这是一篇来自已证抗体库的有关小鼠 Map1lc3a的综述,是根据83篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Map1lc3a 抗体。
Map1lc3a 同义词: 1010001H21Rik; 4922501H04Rik; LC3; LC3a

Novus Biologicals
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 10a
  • 免疫印迹; 小鼠; 1:500; 图 10b
Novus Biologicals Map1lc3a抗体(Novus, NB100-2331)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 10a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 10b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:500; 图 3a
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Neurochem (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 1a
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在人类样本上 (图 1a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:50; 图 10a
Novus Biologicals Map1lc3a抗体(Novus, NB100-2331)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 10a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 大鼠; 1:500; 图 3
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 斑马鱼; 1:2000; 图 5
Novus Biologicals Map1lc3a抗体(novusbio, NB100-2331)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 5). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 2
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB 100-2331)被用于被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB 100-2331)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals Map1lc3a抗体(Novus, NB100-2331)被用于. Mol Pharmacol (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals Map1lc3a抗体(NovusBiologicals, NB100-2331)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB 100-2331)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB-100-2331)被用于. Comp Biochem Physiol A Mol Integr Physiol (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Map1lc3a抗体(Pierce, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 Map1lc3a抗体(Thermo Scientific, PA1-C16,931)被用于被用于免疫印迹在大鼠样本上 (图 8). J Nutr Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 Map1lc3a抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Map1lc3a抗体(Thermo, PA116931)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Map1lc3a抗体(Thermo, PA5-22731)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Map1lc3a抗体(Thermo Fisher Scientific, PA1-16931)被用于. Mol Neurobiol (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a, 2c, 2e
艾博抗(上海)贸易有限公司 Map1lc3a抗体(Abcam, ab62720)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2c, 2e). Med Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 4f
  • 免疫印迹; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Map1lc3a抗体(Abcam, ab128025)被用于被用于免疫组化在大鼠样本上 (图 4f) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 Map1lc3a抗体(Abcam, ab128025)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EP1528Y)
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Map1lc3a抗体(Abcam, ab52628)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). PLoS ONE (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:100; 图 2d
圣克鲁斯生物技术 Map1lc3a抗体(Santa Cruz, sc-398822)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2d). Mol Neurobiol (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 2h
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 Map1lc3a抗体(Santa Cruz Biotechnology, sc-398822)被用于被用于免疫印迹在大鼠样本上 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 5a). PLoS ONE (2015) ncbi
伯乐(Bio-Rad)公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
伯乐(Bio-Rad)公司 Map1lc3a抗体(AbD Serotec, AHP2167T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). BMC Complement Altern Med (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在小鼠样本上 (图 8a). iScience (2022) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫组化-自由浮动切片; 小鼠; 1:300; 图 5d
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, D50G8 4599)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:300 (图 5d). J Exp Med (2020) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 大鼠; 1:1000; 图 2e, 4e
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e, 4e). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 1:1000; 图 6s2a
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6s2a). elife (2019) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599S)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 8a). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 6b). Front Immunol (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 3D
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 3D). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Austin J Med Oncol (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在小鼠样本上 (图 6). Eneuro (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling technologies, 4599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Med (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 3c, 4a
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 3c, 4a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 3). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 犬; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell signaling, 4599)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 5). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 4). elife (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Neurobiol Dis (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在人类样本上 (图 9). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(细胞, 4599)被用于被用于免疫印迹在小鼠样本上. Neuroscience (2014) ncbi
Abcepta
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5b
Abcepta Map1lc3a抗体(Abgent, 1805a)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5b). Autophagy (2017) ncbi
domestic rabbit 多克隆
Abcepta Map1lc3a抗体(Abgent, AP1805a)被用于. Autophagy (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 4
Abcepta Map1lc3a抗体(Abgent, AM1800a)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 9
Abcepta Map1lc3a抗体(Abgent, AM1800a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 9). Autophagy (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5m
  • 免疫印迹; 小鼠; 图 2j
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5m) 和 被用于免疫印迹在小鼠样本上 (图 2j). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 Map1lc3a抗体(Sigma, LB8918)被用于被用于免疫印迹在人类样本上 (图 3b). Biology (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2l
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在人类样本上 (图 s2l). Protein Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在小鼠样本上 (图 3e). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在小鼠样本上 (图 3d). Mol Brain (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 1
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1). Mol Med (2020) ncbi
小鼠 单克隆(166AT1234)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5h
西格玛奥德里奇 Map1lc3a抗体(Sigma-Aldrich, SAB1305552)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5h). Front Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在人类样本上 (图 2g). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 7a
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 7a) 和 被用于免疫印迹在人类样本上 (图 5a). FEBS Lett (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在小鼠样本上 (图 5b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2d
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a,4a,4i,4j
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在人类样本上 (图 3a,4a,4i,4j). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2E
  • 免疫印迹; 小鼠; 1:2000; 图 2A
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2E) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2A). Redox Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 s1
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 s1). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3d
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:600; 图 2
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在大鼠样本上浓度为1:600 (图 2). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在人类样本上 (图 3). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1b
西格玛奥德里奇 Map1lc3a抗体(Sigma-Aldrich, L8918)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Map1lc3a抗体(Sigma-Aldrich, L8918)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Map1lc3a抗体(Sigma-Aldrich, L8918)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Map1lc3a抗体(Sigma-Aldrich, L8918)被用于. Int J Mol Sci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Map1lc3a抗体(Sigma-Aldrich Corp, L8918)被用于. J Cell Mol Med (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Map1lc3a抗体(Sigma, L8918)被用于. J Lipid Res (2015) ncbi
文章列表
  1. Zhao X, Hu S, Zeng L, Liu X, Song Y, Zhang Y, et al. Irradiation combined with PD-L1-/- and autophagy inhibition enhances the antitumor effect of lung cancer via cGAS-STING-mediated T cell activation. iScience. 2022;25:104690 pubmed 出版商
  2. Jin Y, Liu Y, Xu L, Xu J, Xiong Y, Peng Y, et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis. 2022;13:512 pubmed 出版商
  3. Jacquet M, Hervouet E, Baudu T, Herfs M, Parratte C, Feugeas J, et al. GABARAPL1 Inhibits EMT Signaling through SMAD-Tageted Negative Feedback. Biology (Basel). 2021;10: pubmed 出版商
  4. Lamprou I, Tsolou A, Kakouratos C, Mitrakas A, Xanthopoulou E, Kassela K, et al. Suppressed PLIN3 frequently occurs in prostate cancer, promoting docetaxel resistance via intensified autophagy, an event reversed by chloroquine. Med Oncol. 2021;38:116 pubmed 出版商
  5. Xu X, Sun Y, Cen X, Shan B, Zhao Q, Xie T, et al. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein Cell. 2021;: pubmed 出版商
  6. Geng G, Liu J, Xu C, Pei Y, Chen L, Mu C, et al. Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. elife. 2021;10: pubmed 出版商
  7. Lim Y, Kim S, Kim E. Palmitate reduces starvation-induced ER stress by inhibiting ER-phagy in hypothalamic cells. Mol Brain. 2021;14:65 pubmed 出版商
  8. Venugopalan V, Al Hashimi A, Rehders M, Golchert J, Reinecke V, Homuth G, et al. The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy. Int J Mol Sci. 2021;22: pubmed 出版商
  9. Sachdev U, Ferrari R, Cui X, Pius A, Sahu A, Reynolds M, et al. Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine. Mol Med. 2020;26:69 pubmed 出版商
  10. Bączyk M, Alami N, Delestrée N, Martinot C, Tang L, Commisso B, et al. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med. 2020;217: pubmed 出版商
  11. Yan S, Ding H, Peng J, Wang X, Pang C, Wei J, et al. Down-regulation of protease-activated receptor 2 ameliorated osteoarthritis in rats through regulation of MAPK/NF-κB signaling pathway in vivo and in vitro. Biosci Rep. 2020;40: pubmed 出版商
  12. Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, et al. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics. 2020;10:1649-1677 pubmed 出版商
  13. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  14. Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, et al. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol. 2019;10:2952 pubmed 出版商
  15. Stavoe A, Gopal P, Gubas A, Tooze S, Holzbaur E. Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. elife. 2019;8: pubmed 出版商
  16. Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2018;: pubmed 出版商
  17. Wnuk A, Rzemieniec J, Staroń J, Litwa E, Lasoń W, Bojarski A, et al. Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARγ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Mol Neurobiol. 2018;: pubmed 出版商
  18. Guo J, Fang W, Chen X, Lin Y, Hu G, Wei J, et al. Upstream stimulating factor 1 suppresses autophagy and hepatic lipid droplet catabolism by activating mTOR. FEBS Lett. 2018;592:2725-2738 pubmed 出版商
  19. Watanabe S, Komine O, Endo F, Wakasugi K, Yamanaka K. Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J Neurochem. 2018;145:80-89 pubmed 出版商
  20. Merrill N, Schipper J, Karnes J, Kauffman A, Martin K, Mackeigan J. PI3K-C2? knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE. 2017;12:e0184909 pubmed 出版商
  21. Bustos V, Pulina M, Kelahmetoglu Y, Sinha S, Gorelick F, Flajolet M, et al. Bidirectional regulation of Aβ levels by Presenilin 1. Proc Natl Acad Sci U S A. 2017;114:7142-7147 pubmed 出版商
  22. Xie Y, Ma W, Meng J, Ren X. Knockdown of ZFPL1 results in increased autophagy and autophagy‑related cell death in NCI‑N87 and BGC‑823 human gastric carcinoma cell lines. Mol Med Rep. 2017;15:2633-2642 pubmed 出版商
  23. Jacquin E, Leclerc Mercier S, Judon C, Blanchard E, Fraitag S, Florey O. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy. 2017;13:854-867 pubmed 出版商
  24. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  25. Wu H, Zhao X, Wang F, Jiang Q, Shi L, Gong M, et al. Mouse Testicular Cell Type-Specific Antiviral Response against Mumps Virus Replication. Front Immunol. 2017;8:117 pubmed 出版商
  26. Kemter E, Frohlich T, Arnold G, Wolf E, Wanke R. Mitochondrial Dysregulation Secondary to Endoplasmic Reticulum Stress in Autosomal Dominant Tubulointerstitial Kidney Disease - UMOD (ADTKD-UMOD). Sci Rep. 2017;7:42970 pubmed 出版商
  27. Li Y, Chang Y, Ye N, Dai D, Chen Y, Zhang N, et al. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D. Int J Mol Sci. 2017;18: pubmed 出版商
  28. Redmann M, Wani W, Volpicelli Daley L, Darley Usmar V, Zhang J. Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils. Redox Biol. 2017;11:429-437 pubmed 出版商
  29. Piccolella M, Crippa V, Cristofani R, Rusmini P, Galbiati M, Cicardi M, et al. The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells. Oncotarget. 2017;8:10400-10415 pubmed 出版商
  30. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482:1334-1340 pubmed 出版商
  31. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  32. Mercado Pimentel M, Igarashi S, Dunn A, Behbahani M, Miller C, Read C, et al. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. Austin J Med Oncol. 2016;3: pubmed
  33. Tazi M, Dakhlallah D, Caution K, Gerber M, Chang S, Khalil H, et al. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages. Autophagy. 2016;12:2026-2037 pubmed
  34. Zhang X, Cheng X, Yu L, Yang J, Calvo R, Patnaik S, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109 pubmed 出版商
  35. Hu Z, Zhong Z, Huang S, Wen H, Chen X, Chu H, et al. Decreased expression of Beclin?1 is significantly associated with a poor prognosis in oral tongue squamous cell carcinoma. Mol Med Rep. 2016;14:1567-73 pubmed 出版商
  36. Gui L, Liu B, Lv G. Hypoxia induces autophagy in cardiomyocytes via a hypoxia-inducible factor 1-dependent mechanism. Exp Ther Med. 2016;11:2233-2239 pubmed
  37. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  38. Wang H, Wang R, Carrera I, Xu S, Lakshmana M. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. Eneuro. 2016;3: pubmed 出版商
  39. Otto C, Hahlbrock T, Eich K, Karaaslan F, Jürgens C, Germer C, et al. Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract. BMC Complement Altern Med. 2016;16:160 pubmed 出版商
  40. Pereira D, Simões A, Gomes S, Castro R, Carvalho T, Rodrigues C, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7:34322-40 pubmed 出版商
  41. Hossini A, Quast A, Plötz M, Grauel K, Exner T, Küchler J, et al. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells. PLoS ONE. 2016;11:e0154770 pubmed 出版商
  42. Bretin A, Carrière J, Dalmasso G, Bergougnoux A, B chir W, Maurin A, et al. Activation of the EIF2AK4-EIF2A/eIF2?-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection. Autophagy. 2016;12:770-83 pubmed 出版商
  43. Crippa V, D Agostino V, Cristofani R, Rusmini P, Cicardi M, Messi E, et al. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Sci Rep. 2016;6:22827 pubmed 出版商
  44. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  45. Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016;4:22 pubmed 出版商
  46. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  47. Jacob F, Yonis A, Cuello F, Luther P, Schulze T, Eder A, et al. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS ONE. 2016;11:e0145937 pubmed 出版商
  48. Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci. 2016;17: pubmed 出版商
  49. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  50. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  51. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  52. Altuntas S, Rossin F, Marsella C, D Eletto M, Diaz Hidalgo L, Farrace M, et al. The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation. Oncotarget. 2015;6:44941-54 pubmed 出版商
  53. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  54. Song K, Hu W, Yue F, Zou J, Li W, Chen Q, et al. Transforming Growth Factor TGFβ Increases Levels of Microtubule-Associated Protein MAP1S and Autophagy Flux in Pancreatic Ductal Adenocarcinomas. PLoS ONE. 2015;10:e0143150 pubmed 出版商
  55. Draganov D, Gopalakrishna Pillai S, Chen Y, Zuckerman N, Moeller S, Wang C, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222 pubmed 出版商
  56. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  57. Herranz D, Ambesi Impiombato A, Sudderth J, Sánchez Martín M, Belver L, Tosello V, et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med. 2015;21:1182-9 pubmed 出版商
  58. Koukourakis M, Kalamida D, Giatromanolaki A, Zois C, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE. 2015;10:e0137675 pubmed 出版商
  59. Cavieres V, González A, Muñoz V, Yefi C, Bustamante H, Barraza R, et al. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE. 2015;10:e0136313 pubmed 出版商
  60. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  61. Irimia J, Tagliabracci V, Meyer C, Segvich D, DePaoli Roach A, Roach P. Muscle glycogen remodeling and glycogen phosphate metabolism following exhaustive exercise of wild type and laforin knockout mice. J Biol Chem. 2015;290:22686-98 pubmed 出版商
  62. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  63. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  64. Macvicar T, Mannack L, Lees R, Lane J. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells. Int J Mol Sci. 2015;16:13356-80 pubmed 出版商
  65. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  66. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed 出版商
  67. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  68. Gauthier T, Claude Taupin A, Delage Mourroux R, Boyer Guittaut M, Hervouet E. Proximity Ligation In situ Assay is a Powerful Tool to Monitor Specific ATG Protein Interactions following Autophagy Induction. PLoS ONE. 2015;10:e0128701 pubmed 出版商
  69. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  70. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  71. Ozeki N, Hase N, Hiyama T, Yamaguchi H, Kawai R, Kondo A, et al. Interleukin-1β-induced autophagy-related gene 5 regulates proliferation of embryonic stem cell-derived odontoblastic cells. PLoS ONE. 2015;10:e0124542 pubmed 出版商
  72. Harris White M, Ferbas K, Johnson M, Eslami P, Poteshkina A, Venkova K, et al. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies. Neurobiol Dis. 2015;84:60-8 pubmed 出版商
  73. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  74. Ulasov I, Shah N, Kaverina N, Lee H, Lin B, Lieber A, et al. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget. 2015;6:3977-87 pubmed
  75. Gorbunov N, McDaniel D, Zhai M, Liao P, Garrison B, Kiang J. Autophagy and mitochondrial remodelling in mouse mesenchymal stromal cells challenged with Staphylococcus epidermidis. J Cell Mol Med. 2015;19:1133-50 pubmed 出版商
  76. Kommaddi R, Jean Charles P, Shenoy S. Phosphorylation of the deubiquitinase USP20 by protein kinase A regulates post-endocytic trafficking of β2 adrenergic receptors to autophagosomes during physiological stress. J Biol Chem. 2015;290:8888-903 pubmed 出版商
  77. Zou J, Li W, Misra A, Yue F, Song K, Chen Q, et al. The viral restriction factor tetherin prevents leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) from association with beclin 1 and B-cell CLL/lymphoma 2 (Bcl-2) and enhances autophagy and mitophagy. J Biol Chem. 2015;290:7269-79 pubmed 出版商
  78. Jaishy B, Zhang Q, Chung H, Riehle C, Soto J, Jenkins S, et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res. 2015;56:546-61 pubmed 出版商
  79. Wilson W, Baumgarner B, Watanabe W, Alam M, Kinsey S. Effects of resveratrol on growth and skeletal muscle physiology of juvenile southern flounder. Comp Biochem Physiol A Mol Integr Physiol. 2015;183:27-35 pubmed 出版商
  80. Cho S, Yun S, Jo C, Lee D, Choi K, Song J, et al. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11:100-12 pubmed 出版商
  81. Guo W, Liu R, Bhardwaj G, Yang J, Changou C, Ma A, et al. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis. 2014;5:e1409 pubmed 出版商
  82. Morgado A, Xavier J, Dionísio P, Ribeiro M, Dias R, Sebastião A, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol. 2015;51:1168-83 pubmed 出版商
  83. Wang H, Lewsadder M, Dorn E, Xu S, Lakshmana M. RanBP9 overexpression reduces dendritic arbor and spine density. Neuroscience. 2014;265:253-62 pubmed 出版商