这是一篇来自已证抗体库的有关小鼠 Map1lc3a的综述,是根据54篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Map1lc3a 抗体。
Map1lc3a 同义词: 1010001H21Rik; 4922501H04Rik; LC3; LC3a

Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3a
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Neurochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在人类样本上 (图 1a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:50; 图 10a
Novus Biologicals Map1lc3a抗体(Novus, NB100-2331)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 10a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 3
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:2000; 图 5
Novus Biologicals Map1lc3a抗体(novusbio, NB100-2331)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 5). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB 100-2331)被用于被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB 100-2331)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Map1lc3a抗体(Novus, NB100-2331)被用于. Mol Pharmacol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Map1lc3a抗体(NovusBiologicals, NB100-2331)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB100-2331)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB 100-2331)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Map1lc3a抗体(Novus Biologicals, NB-100-2331)被用于. Comp Biochem Physiol A Mol Integr Physiol (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Map1lc3a抗体(Pierce, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 Map1lc3a抗体(Thermo Scientific, PA1-C16,931)被用于被用于免疫印迹在大鼠样本上 (图 8). J Nutr Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 Map1lc3a抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Map1lc3a抗体(Thermo, PA116931)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Map1lc3a抗体(Thermo, PA5-22731)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Map1lc3a抗体(Thermo Fisher Scientific, PA1-16931)被用于. Mol Neurobiol (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:100; 图 2d
圣克鲁斯生物技术 Map1lc3a抗体(Santa Cruz, sc-398822)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2d). Mol Neurobiol (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 2h
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 Map1lc3a抗体(Santa Cruz Biotechnology, sc-398822)被用于被用于免疫印迹在大鼠样本上 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 5a). PLoS ONE (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 Map1lc3a抗体(Abcam, ab128025)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Map1lc3a抗体(Abcam, ab62720)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(EP1528Y)
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Map1lc3a抗体(Abcam, ab52628)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). PLoS ONE (2015) ncbi
伯乐(Bio-Rad)公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
伯乐(Bio-Rad)公司 Map1lc3a抗体(AbD Serotec, AHP2167T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). BMC Complement Altern Med (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 大鼠; 1:1000; 图 2e, 4e
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e, 4e). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 1:1000; 图 6s2a
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6s2a). elife (2019) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599S)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 8a). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 6b). Front Immunol (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 3D
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 3D). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Austin J Med Oncol (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在小鼠样本上 (图 6). Eneuro (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫细胞化学; 人类; 图 s1a
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 6
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling technologies, 4599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Med (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 3c, 4a
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 3c, 4a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 3). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 犬; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell signaling, 4599)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 5). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上 (图 4). elife (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 大鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Neurobiol Dis (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling Technology, 4599)被用于被用于免疫印迹在人类样本上 (图 9). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(Cell Signaling, 4599)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(D50G8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Map1lc3a抗体(细胞, 4599)被用于被用于免疫印迹在小鼠样本上. Neuroscience (2014) ncbi
百奇生物
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5b
百奇生物 Map1lc3a抗体(Abgent, 1805a)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5b). Autophagy (2017) ncbi
domestic rabbit 多克隆
百奇生物 Map1lc3a抗体(Abgent, AP1805a)被用于. Autophagy (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 4
百奇生物 Map1lc3a抗体(Abgent, AM1800a)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 9
百奇生物 Map1lc3a抗体(Abgent, AM1800a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 9). Autophagy (2015) ncbi
文章列表
  1. Yan S, Ding H, Peng J, Wang X, Pang C, Wei J, et al. Down-regulation of protease-activated receptor 2 ameliorated osteoarthritis in rats through regulation of MAPK/NF-κB signaling pathway in vivo and in vitro. Biosci Rep. 2020;40: pubmed 出版商
  2. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  3. Stavoe A, Gopal P, Gubas A, Tooze S, Holzbaur E. Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. elife. 2019;8: pubmed 出版商
  4. Wnuk A, Rzemieniec J, Staroń J, Litwa E, Lasoń W, Bojarski A, et al. Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARγ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Mol Neurobiol. 2018;: pubmed 出版商
  5. Watanabe S, Komine O, Endo F, Wakasugi K, Yamanaka K. Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J Neurochem. 2018;145:80-89 pubmed 出版商
  6. Merrill N, Schipper J, Karnes J, Kauffman A, Martin K, Mackeigan J. PI3K-C2? knockdown decreases autophagy and maturation of endocytic vesicles. PLoS ONE. 2017;12:e0184909 pubmed 出版商
  7. Jacquin E, Leclerc Mercier S, Judon C, Blanchard E, Fraitag S, Florey O. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy. 2017;13:854-867 pubmed 出版商
  8. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  9. Wu H, Zhao X, Wang F, Jiang Q, Shi L, Gong M, et al. Mouse Testicular Cell Type-Specific Antiviral Response against Mumps Virus Replication. Front Immunol. 2017;8:117 pubmed 出版商
  10. Kemter E, Frohlich T, Arnold G, Wolf E, Wanke R. Mitochondrial Dysregulation Secondary to Endoplasmic Reticulum Stress in Autosomal Dominant Tubulointerstitial Kidney Disease - UMOD (ADTKD-UMOD). Sci Rep. 2017;7:42970 pubmed 出版商
  11. Yuan H, Tan B, Gao S. Tenovin-6 impairs autophagy by inhibiting autophagic flux. Cell Death Dis. 2017;8:e2608 pubmed 出版商
  12. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482:1334-1340 pubmed 出版商
  13. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  14. Mercado Pimentel M, Igarashi S, Dunn A, Behbahani M, Miller C, Read C, et al. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. Austin J Med Oncol. 2016;3: pubmed
  15. Tazi M, Dakhlallah D, Caution K, Gerber M, Chang S, Khalil H, et al. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages. Autophagy. 2016;12:2026-2037 pubmed
  16. Hu Z, Zhong Z, Huang S, Wen H, Chen X, Chu H, et al. Decreased expression of Beclin?1 is significantly associated with a poor prognosis in oral tongue squamous cell carcinoma. Mol Med Rep. 2016;14:1567-73 pubmed 出版商
  17. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  18. Wang H, Wang R, Carrera I, Xu S, Lakshmana M. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. Eneuro. 2016;3: pubmed 出版商
  19. Otto C, Hahlbrock T, Eich K, Karaaslan F, Jürgens C, Germer C, et al. Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract. BMC Complement Altern Med. 2016;16:160 pubmed 出版商
  20. Pereira D, Simões A, Gomes S, Castro R, Carvalho T, Rodrigues C, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7:34322-40 pubmed 出版商
  21. Hossini A, Quast A, Plötz M, Grauel K, Exner T, Küchler J, et al. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells. PLoS ONE. 2016;11:e0154770 pubmed 出版商
  22. Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016;4:22 pubmed 出版商
  23. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  24. Jacob F, Yonis A, Cuello F, Luther P, Schulze T, Eder A, et al. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS ONE. 2016;11:e0145937 pubmed 出版商
  25. Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci. 2016;17: pubmed 出版商
  26. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  27. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  28. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  29. Altuntas S, Rossin F, Marsella C, D Eletto M, Diaz Hidalgo L, Farrace M, et al. The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation. Oncotarget. 2015;6:44941-54 pubmed 出版商
  30. Chen Y, Tsou B, Hu S, Ma H, Liu X, Yen Y, et al. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget. 2016;7:1984-99 pubmed 出版商
  31. Song K, Hu W, Yue F, Zou J, Li W, Chen Q, et al. Transforming Growth Factor TGFβ Increases Levels of Microtubule-Associated Protein MAP1S and Autophagy Flux in Pancreatic Ductal Adenocarcinomas. PLoS ONE. 2015;10:e0143150 pubmed 出版商
  32. Draganov D, Gopalakrishna Pillai S, Chen Y, Zuckerman N, Moeller S, Wang C, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222 pubmed 出版商
  33. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  34. Herranz D, Ambesi Impiombato A, Sudderth J, Sánchez Martín M, Belver L, Tosello V, et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med. 2015;21:1182-9 pubmed 出版商
  35. Koukourakis M, Kalamida D, Giatromanolaki A, Zois C, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE. 2015;10:e0137675 pubmed 出版商
  36. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  37. Irimia J, Tagliabracci V, Meyer C, Segvich D, DePaoli Roach A, Roach P. Muscle glycogen remodeling and glycogen phosphate metabolism following exhaustive exercise of wild type and laforin knockout mice. J Biol Chem. 2015;290:22686-98 pubmed 出版商
  38. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  39. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  40. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  41. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed 出版商
  42. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  43. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  44. Ozeki N, Hase N, Hiyama T, Yamaguchi H, Kawai R, Kondo A, et al. Interleukin-1β-induced autophagy-related gene 5 regulates proliferation of embryonic stem cell-derived odontoblastic cells. PLoS ONE. 2015;10:e0124542 pubmed 出版商
  45. Harris White M, Ferbas K, Johnson M, Eslami P, Poteshkina A, Venkova K, et al. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies. Neurobiol Dis. 2015;84:60-8 pubmed 出版商
  46. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  47. Ulasov I, Shah N, Kaverina N, Lee H, Lin B, Lieber A, et al. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget. 2015;6:3977-87 pubmed
  48. Kommaddi R, Jean Charles P, Shenoy S. Phosphorylation of the deubiquitinase USP20 by protein kinase A regulates post-endocytic trafficking of β2 adrenergic receptors to autophagosomes during physiological stress. J Biol Chem. 2015;290:8888-903 pubmed 出版商
  49. Zou J, Li W, Misra A, Yue F, Song K, Chen Q, et al. The viral restriction factor tetherin prevents leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) from association with beclin 1 and B-cell CLL/lymphoma 2 (Bcl-2) and enhances autophagy and mitophagy. J Biol Chem. 2015;290:7269-79 pubmed 出版商
  50. Wilson W, Baumgarner B, Watanabe W, Alam M, Kinsey S. Effects of resveratrol on growth and skeletal muscle physiology of juvenile southern flounder. Comp Biochem Physiol A Mol Integr Physiol. 2015;183:27-35 pubmed 出版商
  51. Cho S, Yun S, Jo C, Lee D, Choi K, Song J, et al. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11:100-12 pubmed 出版商
  52. Guo W, Liu R, Bhardwaj G, Yang J, Changou C, Ma A, et al. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis. 2014;5:e1409 pubmed 出版商
  53. Morgado A, Xavier J, Dionísio P, Ribeiro M, Dias R, Sebastião A, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol. 2015;51:1168-83 pubmed 出版商
  54. Wang H, Lewsadder M, Dorn E, Xu S, Lakshmana M. RanBP9 overexpression reduces dendritic arbor and spine density. Neuroscience. 2014;265:253-62 pubmed 出版商