单克隆(177228)
  • 流式细胞仪; 小鼠; 1:100
安迪生物R&D Ly6g抗体(R&D Systems, FAB1226P)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cell Transplant (2015) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 图 s2e
伯乐(Bio-Rad)公司 Ly6g抗体(AbD Serotec, MCA2387T)被用于被用于免疫组化在小鼠样本上 (图 s2e). Cell Stem Cell (2017) ncbi
大鼠 单克隆(RB6-8C5)
  • 流式细胞仪; 小鼠; 1:10; 图 2c
伯乐(Bio-Rad)公司 Ly6g抗体(Abd Serotec, MCA2387PET)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 2c). Sci Rep (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化; 小鼠; 1:100; 图 s6
伯乐(Bio-Rad)公司 Ly6g抗体(AbD Serotec, RB6-8C5)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6). Science (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-石蜡切片; 小鼠; 图 4
伯乐(Bio-Rad)公司 Ly6g抗体(Serotec, MCA2387)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Oncotarget (2016) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫印迹; 小鼠; 1:500; 图 6
伯乐(Bio-Rad)公司 Ly6g抗体(AbD Serotec, MCA2387)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Stem Cell Res Ther (2015) ncbi
大鼠 单克隆(RB6-8C5)
  • 免疫组化-冰冻切片; 小鼠; 图 2
伯乐(Bio-Rad)公司 Ly6g抗体(Serotec, MCA2387GA)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Neuroinflammation (2014) ncbi
美天旎
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:25; 图 2b
美天旎 Ly6g抗体(Miltenyi Biotech, 130-102-392)被用于被用于流式细胞仪在小鼠样本上浓度为1:25 (图 2b). J Hematol Oncol (2019) ncbi
Tonbo Biosciences
Rattus 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 1d
Tonbo Biosciences Ly6g抗体(Tonbo Biosciences, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 1d). elife (2019) ncbi
Rattus 单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 4d
Tonbo Biosciences Ly6g抗体(Tonbo Biosciences, 1A8)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Exp Dermatol (2017) ncbi
碧迪BD
大鼠 单克隆(1A8)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
碧迪BD Ly6g抗体(BD Biosciences, 565369)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). Nature (2019) ncbi
单克隆(1A8)
  • 流式细胞仪; 小鼠; 图 s6d
碧迪BD Ly6g抗体(BD Horizon, 740953)被用于被用于流式细胞仪在小鼠样本上 (图 s6d). Immunity (2018) ncbi
默克密理博中国
大鼠 单克隆(E13 161-7)
  • 流式细胞仪; 小鼠
默克密理博中国 Ly6g抗体(Millipore, FCMAB224F)被用于被用于流式细胞仪在小鼠样本上. Springerplus (2014) ncbi
文章列表
  1. Wuggenig P, Kaya B, Melhem H, Ayata C, Hruz P, Sayan A, et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol. 2020;3:130 pubmed 出版商
  2. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  3. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  4. Park M, Kim H, Lee H, Zabel B, Bae Y. Novel CD11b+Gr-1+Sca-1+ myeloid cells drive mortality in bacterial infection. Sci Adv. 2020;6:eaax8820 pubmed 出版商
  5. Uckelmann H, Kim S, Wong E, Hatton C, Giovinazzo H, Gadrey J, et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science. 2020;367:586-590 pubmed 出版商
  6. Singh K, Leu J, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, et al. African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun. 2020;11:473 pubmed 出版商
  7. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  8. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  9. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  10. Khorooshi R, Marczynska J, Dieu R, Wais V, Hansen C, Kavan S, et al. Innate signaling within the central nervous system recruits protective neutrophils. Acta Neuropathol Commun. 2020;8:2 pubmed 出版商
  11. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  12. Rowe S, Wagner N, Li L, Beam J, Wilkinson A, Radlinski L, et al. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat Microbiol. 2020;5:282-290 pubmed 出版商
  13. Park C, Kehrl J. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. elife. 2019;8: pubmed 出版商
  14. Wang Y, Chiang I, Ohara T, Fujii S, Cheng J, Muegge B, et al. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell. 2019;179:1144-1159.e15 pubmed 出版商
  15. Johnston J, Angyal A, Bauer R, Hamby S, Suvarna S, Baidžajevas K, et al. Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Sci Adv. 2019;5:eaax9183 pubmed 出版商
  16. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  17. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236-250 pubmed 出版商
  18. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  19. Carpentier K, Davenport B, HAIST K, McCarthy M, May N, Robison A, et al. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. elife. 2019;8: pubmed 出版商
  20. Bosiljcic M, Cederberg R, Hamilton M, Lepard N, Harbourne B, Collier J, et al. Targeting myeloid-derived suppressor cells in combination with primary mammary tumor resection reduces metastatic growth in the lungs. Breast Cancer Res. 2019;21:103 pubmed 出版商
  21. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  22. Nagai M, Noguchi R, Takahashi D, Morikawa T, Koshida K, Komiyama S, et al. Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell. 2019;178:1072-1087.e14 pubmed 出版商
  23. Irons E, Lee Sundlov M, Zhu Y, Neelamegham S, Hoffmeister K, LAU J. B cells suppress medullary granulopoiesis by an extracellular glycosylation-dependent mechanism. elife. 2019;8: pubmed 出版商
  24. Culemann S, Grüneboom A, Nicolás Ávila J, Weidner D, Lämmle K, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572:670-675 pubmed 出版商
  25. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  26. Cohen J, Edwards T, Liu A, Hirai T, Jones M, Wu J, et al. Cutaneous TRPV1+ Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell. 2019;178:919-932.e14 pubmed 出版商
  27. Lee Y, Riopel M, Cabrales P, Bandyopadhyay G. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5:eaaw4176 pubmed 出版商
  28. Jaitin D, Adlung L, Thaiss C, Weiner A, Li B, Descamps H, et al. Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell. 2019;178:686-698.e14 pubmed 出版商
  29. Minuesa G, Albanese S, Xie W, Kazansky Y, Worroll D, Chow A, et al. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun. 2019;10:2691 pubmed 出版商
  30. Roberts A, Popov L, Mitchell G, Ching K, Licht D, Golovkine G, et al. Cas9+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond. elife. 2019;8: pubmed 出版商
  31. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  32. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  33. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  34. Baryawno N, Przybylski D, Kowalczyk M, Kfoury Y, Severe N, Gustafsson K, et al. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell. 2019;177:1915-1932.e16 pubmed 出版商
  35. Peng L, Guo H, Ma P, Sun Y, Dennison L, Aplan P, et al. HoxA9 binds and represses the Cebpa +8 kb enhancer. PLoS ONE. 2019;14:e0217604 pubmed 出版商
  36. Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086 pubmed 出版商
  37. Cunin P, Bouslama R, Machlus K, Martínez Bonet M, Lee P, Wactor A, et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. elife. 2019;8: pubmed 出版商
  38. Zhang J, Supakorndej T, Krambs J, Rao M, Abou Ezzi G, Ye R, et al. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest. 2019;129:2920-2931 pubmed 出版商
  39. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta S, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129:2251-2265 pubmed 出版商
  40. Mogilenko D, Haas J, L homme L, Fleury S, Quemener S, Levavasseur M, et al. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell. 2019;177:1201-1216.e19 pubmed 出版商
  41. Lemarchand E, Barrington J, Chenery A, Haley M, Coutts G, Allen J, et al. Extent of Ischemic Brain Injury After Thrombotic Stroke Is Independent of the NLRP3 (NACHT, LRR and PYD Domains-Containing Protein 3) Inflammasome. Stroke. 2019;50:1232-1239 pubmed 出版商
  42. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  43. Jacome Galarza C, Percin G, Muller J, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568:541-545 pubmed 出版商
  44. Spolski R, West E, Li P, Veenbergen S, Yung S, Kazemian M, et al. IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus. elife. 2019;8: pubmed 出版商
  45. Lesch B, Tothova Z, Morgan E, Liao Z, Bronson R, Ebert B, et al. Intergenerational epigenetic inheritance of cancer susceptibility in mammals. elife. 2019;8: pubmed 出版商
  46. Uderhardt S, Martins A, Tsang J, Lämmermann T, Germain R. Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven Inflammatory Damage. Cell. 2019;177:541-555.e17 pubmed 出版商
  47. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  48. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  49. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  50. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  51. Liao W, Overman M, Boutin A, Shang X, Zhao D, Dey P, et al. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell. 2019;35:559-572.e7 pubmed 出版商
  52. Perdomo J, Leung H, Ahmadi Z, Yan F, Chong J, Passam F, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1322 pubmed 出版商
  53. Frank A, Ebersberger S, Fink A, Lampe S, Weigert A, Schmid T, et al. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun. 2019;10:1135 pubmed 出版商
  54. Dey A, Yang W, Gegonne A, Nishiyama A, Pan R, Yagi R, et al. BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO J. 2019;38: pubmed 出版商
  55. Halvarsson C, Rörby E, Eliasson P, Lang S, Soneji S, Jönsson J. Putative role of NF-kB but not HIF-1α in hypoxia-dependent regulation of oxidative stress in hematopoietic stem and progenitor cells. Antioxid Redox Signal. 2019;: pubmed 出版商
  56. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  57. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  58. Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 2019;38: pubmed 出版商
  59. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  60. Rowe R, Lummertz da Rocha E, Sousa P, Missios P, Morse M, Marion W, et al. The developmental stage of the hematopoietic niche regulates lineage in MLL-rearranged leukemia. J Exp Med. 2019;216:527-538 pubmed 出版商
  61. Paudel S, Baral P, Ghimire L, Bergeron S, Jin L, De Corte J, et al. CXCL1 regulates neutrophil homeostasis in pneumonia-derived sepsis caused by Streptococcus pneumoniae serotype 3. Blood. 2019;: pubmed 出版商
  62. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  63. Kobayashi T, Voisin B, Kim D, Kennedy E, Jo J, Shih H, et al. Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell. 2019;176:982-997.e16 pubmed 出版商
  64. Hwang W, Lan H, Cheng W, Huang S, Yang M. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol. 2019;12:10 pubmed 出版商
  65. Lavoie S, Conway K, Lassen K, Jijon H, Pan H, Chun E, et al. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. elife. 2019;8: pubmed 出版商
  66. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  67. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  68. Lee Y, Ju J, Shon W, Oh S, Min C, Kang M, et al. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw. 2018;18:e44 pubmed 出版商
  69. Keklikoglou I, Cianciaruso C, Güç E, Squadrito M, Spring L, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21:190-202 pubmed 出版商
  70. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  71. Al Mamun A, Yu H, Mirza M, Romana S, McCullough L, Liu F. Myeloid cell IRF4 signaling protects neonatal brains from hypoxic ischemic encephalopathy. Neurochem Int. 2019;127:148-157 pubmed 出版商
  72. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  73. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  74. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  75. Normand S, Waldschmitt N, Neerincx A, Martinez Torres R, Chauvin C, Couturier Maillard A, et al. Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens. Nat Commun. 2018;9:5338 pubmed 出版商
  76. Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin G, Shurin M, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2019;116:1361-1369 pubmed 出版商
  77. Jones G, Bain C, Fenton T, Kelly A, Brown S, Ivens A, et al. Dynamics of Colon Monocyte and Macrophage Activation During Colitis. Front Immunol. 2018;9:2764 pubmed 出版商
  78. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  79. Gubernatorova E, Gorshkova E, Namakanova O, Zvartsev R, Hidalgo J, Drutskaya M, et al. Non-redundant Functions of IL-6 Produced by Macrophages and Dendritic Cells in Allergic Airway Inflammation. Front Immunol. 2018;9:2718 pubmed 出版商
  80. Cai Z, Kotzin J, Ramdas B, Chen S, Nelanuthala S, Palam L, et al. Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis. Cell Stem Cell. 2018;23:833-849.e5 pubmed 出版商
  81. Benmerzoug S, Rose S, Bounab B, Gosset D, Duneau L, Chenuet P, et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018;9:5226 pubmed 出版商
  82. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  83. Mouhadeb O, Ben Shlomo S, Cohen K, Farkash I, Gruber S, Maharshak N, et al. Impaired COMMD10-Mediated Regulation of Ly6Chi Monocyte-Driven Inflammation Disrupts Gut Barrier Function. Front Immunol. 2018;9:2623 pubmed 出版商
  84. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  85. Inoue T, Ito Y, Nishizawa N, Eshima K, Kojo K, Otaka F, et al. RAMP1 in Kupffer cells is a critical regulator in immune-mediated hepatitis. PLoS ONE. 2018;13:e0200432 pubmed 出版商
  86. Sharma D, Malik A, Guy C, Vogel P, Kanneganti T. TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy. J Clin Invest. 2019;129:150-162 pubmed 出版商
  87. Glal D, Sudhakar J, Lu H, Liu M, Chiang H, Liu Y, et al. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol. 2018;9:2522 pubmed 出版商
  88. Safronova A, Araujo A, Camanzo E, Moon T, Elliott M, Beiting D, et al. Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii. Nat Immunol. 2019;20:64-72 pubmed 出版商
  89. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  90. Rao T, Gupta M, Softic S, Wang L, Jang Y, Thomou T, et al. Attenuation of PKCδ enhances metabolic activity and promotes expansion of blood progenitors. EMBO J. 2018;37: pubmed 出版商
  91. Chinta K, Rahman M, Saini V, Glasgow J, Reddy V, Lever J, et al. Microanatomic Distribution of Myeloid Heme Oxygenase-1 Protects against Free Radical-Mediated Immunopathology in Human Tuberculosis. Cell Rep. 2018;25:1938-1952.e5 pubmed 出版商
  92. Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, et al. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep. 2018;8:16749 pubmed 出版商
  93. Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, et al. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol. 2018;19:189 pubmed 出版商
  94. Klement J, Paschall A, Redd P, Ibrahim M, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128:5549-5560 pubmed 出版商
  95. Hsu J, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F, et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018;23:700-713.e6 pubmed 出版商
  96. Abeln M, Albers I, Peters Bernard U, Flächsig Schulz K, Kats E, Kispert A, et al. Sialic acid is a critical fetal defense against maternal complement attack. J Clin Invest. 2019;129:422-436 pubmed 出版商
  97. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  98. Meyer I, Goetzke C, Kespohl M, Sauter M, Heuser A, Eckstein V, et al. Silencing the CSF-1 Axis Using Nanoparticle Encapsulated siRNA Mitigates Viral and Autoimmune Myocarditis. Front Immunol. 2018;9:2303 pubmed 出版商
  99. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  100. Mollaoglu G, Jones A, Wait S, Mukhopadhyay A, Jeong S, Arya R, et al. The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity. 2018;49:764-779.e9 pubmed 出版商
  101. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  102. Chang S, Kim Y, Kim Y, Kim Y, Moon S, Lee Y, et al. Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Front Immunol. 2018;9:1984 pubmed 出版商
  103. Masuda J, Umemura C, Yokozawa M, Yamauchi K, Seko T, Yamashita M, et al. Dietary Supplementation of Selenoneine-Containing Tuna Dark Muscle Extract Effectively Reduces Pathology of Experimental Colorectal Cancers in Mice. Nutrients. 2018;10: pubmed 出版商
  104. Stephens J, Bailey J, Hang H, Rittell V, Dietrich M, Mynatt R, et al. Adipose Tissue Dysfunction Occurs Independently of Obesity in Adipocyte-Specific Oncostatin Receptor Knockout Mice. Obesity (Silver Spring). 2018;26:1439-1447 pubmed 出版商
  105. Williams G, Schonhoff A, Jurkuvenaite A, Thome A, Standaert D, Harms A. Targeting of the class II transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinson's disease. J Neuroinflammation. 2018;15:244 pubmed 出版商
  106. Schrand B, Clark E, Levay A, Capote A, Martínez O, Brenneman R, et al. Hapten-mediated recruitment of polyclonal antibodies to tumors engenders antitumor immunity. Nat Commun. 2018;9:3348 pubmed 出版商
  107. Lee S, North K, Kim E, Jang E, Obeng E, Lu S, et al. Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell. 2018;34:225-241.e8 pubmed 出版商
  108. Kiang L, Ross B, Yao J, Shanmugam S, Andrews C, Hansen S, et al. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci. 2018;59:3767-3778 pubmed 出版商
  109. Heshmati Y, Kharazi S, Türköz G, Chang D, Kamali Dolatabadi E, Boström J, et al. The histone chaperone NAP1L3 is required for haematopoietic stem cell maintenance and differentiation. Sci Rep. 2018;8:11202 pubmed 出版商
  110. Gallot Y, Straughn A, Bohnert K, Xiong G, Hindi S, Kumar A. MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-deficient mdx mice. Hum Mol Genet. 2018;27:3449-3463 pubmed 出版商
  111. Arnold I, Artola Borán M, Tallón de Lara P, Kyburz A, Taube C, OTTEMANN K, et al. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med. 2018;215:2055-2072 pubmed 出版商
  112. Kim Y, Lee M, Gu H, Kim J, Jeong S, Yeo S, et al. HIF-1α activation in myeloid cells accelerates dextran sodium sulfate-induced colitis progression in mice. Dis Model Mech. 2018;11: pubmed 出版商
  113. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  114. Nusse Y, Savage A, Marangoni P, Rosendahl Huber A, Landman T, De Sauvage F, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018;559:109-113 pubmed 出版商
  115. Quenum Zangbede F, Chauhan A, Sharma J, Mishra B. Galectin-3 in M2 Macrophages Plays a Protective Role in Resolution of Neuropathology in Brain Parasitic Infection by Regulating Neutrophil Turnover. J Neurosci. 2018;38:6737-6750 pubmed 出版商
  116. Umemoto T, Hashimoto M, Matsumura T, Nakamura Ishizu A, Suda T. Ca2+-mitochondria axis drives cell division in hematopoietic stem cells. J Exp Med. 2018;215:2097-2113 pubmed 出版商
  117. Wang X, Dong F, Zhang S, Yang W, Yu W, Wang Z, et al. TGF-?1 Negatively Regulates the Number and Function of Hematopoietic Stem Cells. Stem Cell Reports. 2018;11:274-287 pubmed 出版商
  118. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  119. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  120. Greenblatt S, Man N, Hamard P, Asai T, Karl D, Martínez C, et al. CARM1 Is Essential for Myeloid Leukemogenesis but Dispensable for Normal Hematopoiesis. Cancer Cell. 2018;33:1111-1127.e5 pubmed 出版商
  121. Napolitano A, van der Veen A, Bunyan M, Borg A, Frith D, Howell S, et al. Cysteine-Reactive Free ISG15 Generates IL-1β-Producing CD8α+ Dendritic Cells at the Site of Infection. J Immunol. 2018;201:604-614 pubmed 出版商
  122. Gu C, Borjabad A, Hadas E, Kelschenbach J, Kim B, Chao W, et al. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog. 2018;14:e1007061 pubmed 出版商
  123. Ghanem L, Kromer A, Silverman I, Ji X, Gazzara M, Nguyen N, et al. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol. 2018;38: pubmed 出版商
  124. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  125. Tsiantoulas D, Sage A, Göderle L, Ozsvar Kozma M, Murphy D, Porsch F, et al. BAFF Neutralization Aggravates Atherosclerosis. Circulation. 2018;: pubmed 出版商
  126. Chen Y, Qin X, An Q, Yi J, Feng F, Yin D, et al. Mesenchymal Stromal Cells Directly Promote Inflammation by Canonical NLRP3 and Non-canonical Caspase-11 Inflammasomes. EBioMedicine. 2018;32:31-42 pubmed 出版商
  127. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  128. Kanneganti A, Malireddi R, Saavedra P, Vande Walle L, Van Gorp H, Kambara H, et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med. 2018;215:1519-1529 pubmed 出版商
  129. Shaw T, Houston S, Wemyss K, Bridgeman H, Barbera T, Zangerle Murray T, et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J Exp Med. 2018;215:1507-1518 pubmed 出版商
  130. Hsiao H, Fernandez R, Tanaka S, Li W, Spahn J, Chiu S, et al. Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1β. J Clin Invest. 2018;128:2833-2847 pubmed 出版商
  131. Huynh J, Lin C, Kimmey J, Jarjour N, Schwarzkopf E, Bradstreet T, et al. Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection. J Exp Med. 2018;215:1823-1838 pubmed 出版商
  132. Mitchell K, Barreyro L, Todorova T, Taylor S, Antony Debré I, Narayanagari S, et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med. 2018;215:1709-1727 pubmed 出版商
  133. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  134. Thompson T, Jackson B, Li P, Wang J, Kim A, Huang K, et al. Tumor-derived CSF-1 induces the NKG2D ligand RAE-1δ on tumor-infiltrating macrophages. elife. 2018;7: pubmed 出版商
  135. Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M, Knights A, et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat Genet. 2018;50:883-894 pubmed 出版商
  136. Crosby E, Wei J, Yang X, Lei G, Wang T, Liu C, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology. 2018;7:e1421891 pubmed 出版商
  137. Baba O, Horie T, Nakao T, Hakuno D, Nakashima Y, Nishi H, et al. MicroRNA 33 Regulates the Population of Peripheral Inflammatory Ly6Chigh Monocytes through Dual Pathways. Mol Cell Biol. 2018;38: pubmed 出版商
  138. Takamori A, Nambu A, Sato K, Yamaguchi S, Matsuda K, Numata T, et al. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci Rep. 2018;8:6639 pubmed 出版商
  139. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  140. Gounder A, Yokoyama C, Jarjour N, Bricker T, Edelson B, Boon A. Interferon induced protein 35 exacerbates H5N1 influenza disease through the expression of IL-12p40 homodimer. PLoS Pathog. 2018;14:e1007001 pubmed 出版商
  141. Grist J, Marro B, Skinner D, Syage A, Worne C, Doty D, et al. Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment. Eur J Immunol. 2018;48:1199-1210 pubmed 出版商
  142. Chen W, Yang J, Wu Y, Li L, Li R, Chang Y, et al. IL-33/ST2 axis mediates hyperplasia of intrarenal urothelium in obstructive renal injury. Exp Mol Med. 2018;50:36 pubmed 出版商
  143. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  144. Foerster F, Boegel S, Heck R, Pickert G, R ssel N, Rosigkeit S, et al. Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncoimmunology. 2018;7:e1409929 pubmed 出版商
  145. Xia P, Wang S, Ye B, Du Y, Li C, Xiong Z, et al. A Circular RNA Protects Dormant Hematopoietic Stem Cells from DNA Sensor cGAS-Mediated Exhaustion. Immunity. 2018;48:688-701.e7 pubmed 出版商
  146. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  147. Lyons J, Ghazi P, Starchenko A, Tovaglieri A, Baldwin K, Poulin E, et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018;16:e2002417 pubmed 出版商
  148. Kobayashi Y, Inagawa H, Kohchi C, Kazumura K, Tsuchiya H, Miwa T, et al. Oral administration of Pantoea agglomerans-derived lipopolysaccharide prevents development of atherosclerosis in high-fat diet-fed apoE-deficient mice via ameliorating hyperlipidemia, pro-inflammatory mediators and oxidative responses. PLoS ONE. 2018;13:e0195008 pubmed 出版商
  149. Zhang Y, Xia F, Liu X, Yu Z, Xie L, Liu L, et al. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/?-catenin/CCND1 signaling. J Clin Invest. 2018;128:1737-1751 pubmed 出版商
  150. Shevchenko M, Bogorodskiy A, Troyanova N, Servuli E, Bolkhovitina E, Büldt G, et al. Aspergillus fumigatus Infection-Induced Neutrophil Recruitment and Location in the Conducting Airway of Immunocompetent, Neutropenic, and Immunosuppressed Mice. J Immunol Res. 2018;2018:5379085 pubmed 出版商
  151. Hill R, Hoffman B, Morita T, Campos S, Lumpkin E, Brem R, et al. The signaling lipid sphingosine 1-phosphate regulates mechanical pain. elife. 2018;7: pubmed 出版商
  152. Verbiest T, Finnon R, Brown N, Cruz Garcia L, Finnon P, O Brien G, et al. Tracking preleukemic cells in vivo to reveal the sequence of molecular events in radiation leukemogenesis. Leukemia. 2018;32:1435-1444 pubmed 出版商
  153. Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9:11209-11226 pubmed 出版商
  154. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  155. Zhang B, Nguyen L, Li L, Zhao D, Kumar B, Wu H, et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med. 2018;24:450-462 pubmed 出版商
  156. Zukor K, Wang H, Siddharthan V, Julander J, Morrey J. Zika virus-induced acute myelitis and motor deficits in adult interferon ??/? receptor knockout mice. J Neurovirol. 2018;24:273-290 pubmed 出版商
  157. Panduro M, Benoist C, Mathis D. Treg cells limit IFN-? production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A. 2018;115:E2585-E2593 pubmed 出版商
  158. Westhorpe C, Norman M, Hall P, Snelgrove S, Finsterbusch M, Li A, et al. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes. Nat Commun. 2018;9:747 pubmed 出版商
  159. Trapecar M, Khan S, Cohn B, Wu F, Sanjabi S. B cells are the predominant mediators of early systemic viral dissemination during rectal LCMV infection. Mucosal Immunol. 2018;11:1158-1167 pubmed 出版商
  160. Lee Y, Lee J, Jang Y, Seo S, Chang J, Seong B. Non-specific Effect of Vaccines: Immediate Protection against Respiratory Syncytial Virus Infection by a Live Attenuated Influenza Vaccine. Front Microbiol. 2018;9:83 pubmed 出版商
  161. Qu S, Xue H, Dong X, Lin D, Wu R, Nabavi N, et al. Aneustat (OMN54) has aerobic glycolysis-inhibitory activity and also immunomodulatory activity as indicated by a first-generation PDX prostate cancer model. Int J Cancer. 2018;143:419-429 pubmed 出版商
  162. Zhu Y, Zhou J, Feng Y, Chen L, Zhang L, Yang F, et al. Control of Intestinal Inflammation, Colitis-Associated Tumorigenesis, and Macrophage Polarization by Fibrinogen-Like Protein 2. Front Immunol. 2018;9:87 pubmed 出版商
  163. Sokhi U, Liber M, Frye L, Park S, Kang K, Pannellini T, et al. Dissection and function of autoimmunity-associated TNFAIP3 (A20) gene enhancers in humanized mouse models. Nat Commun. 2018;9:658 pubmed 出版商
  164. Supramaniam A, Liu X, Ferro V, Herrero L. Prophylactic Antiheparanase Activity by PG545 Is Antiviral In Vitro and Protects against Ross River Virus Disease in Mice. Antimicrob Agents Chemother. 2018;62: pubmed 出版商
  165. Wen G, An W, Chen J, Maguire E, Chen Q, Yang F, et al. Genetic and Pharmacologic Inhibition of the Neutrophil Elastase Inhibits Experimental Atherosclerosis. J Am Heart Assoc. 2018;7: pubmed 出版商
  166. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  167. King E, Mazor R, Cuburu N, Pastan I. Low-Dose Methotrexate Prevents Primary and Secondary Humoral Immune Responses and Induces Immune Tolerance to a Recombinant Immunotoxin. J Immunol. 2018;200:2038-2045 pubmed 出版商
  168. Pitts M, Combs T, D Orazio S. Neutrophils from Both Susceptible and Resistant Mice Efficiently Kill Opsonized Listeria monocytogenes. Infect Immun. 2018;86: pubmed 出版商
  169. Soncin I, Sheng J, Chen Q, Foo S, Duan K, Lum J, et al. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat Commun. 2018;9:582 pubmed 出版商
  170. Niraula A, Wang Y, Godbout J, Sheridan J. Corticosterone Production during Repeated Social Defeat Causes Monocyte Mobilization from the Bone Marrow, Glucocorticoid Resistance, and Neurovascular Adhesion Molecule Expression. J Neurosci. 2018;38:2328-2340 pubmed 出版商
  171. Bogoslowski A, Butcher E, Kubes P. Neutrophils recruited through high endothelial venules of the lymph nodes via PNAd intercept disseminating Staphylococcus aureus. Proc Natl Acad Sci U S A. 2018;115:2449-2454 pubmed 出版商
  172. Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y, Gu Y, et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature. 2018;554:123-127 pubmed 出版商
  173. Delong J, Hall A, Konradt C, Coppock G, Park J, Harms Pritchard G, et al. Cytokine- and TCR-Mediated Regulation of T Cell Expression of Ly6C and Sca-1. J Immunol. 2018;200:1761-1770 pubmed 出版商
  174. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  175. Yoshida S, Hagiwara Y, Tsuchiya M, Shinoda M, Koide M, Hatakeyama H, et al. Involvement of neutrophils and interleukin-18 in nociception in a mouse model of muscle pain. Mol Pain. 2018;14:1744806918757286 pubmed 出版商
  176. Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, et al. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med. 2018;215:481-500 pubmed 出版商
  177. Tang H, Liang Y, Anders R, Taube J, Qiu X, Mulgaonkar A, et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest. 2018;128:580-588 pubmed 出版商
  178. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  179. Teater M, Domínguez P, Redmond D, Chen Z, Ennishi D, Scott D, et al. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat Commun. 2018;9:222 pubmed 出版商
  180. Christ A, Günther P, Lauterbach M, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell. 2018;172:162-175.e14 pubmed 出版商
  181. Mitroulis I, Ruppova K, Wang B, Chen L, Grzybek M, Grinenko T, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172:147-161.e12 pubmed 出版商
  182. Zhang C, Yi W, Li F, Du X, Wang H, Wu P, et al. Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis. Cell Res. 2018;28:323-335 pubmed 出版商
  183. Garaycoechea J, Crossan G, Langevin F, Mulderrig L, Louzada S, Yang F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature. 2018;553:171-177 pubmed 出版商
  184. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  185. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  186. Kurkewich J, Boucher A, Klopfenstein N, Baskar R, Kapur R, Dahl R. The mirn23a and mirn23b microrna clusters are necessary for proper hematopoietic progenitor cell production and differentiation. Exp Hematol. 2018;59:14-29 pubmed 出版商
  187. Mumau M, Vanderbeck A, Lynch E, Golec S, Emerson S, Punt J. Identification of a Multipotent Progenitor Population in the Spleen That Is Regulated by NR4A1. J Immunol. 2018;200:1078-1087 pubmed 出版商
  188. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell. 2018;33:44-59.e8 pubmed 出版商
  189. Thion M, Low D, Silvin A, Chen J, Grisel P, Schulte Schrepping J, et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell. 2018;172:500-516.e16 pubmed 出版商
  190. Campana L, Starkey Lewis P, Pellicoro A, Aucott R, Man J, O Duibhir E, et al. The STAT3-IL-10-IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. J Immunol. 2018;200:1169-1187 pubmed 出版商
  191. Zhang Y, Khairallah C, Sheridan B, van der Velden A, Bliska J. CCR2+ Inflammatory Monocytes Are Recruited to Yersinia pseudotuberculosis Pyogranulomas and Dictate Adaptive Responses at the Expense of Innate Immunity during Oral Infection. Infect Immun. 2018;86: pubmed 出版商
  192. Yui S, Azzolin L, Maimets M, Pedersen M, Fordham R, Hansen S, et al. YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration. Cell Stem Cell. 2018;22:35-49.e7 pubmed 出版商
  193. Wu X, Dao Thi V, Huang Y, Billerbeck E, Saha D, Hoffmann H, et al. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell. 2018;172:423-438.e25 pubmed 出版商
  194. Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B, Warren Navia A, et al. Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells. Cell. 2018;172:517-533.e20 pubmed 出版商
  195. Montford J, Lehman A, Bauer C, Klawitter J, Klawitter J, Poczobutt J, et al. Bone marrow-derived cPLA2α contributes to renal fibrosis progression. J Lipid Res. 2018;59:380-390 pubmed 出版商
  196. Hoggatt J, Singh P, Tate T, Chou B, Datari S, Fukuda S, et al. Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell. Cell. 2018;172:191-204.e10 pubmed 出版商
  197. Medaglia C, Giladi A, Stoler Barak L, De Giovanni M, Salame T, Biram A, et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science. 2017;358:1622-1626 pubmed 出版商
  198. Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest. 2018;128:125-140 pubmed 出版商
  199. Ring N, Herndler Brandstetter D, Weiskopf K, Shan L, Volkmer J, George B, et al. Anti-SIRP? antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci U S A. 2017;114:E10578-E10585 pubmed 出版商
  200. Harms A, Thome A, Yan Z, Schonhoff A, Williams G, Li X, et al. Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease. Exp Neurol. 2018;300:179-187 pubmed 出版商
  201. Zhang H, Li X, Liao S, Wang H, Chen P, Zhu G, et al. SPLUNC1 knockout enhances LPS-induced lung injury by increasing recruitment of CD11b+Gr-1+ cells to the spleen of mice. Oncol Rep. 2018;39:358-366 pubmed 出版商
  202. Gopalakrishnan V, Spencer C, Nezi L, Reuben A, Andrews M, Karpinets T, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97-103 pubmed 出版商
  203. Kovtun A, Bergdolt S, Hägele Y, Matthes R, Lambris J, Huber Lang M, et al. Complement receptors C5aR1 and C5aR2 act differentially during the early immune response after bone fracture but are similarly involved in bone repair. Sci Rep. 2017;7:14061 pubmed 出版商
  204. Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed 出版商
  205. Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C, Kubes P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science. 2017;358:111-116 pubmed 出版商
  206. Nishi H, Furuhashi K, Cullere X, Saggu G, Miller M, Chen Y, et al. Neutrophil Fc?RIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. J Clin Invest. 2017;127:3810-3826 pubmed 出版商
  207. Cole C, Russler Germain D, Ketkar S, Verdoni A, Smith A, Bangert C, et al. Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies. J Clin Invest. 2017;127:3657-3674 pubmed 出版商
  208. Kumar B, Garcia M, Weng L, Jung X, Murakami J, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575-587 pubmed 出版商
  209. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  210. Tejada M, Montilla García Á, Cronin S, Cikes D, Sánchez Fernández C, González Cano R, et al. Sigma-1 receptors control immune-driven peripheral opioid analgesia during inflammation in mice. Proc Natl Acad Sci U S A. 2017;114:8396-8401 pubmed 出版商
  211. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  212. Hannibal T, Schmidt Christensen A, Nilsson J, Fransén Pettersson N, Hansen L, Holmberg D. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia. 2017;60:2033-2041 pubmed 出版商
  213. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  214. Mylonas K, Turner N, Bageghni S, Kenyon C, White C, McGregor K, et al. 11β-HSD1 suppresses cardiac fibroblast CXCL2, CXCL5 and neutrophil recruitment to the heart post MI. J Endocrinol. 2017;233:315-327 pubmed 出版商
  215. Mildner A, Schönheit J, Giladi A, David E, Lara Astiaso D, Lorenzo Vivas E, et al. Genomic Characterization of Murine Monocytes Reveals C/EBP? Transcription Factor Dependence of Ly6C- Cells. Immunity. 2017;46:849-862.e7 pubmed 出版商
  216. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017;545:500-504 pubmed 出版商
  217. Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495-499 pubmed 出版商
  218. Lis R, Karrasch C, Poulos M, Kunar B, Redmond D, Duran J, et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature. 2017;545:439-445 pubmed 出版商
  219. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  220. Kraakman M, Lee M, Al Sharea A, Dragoljevic D, Barrett T, Montenont E, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133-2147 pubmed 出版商
  221. Ebner F, Sedlyarov V, Tasciyan S, Ivin M, Kratochvill F, Gratz N, et al. The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection. J Clin Invest. 2017;127:2051-2065 pubmed 出版商
  222. Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, et al. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol. 2018;15:973-982 pubmed 出版商
  223. Minutti C, Jackson Jones L, Garcia Fojeda B, Knipper J, Sutherland T, Logan N, et al. Local amplifiers of IL-4R?-mediated macrophage activation promote repair in lung and liver. Science. 2017;356:1076-1080 pubmed 出版商
  224. Bosurgi L, Cao Y, Cabeza Cabrerizo M, Tucci A, Hughes L, Kong Y, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science. 2017;356:1072-1076 pubmed 出版商
  225. Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo T, Sun M, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med. 2017;214:1663-1678 pubmed 出版商
  226. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  227. Kwan B, Zhu E, Tzeng A, Sugito H, Eltahir A, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med. 2017;214:1679-1690 pubmed 出版商
  228. Thanabalasuriar A, Surewaard B, Willson M, Neupane A, Stover C, Warrener P, et al. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature. J Clin Invest. 2017;127:2249-2261 pubmed 出版商
  229. Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody D, et al. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest. 2017;127:2339-2352 pubmed 出版商
  230. Carrieri C, Comazzetto S, Grover A, Morgan M, Buness A, Nerlov C, et al. A transit-amplifying population underpins the efficient regenerative capacity of the testis. J Exp Med. 2017;214:1631-1641 pubmed 出版商
  231. Audzevich T, Bashford Rogers R, Mabbott N, Frampton D, Freeman T, Potocnik A, et al. Pre/pro-B cells generate macrophage populations during homeostasis and inflammation. Proc Natl Acad Sci U S A. 2017;114:E3954-E3963 pubmed 出版商
  232. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-? resembles physiological blood vessel regression. Nature. 2017;545:98-102 pubmed 出版商
  233. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  234. Ge Y, Gomez N, Adam R, Nikolova M, Yang H, Verma A, et al. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell. 2017;169:636-650.e14 pubmed 出版商
  235. Deniset J, Surewaard B, Lee W, Kubes P. Splenic Ly6Ghigh mature and Ly6Gint immature neutrophils contribute to eradication of S. pneumoniae. J Exp Med. 2017;214:1333-1350 pubmed 出版商
  236. Lee H, Tian L, Bouladoux N, Davis J, Quinones M, Belkaid Y, et al. Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation. J Clin Invest. 2017;127:1905-1917 pubmed 出版商
  237. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  238. Huang Y, Rajappa P, Hu W, Hoffman C, CISSE B, Kim J, et al. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma. J Clin Invest. 2017;127:1826-1838 pubmed 出版商
  239. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  240. Lino C, Barros Martins J, Oberdörfer L, Walzer T, Prinz I. Eomes expression reports the progressive differentiation of IFN-?-producing Th1-like ?? T cells. Eur J Immunol. 2017;47:970-981 pubmed 出版商
  241. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  242. Katerndahl C, Heltemes Harris L, Willette M, Henzler C, Frietze S, Yang R, et al. Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat Immunol. 2017;18:694-704 pubmed 出版商
  243. Hérault A, Binnewies M, Leong S, Calero Nieto F, Zhang S, Kang Y, et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017;544:53-58 pubmed 出版商
  244. Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, Schedin P. Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight. 2017;2:e89206 pubmed 出版商
  245. Thomas D, Clare S, Sowerby J, Pardo M, Juss J, Goulding D, et al. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med. 2017;214:1111-1128 pubmed 出版商
  246. Briseño C, Gargaro M, Durai V, Davidson J, Theisen D, Anderson D, et al. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proc Natl Acad Sci U S A. 2017;114:3957-3962 pubmed 出版商
  247. He W, Wang C, Mu R, Liang P, Huang Z, Zhang J, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene. 2017;36:4212-4223 pubmed 出版商
  248. Sindhava V, Oropallo M, Moody K, Naradikian M, Higdon L, Zhou L, et al. A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. J Clin Invest. 2017;127:1651-1663 pubmed 出版商
  249. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  250. Wang X, Chen H, Tian R, Zhang Y, Drutskaya M, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091 pubmed 出版商
  251. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  252. Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214:905-917 pubmed 出版商
  253. Lefrançais E, Ortiz Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah D, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544:105-109 pubmed 出版商
  254. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  255. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  256. Wagner J, Jaurich H, Wallner C, Abraham S, Becerikli M, Dadras M, et al. Diminished bone regeneration after debridement of posttraumatic osteomyelitis is accompanied by altered cytokine levels, elevated B cell activity, and increased osteoclast activity. J Orthop Res. 2017;35:2425-2434 pubmed 出版商
  257. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  258. Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840-853 pubmed 出版商
  259. Ho T, Warr M, Adelman E, Lansinger O, Flach J, Verovskaya E, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543:205-210 pubmed 出版商
  260. Wan L, Wen H, Li Y, Lyu J, Xi Y, Hoshii T, et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature. 2017;543:265-269 pubmed 出版商
  261. Li H, Liu P, Xu S, Li Y, Dekker J, Li B, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017;127:1241-1253 pubmed 出版商
  262. Stanley R, Piszczatowski R, Bartholdy B, Mitchell K, McKimpson W, Narayanagari S, et al. A myeloid tumor suppressor role for NOL3. J Exp Med. 2017;214:753-771 pubmed 出版商
  263. Moestrup K, Andersen M, Jensen K. Isolation and In Vitro Characterization of Epidermal Stem Cells. Methods Mol Biol. 2017;1553:67-83 pubmed 出版商
  264. Huang A, Peng D, Guo H, Ben Y, Zuo X, Wu F, et al. A human programmed death-ligand 1-expressing mouse tumor model for evaluating the therapeutic efficacy of anti-human PD-L1 antibodies. Sci Rep. 2017;7:42687 pubmed 出版商
  265. Ellenbroek G, van Puijvelde G, Anas A, Bot M, Asbach M, Schoneveld A, et al. Leukocyte TLR5 deficiency inhibits atherosclerosis by reduced macrophage recruitment and defective T-cell responsiveness. Sci Rep. 2017;7:42688 pubmed 出版商
  266. Kishimoto Y, Asakawa S, Sato T, Takano T, Nakajyo T, Mizuno N, et al. Induced histamine regulates Ni elution from an implanted Ni wire in mice by downregulating neutrophil migration. Exp Dermatol. 2017;26:868-874 pubmed 出版商
  267. Lang S, Harre U, Purohit P, Dietel K, Kienhöfer D, Hahn J, et al. Neurodegeneration Enhances the Development of Arthritis. J Immunol. 2017;198:2394-2402 pubmed 出版商
  268. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  269. Cuccarese M, Dubach J, Pfirschke C, Engblom C, Garris C, Miller M, et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun. 2017;8:14293 pubmed 出版商
  270. Fleming S, McCaughan C, Lateef Z, Dunn A, Wise L, Real N, et al. Deletion of the Chemokine Binding Protein Gene from the Parapoxvirus Orf Virus Reduces Virulence and Pathogenesis in Sheep. Front Microbiol. 2017;8:46 pubmed 出版商
  271. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  272. Zhu Y, Lyapichev K, Lee D, Motti D, Ferraro N, Zhang Y, et al. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. J Neurosci. 2017;37:2362-2376 pubmed 出版商
  273. Ishiguro T, Fukawa T, Akaki K, Nagaoka K, Takeda T, Iwakura Y, et al. Absence of DCIR1 reduces the mortality rate of endotoxemic hepatitis in mice. Eur J Immunol. 2017;47:704-712 pubmed 出版商
  274. Gopinath S. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor. Skelet Muscle. 2017;7:2 pubmed 出版商
  275. Edwards R, Kopp S, Ifergan I, Shui J, Kronenberg M, Miller S, et al. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci. 2017;58:282-291 pubmed 出版商
  276. Gardner P, Liyanage S, Cristante E, Sampson R, Dick A, Ali R, et al. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Sci Rep. 2017;7:40830 pubmed 出版商
  277. Hattori A, McSkimming D, Kannan N, Ito T. RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leuk Res. 2017;54:47-54 pubmed 出版商
  278. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140 pubmed 出版商
  279. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  280. Oben K, Gachuki B, Alhakeem S, McKenna M, Liang Y, St Clair D, et al. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1). PLoS ONE. 2017;12:e0169767 pubmed 出版商
  281. Ellman D, Degn M, Lund M, Clausen B, Novrup H, Flæng S, et al. Genetic Ablation of Soluble TNF Does Not Affect Lesion Size and Functional Recovery after Moderate Spinal Cord Injury in Mice. Mediators Inflamm. 2016;2016:2684098 pubmed 出版商
  282. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  283. Scott C, Bain C, Mowat A. Isolation and Identification of Intestinal Myeloid Cells. Methods Mol Biol. 2017;1559:223-239 pubmed 出版商
  284. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  285. Rombouts M, Cools N, Grootaert M, de Bakker F, Van Brussel I, Wouters A, et al. Long-Term Depletion of Conventional Dendritic Cells Cannot Be Maintained in an Atherosclerotic Zbtb46-DTR Mouse Model. PLoS ONE. 2017;12:e0169608 pubmed 出版商
  286. Cañete A, Carmona R, Ariza L, Sanchez M, Rojas A, Muñoz Chápuli R. A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica. 2017;102:647-655 pubmed 出版商
  287. Larabee C, Desai S, Agasing A, Georgescu C, Wren J, Axtell R, et al. Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis. Mol Vis. 2016;22:1503-1513 pubmed
  288. Fujikura D, Ikesue M, Endo T, Chiba S, Higashi H, Uede T. Death receptor 6 contributes to autoimmunity in lupus-prone mice. Nat Commun. 2017;8:13957 pubmed 出版商
  289. Astuti Y, Kramer A, Blake A, Blazar B, Tolar J, Taisto M, et al. A Functional Bioluminescent Zebrafish Screen for Enhancing Hematopoietic Cell Homing. Stem Cell Reports. 2017;8:177-190 pubmed 出版商
  290. Guan X, Lapak K, Hennessey R, Yu C, Shakya R, Zhang J, et al. Stromal Senescence By Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Mol Cancer Res. 2017;15:237-249 pubmed 出版商
  291. Rychtarčíková Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, et al. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 2017;8:6376-6398 pubmed 出版商
  292. Weindel C, Richey L, Mehta A, Shah M, Huber B. Autophagy in Dendritic Cells and B Cells Is Critical for the Inflammatory State of TLR7-Mediated Autoimmunity. J Immunol. 2017;198:1081-1092 pubmed 出版商
  293. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  294. Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire L, et al. Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res. 2017;45:1281-1296 pubmed 出版商
  295. Schneider C, Oellerich T, Baldauf H, Schwarz S, Thomas D, Flick R, et al. SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia. Nat Med. 2017;23:250-255 pubmed 出版商
  296. Kamioka Y, Takakura K, Sumiyama K, Matsuda M. Intravital Förster resonance energy transfer imaging reveals osteopontin-mediated polymorphonuclear leukocyte activation by tumor cell emboli. Cancer Sci. 2017;108:226-235 pubmed 出版商
  297. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  298. Hahm E, Wei C, Fernandez I, Li J, Tardi N, Tracy M, et al. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med. 2017;23:100-106 pubmed 出版商
  299. Sharif S, Nakatani Y, Wise L, Corbett M, Real N, Stuart G, et al. A Broad-Spectrum Chemokine-Binding Protein of Bovine Papular Stomatitis Virus Inhibits Neutrophil and Monocyte Infiltration in Inflammatory and Wound Models of Mouse Skin. PLoS ONE. 2016;11:e0168007 pubmed 出版商
  300. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  301. Bieber K, Witte M, Sun S, Hundt J, Kalies K, Dräger S, et al. T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita. Sci Rep. 2016;6:38357 pubmed 出版商
  302. Connor L, Tang S, Cognard E, Ochiai S, Hilligan K, Old S, et al. Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. J Exp Med. 2017;214:125-142 pubmed 出版商
  303. Yanagisawa H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:L122-L130 pubmed 出版商
  304. Swanson P, Hart G, Russo M, Nayak D, Yazew T, Pena M, et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog. 2016;12:e1006022 pubmed 出版商
  305. Forster M, Farrington K, Petrov J, Belle J, Mindt B, Witalis M, et al. MYSM1-dependent checkpoints in B cell lineage differentiation and B cell-mediated immune response. J Leukoc Biol. 2017;101:643-654 pubmed 出版商
  306. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  307. Monnerat G, Alarcón M, Vasconcellos L, Hochman Mendez C, Brasil G, Bassani R, et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344 pubmed 出版商
  308. Kuchmiy A, D Hont J, Hochepied T, Lamkanfi M. NLRP2 controls age-associated maternal fertility. J Exp Med. 2016;213:2851-2860 pubmed
  309. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  310. Kimura Y, Inoue A, Hangai S, Saijo S, Negishi H, Nishio J, et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A. 2016;113:14097-14102 pubmed
  311. Hidaka T, Ogawa E, Kobayashi E, Suzuki T, Funayama R, Nagashima T, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017;18:64-73 pubmed 出版商
  312. Yu V, Yusuf R, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:1310-1322.e17 pubmed 出版商
  313. Khan S, Woodruff E, Trapecar M, Fontaine K, Ezaki A, Borbet T, et al. Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. J Exp Med. 2016;213:2913-2929 pubmed
  314. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  315. Cousins F, Kirkwood P, Saunders P, Gibson D. Evidence for a dynamic role for mononuclear phagocytes during endometrial repair and remodelling. Sci Rep. 2016;6:36748 pubmed 出版商
  316. Geng S, Chen K, Yuan R, Peng L, Maitra U, Diao N, et al. The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat Commun. 2016;7:13436 pubmed 出版商
  317. Kirschbaum K, Sonner J, Zeller M, Deumelandt K, Bode J, Sharma R, et al. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A. 2016;113:13227-13232 pubmed
  318. Coleman C, Sisk J, Halasz G, Zhong J, Beck S, Matthews K, et al. CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome. J Virol. 2017;91: pubmed 出版商
  319. Teng O, Chen S, Hsu T, Sia S, Cole S, Valkenburg S, et al. CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity In Vivo. J Virol. 2017;91: pubmed 出版商
  320. Theeß W, Sellau J, Steeg C, Klinke A, Baldus S, Cramer J, et al. Myeloperoxidase Attenuates Pathogen Clearance during Plasmodium yoelii Nonlethal Infection. Infect Immun. 2017;85: pubmed 出版商
  321. Smirnova T, Bonapace L, MacDonald G, Kondo S, Wyckoff J, Ebersbach H, et al. Serpin E2 promotes breast cancer metastasis by remodeling the tumor matrix and polarizing tumor associated macrophages. Oncotarget. 2016;7:82289-82304 pubmed 出版商
  322. Dong L, Yu W, Zheng H, Loh M, Bunting S, Pauly M, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature. 2016;539:304-308 pubmed 出版商
  323. Ulland T, Jain N, Hornick E, Elliott E, Clay G, Sadler J, et al. Nlrp12 mutation causes C57BL/6J strain-specific defect in neutrophil recruitment. Nat Commun. 2016;7:13180 pubmed 出版商
  324. Kotschy A, Szlávik Z, Murray J, Davidson J, Maragno A, Le Toumelin Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477-482 pubmed 出版商
  325. Jiang J, Gao Q, Wang T, Lin H, Zhan Q, Chu Z, et al. MicroRNA expression profiles of granulocytic myeloid?derived suppressor cells from mice bearing Lewis lung carcinoma. Mol Med Rep. 2016;14:4567-4574 pubmed 出版商
  326. Nowacka J, Baumgartner C, Pelorosso C, Roth M, Zuber J, Baccarini M. MEK1 is required for the development of NRAS-driven leukemia. Oncotarget. 2016;7:80113-80130 pubmed 出版商
  327. Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin N, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096 pubmed 出版商
  328. Wright R, Souza P, Flak M, Thedchanamoorthy P, Norling L, Cooper D. Galectin-3-null mice display defective neutrophil clearance during acute inflammation. J Leukoc Biol. 2017;101:717-726 pubmed 出版商
  329. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  330. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 2016;7:13130 pubmed 出版商
  331. Vannini N, Girotra M, Naveiras O, Nikitin G, Campos V, Giger S, et al. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat Commun. 2016;7:13125 pubmed 出版商
  332. Yu S, Pearson A, Lim R, Rodgers D, Li S, Parker H, et al. Targeted Delivery of an Anti-inflammatory PDE4 Inhibitor to Immune Cells via an Antibody-drug Conjugate. Mol Ther. 2016;24:2078-2089 pubmed 出版商
  333. Nalbandian A, Khan A, Srivastava R, Llewellyn K, Tan B, Shukr N, et al. Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy. Inflammation. 2017;40:21-41 pubmed 出版商
  334. Chu V, Graf R, Wirtz T, Weber T, Favret J, Li X, et al. Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proc Natl Acad Sci U S A. 2016;113:12514-12519 pubmed
  335. Georgiev H, Ravens I, Benarafa C, Forster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun. 2016;7:13116 pubmed 出版商
  336. Lopez Guadamillas E, Fernandez Marcos P, Pantoja C, Muñoz Martin M, Martinez D, Gomez Lopez G, et al. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPAR?. Sci Rep. 2016;6:34542 pubmed 出版商
  337. Hu X, García M, Weng L, Jung X, Murakami J, Kumar B, et al. Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche. Nat Commun. 2016;7:13095 pubmed 出版商
  338. Yoon Y, Storm K, Kamimae Lanning A, Goloviznina N, Kurre P. Endogenous DNA Damage Leads to p53-Independent Deficits in Replicative Fitness in Fetal Murine Fancd2-/- Hematopoietic Stem and Progenitor Cells. Stem Cell Reports. 2016;7:840-853 pubmed 出版商
  339. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  340. Mittal S, Omoto M, Amouzegar A, Sahu A, Rezazadeh A, Katikireddy K, et al. Restoration of Corneal Transparency by Mesenchymal Stem Cells. Stem Cell Reports. 2016;7:583-590 pubmed 出版商
  341. Johnston L, Hsu C, Krier Burris R, Chhiba K, Chien K, McKenzie A, et al. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J Immunol. 2016;197:3445-3453 pubmed
  342. Ippagunta S, Gangwar R, Finkelstein D, Vogel P, Pelletier S, Gingras S, et al. Keratinocytes contribute intrinsically to psoriasis upon loss of Tnip1 function. Proc Natl Acad Sci U S A. 2016;113:E6162-E6171 pubmed
  343. Thanabalasuriar A, Neupane A, Wang J, Krummel M, Kubes P. iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation. Cell Rep. 2016;16:3260-3272 pubmed 出版商
  344. Takeshima T, Pop L, Laine A, Iyengar P, Vitetta E, Hannan R. Key role for neutrophils in radiation-induced antitumor immune responses: Potentiation with G-CSF. Proc Natl Acad Sci U S A. 2016;113:11300-11305 pubmed
  345. Kaneda M, Messer K, Ralainirina N, Li H, Leem C, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437-442 pubmed 出版商
  346. Altmeier S, Toska A, Sparber F, Teijeira A, Halin C, LeibundGut Landmann S. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa. PLoS Pathog. 2016;12:e1005882 pubmed 出版商
  347. Lopes C, Daifalla N, Das B, Dias da Silva V, Campos Neto A. CD271+ Mesenchymal Stem Cells as a Possible Infectious Niche for Leishmania infantum. PLoS ONE. 2016;11:e0162927 pubmed 出版商
  348. Hay C, Sult E, Huang Q, Mulgrew K, Fuhrmann S, McGlinchey K, et al. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology. 2016;5:e1208875 pubmed 出版商
  349. Vila Leahey A, Oldford S, Marignani P, Wang J, Haidl I, Marshall J. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice. Oncoimmunology. 2016;5:e1151591 pubmed 出版商
  350. Nam S, Kang K, Cha J, Kim J, Lee H, Kim Y, et al. Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J Leukoc Biol. 2016;100:1273-1284 pubmed
  351. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  352. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  353. Chew W, Tabebordbar M, Cheng J, Mali P, Wu E, Ng A, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 2016;13:868-74 pubmed 出版商
  354. Mostafa H, Vogel P, Srinivasan A, Russell C. Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone. PLoS Pathog. 2016;12:e1005875 pubmed 出版商
  355. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  356. Xu H, Gelyana E, Rajsombath M, Yang T, Li S, Selkoe D. Environmental Enrichment Potently Prevents Microglia-Mediated Neuroinflammation by Human Amyloid ?-Protein Oligomers. J Neurosci. 2016;36:9041-56 pubmed 出版商
  357. Olsson A, Venkatasubramanian M, Chaudhri V, Aronow B, Salomonis N, Singh H, et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature. 2016;537:698-702 pubmed 出版商
  358. Uckelmann H, Blaszkiewicz S, Nicolae C, Haas S, Schnell A, Wurzer S, et al. Extracellular matrix protein Matrilin-4 regulates stress-induced HSC proliferation via CXCR4. J Exp Med. 2016;213:1961-71 pubmed 出版商
  359. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  360. Greco S, Torres Hernandez A, Kalabin A, Whiteman C, Rokosh R, Ravirala S, et al. Mincle Signaling Promotes Con A Hepatitis. J Immunol. 2016;197:2816-27 pubmed 出版商
  361. Görtz G, Moshkelgosha S, Jesenek C, Edelmann B, Horstmann M, Banga J, et al. Pathogenic Phenotype of Adipogenesis and Hyaluronan in Orbital Fibroblasts From Female Graves' Orbitopathy Mouse Model. Endocrinology. 2016;157:3771-3778 pubmed
  362. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  363. Kim K, Williams J, Wang Y, Ivanov S, Gilfillan S, Colonna M, et al. MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. J Exp Med. 2016;213:1951-9 pubmed 出版商
  364. Dave M, Silva J, Eliçabe R, Jeréz M, Filippa V, Gorlino C, et al. Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain. Infect Immun. 2016;84:3172-3181 pubmed 出版商
  365. Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U, et al. Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells. PLoS Negl Trop Dis. 2016;10:e0004935 pubmed 出版商
  366. Murakami S, Shahbazian D, Surana R, Zhang W, Chen H, Graham G, et al. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene. 2017;36:1232-1244 pubmed 出版商
  367. Kim G, Das R, Goduni L, McClellan S, Hazlett L, Mahabeleshwar G. Kruppel-like Factor 6 Promotes Macrophage-mediated Inflammation by Suppressing B Cell Leukemia/Lymphoma 6 Expression. J Biol Chem. 2016;291:21271-21282 pubmed
  368. Finsterbusch M, Hall P, Li A, Devi S, Westhorpe C, Kitching A, et al. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. Proc Natl Acad Sci U S A. 2016;113:E5172-81 pubmed 出版商
  369. Cordova Z, Grönholm A, Kytölä V, Taverniti V, Hämäläinen S, Aittomäki S, et al. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget. 2016;7:54392-54404 pubmed 出版商
  370. Henry E, Sy C, Inclan Rico J, Espinosa V, Ghanny S, Dwyer D, et al. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 2016;213:1663-73 pubmed 出版商
  371. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  372. Damgaard R, Walker J, Marco Casanova P, Morgan N, Titheradge H, Elliott P, et al. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell. 2016;166:1215-1230.e20 pubmed 出版商
  373. Moodley D, Yoshida H, Mostafavi S, Asinovski N, Ortiz Lopez A, Symanowicz P, et al. Network pharmacology of JAK inhibitors. Proc Natl Acad Sci U S A. 2016;113:9852-7 pubmed 出版商
  374. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  375. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  376. You L, Li L, Zou J, Yan K, Belle J, Nijnik A, et al. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest. 2016;126:3247-62 pubmed 出版商
  377. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun. 2016;7:12369 pubmed 出版商
  378. Seki T, Hosaka K, Lim S, Fischer C, Honek J, Yang Y, et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun. 2016;7:12152 pubmed 出版商
  379. Imhof B, Jemelin S, Ballet R, Vesin C, Schapira M, Karaca M, et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A. 2016;113:E4847-56 pubmed 出版商
  380. Yoshioka D, Kajiwara C, Ishii Y, Umeki K, Hiramatsu K, Kadota J, et al. Efficacy of ?-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob Agents Chemother. 2016;60:6146-54 pubmed 出版商
  381. Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Hervé R, et al. In Vivo Expansion of Activated Foxp3+ Regulatory T Cells and Establishment of a Type 2 Immune Response upon IL-33 Treatment Protect against Experimental Arthritis. J Immunol. 2016;197:1708-19 pubmed 出版商
  382. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  383. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  384. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  385. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  386. Chen S, Miyazaki M, Chandra V, Fisch K, Chang A, Murre C. Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol. 2016;36:2543-52 pubmed 出版商
  387. Lesina M, Wörmann S, Morton J, Diakopoulos K, Korneeva O, Wimmer M, et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J Clin Invest. 2016;126:2919-32 pubmed 出版商
  388. Mothes B, Bucher K, Ammon Treiber S, Schwab M, Piekorz R, Hirsch E, et al. p110γ/δ Double-Deficiency Induces Eosinophilia and IgE Production but Protects from OVA-Induced Airway Inflammation. PLoS ONE. 2016;11:e0159310 pubmed 出版商
  389. Fransén Pettersson N, Duarte N, Nilsson J, Lundholm M, Mayans S, Larefalk A, et al. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis. PLoS ONE. 2016;11:e0159850 pubmed 出版商
  390. Metz H, Kargl J, Busch S, Kim K, Kurland B, Abberbock S, et al. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proc Natl Acad Sci U S A. 2016;113:8795-800 pubmed 出版商
  391. Woytschak J, Keller N, Krieg C, Impellizzieri D, Thompson R, Wynn T, et al. Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation. Immunity. 2016;45:172-84 pubmed 出版商
  392. Xia X, Yu Y, Zhang L, Ma Y, Wang H. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression. Mol Med Rep. 2016;14:2016-24 pubmed 出版商
  393. Xiao Y, Tang J, Guo H, Zhao Y, Tang R, Ouyang S, et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med. 2016;22:906-14 pubmed 出版商
  394. Terracina K, Graham L, Payne K, Manjili M, Baek A, Damle S, et al. DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunol Immunother. 2016;65:1061-73 pubmed 出版商
  395. Hoppe P, Schwarzfischer M, Loeffler D, Kokkaliaris K, Hilsenbeck O, Moritz N, et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature. 2016;535:299-302 pubmed 出版商
  396. Lowndes M, Rotherham M, Price J, El Haj A, Habib S. Immobilized WNT Proteins Act as a Stem Cell Niche for Tissue Engineering. Stem Cell Reports. 2016;7:126-37 pubmed 出版商
  397. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  398. Kretschmer S, Pieper M, Hüttmann G, Bölke T, Wollenberg B, Marsh L, et al. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways. Lab Invest. 2016;96:918-31 pubmed 出版商
  399. Clausen B, Degn M, Sivasaravanaparan M, Fogtmann T, Andersen M, Trojanowsky M, et al. Conditional ablation of myeloid TNF increases lesion volume after experimental stroke in mice, possibly via altered ERK1/2 signaling. Sci Rep. 2016;6:29291 pubmed 出版商
  400. Allison K, Sajti E, Collier J, Gosselin D, Troutman T, Stone E, et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. elife. 2016;5: pubmed 出版商
  401. Metruccio M, Evans D, Gabriel M, Kadurugamuwa J, Fleiszig S. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion. Front Microbiol. 2016;7:871 pubmed 出版商
  402. Neves J, Zhu J, Sousa Victor P, Konjikusic M, Riley R, Chew S, et al. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 2016;353:aaf3646 pubmed 出版商
  403. Yu Q, Song W, Wang D, Zeng Y. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res. 2016;26:1079-1098 pubmed 出版商
  404. Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 2017;36:639-651 pubmed 出版商
  405. Matcovitch Natan O, Winter D, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016;353:aad8670 pubmed 出版商
  406. Quantius J, Schmoldt C, Vazquez Armendariz A, Becker C, El Agha E, Wilhelm J, et al. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair. PLoS Pathog. 2016;12:e1005544 pubmed 出版商
  407. Albarrán Juárez J, Kaur H, Grimm M, Offermanns S, Wettschureck N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis. 2016;251:445-453 pubmed 出版商
  408. Terashima A, Okamoto K, Nakashima T, Akira S, Ikuta K, Takayanagi H. Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity. 2016;44:1434-43 pubmed 出版商
  409. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  410. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, Van Crombruggen K, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492-500.e8 pubmed 出版商
  411. Jia H, Sodhi C, Yamaguchi Y, Lu P, Martin L, Good M, et al. Pulmonary Epithelial TLR4 Activation Leads to Lung Injury in Neonatal Necrotizing Enterocolitis. J Immunol. 2016;197:859-71 pubmed 出版商
  412. Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck M, et al. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget. 2016;7:51107-51123 pubmed 出版商
  413. Ruhland M, Loza A, Capietto A, Luo X, Knolhoff B, Flanagan K, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762 pubmed 出版商
  414. Quirino G, Nascimento M, Davoli Ferreira M, Sacramento L, Lima M, Almeida R, et al. Interleukin-27 (IL-27) Mediates Susceptibility to Visceral Leishmaniasis by Suppressing the IL-17-Neutrophil Response. Infect Immun. 2016;84:2289-2298 pubmed 出版商
  415. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  416. Seehus C, Kaye J. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells. Bio Protoc. 2016;6: pubmed
  417. Kanda M, Nagai T, Takahashi T, Liu M, Kondou N, Naito A, et al. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS ONE. 2016;11:e0156562 pubmed 出版商
  418. Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft L, et al. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood. 2016;128:371-83 pubmed 出版商
  419. Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella Branger D, Rougon G, et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 2016;6:26381 pubmed 出版商
  420. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  421. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  422. Welte T, Kim I, Tian L, Gao X, Wang H, Li J, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18:632-44 pubmed 出版商
  423. Rothhammer V, Mascanfroni I, Bunse L, Takenaka M, Kenison J, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22:586-97 pubmed 出版商
  424. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  425. Reynaldi A, Smith N, Schlub T, Venturi V, Rudd B, Davenport M. Modeling the dynamics of neonatal CD8+ T-cell responses. Immunol Cell Biol. 2016;94:838-848 pubmed 出版商
  426. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151-66 pubmed 出版商
  427. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  428. Larabee C, Hu Y, Desai S, Georgescu C, Wren J, Axtell R, et al. Myelin-specific Th17 cells induce severe relapsing optic neuritis with irreversible loss of retinal ganglion cells in C57BL/6 mice. Mol Vis. 2016;22:332-41 pubmed
  429. Wang Y, Wang X, Flores E, Yu J, Chang S. Dysfunctional telomeres induce p53-dependent and independent apoptosis to compromise cellular proliferation and inhibit tumor formation. Aging Cell. 2016;15:646-60 pubmed 出版商
  430. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  431. Hull T, Boddu R, Guo L, Tisher C, Traylor A, Patel B, et al. Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight. 2016;1:e85817 pubmed
  432. Song Z, Li Z, Li D, Fang W, Liu H, Yang D, et al. Seminal plasma induces inflammation in the uterus through the ?? T/IL-17 pathway. Sci Rep. 2016;6:25118 pubmed 出版商
  433. Carofino B, Ayanga B, Tracey L, Brooke Bisschop T, Justice M. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open. 2016;5:645-53 pubmed 出版商
  434. Riabov V, Yin S, Song B, Avdic A, Schledzewski K, Ovsiy I, et al. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model. Oncotarget. 2016;7:31097-110 pubmed 出版商
  435. Yin S, Jian F, Chen Y, Chien S, Hsieh M, Hsiao P, et al. Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis. Nat Commun. 2016;7:11311 pubmed 出版商
  436. Lim S, Yuzhalin A, Gordon Weeks A, Muschel R. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35:5735-5745 pubmed 出版商
  437. Kurkewich J, Bikorimana E, Nguyen T, Klopfenstein N, Zhang H, Hallas W, et al. The mirn23a microRNA cluster antagonizes B cell development. J Leukoc Biol. 2016;100:665-677 pubmed
  438. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  439. Spiegel A, Brooks M, Houshyar S, Reinhardt F, Ardolino M, Fessler E, et al. Neutrophils Suppress Intraluminal NK Cell-Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discov. 2016;6:630-49 pubmed 出版商
  440. Liu Q, Babadjouni R, Radwanski R, Cheng H, Patel A, Hodis D, et al. Stroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model. PLoS ONE. 2016;11:e0153376 pubmed 出版商
  441. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  442. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  443. Mall C, Sckisel G, Proia D, Mirsoian A, Grossenbacher S, Pai C, et al. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology. 2016;5:e1075114 pubmed
  444. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  445. Yosef R, Pilpel N, Tokarsky Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190 pubmed 出版商
  446. Griffiths K, Dolezal O, Cao B, Nilsson S, See H, Pfleger K, et al. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4. J Biol Chem. 2016;291:12641-57 pubmed 出版商
  447. Jiang S, Li X, Hess N, Guan Y, Tapping R. TLR10 Is a Negative Regulator of Both MyD88-Dependent and -Independent TLR Signaling. J Immunol. 2016;196:3834-41 pubmed 出版商
  448. Braun J, Meixner A, Brachner A, Foisner R. The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE. 2016;11:e0152278 pubmed 出版商
  449. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  450. Peteranderl C, Morales Nebreda L, Selvakumar B, Lecuona E, Vadász I, Morty R, et al. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. J Clin Invest. 2016;126:1566-80 pubmed 出版商
  451. Martin B, Wang C, Zhang C, Kang Z, Gulen M, Zepp J, et al. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol. 2016;17:583-92 pubmed 出版商
  452. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  453. Kocijancic D, Felgner S, Frahm M, Komoll R, Iljazovic A, Pawar V, et al. Therapy of solid tumors using probiotic Symbioflor-2: restraints and potential. Oncotarget. 2016;7:22605-22 pubmed 出版商
  454. Menheniott T, O Connor L, Chionh Y, Däbritz J, Scurr M, Rollo B, et al. Loss of gastrokine-2 drives premalignant gastric inflammation and tumor progression. J Clin Invest. 2016;126:1383-400 pubmed 出版商
  455. McFarland B, Marks M, Rowse A, Fehling S, Gerigk M, Qin H, et al. Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma. Oncotarget. 2016;7:20621-35 pubmed 出版商
  456. Stempel H, Jung M, Pérez Gómez A, Leinders Zufall T, Zufall F, Bufe B. Strain-specific Loss of Formyl Peptide Receptor 3 in the Murine Vomeronasal and Immune Systems. J Biol Chem. 2016;291:9762-75 pubmed 出版商
  457. Carevic M, Oz H, Fuchs K, Laval J, Schroth C, Frey N, et al. CXCR1 Regulates Pulmonary Anti-Pseudomonas Host Defense. J Innate Immun. 2016;8:362-73 pubmed 出版商
  458. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  459. Liu S, Wu C, Huang K, Wang C, Guan S, Chen L, et al. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget. 2016;7:21900-12 pubmed 出版商
  460. Wang L, Siegenthaler J, Dowell R, Yi R. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science. 2016;351:613-7 pubmed 出版商
  461. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, et al. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58 pubmed 出版商
  462. Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf W, Grozdanov V, et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol. 2016;132:391-411 pubmed 出版商
  463. Xu J, Zhou L, Ji L, Chen F, Fortmann K, Zhang K, et al. The REGγ-proteasome forms a regulatory circuit with IκBÉ› and NFκB in experimental colitis. Nat Commun. 2016;7:10761 pubmed 出版商
  464. Yang Y, Poe J, Yang L, Fedoriw A, Desai S, Magnuson T, et al. Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway in vivo. Nucleic Acids Res. 2016;44:4174-88 pubmed 出版商
  465. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, et al. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep. 2016;6:21176 pubmed 出版商
  466. Karmakar M, Katsnelson M, Dubyak G, Pearlman E. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nat Commun. 2016;7:10555 pubmed 出版商
  467. Park J, Park J, Park D, Kim D, Kim H. Stem Cells Antigen-1 Enriches for a Cancer Stem Cell-Like Subpopulation in Mouse Gastric Cancer. Stem Cells. 2016;34:1177-87 pubmed 出版商
  468. Xiao J, Shao L, Shen J, Jiang W, Feng Y, Zheng P, et al. Effects of ketanserin on experimental colitis in mice and macrophage function. Int J Mol Med. 2016;37:659-68 pubmed 出版商
  469. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  470. Vila Leahey A, Rogers D, Marshall J. The impact of ranitidine on monocyte responses in the context of solid tumors. Oncotarget. 2016;7:10891-904 pubmed 出版商
  471. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  472. Smith R, Reyes N, Khandelwal P, Schlereth S, Lee H, Masli S, et al. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease. J Leukoc Biol. 2016;100:371-80 pubmed 出版商
  473. Crompton R, Williams H, Ansell D, Campbell L, Holden K, Cruickshank S, et al. Oestrogen promotes healing in a bacterial LPS model of delayed cutaneous wound repair. Lab Invest. 2016;96:439-49 pubmed 出版商
  474. Däbritz J, Judd L, Chalinor H, Menheniott T, Giraud A. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells. Sci Rep. 2016;6:20584 pubmed 出版商
  475. Howitt M, Lavoie S, Michaud M, Blum A, Tran S, Weinstock J, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329-33 pubmed 出版商
  476. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  477. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  478. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  479. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  480. Bulla R, Tripodo C, Rami D, Ling G, Agostinis C, Guarnotta C, et al. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016;7:10346 pubmed 出版商
  481. Scott C, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016;7:10321 pubmed 出版商
  482. Baudiß K, de Paula Vieira R, Cicko S, Ayata K, Hossfeld M, Ehrat N, et al. C1P Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Preventing NF-κB Activation in Neutrophils. J Immunol. 2016;196:2319-26 pubmed 出版商
  483. Chu C, Gardner P, Copland D, Liyanage S, Gonzalez Cordero A, Kleine Holthaus S, et al. Multimodal analysis of ocular inflammation using the endotoxin-induced uveitis mouse model. Dis Model Mech. 2016;9:473-81 pubmed 出版商
  484. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  485. Montufar Solis D, Klein J. Splenic Leukocytes Traffic to the Thyroid and Produce a Novel TSHβ Isoform during Acute Listeria monocytogenes Infection in Mice. PLoS ONE. 2016;11:e0146111 pubmed 出版商
  486. Catarinella M, Monestiroli A, Escobar G, Fiocchi A, Tran N, Aiolfi R, et al. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment. EMBO Mol Med. 2016;8:155-70 pubmed 出版商
  487. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  488. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  489. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  490. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med. 2016;22:183-93 pubmed 出版商
  491. Gallego Ortega D, Ledger A, Roden D, Law A, Magenau A, Kikhtyak Z, et al. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biol. 2015;13:e1002330 pubmed 出版商
  492. Rybalko V, Hsieh P, Merscham Banda M, Suggs L, Farrar R. The Development of Macrophage-Mediated Cell Therapy to Improve Skeletal Muscle Function after Injury. PLoS ONE. 2015;10:e0145550 pubmed 出版商
  493. Zahavi T, Lanton T, Divon M, Salmon A, Peretz T, Galun E, et al. Sorafenib treatment during partial hepatectomy reduces tumorgenesis in an inflammation-associated liver cancer model. Oncotarget. 2016;7:4860-70 pubmed 出版商
  494. Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed 出版商
  495. Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, et al. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res. 2016;26:119-30 pubmed 出版商
  496. Kaplan J, Marshall M, C McSkimming C, Harmon D, Garmey J, Oldham S, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4:779-94 pubmed 出版商
  497. Ge Y, Zhang L, Nikolova M, Reva B, Fuchs E. Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21(∗) in SCC progression. Nat Cell Biol. 2016;18:111-21 pubmed 出版商
  498. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med. 2016;8:6-24 pubmed 出版商
  499. Zhong C, Cui K, Wilhelm C, Hu G, Mao K, Belkaid Y, et al. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol. 2016;17:169-78 pubmed 出版商
  500. Cole C, Verdoni A, Ketkar S, Leight E, Russler Germain D, Lamprecht T, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126:85-98 pubmed 出版商
  501. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  502. Neirinckx V, Agirman G, Coste C, Marquet A, Dion V, Rogister B, et al. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Res Ther. 2015;6:211 pubmed 出版商
  503. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  504. Van Helden M, Goossens S, Daussy C, Mathieu A, Faure F, Marçais A, et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J Exp Med. 2015;212:2015-25 pubmed 出版商
  505. Gallego Colon E, Sampson R, Sattler S, Schneider M, Rosenthal N, Tonkin J. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction. Mediators Inflamm. 2015;2015:484357 pubmed 出版商
  506. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  507. Choukrallah M, Song S, Rolink A, Burger L, Matthias P. Enhancer repertoires are reshaped independently of early priming and heterochromatin dynamics during B cell differentiation. Nat Commun. 2015;6:8324 pubmed 出版商
  508. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  509. Sinadinos A, Young C, Al Khalidi R, Teti A, Kalinski P, Mohamad S, et al. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy. PLoS Med. 2015;12:e1001888 pubmed 出版商
  510. Varney M, Niederkorn M, Konno H, Matsumura T, Gohda J, Yoshida N, et al. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med. 2015;212:1967-85 pubmed 出版商
  511. Alvarez S, Diaz M, Flach J, Rodriguez Acebes S, López Contreras A, Martinez D, et al. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality. Nat Commun. 2015;6:8548 pubmed 出版商
  512. Matthews G, Mehdipour P, Cluse L, Falkenberg K, Wang E, Roth M, et al. Functional-genetic dissection of HDAC dependencies in mouse lymphoid and myeloid malignancies. Blood. 2015;126:2392-403 pubmed 出版商
  513. Abboud D, Daubeuf F, Do Q, Utard V, Villa P, Haiech J, et al. A strategy to discover decoy chemokine ligands with an anti-inflammatory activity. Sci Rep. 2015;5:14746 pubmed 出版商
  514. Phinney D, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix C, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472 pubmed 出版商
  515. Jones D, Wilmore J, Allman D. Cellular Dynamics of Memory B Cell Populations: IgM+ and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells. J Immunol. 2015;195:4753-9 pubmed 出版商
  516. Vlachou K, Mintzas K, Glymenaki M, Ioannou M, Papadaki G, Bertsias G, et al. Elimination of Granulocytic Myeloid-Derived Suppressor Cells in Lupus-Prone Mice Linked to Reactive Oxygen Species-Dependent Extracellular Trap Formation. Arthritis Rheumatol. 2016;68:449-61 pubmed 出版商
  517. Liu L, Cheung T, Charville G, Rando T. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat Protoc. 2015;10:1612-24 pubmed 出版商
  518. Aparicio Domingo P, Romera Hernandez M, Karrich J, Cornelissen F, Papazian N, Lindenbergh Kortleve D, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med. 2015;212:1783-91 pubmed 出版商
  519. Skrzypek K, Kusienicka A, Szewczyk B, Adamus T, Lukasiewicz E, Miekus K, et al. Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget. 2015;6:31378-98 pubmed 出版商
  520. Brasseit J, Althaus Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, et al. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol. 2016;9:689-701 pubmed 出版商
  521. Hanot Mambres D, Machelart A, Vanderwinden J, De Trez C, Ryffel B, Letesson J, et al. In Situ Characterization of Splenic Brucella melitensis Reservoir Cells during the Chronic Phase of Infection in Susceptible Mice. PLoS ONE. 2015;10:e0137835 pubmed 出版商
  522. Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, et al. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential. PLoS ONE. 2015;10:e0137999 pubmed 出版商
  523. Rathert P, Roth M, Neumann T, Muerdter F, Roe J, Muhar M, et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 2015;525:543-547 pubmed 出版商
  524. Fong C, Gilan O, Lam E, Rubin A, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538-42 pubmed 出版商
  525. Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, et al. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy. Endocrinology. 2015;156:4281-92 pubmed 出版商
  526. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  527. Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:1013-24 pubmed 出版商
  528. Crosby E, Clark M, Novais F, Wherry E, Scott P. Lymphocytic Choriomeningitis Virus Expands a Population of NKG2D+CD8+ T Cells That Exacerbates Disease in Mice Coinfected with Leishmania major. J Immunol. 2015;195:3301-10 pubmed 出版商
  529. Merches K, Khairnar V, Knuschke T, Shaabani N, Honke N, Duhan V, et al. Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection. Cell Physiol Biochem. 2015;36:2379-92 pubmed 出版商
  530. Eichin D, Laurila J, Jalkanen S, Salmi M. CD73 Activity is Dispensable for the Polarization of M2 Macrophages. PLoS ONE. 2015;10:e0134721 pubmed 出版商
  531. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  532. Fujimura N, Xu B, Dalman J, Deng H, Aoyama K, Dalman R. CCR2 inhibition sequesters multiple subsets of leukocytes in the bone marrow. Sci Rep. 2015;5:11664 pubmed 出版商
  533. Ermert D, Shaughnessy J, Joeris T, Kaplan J, Pang C, Kurt Jones E, et al. Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors. PLoS Pathog. 2015;11:e1005043 pubmed 出版商
  534. ELDREDGE L, Treuting P, MANICONE A, Ziegler S, Parks W, McGuire J. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice. Am J Respir Cell Mol Biol. 2016;54:273-83 pubmed 出版商
  535. Kratochvill F, Gratz N, Qualls J, Van De Velde L, Chi H, Kovarik P, et al. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res. 2015;75:3054-64 pubmed 出版商
  536. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  537. Deng B, Deng W, Xiao P, Zeng K, Zhang S, Zhang H, et al. Nonadherent culture method downregulates stem cell antigen-1 expression in mouse bone marrow mesenchymal stem cells. Exp Ther Med. 2015;10:31-36 pubmed
  538. Ripperger T, Manukjan G, Meyer J, Wolter S, Schambach A, Bohne J, et al. The heteromeric transcription factor GABP activates the ITGAM/CD11b promoter and induces myeloid differentiation. Biochim Biophys Acta. 2015;1849:1145-54 pubmed 出版商
  539. Di Cicco A, Petit V, Chiche A, Bresson L, Romagnoli M, Orian Rousseau V, et al. Paracrine Met signaling triggers epithelial-mesenchymal transition in mammary luminal progenitors, affecting their fate. elife. 2015;4: pubmed 出版商
  540. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  541. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  542. Weindel C, Richey L, Bolland S, Mehta A, Kearney J, Huber B. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy. 2015;11:1010-24 pubmed 出版商
  543. Zhang J, Li L, Baldwin A, Friedman A, Paz Priel I. Loss of IKKβ but Not NF-κB p65 Skews Differentiation towards Myeloid over Erythroid Commitment and Increases Myeloid Progenitor Self-Renewal and Functional Long-Term Hematopoietic Stem Cells. PLoS ONE. 2015;10:e0130441 pubmed 出版商
  544. Onishi S, Adnan E, Ishizaki J, Miyazaki T, Tanaka Y, Matsumoto T, et al. Novel Autoantigens Associated with Lupus Nephritis. PLoS ONE. 2015;10:e0126564 pubmed 出版商
  545. Joshi P, Waterhouse P, Kannan N, Narala S, Fang H, Di Grappa M, et al. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1. Stem Cell Reports. 2015;5:31-44 pubmed 出版商
  546. Tacke R, Hilgendorf I, Garner H, Waterborg C, Park K, Nowyhed H, et al. The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. Sci Rep. 2015;5:10055 pubmed 出版商
  547. Xu G, Wu H, Zhang J, Li D, Wang Y, Wang Y, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med. 2015;87:15-25 pubmed 出版商
  548. Russell R, McDonald J, Ivanova M, Zhong Z, Bukreyev A, Tregoning J. Partial Attenuation of Respiratory Syncytial Virus with a Deletion of a Small Hydrophobic Gene Is Associated with Elevated Interleukin-1β Responses. J Virol. 2015;89:8974-81 pubmed 出版商
  549. Charmsaz S, Beckett K, Smith F, Bruedigam C, Moore A, Al Ejeh F, et al. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia. PLoS ONE. 2015;10:e0130692 pubmed 出版商
  550. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  551. Chang D, Moniz R, Xu Z, Sun J, Signoretti S, Zhu Q, et al. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer. 2015;14:119 pubmed 出版商
  552. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  553. Koronyo Y, Salumbides B, Sheyn J, Pelissier L, Li S, Ljubimov V, et al. Therapeutic effects of glatiramer acetate and grafted CD115⁺ monocytes in a mouse model of Alzheimer's disease. Brain. 2015;138:2399-422 pubmed 出版商
  554. Imai Y, Ayithan N, Wu X, Yuan Y, Wang L, Hwang S. Cutting Edge: PD-1 Regulates Imiquimod-Induced Psoriasiform Dermatitis through Inhibition of IL-17A Expression by Innate γδ-Low T Cells. J Immunol. 2015;195:421-5 pubmed 出版商
  555. Durrans A, Gao D, Gupta R, Fischer K, Choi H, El Rayes T, et al. Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC. PLoS ONE. 2015;10:e0129123 pubmed 出版商
  556. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS ONE. 2015;10:e0128094 pubmed 出版商
  557. Holzapfel B, Hutmacher D, Nowlan B, Barbier V, Thibaudeau L, Theodoropoulos C, et al. Tissue engineered humanized bone supports human hematopoiesis in vivo. Biomaterials. 2015;61:103-14 pubmed 出版商
  558. Wang H, Hong L, Huang J, Jiang Q, Tao R, Tan C, et al. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy. Cell Res. 2015;25:674-90 pubmed 出版商
  559. Liang X, Ding Y, Zhang Y, Chai Y, He J, Chiu S, et al. Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis. 2015;6:e1765 pubmed 出版商
  560. Teo T, Her Z, Tan J, Lum F, Lee W, Chan Y, et al. Caribbean and La Réunion Chikungunya Virus Isolates Differ in Their Capacity To Induce Proinflammatory Th1 and NK Cell Responses and Acute Joint Pathology. J Virol. 2015;89:7955-69 pubmed 出版商
  561. Jacque E, Schweighoffer E, Tybulewicz V, Ley S. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival. J Exp Med. 2015;212:883-92 pubmed 出版商
  562. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  563. Xue J, Sharma V, Hsieh M, Chawla A, Murali R, Pandol S, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158 pubmed 出版商
  564. Yang L, Carrillo M, Wu Y, DiAngelo S, Silveyra P, Umstead T, et al. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS ONE. 2015;10:e0126576 pubmed 出版商
  565. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  566. Zeng S, Wang L, Li P, Wang W, Yang J. Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Mol Med Rep. 2015;12:2511-20 pubmed 出版商
  567. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  568. Carmi Y, Spitzer M, Linde I, Burt B, Prestwood T, Perlman N, et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature. 2015;521:99-104 pubmed 出版商
  569. Wang E, Kawaoka S, Roe J, Shi J, Hohmann A, Xu Y, et al. The transcriptional cofactor TRIM33 prevents apoptosis in B lymphoblastic leukemia by deactivating a single enhancer. elife. 2015;4:e06377 pubmed 出版商
  570. Li X, Maretzky T, Weskamp G, Monette S, Qing X, Issuree P, et al. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc Natl Acad Sci U S A. 2015;112:6080-5 pubmed 出版商
  571. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  572. Hegde V, Singh U, Nagarkatti P, Nagarkatti M. Critical Role of Mast Cells and Peroxisome Proliferator-Activated Receptor γ in the Induction of Myeloid-Derived Suppressor Cells by Marijuana Cannabidiol In Vivo. J Immunol. 2015;194:5211-22 pubmed 出版商
  573. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  574. Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 2015;6:6970 pubmed 出版商
  575. Kitur K, Parker D, Nieto P, Ahn D, Cohen T, Chung S, et al. Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathog. 2015;11:e1004820 pubmed 出版商
  576. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed 出版商
  577. Huang Y, Lo P, Yen C, Nigrovic P, Chao W, Wang W, et al. Redox Regulation of Pro-IL-1β Processing May Contribute to the Increased Severity of Serum-Induced Arthritis in NOX2-Deficient Mice. Antioxid Redox Signal. 2015;23:973-84 pubmed 出版商
  578. Tsukamoto H, Senju S, Matsumura K, Swain S, Nishimura Y. IL-6-mediated environmental conditioning of defective Th1 differentiation dampens antitumour immune responses in old age. Nat Commun. 2015;6:6702 pubmed 出版商
  579. Iwai H, Funatogawa K, Matsumura K, Kato Miyazawa M, Kirikae F, Kiga K, et al. MicroRNA-155 knockout mice are susceptible to Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2015;95:246-50 pubmed 出版商
  580. Rao T, Marks Bluth J, Sullivan J, Gupta M, Chandrakanthan V, Fitch S, et al. High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res. 2015;14:307-22 pubmed 出版商
  581. Lal G, Nakayama Y, Sethi A, Singh A, Burrell B, Kulkarni N, et al. Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation. 2015;99:1817-28 pubmed 出版商
  582. Koh F, Lizama C, Wong P, Hawkins J, Zovein A, Ramalho Santos M. Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc Natl Acad Sci U S A. 2015;112:E1734-43 pubmed 出版商
  583. Lujan E, Zunder E, Ng Y, Goronzy I, Nolan G, Wernig M. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature. 2015;521:352-6 pubmed 出版商
  584. Brunner P, Glitzner E, Reininger B, Klein I, Stary G, Mildner M, et al. CCL7 contributes to the TNF-alpha-dependent inflammation of lesional psoriatic skin. Exp Dermatol. 2015;24:522-8 pubmed 出版商
  585. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  586. Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, et al. Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. J Exp Med. 2015;212:525-38 pubmed 出版商
  587. Napier R, Norris B, Swimm A, Giver C, Harris W, Laval J, et al. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog. 2015;11:e1004770 pubmed 出版商
  588. Moalli F, Proulx S, Schwendener R, Detmar M, Schlapbach C, Stein J. Intravital and whole-organ imaging reveals capture of melanoma-derived antigen by lymph node subcapsular macrophages leading to widespread deposition on follicular dendritic cells. Front Immunol. 2015;6:114 pubmed 出版商
  589. Dal Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong C, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447-56 pubmed 出版商
  590. Povinelli B, Kokolus K, Eng J, Dougher C, Curtin L, Capitano M, et al. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells. PLoS ONE. 2015;10:e0120078 pubmed 出版商
  591. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  592. Hu Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015;7:279ra41 pubmed 出版商
  593. Liu B, Lee J, Chen C, Hershey G, Wang Y. Collaborative interactions between type 2 innate lymphoid cells and antigen-specific CD4+ Th2 cells exacerbate murine allergic airway diseases with prominent eosinophilia. J Immunol. 2015;194:3583-93 pubmed 出版商
  594. Bretscher P, Egger J, Shamshiev A, Trötzmüller M, Köfeler H, Carreira E, et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol Med. 2015;7:593-607 pubmed 出版商
  595. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  596. Boulay A, Mazeraud A, Cisternino S, Saubaméa B, Mailly P, Jourdren L, et al. Immune quiescence of the brain is set by astroglial connexin 43. J Neurosci. 2015;35:4427-39 pubmed 出版商
  597. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  598. Li C, Cheng P, Liang M, Chen Y, Lu Q, Wang J, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest. 2015;125:1509-22 pubmed 出版商
  599. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  600. Watson N, Schneider K, Massa P. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis. J Immunol. 2015;194:2796-809 pubmed 出版商
  601. Gong W, Shou D, Cheng F, Shi J, Ge F, Liu D. Tolerance induced by IL-6 deficient donor heart is significantly involved in myeloid-derived suppressor cells (MDSCs). Transpl Immunol. 2015;32:72-5 pubmed 出版商
  602. Yamada D, Elsaesser H, Lux A, Timmerman J, Morrison S, de la Torre J, et al. Suppression of Fcγ-receptor-mediated antibody effector function during persistent viral infection. Immunity. 2015;42:379-390 pubmed 出版商
  603. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  604. Gong J, Weng D, Eguchi T, Murshid A, Sherman M, Song B, et al. Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene. 2015;34:5460-71 pubmed 出版商
  605. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed 出版商
  606. Hu W, Dooley J, Chung S, Chandramohan D, Cimmino L, Mukherjee S, et al. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood. 2015;125:2206-16 pubmed 出版商
  607. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  608. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  609. Baillet A, Rehaume L, Benham H, O Meara C, Armitage C, Ruscher R, et al. High Chlamydia Burden Promotes Tumor Necrosis Factor-Dependent Reactive Arthritis in SKG Mice. Arthritis Rheumatol. 2015;67:1535-47 pubmed 出版商
  610. Peng H, Li C, Kadow S, Henry B, Steinmann J, Becker K, et al. Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J Mol Med (Berl). 2015;93:675-89 pubmed 出版商
  611. Zimmermann M, Aguilera F, Castellucci M, Rossato M, Costa S, Lunardi C, et al. Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun. 2015;6:6061 pubmed 出版商
  612. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  613. Evans E, Jonason A, Bussler H, Torno S, Veeraraghavan J, Reilly C, et al. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res. 2015;3:689-701 pubmed 出版商
  614. Funakoshi S, Shimizu T, Numata O, Ato M, Melchers F, Ohnishi K. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells. PLoS ONE. 2015;10:e0117566 pubmed 出版商
  615. Du J, Shen X, Hu X, Sun B, Guan W, Li S, et al. Wip1-deficient neutrophils significantly promote intestinal ischemia/reperfusion injury in mice. Curr Mol Med. 2015;15:100-8 pubmed
  616. Bergot A, Monnet N, Le Tran S, Mittal D, Al Kouba J, Steptoe R, et al. HPV16 E7 expression in skin induces TSLP secretion, type 2 ILC infiltration and atopic dermatitis-like lesions. Immunol Cell Biol. 2015;93:540-7 pubmed 出版商
  617. CismaÅŸiu V, Popescu L. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. J Cell Mol Med. 2015;19:351-8 pubmed 出版商
  618. Tanaka T, Kajiwara T, Torigoe T, Okamoto Y, Sato N, Tamura Y. Cancer-associated oxidoreductase ERO1-α drives the production of tumor-promoting myeloid-derived suppressor cells via oxidative protein folding. J Immunol. 2015;194:2004-10 pubmed 出版商
  619. Ballesteros I, Cuartero M, Moraga A, de la Parra J, Lizasoain I, Moro M. Stereological and flow cytometry characterization of leukocyte subpopulations in models of transient or permanent cerebral ischemia. J Vis Exp. 2014;: pubmed 出版商
  620. Leon Rico D, Fernández García M, Aldea M, Sánchez R, Peces Barba M, Martínez Palacio J, et al. Comparison of haematopoietic stem cell engraftment through the retro-orbital venous sinus and the lateral vein: alternative routes for bone marrow transplantation in mice. Lab Anim. 2015;49:132-41 pubmed 出版商
  621. Khaled W, Choon Lee S, Stingl J, Chen X, Raza Ali H, Rueda O, et al. BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun. 2015;6:5987 pubmed 出版商
  622. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  623. Djukic M, Sostmann N, Bertsch T, Mecke M, Nessler S, Manig A, et al. Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice. J Neuroinflammation. 2015;12:208 pubmed 出版商
  624. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  625. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  626. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  627. Su X, Zhang L, Ye J, Yang L, Li Y, Wang Y. Bone marrow mesenchymal stem cells suppress ascitogenous hepatoma progression in BALB/c mouse through reducing myeloid-derived suppressor cells. Biomed Mater Eng. 2015;25:167-77 pubmed 出版商
  628. Karamitros D, Patmanidi A, Kotantaki P, Potocnik A, Bähr Ivacevic T, Benes V, et al. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development. 2015;142:70-81 pubmed 出版商
  629. Evrard M, Chong S, Devi S, Chew W, Lee B, Poidinger M, et al. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol. 2015;97:611-9 pubmed 出版商
  630. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  631. Naik A, Hawwari A, Krangel M. Specification of Vδ and Vα usage by Tcra/Tcrd locus V gene segment promoters. J Immunol. 2015;194:790-4 pubmed 出版商
  632. Fontana M, Baccarella A, Pancholi N, Pufall M, Herbert D, Kim C. JUNB is a key transcriptional modulator of macrophage activation. J Immunol. 2015;194:177-86 pubmed 出版商
  633. Her Z, Teng T, Tan J, Teo T, Kam Y, Lum F, et al. Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus-specific neutralizing antibody response. EMBO Mol Med. 2015;7:24-41 pubmed 出版商
  634. Vela Ramirez J, Goodman J, Boggiatto P, Roychoudhury R, Pohl N, Hostetter J, et al. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS J. 2015;17:256-67 pubmed 出版商
  635. Schliehe C, Flynn E, Vilagos B, Richson U, Swaminanthan S, Bosnjak B, et al. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol. 2015;16:67-74 pubmed 出版商
  636. van Blijswijk J, Schraml B, Rogers N, Whitney P, Zelenay S, Acton S, et al. Altered lymph node composition in diphtheria toxin receptor-based mouse models to ablate dendritic cells. J Immunol. 2015;194:307-15 pubmed 出版商
  637. Lieber S, Scheer F, Finkernagel F, Meissner W, Giehl G, Brendel C, et al. The inverse agonist DG172 triggers a PPARβ/δ-independent myeloid lineage shift and promotes GM-CSF/IL-4-induced dendritic cell differentiation. Mol Pharmacol. 2015;87:162-73 pubmed 出版商
  638. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  639. Lim A, Shin K, Zhao C, Kawano S, Beachy P. Spatially restricted Hedgehog signalling regulates HGF-induced branching of the adult prostate. Nat Cell Biol. 2014;16:1135-45 pubmed 出版商
  640. Fu C, Odegaard J, Hsieh M. Macrophages are required for host survival in experimental urogenital schistosomiasis. FASEB J. 2015;29:193-207 pubmed 出版商
  641. Sakamoto H, Takeda N, Arai F, Hosokawa K, García P, Suda T, et al. Determining c-Myb protein levels can isolate functional hematopoietic stem cell subtypes. Stem Cells. 2015;33:479-90 pubmed 出版商
  642. Morales D, Monte K, Sun L, Struckhoff J, Agapov E, Holtzman M, et al. Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J Virol. 2015;89:337-49 pubmed 出版商
  643. McDonnell A, Lesterhuis W, Khong A, Nowak A, Lake R, Currie A, et al. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur J Immunol. 2015;45:49-59 pubmed 出版商
  644. Guttman O, Yossef R, Freixo Lima G, Rider P, Porgador A, Lewis E. α1-Antitrypsin modifies general NK cell interactions with dendritic cells and specific interactions with islet β-cells in favor of protection from autoimmune diabetes. Immunology. 2014;: pubmed 出版商
  645. Xia H, Ren X, Bolte C, Ustiyan V, Zhang Y, Shah T, et al. Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol. 2015;52:611-21 pubmed 出版商
  646. ZasÅ‚ona Z, Przybranowski S, Wilke C, Van Rooijen N, Teitz Tennenbaum S, Osterholzer J, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014;193:4245-53 pubmed 出版商
  647. Jacque E, Schweighoffer E, Visekruna A, Papoutsopoulou S, Janzen J, Zillwood R, et al. IKK-induced NF-κB1 p105 proteolysis is critical for B cell antibody responses to T cell-dependent antigen. J Exp Med. 2014;211:2085-101 pubmed 出版商
  648. Cao Y, Slaney C, Bidwell B, Parker B, Johnstone C, Rautela J, et al. BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res. 2014;74:5091-102 pubmed 出版商
  649. Wang W, Kissig M, Rajakumari S, Huang L, Lim H, Won K, et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A. 2014;111:14466-71 pubmed 出版商
  650. Praet J, Santermans E, Reekmans K, De Vocht N, Le Blon D, Hoornaert C, et al. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. Methods Mol Biol. 2014;1213:265-83 pubmed 出版商
  651. Chen J, Zhao Y, Zhang C, Chen H, Feng J, Chi X, et al. Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res. 2014;24:1050-66 pubmed 出版商
  652. Cremasco V, Woodruff M, Onder L, Cupovic J, Nieves Bonilla J, Schildberg F, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973-81 pubmed 出版商
  653. Sauter K, Pridans C, Sehgal A, Bain C, Scott C, Moffat L, et al. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS ONE. 2014;9:e105429 pubmed 出版商
  654. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  655. Flach J, Bakker S, Mohrin M, Conroy P, Pietras E, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198-202 pubmed 出版商
  656. Pisano F, Heine W, Rosenheinrich M, Schweer J, Nuss A, Dersch P. Influence of PhoP and intra-species variations on virulence of Yersinia pseudotuberculosis during the natural oral infection route. PLoS ONE. 2014;9:e103541 pubmed 出版商
  657. Kim K, Skora A, Li Z, Liu Q, Tam A, Blosser R, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111:11774-9 pubmed 出版商
  658. Ostapoff K, Cenik B, Wang M, Ye R, Xu X, Nugent D, et al. Neutralizing murine TGF?R2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis. Cancer Res. 2014;74:4996-5007 pubmed 出版商
  659. Reeh K, Cardenas K, Bain V, Liu Z, LAURENT M, Manley N, et al. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development. 2014;141:2950-8 pubmed 出版商
  660. Chung Y, Kim E, Abdel Wahab O. Femoral bone marrow aspiration in live mice. J Vis Exp. 2014;: pubmed 出版商
  661. Lambertsen K, Østergaard K, Clausen B, Hansen S, Stenvang J, Thorsen S, et al. No effect of ablation of surfactant protein-D on acute cerebral infarction in mice. J Neuroinflammation. 2014;11:123 pubmed 出版商
  662. Price P, Luckow B, Torres Domínguez L, Brandmüller C, Zorn J, Kirschning C, et al. Chemokine (C-C Motif) receptor 1 is required for efficient recruitment of neutrophils during respiratory infection with modified vaccinia virus Ankara. J Virol. 2014;88:10840-50 pubmed 出版商
  663. Knoop K, McDonald K, McCrate S, McDole J, Newberry R. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015;8:198-210 pubmed 出版商
  664. Radovanovic I, Leung V, Iliescu A, Bongfen S, Mullick A, Langlais D, et al. Genetic control of susceptibility to Candida albicans in SM/J mice. J Immunol. 2014;193:1290-300 pubmed 出版商
  665. Collins C, Wang J, Miao H, Bronstein J, Nawer H, Xu T, et al. C/EBP? is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis. Proc Natl Acad Sci U S A. 2014;111:9899-904 pubmed 出版商
  666. Madireddi S, Eun S, Lee S, Nemčovičová I, Mehta A, Zajonc D, et al. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med. 2014;211:1433-48 pubmed 出版商
  667. Franklin B, Bossaller L, De Nardo D, Ratter J, Stutz A, Engels G, et al. The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nat Immunol. 2014;15:727-37 pubmed 出版商
  668. Zhou Q, Ho A, Schlitzer A, Tang Y, Wong K, Wong F, et al. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis. J Immunol. 2014;193:496-509 pubmed 出版商
  669. Mise Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, et al. NF-?B RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol. 2014;26:607-18 pubmed 出版商
  670. Weston W, Zayas J, Perez R, George J, Jurecic R. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets. Sci Rep. 2014;4:5199 pubmed 出版商
  671. Geem D, Medina Contreras O, McBride M, Newberry R, Koni P, Denning T. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431-8 pubmed 出版商
  672. Wang J, Eguchi K, Matsumoto S, Fujiu K, Komuro I, Nagai R, et al. The ?-3 polyunsaturated fatty acid, eicosapentaenoic acid, attenuates abdominal aortic aneurysm development via suppression of tissue remodeling. PLoS ONE. 2014;9:e96286 pubmed 出版商
  673. Zhao C, Gillette D, Li X, Zhang Z, Wen H. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J Biol Chem. 2014;289:17020-9 pubmed 出版商
  674. Petrakova O, Terskikh V, Chernioglo E, Ashapkin V, Bragin E, Shtratnikova V, et al. Comparative analysis reveals similarities between cultured submandibular salivary gland cells and liver progenitor cells. Springerplus. 2014;3:183 pubmed 出版商
  675. Morshed M, Hlushchuk R, Simon D, Walls A, Obata Ninomiya K, Karasuyama H, et al. NADPH oxidase-independent formation of extracellular DNA traps by basophils. J Immunol. 2014;192:5314-23 pubmed 出版商
  676. Meraz I, Hearnden C, Liu X, Yang M, Williams L, Savage D, et al. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes. PLoS ONE. 2014;9:e94703 pubmed 出版商
  677. Xu Y, Hyun Y, Lim K, Lee H, Cummings R, Gerber S, et al. Optogenetic control of chemokine receptor signal and T-cell migration. Proc Natl Acad Sci U S A. 2014;111:6371-6 pubmed 出版商
  678. Dupont C, Christian D, Selleck E, Pepper M, Leney Greene M, Harms Pritchard G, et al. Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog. 2014;10:e1004047 pubmed 出版商
  679. Saulep Easton D, Vincent F, Le Page M, Wei A, Ting S, Croce C, et al. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia. 2014;28:2005-15 pubmed 出版商
  680. Sauter K, Pridans C, Sehgal A, Tsai Y, Bradford B, Raza S, et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014;96:265-74 pubmed 出版商
  681. Martin R, Saleem S, Folgosa L, Zellner H, Damle S, Nguyen G, et al. Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol. 2014;96:151-9 pubmed 出版商
  682. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  683. Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed 出版商
  684. Weber B, Schuster S, Zysset D, Rihs S, Dickgreber N, Schürch C, et al. TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. PLoS Pathog. 2014;10:e1003900 pubmed 出版商
  685. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  686. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  687. Driskell R, Lichtenberger B, Hoste E, Kretzschmar K, Simons B, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277-281 pubmed 出版商
  688. Kim H, Lee H, Chang Y, Pichavant M, Shore S, Fitzgerald K, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54-61 pubmed 出版商
  689. Salem H, Trojanowski B, Fiedler K, Maier H, Schirmbeck R, Wagner M, et al. Long-term IKK2/NF-?B signaling in pancreatic ?-cells induces immune-mediated diabetes. Diabetes. 2014;63:960-75 pubmed 出版商
  690. Gujar S, Clements D, Dielschneider R, Helson E, Marcato P, Lee P. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer. 2014;110:83-93 pubmed 出版商
  691. Gorina R, Lyck R, Vestweber D, Engelhardt B. ?2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier. J Immunol. 2014;192:324-37 pubmed 出版商
  692. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  693. Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. J Cell Biol. 2013;203:47-56 pubmed 出版商
  694. Povinelli B, Nemeth M. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014;32:105-15 pubmed 出版商
  695. Satpathy A, Briseño C, Lee J, Ng D, Manieri N, Kc W, et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol. 2013;14:937-48 pubmed 出版商
  696. Pioli P, Dahlem T, Weis J, Weis J. Deletion of Snai2 and Snai3 results in impaired physical development compounded by lymphocyte deficiency. PLoS ONE. 2013;8:e69216 pubmed 出版商
  697. Conine S, Cross J. MIF deficiency does not alter glucose homeostasis or adipose tissue inflammatory cell infiltrates during diet-induced obesity. Obesity (Silver Spring). 2014;22:418-25 pubmed 出版商
  698. Christoforou N, Liau B, Chakraborty S, Chellapan M, Bursac N, Leong K. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues. PLoS ONE. 2013;8:e65963 pubmed 出版商
  699. Stoilova B, Kowenz Leutz E, Scheller M, Leutz A. Lymphoid to myeloid cell trans-differentiation is determined by C/EBP? structure and post-translational modifications. PLoS ONE. 2013;8:e65169 pubmed 出版商
  700. Redecke V, Wu R, Zhou J, Finkelstein D, Chaturvedi V, High A, et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods. 2013;10:795-803 pubmed 出版商
  701. Ke F, Bouillet P, Kaufmann T, Strasser A, Kerr J, Voss A. Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell Death Dis. 2013;4:e650 pubmed 出版商
  702. Kim M, Kang S, Park J, Yanagisawa M, Kim C. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145:396-406.e1-10 pubmed 出版商
  703. Martinod K, Demers M, Fuchs T, Wong S, Brill A, Gallant M, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110:8674-9 pubmed 出版商
  704. Gerber S, Sedlacek A, Cron K, Murphy S, Frelinger J, Lord E. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol. 2013;182:2345-54 pubmed 出版商
  705. Vink P, Smout W, Driessen Engels L, de Bruin A, Delsing D, Krajnc Franken M, et al. In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS ONE. 2013;8:e57348 pubmed 出版商
  706. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  707. Koning J, Kooij G, de Vries H, Nolte M, Mebius R. Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Front Immunol. 2013;4:49 pubmed 出版商
  708. Kobayashi A, Donaldson D, Erridge C, Kanaya T, Williams I, Ohno H, et al. The functional maturation of M cells is dramatically reduced in the Peyer's patches of aged mice. Mucosal Immunol. 2013;6:1027-37 pubmed 出版商
  709. Powell N, Walker A, Stolarczyk E, Canavan J, Gökmen M, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674-84 pubmed 出版商
  710. Jenkins C, Shevchuk O, Giambra V, Lam S, Carboni J, Gottardis M, et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol. 2012;40:715-723.e6 pubmed 出版商
  711. Botelho F, Bauer C, Finch D, Nikota J, Zavitz C, Kelly A, et al. IL-1?/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PLoS ONE. 2011;6:e28457 pubmed 出版商
  712. McPhee C, Sproule T, Shin D, Bubier J, Schott W, Steinbuck M, et al. MHC class I family proteins retard systemic lupus erythematosus autoimmunity and B cell lymphomagenesis. J Immunol. 2011;187:4695-704 pubmed 出版商
  713. Ripich T, Jessberger R. SWAP-70 regulates erythropoiesis by controlling ?4 integrin. Haematologica. 2011;96:1743-52 pubmed 出版商
  714. Hemmers S, Teijaro J, Arandjelovic S, Mowen K. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS ONE. 2011;6:e22043 pubmed 出版商
  715. Qian B, Li J, Zhang H, Kitamura T, Zhang J, Campion L, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222-5 pubmed 出版商
  716. Tousif S, Singh Y, Prasad D, Sharma P, Van Kaer L, Das G. T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS ONE. 2011;6:e19864 pubmed 出版商
  717. Weishaupt H, Attema J. A Method to Study the Epigenetic Chromatin States of Rare Hematopoietic Stem and Progenitor Cells; MiniChIP-Chip. Biol Proced Online. 2010;12:1-17 pubmed 出版商
  718. Ludwig A, Otto G, Riento K, Hams E, Fallon P, Nichols B. Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J Cell Biol. 2010;191:771-81 pubmed 出版商
  719. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  720. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  721. Guibal F, Alberich Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A, et al. Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood. 2009;114:5415-25 pubmed 出版商
  722. Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Ruegg C, Christofori G. Myeloid cells contribute to tumor lymphangiogenesis. PLoS ONE. 2009;4:e7067 pubmed 出版商
  723. Carlow D, Gold M, Ziltener H. Lymphocytes in the peritoneum home to the omentum and are activated by resident dendritic cells. J Immunol. 2009;183:1155-65 pubmed 出版商
  724. Horman S, Velu C, Chaubey A, Bourdeau T, Zhu J, Paul W, et al. Gfi1 integrates progenitor versus granulocytic transcriptional programming. Blood. 2009;113:5466-75 pubmed 出版商
  725. Tambuyzer B, Bergwerf I, De Vocht N, Reekmans K, Daans J, Jorens P, et al. Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation. Immunol Cell Biol. 2009;87:267-73 pubmed 出版商
  726. Kanwar N, Fayyazi A, Backofen B, Nitsche M, Dressel R, von Mollard G. Thymic alterations in mice deficient for the SNARE protein VAMP8/endobrevin. Cell Tissue Res. 2008;334:227-42 pubmed 出版商
  727. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  728. Waskow C, Liu K, Darrasse Jèze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-83 pubmed 出版商
  729. Culshaw S, Millington O, Brewer J, McInnes I. Murine neutrophils present Class II restricted antigen. Immunol Lett. 2008;118:49-54 pubmed 出版商
  730. Wanasen N, Xin L, Soong L. Pathogenic role of B cells and antibodies in murine Leishmania amazonensis infection. Int J Parasitol. 2008;38:417-29 pubmed
  731. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  732. Laurie K, Blundell M, Baxendale H, Howe S, Sinclair J, Qasim W, et al. Cell-specific and efficient expression in mouse and human B cells by a novel hybrid immunoglobulin promoter in a lentiviral vector. Gene Ther. 2007;14:1623-31 pubmed
  733. van der Marel A, Samsom J, Greuter M, van Berkel L, O Toole T, Kraal G, et al. Blockade of IDO inhibits nasal tolerance induction. J Immunol. 2007;179:894-900 pubmed
  734. Huang B, Zhao J, Shen S, Li H, He K, Shen G, et al. Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res. 2007;67:4346-52 pubmed
  735. Chang S, Wang K, Lu Y, Yang L, Chen W, Lin Y, et al. Characterization of early gamma interferon (IFN-gamma) expression during murine listeriosis: identification of NK1.1+ CD11c+ cells as the primary IFN-gamma-expressing cells. Infect Immun. 2007;75:1167-76 pubmed
  736. HogenEsch H, Dunham A, Seymour R, Renninger M, Sundberg J. Expression of chitinase-like proteins in the skin of chronic proliferative dermatitis (cpdm/cpdm) mice. Exp Dermatol. 2006;15:808-14 pubmed
  737. Grisaru D, Pick M, Perry C, Sklan E, Almog R, Goldberg I, et al. Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses. J Immunol. 2006;176:27-35 pubmed
  738. Schneider B, Fine J, Tiidus P. Indices of leukocyte infiltration and muscle recovery after eccentric contraction-induced injury in young and adult male mice. Orthop Nurs. 2005;24:399-405 pubmed
  739. Gupta R, Karpatkin S, Basch R. Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood. 2006;107:1837-46 pubmed
  740. Fan J, Li Y, Vodovotz Y, Billiar T, Wilson M. Hemorrhagic shock-activated neutrophils augment TLR4 signaling-induced TLR2 upregulation in alveolar macrophages: role in hemorrhage-primed lung inflammation. Am J Physiol Lung Cell Mol Physiol. 2006;290:L738-L746 pubmed
  741. Lu M, Tayu R, Ikawa T, Masuda K, Matsumoto I, Mugishima H, et al. The earliest thymic progenitors in adults are restricted to T, NK, and dendritic cell lineage and have a potential to form more diverse TCRbeta chains than fetal progenitors. J Immunol. 2005;175:5848-56 pubmed
  742. Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, Hicklin D, et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J. 2005;19:2005-7 pubmed
  743. Iwasaki H, Mizuno S, Mayfield R, Shigematsu H, Arinobu Y, Seed B, et al. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med. 2005;201:1891-7 pubmed
  744. Nakae S, Suto H, Kakurai M, Sedgwick J, Tsai M, Galli S. Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proc Natl Acad Sci U S A. 2005;102:6467-72 pubmed
  745. Eruslanov E, Lyadova I, Kondratieva T, Majorov K, Scheglov I, Orlova M, et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun. 2005;73:1744-53 pubmed
  746. Noel J, Guo X, Wells Byrum D, Schwemberger S, Caldwell C, Ogle C. Effect of thermal injury on splenic myelopoiesis. Shock. 2005;23:115-22 pubmed
  747. Mischenko V, Kapina M, Eruslanov E, Kondratieva E, Lyadova I, Young D, et al. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J Infect Dis. 2004;190:2137-45 pubmed
  748. Zheng S, Jiang J, Shen H, Chen Y. Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J Immunol. 2004;173:5652-8 pubmed
  749. Prockop S, Petrie H. Regulation of thymus size by competition for stromal niches among early T cell progenitors. J Immunol. 2004;173:1604-11 pubmed
  750. Smith P, Walsh C, Mangan N, Fallon R, Sayers J, McKenzie A, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages. J Immunol. 2004;173:1240-8 pubmed
  751. Seroogy C, Soares L, Ranheim E, Su L, Holness C, Bloom D, et al. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J Immunol. 2004;173:79-85 pubmed
  752. Yuan Y, Shen H, Franklin D, Scadden D, Cheng T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol. 2004;6:436-42 pubmed
  753. de Haas C, Veldkamp K, Peschel A, Weerkamp F, Van Wamel W, Heezius E, et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med. 2004;199:687-95 pubmed
  754. Morin J, Faideau B, Gagnerault M, Lepault F, Boitard C, Boudaly S. Passive transfer of flt-3L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin Exp Immunol. 2003;134:388-95 pubmed
  755. León B, Martinez del Hoyo G, Parrillas V, Vargas H, Sánchez Mateos P, Longo N, et al. Dendritic cell differentiation potential of mouse monocytes: monocytes represent immediate precursors of CD8- and CD8+ splenic dendritic cells. Blood. 2004;103:2668-76 pubmed
  756. Power U, Plotnicky H, Blaecke A, Nguyen T. The immunogenicity, protective efficacy and safety of BBG2Na, a subunit respiratory syncytial virus (RSV) vaccine candidate, against RSV-B. Vaccine. 2003;22:168-76 pubmed
  757. Morin J, Chimènes A, Boitard C, Berthier R, Boudaly S. Granulocyte-dendritic cell unbalance in the non-obese diabetic mice. Cell Immunol. 2003;223:13-25 pubmed
  758. Brown C, Blaho V, Loiacono C. Susceptibility to experimental Lyme arthritis correlates with KC and monocyte chemoattractant protein-1 production in joints and requires neutrophil recruitment via CXCR2. J Immunol. 2003;171:893-901 pubmed
  759. Lan F, Zeng D, Higuchi M, Higgins J, Strober S. Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biol Blood Marrow Transplant. 2003;9:355-63 pubmed
  760. Melani C, Chiodoni C, Forni G, Colombo M. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood. 2003;102:2138-45 pubmed
  761. Plotnicky H, Siegrist C, Aubry J, Bonnefoy J, Corvaia N, Nguyen T, et al. Enhanced pulmonary immunopathology following neonatal priming with formalin-inactivated respiratory syncytial virus but not with the BBG2NA vaccine candidate. Vaccine. 2003;21:2651-60 pubmed
  762. Saio M, Radoja S, Marino M, Frey A. Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol. 2001;167:5583-93 pubmed
  763. Lan F, Zeng D, Higuchi M, Huie P, Higgins J, Strober S. Predominance of NK1.1+TCR alpha beta+ or DX5+TCR alpha beta+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: "natural suppressor" cells. J Immunol. 2001;167:2087-96 pubmed
  764. Klinguer C, Beck A, de Lys P, Bussat M, Blaecke A, Derouet F, et al. Lipophilic quaternary ammonium salt acts as a mucosal adjuvant when co-administered by the nasal route with vaccine antigens. Vaccine. 2001;19:4236-44 pubmed
  765. Goetsch L, Plotnicky Gilquin H, Aubry J, de Lys P, Haeuw J, Bonnefoy J, et al. BBG2Na an RSV subunit vaccine candidate intramuscularly injected to human confers protection against viral challenge after nasal immunization in mice. Vaccine. 2001;19:4036-42 pubmed
  766. de Oca R, Buendia A, Del Rio L, Sanchez J, Salinas J, Navarro J. Polymorphonuclear neutrophils are necessary for the recruitment of CD8(+) T cells in the liver in a pregnant mouse model of Chlamydophila abortus (Chlamydia psittaci serotype 1) infection. Infect Immun. 2000;68:1746-51 pubmed
  767. Whalen M, Carlos T, Dixon C, Robichaud P, Clark R, Marion D, et al. Reduced brain edema after traumatic brain injury in mice deficient in P-selectin and intercellular adhesion molecule-1. J Leukoc Biol. 2000;67:160-8 pubmed
  768. Saitoh T, Morimoto K, Kumagai T, Tsuboi I, Aikawa S, Horie T. Comparison of erythropoietic response to androgen in young and old senescence accelerated mice. Mech Ageing Dev. 1999;109:125-39 pubmed
  769. Lee S, Wang Y, Milbrandt J. Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1). Mol Cell Biol. 1996;16:4566-72 pubmed
  770. Palfree R, Dumont F, Hammerling U. Ly-6A.2 and Ly-6E.1 molecules are antithetical and identical to MALA-1. Immunogenetics. 1986;23:197-207 pubmed
  771. Lewinsohn D, Bargatze R, Butcher E. Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes. J Immunol. 1987;138:4313-21 pubmed
  772. Jutila M, Kroese F, Jutila K, Stall A, Fiering S, Herzenberg L, et al. Ly-6C is a monocyte/macrophage and endothelial cell differentiation antigen regulated by interferon-gamma. Eur J Immunol. 1988;18:1819-26 pubmed
  773. Codias E, Cray C, Baler R, Levy R, Malek T. Expression of Ly-6A/E alloantigens in thymocyte and T-lymphocyte subsets: variability related to the Ly-6a and Ly-6b haplotypes. Immunogenetics. 1989;29:98-107 pubmed