这是一篇来自已证抗体库的有关小鼠 Mapk3的综述,是根据442篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Mapk3 抗体。
Mapk3 同义词: Erk-1; Erk1; Ert2; Esrk1; Mnk1; Mtap2k; Prkm3; p44; p44erk1; p44mapk; mitogen-activated protein kinase 3; MAP kinase 3; extracellular signal-regulated kinase 1; insulin-stimulated MAP2 kinase; microtubule-associated protein 2 kinase; p44 MAP kinase; pp42/MAP kinase

圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 s3b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 s3b). Nature (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 s3a). Sci Adv (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:5000; 图 1c
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 2e). Exp Mol Med (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 8a
圣克鲁斯生物技术 Mapk3抗体(santa cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology Inc, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Mapk3抗体(SantaCruz, E-4)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Res (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6d
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology Inc, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 s6f
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-81492)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 s6f). Nat Commun (2018) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Oncol (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2017) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Lett (2017) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Mapk3抗体(SantaCruz, sc-271270)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cancer Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 Mapk3抗体(SantaCruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Mapk3抗体(SCB, E-4)被用于被用于免疫印迹在人类样本上 (图 3e). Cancer Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6A). Sci Rep (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 Mapk3抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 6). J Ethnopharmacol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 2b
圣克鲁斯生物技术 Mapk3抗体(SantaCruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 Mapk3抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 Mapk3抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2e
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2e). Nat Commun (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Carcinog (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 小鼠; 1:1000; 图 9a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-271269)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9a). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 1a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Int J Cancer (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Med (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 6b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, Sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 6b). Physiol Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Mapk3抗体(santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Mapk3抗体(santa Cruz, SC-514302)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫组化-石蜡切片; 人类; 图 7a
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-136521)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 表 1
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6e
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3a). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 图 5c
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-136521)被用于被用于免疫印迹在大鼠样本上 (图 5c). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Cell Biol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3h
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 3h). Genes Cancer (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 5d
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 s4
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, 7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol Res (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠; 1:50; 图 5
  • 免疫组化; 小鼠; 1:50; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 10a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在大鼠样本上 (图 10a). Int J Mol Med (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:500; 图 3d
  • 免疫印迹; 小鼠; 1:500; 图 3d
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-514302)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, E-4)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 8). J Exp Med (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). Exp Ther Med (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7e
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7e). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 小鼠; 图 7
  • 免疫印迹; 大鼠; 图 1d
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc7383)被用于被用于免疫组化在小鼠样本上 (图 7) 和 被用于免疫印迹在大鼠样本上 (图 1d). J Cell Mol Med (2016) ncbi
小鼠 单克隆(E-4)
  • 酶联免疫吸附测定; 人类; 1:500; 图 10
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:500 (图 10). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 Mapk3抗体(Santa Cruze, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Mapk3抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 10
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 10). J Neuroinflammation (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s7
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s7) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cells (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5a). Apoptosis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 S3
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 S3). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 3). Biomed Res Int (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 s3). J Immunol Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogene (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Mapk3抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:8000; 图 7
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 7). Int J Mol Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 猪; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在猪样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-271270)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Laboratories, SC7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Exp Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-自由浮动切片; 大鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化-自由浮动切片在大鼠样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). J Biomed Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在小鼠样本上. Virol Sin (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 Mapk3抗体(Santa-Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cancer Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s8
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 染色质免疫沉淀 ; 人类; 图 6
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotech, sc-135900)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-81492)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Br J Nutr (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 4g
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4g). J Cell Sci (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术 Mapk3抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5f). Cell Commun Signal (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnologies, SC-7383)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Endocrinology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s21
圣克鲁斯生物技术 Mapk3抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s21). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. Mutat Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 s9
圣克鲁斯生物技术 Mapk3抗体(santa Cruz, sc-7383)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 s9). Cell Death Differ (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2b). Environ Health Perspect (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Cell Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫组化在人类样本上浓度为1:100. Cancer Lett (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上 (图 3). Biochem Pharmacol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, E-4, sc-7383)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Hippocampus (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:800
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:800. Growth Factors (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; kangaroo rats; 1:200; 图 2
圣克鲁斯生物技术 Mapk3抗体(santa cruz, sc-7383)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:200 (图 2). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫细胞化学; 人类; 1:300
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotech, sc-81492)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Biores Open Access (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Biometals (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc7383)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Gastroenterol Hepatol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 牛
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在牛样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Angiogenesis (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 兔; 1:1,000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在兔样本上浓度为1:1,000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Mapk3抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Electrophoresis (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 番茄
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在番茄样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer Res (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Glia (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上. Cancer Cell Int (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Neurodegener (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neuroimmunol (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在大鼠样本上. Lab Anim Res (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
圣克鲁斯生物技术 Mapk3抗体(SantaCruz, E-4)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Am J Physiol Gastrointest Liver Physiol (2011) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk3抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Leukemia (2011) ncbi
赛默飞世尔
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 人类; 图 s5
赛默飞世尔 Mapk3抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在人类样本上 (图 s5). Eur J Immunol (2018) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛默飞世尔 Mapk3抗体(Thermo Fisher Scientific, 44-654G)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2018) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 Mapk3抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2018) ncbi
兔 单克隆(B.742.5)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
赛默飞世尔 Mapk3抗体(ThermoFisher, MA5-15174)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a). F1000Res (2017) ncbi
小鼠 单克隆(3F8B3)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
赛默飞世尔 Mapk3抗体(ThermoFisher, MA5-15605)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a). F1000Res (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 Mapk3抗体(Invitrogen, 13-6200)被用于被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔 Mapk3抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 Mapk3抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 Mapk3抗体(Invitrogen, 44-654G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔 Mapk3抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 5e). MAbs (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 Mapk3抗体(Invitrogen, 61-7400)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; African green monkey; 图 5c
赛默飞世尔 Mapk3抗体(Zymed, 61-7400)被用于被用于免疫印迹在African green monkey样本上 (图 5c). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 Mapk3抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1b). Int J Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 Mapk3抗体(生活技术, 44-680G)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 5e). Nat Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 Mapk3抗体(生活技术, 44-654G)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 5e). Nat Immunol (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛默飞世尔 Mapk3抗体(Thermo Fisher Scientific, ERK-7D8)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapk3抗体(生活技术, 44-654-G)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 小鼠
赛默飞世尔 Mapk3抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Mapk3抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapk3抗体(Invitrogen, 44680G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 Mapk3抗体(Invitrogen Biosource, 44-654G)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
小鼠 单克隆(12D11)
  • 免疫印迹; 人类; 图 s6
赛默飞世尔 Mapk3抗体(ThermoFisher Scientific, MA1-13041)被用于被用于免疫印迹在人类样本上 (图 s6). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛默飞世尔 Mapk3抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Neuropharmacology (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 Mapk3抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Mapk3抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Mol Sci (2015) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Mapk3抗体(Invitrogen, 13-8600)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapk3抗体(Thermo Fisher Scientific, 44-680G)被用于被用于免疫印迹在人类样本上 (图 3). Biomed Res Int (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔 Mapk3抗体(生活技术, 44-654-G)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapk3抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapk3抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapk3抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 图 1
赛默飞世尔 Mapk3抗体(生活技术, 44680G)被用于被用于免疫细胞化学在大鼠样本上 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5b
赛默飞世尔 Mapk3抗体(Biosource, 44-680G)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5b). Nat Cell Biol (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛默飞世尔 Mapk3抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔 Mapk3抗体(Invitrogen, CA 61-7400)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Mapk3抗体(Invitrogen Life Technologies, 44680G)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Mapk3抗体(Invitrogen Life Technologies, 44-654G)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 Mapk3抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapk3抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 2
赛默飞世尔 Mapk3抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Front Cell Neurosci (2014) ncbi
兔 单克隆(K.913.4)
  • 免疫组化-石蜡切片; 斑马鱼
  • 免疫印迹; 斑马鱼
赛默飞世尔 Mapk3抗体(Pierce, MA5-15134)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 和 被用于免疫印迹在斑马鱼样本上. Cell Res (2014) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 Mapk3抗体(Zymed Laboratories, 13-6200)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔 Mapk3抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Front Integr Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔 Mapk3抗体(生活技术, 617400)被用于被用于免疫印迹在大鼠样本上. Brain Res (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:50; 图 6
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 Mapk3抗体(Invitrogen, 44-680G)被用于被用于免疫组化在人类样本上浓度为1:50 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Arch Immunol Ther Exp (Warsz) (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapk3抗体(BioSource, 44-680G)被用于被用于免疫印迹在人类样本上浓度为1:1000. Rheumatology (Oxford) (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapk3抗体(BioSource, 44-654G)被用于被用于免疫印迹在人类样本上浓度为1:1000. Rheumatology (Oxford) (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛默飞世尔 Mapk3抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2013) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 小鼠; 1:3000; 图 3
赛默飞世尔 Mapk3抗体(Zymed, ERK-6B11)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3). J Neurosci (2012) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:2500; 表 1
赛默飞世尔 Mapk3抗体(Invitrogen, 136200)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (表 1). Amino Acids (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛默飞世尔 Mapk3抗体(BioSource, 44654G)被用于被用于免疫印迹在人类样本上. Nature (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Mapk3抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样本上 (图 4). J Neuroimmunol (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 Mapk3抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapk3抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). J Endocrinol Invest (2011) ncbi
兔 多克隆
  • 免疫细胞化学; 秀丽隐杆线虫; 图 7
赛默飞世尔 Mapk3抗体(Invitrogen, 44680G)被用于被用于免疫细胞化学在秀丽隐杆线虫样本上 (图 7). Nat Cell Biol (2011) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapk3抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2011) ncbi
兔 多克隆
  • 免疫组化; 人类; 0.5 ug/ul; 图 1
赛默飞世尔 Mapk3抗体(Biosource, 44-680G)被用于被用于免疫组化在人类样本上浓度为0.5 ug/ul (图 1). Eur J Oral Sci (2010) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 3
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 Mapk3抗体(Biosource, 44-680G)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 3). PLoS ONE (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 Mapk3抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer Res (2010) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 小鼠; 1:3000
赛默飞世尔 Mapk3抗体(Zymed, 13-8600)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. J Neurosci (2009) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Biosource, 44-680G)被用于. Mol Cell Biol (2009) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Biosource, 44-654G)被用于. Mol Cell Biol (2009) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapk3抗体(Bio-Source, 44-654G)被用于被用于免疫印迹在人类样本上 (图 3). Ann Rheum Dis (2010) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Zymed, 61-7400)被用于. Oncogene (2009) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Zymed, 61-7400)被用于. J Neuroimmunol (2008) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(BioSource, 44-680G)被用于. J Oral Pathol Med (2008) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Invitrogen, 44-680G)被用于. Anal Biochem (2008) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Biosource, 44-680)被用于. Exp Cell Res (2008) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Zymed, 61-7400)被用于. Mol Cell Biol (2008) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Mapk3抗体(Zymed Laboratories, 13-8600)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2007) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔 Mapk3抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nat Immunol (2006) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Biosource, 44-680G)被用于. J Cell Biochem (2007) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 Mapk3抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 6). Cardiovasc Res (2006) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Biosources, 44-680G)被用于. Brain Res (2006) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(BioSource, 44-680G)被用于. Arthritis Rheum (2005) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Zymed, 61-7400)被用于. Am J Pathol (2005) ncbi
兔 多克隆
赛默飞世尔 Mapk3抗体(Zymed, noca)被用于. J Biol Chem (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 7
赛默飞世尔 Mapk3抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 7). J Biomed Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:5000; 图 2
赛默飞世尔 Mapk3抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Life Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 Mapk3抗体(Zymed, 13-6200,)被用于被用于免疫印迹在大鼠样本上 (图 5). J Biol Chem (2004) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 Mapk3抗体(Zymed, 13-8600)被用于被用于免疫印迹在大鼠样本上 (图 3). Int J Obes Relat Metab Disord (2003) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Mapk3抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 2). J Neurochem (2000) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠
赛默飞世尔 Mapk3抗体(Zymed, 13-6200)被用于被用于免疫印迹在大鼠样本上. J Clin Invest (1999) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 1, 2
赛默飞世尔 Mapk3抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Neurochem Res (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Mapk3抗体(Zymed, ERK-7D8)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Proc Natl Acad Sci U S A (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; common platanna; 1:1000; 图 1
赛默飞世尔 Mapk3抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在common platanna样本上浓度为1:1000 (图 1). Science (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapk3抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (1997) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab115799)被用于被用于免疫印迹在人类样本上 (图 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
兔 单克隆(EP197Y)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab76299)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Sci Rep (2017) ncbi
兔 单克隆(EPR17526)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab184699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab196883)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
兔 单克隆(EPR17526)
  • 免疫印迹; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab184699)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; 人类; 图 7e
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, 9B3)被用于被用于免疫印迹在人类样本上 (图 7e). J Biol Chem (2016) ncbi
兔 单克隆(EP197Y)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab76299)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab36991)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 鸡; 1:200; 图 2b
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab79853)被用于被用于免疫印迹在鸡样本上浓度为1:200 (图 2b). Biometals (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 Mapk3抗体(abcam, 115799)被用于被用于免疫印迹在人类样本上 (图 1d). Mar Drugs (2015) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; African green monkey; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, Ab366991)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 6b). Nat Commun (2015) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab36991)被用于被用于免疫印迹在人类样本上 (图 6). Biomaterials (2015) ncbi
小鼠 单克隆(9B3)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab36991)被用于被用于免疫印迹在人类样本上 (图 2a). Med Oncol (2015) ncbi
兔 单克隆(Y72)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab32537)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Cell Endocrinol (2015) ncbi
兔 单克隆(Y72)
  • 免疫印迹; 猪
艾博抗(上海)贸易有限公司 Mapk3抗体(Abcam, ab32537)被用于被用于免疫印迹在猪样本上. Eur J Nutr (2015) ncbi
亚诺法生技股份有限公司
兔 单克隆(G15-B)
  • 免疫印迹; 人类
亚诺法生技股份有限公司 Mapk3抗体(Abnova, G15-B)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
安迪生物R&D
兔 多克隆
  • 免疫印迹; 小鼠
安迪生物R&D Mapk3抗体(R&D Systems, AF1575)被用于被用于免疫印迹在小鼠样本上. In Vitro Cell Dev Biol Anim (2014) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 大鼠; 1:800
西格玛奥德里奇 Mapk3抗体(Sigma, E7028)被用于被用于免疫印迹在大鼠样本上浓度为1:800. Int J Mol Med (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 4372)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000. Nature (2019) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). elife (2019) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
兔 单克隆(12F8)
  • 流式细胞仪; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Mapk3抗体(CST, 12F8)被用于被用于流式细胞仪在人类样本上 (图 2e). Front Immunol (2018) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Cell (2018) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2018) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 Mapk3抗体(CST, 9215)被用于被用于免疫印迹在人类样本上 (图 7c). Cell Death Differ (2019) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2500; 图 s4a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s4a). Nat Commun (2018) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nat Med (2018) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
兔 单克隆(12F8)
  • 免疫组化; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Mapk3抗体(cell signalling, 4631)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Hum Mol Genet (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 s5b). J Clin Invest (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:200; 图 3d
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 s7e
  • 免疫印迹; 人类; 图 s7f
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 s7e) 和 被用于免疫印迹在人类样本上 (图 s7f). Cell (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:3000; 图 3a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3a). Nat Commun (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 Mapk3抗体(cst, 9215s)被用于被用于免疫印迹在人类样本上 (图 1g). J Cell Sci (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 EV3d
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Mapk3抗体(cell signalling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 EV3d) 和 被用于免疫印迹在人类样本上 (图 7a). EMBO J (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Stem Cell Res Ther (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 S17A
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S17A). Nat Commun (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2000; 图 s3
赛信通(上海)生物试剂有限公司 Mapk3抗体(cell signalling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:500; 图 6c
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). J Cell Biol (2017) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Mapk3抗体(cell signalling, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 4c). EMBO J (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:2000; 图 5E
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5E). PLoS ONE (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Cycle (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Arch Biochem Biophys (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 8b). J Biol Chem (2017) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s7b). Autophagy (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
兔 单克隆(12F8)
  • 免疫组化-石蜡切片; 大鼠; 1:25; 图 4b
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:25 (图 4b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Evid Based Complement Alternat Med (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 猪; 1:1000; 图 2A
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在猪样本上浓度为1:1000 (图 2A). Toxins (Basel) (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 小鼠; 图 s10b
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signalling Technologies, 9216)被用于被用于免疫组化在小鼠样本上 (图 s10b). Open Biol (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Med Rep (2016) ncbi
兔 单克隆(3D7)
  • 免疫组化; 斑马鱼; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5a). Neurotox Res (2016) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 人类; 图 s18a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 28B10)被用于被用于流式细胞仪在人类样本上 (图 s18a). J Clin Invest (2016) ncbi
兔 单克隆(3D7)
  • 流式细胞仪; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 3D7)被用于被用于流式细胞仪在人类样本上 (图 5b). Cell Rep (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 4). Physiol Rep (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Leukemia (2017) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Tech, 9215S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫细胞化学; 小鼠; 1:50; 图 3g
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3g). Nat Med (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s3e
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3e). Sci Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:250; 图 6a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 6a). Oncotarget (2016) ncbi
兔 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5d
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5d). Oncol Lett (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Ovarian Res (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2C
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2C). PLoS ONE (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 大鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216S)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). Cell Death Dis (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 牛; 图 9f
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在牛样本上 (图 9f) 和 被用于免疫印迹在人类样本上 (图 9e). J Biol Chem (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 1c). EMBO Rep (2016) ncbi
兔 单克隆(3D7)
  • 免疫细胞化学; 狗; 1:50; 图 4
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫细胞化学在狗样本上浓度为1:50 (图 4). Nat Commun (2016) ncbi
兔 单克隆(12F8)
  • 免疫细胞化学; 小鼠; 图 s1a,s1b
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a,s1b). Sci Rep (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 12F8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 8a, 8b
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 8a, 8b). J Mol Cell Cardiol (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Stress Chaperones (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s10f
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10f). Nat Commun (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 7d). J Immunol (2016) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Tech, 4372S)被用于被用于免疫印迹在人类样本上 (图 4). BMC Genomics (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Neuropharmacology (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4372)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Sci (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 s5). Nature (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 兔; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signalling Technology, 9215)被用于被用于免疫印迹在兔样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 S3
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 S3). PLoS ONE (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Oncol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9,216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2). Nat Immunol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signalling, 9216)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4). Int J Biol Sci (2015) ncbi
兔 单克隆(3D7)
  • 免疫细胞化学; 人类
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在大鼠样本上. Toxicol Lett (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4372S)被用于被用于免疫印迹在人类样本上. Basic Res Cardiol (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Physiol (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 1). EMBO J (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Nat Immunol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9216S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Cell Biol (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 5). Evid Based Complement Alternat Med (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signalling, 9215)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Mapk3抗体(cell Signaling Tech, 4372)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Nat Commun (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Oncotarget (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631S)被用于被用于免疫印迹在大鼠样本上. Br J Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4372S)被用于被用于免疫印迹在大鼠样本上. Br J Pharmacol (2015) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int Immunopharmacol (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9215S)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在猪样本上浓度为1:500. Amino Acids (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signalling, 9216S)被用于被用于免疫印迹在人类样本上. Mech Ageing Dev (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上浓度为1:200. Biomed Res Int (2014) ncbi
兔 单克隆(12F8)
  • 免疫组化; 鸡; 1:400
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technologies, 12F8)被用于被用于免疫组化在鸡样本上浓度为1:400. Glia (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 狗
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在狗样本上. J Vet Med Sci (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(CST, 9215)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216S)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上浓度为1:50. Nat Med (2014) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Biochem J (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Mapk3抗体(cell signalling technology, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1e). Arthritis Res Ther (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
兔 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling Technologies, 4631)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 猪
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在猪样本上. Basic Res Cardiol (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Am J Physiol Renal Physiol (2013) ncbi
兔 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell signaling, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2013) ncbi
兔 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 4631S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
兔 单克隆(3D7)
  • 免疫组化-自由浮动切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 9215S)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
兔 单克隆(3D7)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 Mapk3抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上 (图 7d). EMBO J (2012) ncbi
碧迪BD
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 图 e2c
碧迪BD Mapk3抗体(BD Biosciences, 610031)被用于被用于免疫印迹在小鼠样本上 (图 e2c). Nature (2016) ncbi
小鼠 单克隆(G262-118)
  • 免疫印迹; 人类; 图 s6
碧迪BD Mapk3抗体(BD Biosciences, 554100)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Rep (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 大鼠; 1:4000; 图 4
碧迪BD Mapk3抗体(BD Transduction Laboratories, 610031)被用于被用于免疫印迹在大鼠样本上浓度为1:4000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 图 5
碧迪BD Mapk3抗体(BD Biosciences, 610031)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 图 2c
碧迪BD Mapk3抗体(BD Biosciences, 610030)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 人类; 图 3
碧迪BD Mapk3抗体(BD Biosciences, 610031)被用于被用于免疫印迹在人类样本上 (图 3). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 s5c
碧迪BD Mapk3抗体(BD Biosciences, 610408)被用于被用于免疫印迹在小鼠样本上 (图 s5c). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 大鼠; 1:5000
碧迪BD Mapk3抗体(BD Biosciences, 610030)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Cell Death Dis (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:5000; 图 7
碧迪BD Mapk3抗体(BD Transduction Laboratories, 610408)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 1d
碧迪BD Mapk3抗体(BD Biosciences, 610408)被用于被用于免疫印迹在小鼠样本上 (图 1d). Arthritis Res Ther (2014) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 人类
碧迪BD Mapk3抗体(BD Biosciences, 610031)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 1:2000
碧迪BD Mapk3抗体(BD Transduction Laboratories, 610031)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2013) ncbi
默克密理博中国
兔 多克隆
  • 免疫印迹; 小鼠; 图 3b
默克密理博中国 Mapk3抗体(EMD Millipore, AB544)被用于被用于免疫印迹在小鼠样本上 (图 3b). J Clin Invest (2017) ncbi
兔 重组(AW39R)
  • 免疫印迹; 大鼠; 1:1000; 图 5b
默克密理博中国 Mapk3抗体(Millipore, 05-797R)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Vascul Pharmacol (2017) ncbi
兔 重组(AW39R)
  • 免疫印迹; 人类
默克密理博中国 Mapk3抗体(Millipore, 05-797R)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2016) ncbi
兔 重组(AW39R)
  • 免疫印迹; 小鼠; 图 1b
  • 免疫印迹; 人类; 图 1a
默克密理博中国 Mapk3抗体(Millipore, 05-797R)被用于被用于免疫印迹在小鼠样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1a). J Neuroinflammation (2016) ncbi
兔 重组(AW39R)
  • 免疫印迹; 大鼠; 1:1000; 图 2e
默克密理博中国 Mapk3抗体(Millipore, 05-797R)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). Front Behav Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5b
默克密理博中国 Mapk3抗体(Merk Millipore, ABS44)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2015) ncbi
兔 重组(AW39R)
  • 免疫印迹; 人类
默克密理博中国 Mapk3抗体(EMDMillipore, 05-797R)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
兔 重组(AW39R)
  • 免疫细胞化学; 小鼠
默克密理博中国 Mapk3抗体(Millipore, 05-797R)被用于被用于免疫细胞化学在小鼠样本上. Glia (2015) ncbi
兔 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
默克密理博中国 Mapk3抗体(Millipore, 05-957)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2012) ncbi
文章列表
  1. Sarek G, Kotsantis P, Ruis P, Van Ly D, Margalef P, Borel V, et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019;: pubmed 出版商
  2. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  3. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  4. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  5. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  6. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed 出版商
  7. Jeong W, Park J, Kim W, Ro E, Jeon S, Lee S, et al. WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun. 2019;10:295 pubmed 出版商
  8. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  9. Lee S, Cho Y, Cha P, Yoon J, Ro E, Jeong W, et al. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med. 2018;50:153 pubmed 出版商
  10. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  11. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  12. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  13. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  14. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  15. Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, et al. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol. 2018;48:1506-1521 pubmed 出版商
  16. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  17. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  18. Lei F, Jin L, Liu X, Lai F, Yan X, Farrelly M, et al. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis. 2018;9:679 pubmed 出版商
  19. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  20. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  21. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  22. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed 出版商
  23. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  24. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  25. Qi Z, Xu H, Zhang S, Xu J, Li S, Gao H, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol. 2018;52:1105-1116 pubmed 出版商
  26. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  27. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed 出版商
  28. Wang C, Edilova M, Wagar L, Mujib S, Singer M, Bernard N, et al. Effect of IL-7 Therapy on Phospho-Ribosomal Protein S6 and TRAF1 Expression in HIV-Specific CD8 T Cells in Patients Receiving Antiretroviral Therapy. J Immunol. 2018;200:558-564 pubmed 出版商
  29. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed 出版商
  30. Magilnick N, Reyes E, Wang W, Vonderfecht S, Gohda J, Inoue J, et al. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci U S A. 2017;114:E7140-E7149 pubmed 出版商
  31. Courtial L, Picco V, Pagès G, Ferrier Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res. 2017;6:577 pubmed 出版商
  32. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  33. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed 出版商
  34. Bae S, Lee M, Mun S, Giannopoulou E, Yong Gonzalez V, Cross J, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERR?. J Clin Invest. 2017;127:2555-2568 pubmed 出版商
  35. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed 出版商
  36. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  37. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  38. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  39. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  40. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  41. Mon N, Senga T, Ito S. Interleukin-1? activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955-960 pubmed 出版商
  42. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  43. Yang K, Chen Y, To K, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303 pubmed 出版商
  44. Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed 出版商
  45. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  46. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  47. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  48. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  49. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  50. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28 pubmed 出版商
  51. Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, et al. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun. 2017;8:14275 pubmed 出版商
  52. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  53. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  54. Pleines I, Woods J, Chappaz S, Kew V, Foad N, Ballester Beltrán J, et al. Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia. J Clin Invest. 2017;127:814-829 pubmed 出版商
  55. Carpi S, Fogli S, Polini B, Montagnani V, Podestà A, Breschi M, et al. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicol In Vitro. 2017;40:272-279 pubmed 出版商
  56. Difranco K, Mulligan J, Sumal A, Diamond G. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways. J Steroid Biochem Mol Biol. 2017;173:323-332 pubmed 出版商
  57. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  58. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  59. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  60. Schwarz F, Landig C, Siddiqui S, Secundino I, Olson J, Varki N, et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36:751-760 pubmed 出版商
  61. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed 出版商
  62. Pyle C, Akhter S, Bao S, Dodd C, Schlesinger L, Knoell D. Zinc Modulates Endotoxin-Induced Human Macrophage Inflammation through ZIP8 Induction and C/EBP? Inhibition. PLoS ONE. 2017;12:e0169531 pubmed 出版商
  63. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  64. Wamsley J, Issaeva N, An H, Lu X, Donehower L, Yarbrough W. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213-223 pubmed 出版商
  65. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  66. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  67. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  68. Lee H, Khan S, Khaliqdina S, Altintas M, Grahammer F, Zhao J, et al. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem. 2017;292:732-747 pubmed 出版商
  69. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  70. Ferland D, Darios E, Neubig R, Sjögren B, Truong N, Torres R, et al. Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascul Pharmacol. 2017;88:30-41 pubmed 出版商
  71. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed 出版商
  72. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  73. Hegedüs L, Garay T, Molnar E, Varga K, Bilecz A, Torok S, et al. The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells. Int J Cancer. 2017;140:2758-2770 pubmed 出版商
  74. Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed 出版商
  75. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  76. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  77. Li S, Yang B, Teguh D, Zhou L, Xu J, Rong L. Amyloid ? Peptide Enhances RANKL-Induced Osteoclast Activation through NF-?B, ERK, and Calcium Oscillation Signaling. Int J Mol Sci. 2016;17: pubmed
  78. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed 出版商
  79. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  80. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  81. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  82. Jin Q, Ren Y, Wang M, Suraneni P, Li D, Crispino J, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 2016;6:e478 pubmed 出版商
  83. Yan S, Wang Y, Liu P, Chen A, Chen M, Yao D, et al. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9. Evid Based Complement Alternat Med. 2016;2016:2546402 pubmed 出版商
  84. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed 出版商
  85. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  86. Egholm C, Khammy M, Dalsgaard T, Mazur A, Tritsaris K, Hansen A, et al. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2016;311:H1214-H1224 pubmed 出版商
  87. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  88. Yadav V, Hong K, Zeldin D, Nayeem M. Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K+ channels. Mol Cell Biochem. 2016;422:197-206 pubmed
  89. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed 出版商
  90. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  91. Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel). 2016;8: pubmed 出版商
  92. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  93. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  94. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  95. Makita N, Sato T, Yajima Shoji Y, Sato J, Manaka K, Eda Hashimoto M, et al. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem. 2016;291:22460-22471 pubmed
  96. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed 出版商
  97. Cheng G, Gao F, Sun X, Bi H, Zhu Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP?2/9 production via the p38 MAPK signaling pathway. Mol Med Rep. 2016;14:3199-205 pubmed 出版商
  98. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  99. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  100. Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res. 2016;30:633-647 pubmed
  101. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  102. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  103. Hedl M, Yan J, Abraham C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation. Cell Rep. 2016;16:2442-55 pubmed 出版商
  104. Stucky A, Bakshi K, Friedman E, Wang H. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS ONE. 2016;11:e0160585 pubmed 出版商
  105. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  106. Lyukmanova E, Shulepko M, Shenkarev Z, Bychkov M, Paramonov A, Chugunov A, et al. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors. Sci Rep. 2016;6:30698 pubmed 出版商
  107. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  108. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  109. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  110. Møller C, Kjøbsted R, Enriori P, Jensen T, Garcia Rudaz C, Litwak S, et al. ?-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE. 2016;11:e0157027 pubmed 出版商
  111. Ciaraldi T, Ryan A, Mudaliar S, Henry R. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS ONE. 2016;11:e0158209 pubmed 出版商
  112. Abdelbaset Ismail A, Borkowska Rzeszotek S, Kubis E, Bujko K, Brzeźniakiewicz Janus K, Bolkun L, et al. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1. Leukemia. 2017;31:446-458 pubmed 出版商
  113. Shi K, Qian J, Qi L, Mao D, Chen Y, Zhu Y, et al. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-?B activation in HCAECs. Oncol Lett. 2016;12:1438-1444 pubmed
  114. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  115. Inda C, Dos Santos Claro P, Bonfiglio J, Senin S, Maccarrone G, Turck C, et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181-95 pubmed 出版商
  116. Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed 出版商
  117. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  118. Elzi D, Song M, Blackman B, Weintraub S, Lopez Terrada D, Chen Y, et al. FGF19 functions as autocrine growth factor for hepatoblastoma. Genes Cancer. 2016;7:125-35 pubmed 出版商
  119. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  120. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, et al. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep. 2016;6:27583 pubmed 出版商
  121. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  122. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed 出版商
  123. Zhang J, Jing X, Niu W, Zhang M, Ge L, Miao C, et al. Peroxiredoxin 1 has an anti-apoptotic role via apoptosis signal-regulating kinase 1 and p38 activation in mouse models with oral precancerous lesions. Oncol Lett. 2016;12:413-420 pubmed
  124. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed 出版商
  125. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  126. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  127. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  128. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  129. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  130. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  131. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed 出版商
  132. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  133. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747-57 pubmed 出版商
  134. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  135. Ribeiro J, Schorl C, Yano N, Romano N, Kim K, Singh R, et al. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016;9:28 pubmed 出版商
  136. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  137. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  138. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  139. Foxton R, Osborne A, Martin K, Ng Y, Shima D. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism. Cell Death Dis. 2016;7:e2212 pubmed 出版商
  140. Ishizuka S, Askew E, Ishizuka N, Knudson C, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem. 2016;291:12087-104 pubmed 出版商
  141. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed 出版商
  142. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  143. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  144. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  145. Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7:11373 pubmed 出版商
  146. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  147. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  148. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  149. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed 出版商
  150. Alemán O, Mora N, Cortés Vieyra R, Uribe Querol E, Rosales C. Differential Use of Human Neutrophil Fc? Receptors for Inducing Neutrophil Extracellular Trap Formation. J Immunol Res. 2016;2016:2908034 pubmed 出版商
  151. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  152. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  153. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed 出版商
  154. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  155. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  156. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  157. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  158. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  159. Yang H, Vainshtein A, Maik Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun. 2016;7:10884 pubmed 出版商
  160. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  161. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  162. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, et al. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487 pubmed 出版商
  163. Abdul Rahman N, Greenwood S, Brett R, Tossell K, Ungless M, Plevin R, et al. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci. 2016;36:2348-54 pubmed 出版商
  164. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  165. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  166. Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57-64 pubmed
  167. Pecháčková S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458-75 pubmed 出版商
  168. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  169. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of UAB30 in Pediatric Renal and Hepatic Malignancies. Mol Cancer Ther. 2016;15:911-21 pubmed 出版商
  170. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  171. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  172. Li S, Lu L, Liao X, Gao T, Wang F, Zhang L, et al. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals. 2016;29:265-74 pubmed 出版商
  173. O Sullivan C, Schubart A, Mir A, Dev K. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31 pubmed 出版商
  174. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  175. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed 出版商
  176. Tai D, Ragavendran A, Manavalan P, Stortchevoi A, Seabra C, Erdin S, et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci. 2016;19:517-22 pubmed 出版商
  177. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  178. van der Mijn J, Broxterman H, Knol J, Piersma S, de Haas R, Dekker H, et al. Sunitinib activates Axl signaling in renal cell cancer. Int J Cancer. 2016;138:3002-10 pubmed 出版商
  179. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed 出版商
  180. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed 出版商
  181. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed 出版商
  182. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  183. Lin C, Wang C, Hsu S, Liao L, Lin T, Hsueh C. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS ONE. 2016;11:e0146692 pubmed 出版商
  184. Hernandez R, Puro A, Manos J, Huitron Resendiz S, Reyes K, Liu K, et al. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology. 2016;103:27-43 pubmed 出版商
  185. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  186. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  187. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  188. Roth Flach R, Skoura A, Matevossian A, Danai L, Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6:8995 pubmed 出版商
  189. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther. 2015;9:6327-42 pubmed 出版商
  190. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  191. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed 出版商
  192. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed 出版商
  193. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  194. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed 出版商
  195. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  196. Kurioka T, Matsunobu T, Satoh Y, Niwa K, Endo S, Fujioka M, et al. ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep. 2015;5:16839 pubmed 出版商
  197. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  198. Chandrani P, Upadhyay P, Iyer P, Tanna M, Shetty M, Raghuram G, et al. Integrated genomics approach to identify biologically relevant alterations in fewer samples. BMC Genomics. 2015;16:936 pubmed 出版商
  199. Ampofo E, Später T, Müller I, Eichler H, Menger M, Laschke M. The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity. Mar Drugs. 2015;13:6774-91 pubmed 出版商
  200. Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed 出版商
  201. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  202. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  203. Waye S, Naeem A, Choudhry M, Parasido E, Tricoli L, Sivakumar A, et al. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY). 2015;7:854-68 pubmed
  204. Vernot J, Perdomo Arciniegas A, Pérez Quintero L, Martínez D. Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res. 2015;2015:395371 pubmed 出版商
  205. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  206. d Avenia M, Citro R, De Marco M, Veronese A, Rosati A, Visone R, et al. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell Death Dis. 2015;6:e1948 pubmed 出版商
  207. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  208. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  209. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed 出版商
  210. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  211. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed 出版商
  212. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  213. Zhu X, Wang K, Zhang K, Tan X, Wu Z, Sun S, et al. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress. Int J Mol Sci. 2015;16:21775-90 pubmed 出版商
  214. Xing R, Li L, Chen L, Gao Z, Wang H, Li W, et al. Copy number variations of HLA-I and activation of NKp30 pathway determine the sensitivity of gastric cancer cells to the cytotoxicity of natural killer cells. Oncogene. 2016;35:2584-91 pubmed 出版商
  215. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  216. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed 出版商
  217. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype. Int J Mol Sci. 2015;16:20344-59 pubmed 出版商
  218. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss S. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. J Immunol. 2015;195:3382-9 pubmed 出版商
  219. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  220. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  221. Wong T, Lin S, Leung L. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells. PLoS ONE. 2015;10:e0135637 pubmed 出版商
  222. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  223. Sabet O, Stockert R, Xouri G, Brüggemann Y, Stanoev A, Bastiaens P. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun. 2015;6:8047 pubmed 出版商
  224. Bunaciu R, Jensen H, Macdonald R, Latocha D, Varner J, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS ONE. 2015;10:e0135668 pubmed 出版商
  225. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed 出版商
  226. Varela A, Piperi C, Sigala F, Agrogiannis G, Davos C, Andri M, et al. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep. 2015;5:13461 pubmed 出版商
  227. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  228. Chichger H, Braza J, Duong H, Stark M, Harrington E. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2015;309:L700-9 pubmed 出版商
  229. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed 出版商
  230. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  231. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  232. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  233. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015;212:1323-36 pubmed 出版商
  234. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed 出版商
  235. Ito A, Hong C, Rong X, Zhu X, Tarling E, Hedde P, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009 pubmed 出版商
  236. Kim J, Lee G, Won Y, Lee M, Kwak J, Chun C, et al. Matrix cross-linking-mediated mechanotransduction promotes posttraumatic osteoarthritis. Proc Natl Acad Sci U S A. 2015;112:9424-9 pubmed 出版商
  237. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  238. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  239. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  240. Chen K, Tsai M, Wu C, Jou M, Wei I, Huang C. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role. Front Behav Neurosci. 2015;9:162 pubmed 出版商
  241. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  242. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  243. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  244. He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174-89 pubmed 出版商
  245. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed 出版商
  246. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  247. Choi J, Kim J, Kim T, Park J, Lee J, Kim H, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015;97:346-56 pubmed 出版商
  248. Wang S, Awad K, Elinoff J, Dougherty E, Ferreyra G, Wang J, et al. G Protein-coupled Receptor 40 (GPR40) and Peroxisome Proliferator-activated Receptor γ (PPARγ): AN INTEGRATED TWO-RECEPTOR SIGNALING PATHWAY. J Biol Chem. 2015;290:19544-57 pubmed 出版商
  249. Chen M, Yen C, Cheng C, Wu R, Huang S, Yu C, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget. 2015;6:23594-608 pubmed
  250. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed 出版商
  251. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed 出版商
  252. Condelli V, Maddalena F, Sisinni L, Lettini G, Matassa D, Piscazzi A, et al. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma. Oncotarget. 2015;6:22298-309 pubmed
  253. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed 出版商
  254. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  255. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  256. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  257. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  258. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  259. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed 出版商
  260. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed 出版商
  261. Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, et al. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci. 2015;11:664-71 pubmed 出版商
  262. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  263. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  264. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed 出版商
  265. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  266. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma. Mol Cancer Ther. 2015;14:1559-69 pubmed 出版商
  267. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  268. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  269. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  270. Bhang S, Han J, Jang H, Noh M, La W, Yi M, et al. pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials. 2015;55:33-43 pubmed 出版商
  271. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  272. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  273. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed 出版商
  274. Huang L, Counter C. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS ONE. 2015;10:e0123918 pubmed 出版商
  275. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  276. Selvaraj N, Kedage V, Hollenhorst P. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal. 2015;13:12 pubmed 出版商
  277. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed 出版商
  278. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  279. Zhang D, Zhu L, Li C, Mu J, Fu Y, Zhu Q, et al. Sialyltransferase7A, a Klf4-responsive gene, promotes cardiomyocyte apoptosis during myocardial infarction. Basic Res Cardiol. 2015;110:28 pubmed 出版商
  280. Witkiewicz A, McMillan E, Balaji U, Baek G, Lin W, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744 pubmed 出版商
  281. Kim T, Lawson M. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology. 2015;156:2185-99 pubmed 出版商
  282. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed 出版商
  283. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  284. Meena J, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 2015;34:1371-84 pubmed 出版商
  285. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  286. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed 出版商
  287. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  288. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  289. Wang B, Wu S, Tang S, Lai C, Ou C, Wu M, et al. Benzo[a]pyrene-induced cell cycle progression occurs via ERK-induced Chk1 pathway activation in human lung cancer cells. Mutat Res. 2015;773:1-8 pubmed 出版商
  290. Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol. 2015;17:434-44 pubmed 出版商
  291. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed 出版商
  292. Kollar P, Bárta T, KeltoÅ¡ová S, Trnová P, Müller Závalová V, Å mejkal K, et al. Flavonoid 4'-O-Methylkuwanon E from Morus alba Induces the Differentiation of THP-1 Human Leukemia Cells. Evid Based Complement Alternat Med. 2015;2015:251895 pubmed 出版商
  293. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  294. Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS ONE. 2015;10:e0118215 pubmed 出版商
  295. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  296. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed 出版商
  297. Curcio M, Salazar I, Inácio A, Duarte E, Canzoniero L, Duarte C. Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons. Cell Death Dis. 2015;6:e1645 pubmed 出版商
  298. Fouladi F, Jehn L, Metzelder S, Hub F, Henkenius K, Burchert A, et al. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation. Leuk Lymphoma. 2015;56:2690-8 pubmed 出版商
  299. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed 出版商
  300. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed 出版商
  301. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57 pubmed 出版商
  302. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  303. Hakanpaa L, Sipilä T, Leppänen V, Gautam P, Nurmi H, Jacquemet G, et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015;6:5962 pubmed 出版商
  304. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  305. Xu B, Zhang Y, Tong X, Liu Y. Characterization of microRNA profile in human cumulus granulosa cells: Identification of microRNAs that regulate Notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015;404:26-36 pubmed 出版商
  306. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  307. Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz E, Cappello A, et al. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493-9 pubmed 出版商
  308. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  309. Schäker K, Bartsch S, Patry C, Stoll S, Hillebrands J, Wieland T, et al. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408-18 pubmed 出版商
  310. Majuelos Melguizo J, Rodríguez M, López Jiménez L, Rodríguez Vargas J, Martí Martín Consuegra J, Serrano Sáenz S, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 2015;6:4790-803 pubmed
  311. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  312. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  313. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed 出版商
  314. Kim E, Kim S, Jin X, Ham S, Kim J, Park J, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36:2921-8 pubmed 出版商
  315. Jilg C, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, et al. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget. 2014;5:12646-64 pubmed
  316. Delloye Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci. 2015;18:36-45 pubmed 出版商
  317. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed 出版商
  318. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed 出版商
  319. Tang D, Yu Y, Zhao X, Schachner M, Zhao W. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res. 2015;330:336-45 pubmed 出版商
  320. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  321. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed 出版商
  322. Li X, Sun Q, Li X, Cai D, Sui S, Jia Y, et al. Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions. Eur J Nutr. 2015;54:1201-10 pubmed 出版商
  323. Janardhan S, Marks R, Gajewski T. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation. PLoS ONE. 2014;9:e112831 pubmed 出版商
  324. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed 出版商
  325. Li Y, Kim B, Cho S, Bang M, Kim S, Park D. 6,7-di-O-acetylsinococuline (FK-3000) induces G2/M phase arrest in breast carcinomas through p38 MAPK phosphorylation and CDC25B dephosphorylation. Int J Oncol. 2015;46:578-86 pubmed 出版商
  326. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  327. Wang Y, Xiao X, Li N, Yang D, Xing Y, Huo R, et al. Oestrogen inhibits BMP4-induced BMP4 expression in cardiomyocytes: a potential mechanism of oestrogen-mediated protection against cardiac hypertrophy. Br J Pharmacol. 2015;172:5586-95 pubmed 出版商
  328. Rutkowska A, Preuss I, Gessier F, Sailer A, Dev K. EBI2 regulates intracellular signaling and migration in human astrocyte. Glia. 2015;63:341-51 pubmed 出版商
  329. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed 出版商
  330. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed 出版商
  331. Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, et al. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 2015;25:286-96 pubmed 出版商
  332. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed 出版商
  333. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed 出版商
  334. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed 出版商
  335. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  336. Gruol D, Vo K, Bray J. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci. 2014;8:234 pubmed 出版商
  337. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed 出版商
  338. Sa S, Wong L, McCloskey K. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access. 2014;3:150-61 pubmed 出版商
  339. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed 出版商
  340. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed 出版商
  341. Yu B, Chang J, Liu Y, Li J, Kevork K, Al Hezaimi K, et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-?B. Nat Med. 2014;20:1009-17 pubmed 出版商
  342. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  343. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  344. Castorina A, Giunta S. Mucin 1 (MUC1) signalling contributes to increase the resistance to cell death in human bronchial epithelial cells exposed to nickel acetate. Biometals. 2014;27:1149-58 pubmed 出版商
  345. Kurz D, Payeli S, Greutert H, Briand Schumacher S, Luscher T, Tanner F. Epigenetic regulation of tissue factor inducibility in endothelial cell senescence. Mech Ageing Dev. 2014;140:1-9 pubmed 出版商
  346. Kapur N, Qiao X, Paruchuri V, Mackey E, Daly G, Ughreja K, et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc. 2014;3: pubmed 出版商
  347. Maeda S, Wada H, Naito Y, Nagano H, Simmons S, Kagawa Y, et al. Interferon-? acts on the S/G2/M phases to induce apoptosis in the G1 phase of an IFNAR2-expressing hepatocellular carcinoma cell line. J Biol Chem. 2014;289:23786-95 pubmed 出版商
  348. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed 出版商
  349. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  350. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  351. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed 出版商
  352. Rathore K, Cekanova M. Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer. 2014;14:465 pubmed 出版商
  353. Fischer A, Zelinka C, Gallina D, Scott M, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 2014;62:1608-28 pubmed 出版商
  354. Ishikawa D, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Effect of Twist and Bmi1 on intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol Hepatol. 2014;29:2032-7 pubmed 出版商
  355. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed 出版商
  356. Enjoji S, Ohama T, Sato K. Regulation of epithelial cell tight junctions by protease-activated receptor 2. J Vet Med Sci. 2014;76:1225-9 pubmed
  357. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  358. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Mammalian sterile-like 1 kinase inhibits TGF? and EGF?dependent regulation of invasiveness, migration and proliferation of HEC-1-A endometrial cancer cells. Int J Oncol. 2014;45:853-60 pubmed 出版商
  359. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  360. Gruol D, Vo K, Bray J, Roberts A. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci. 2014;8:29 pubmed 出版商
  361. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  362. Tamaki S, Tokumoto Y. Overexpression of cyclin dependent kinase inhibitor P27/Kip1 increases oligodendrocyte differentiation from induced pluripotent stem cells. In Vitro Cell Dev Biol Anim. 2014;50:778-85 pubmed 出版商
  363. Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol. 2014;390:34-44 pubmed 出版商
  364. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed 出版商
  365. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  366. Wei N, Chu E, Wipf P, Schmitz J. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther. 2014;13:1130-41 pubmed 出版商
  367. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  368. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  369. Linke R, Pries R, Könnecke M, Bruchhage K, Böscke R, Gebhard M, et al. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz). 2014;62:217-29 pubmed 出版商
  370. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed 出版商
  371. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed 出版商
  372. Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, et al. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis. 2014;35:2195-202 pubmed 出版商
  373. Bernet J, Doles J, Hall J, Kelly Tanaka K, Carter T, Olwin B. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20:265-71 pubmed 出版商
  374. Willemen H, Campos P, Lucas E, Morreale A, Gil Redondo R, Agut J, et al. A novel p38 MAPK docking-groove-targeted compound is a potent inhibitor of inflammatory hyperalgesia. Biochem J. 2014;459:427-39 pubmed 出版商
  375. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  376. Bloch O, Amit Vazina M, Yona E, Molad Y, Rapoport M. Increased ERK and JNK activation and decreased ERK/JNK ratio are associated with long-term organ damage in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2014;53:1034-42 pubmed
  377. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  378. Shin Y, Huh Y, Kim K, Kim S, Park K, Koh J, et al. Low-density lipoprotein receptor-related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction. Arthritis Res Ther. 2014;16:R37 pubmed 出版商
  379. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  380. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775-83 pubmed 出版商
  381. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed 出版商
  382. Murcia Belmonte V, Medina Rodríguez E, Bribian A, De Castro F, Esteban P. ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia. 2014;62:374-86 pubmed 出版商
  383. Krishna S, Luan C, Mishra R, Xu L, Scheidt K, Anderson W, et al. A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLoS ONE. 2013;8:e81504 pubmed 出版商
  384. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed 出版商
  385. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed 出版商
  386. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  387. Evans C, Cook S, Coleman M, Gilley J. MEK inhibitor U0126 reverses protection of axons from Wallerian degeneration independently of MEK-ERK signaling. PLoS ONE. 2013;8:e76505 pubmed 出版商
  388. Lu Q, Harris V, Sun X, Hou Y, Black S. Ca²?/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS ONE. 2013;8:e70750 pubmed 出版商
  389. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  390. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed 出版商
  391. Moberly S, Mather K, Berwick Z, Owen M, Goodwill A, Casalini E, et al. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol. 2013;108:365 pubmed 出版商
  392. Zhou X, Wang H, Burg M, Ferraris J. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol. 2013;305:F362-9 pubmed 出版商
  393. Wickert L, Blanchette J, Waldschmidt N, Bertics P, Denu J, Denlinger L, et al. The C-terminus of human nucleotide receptor P2X7 is critical for receptor oligomerization and N-linked glycosylation. PLoS ONE. 2013;8:e63789 pubmed 出版商
  394. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed 出版商
  395. Maeda Y, Fukushima K, Omichi R, Kariya S, Nishizaki K. Time courses of changes in phospho- and total- MAP kinases in the cochlea after intense noise exposure. PLoS ONE. 2013;8:e58775 pubmed 出版商
  396. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  397. Lin S, Hoffmann K, Xiao Z, Jin N, Galli U, Mohr E, et al. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int. 2013;13:3 pubmed 出版商
  398. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed 出版商
  399. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed 出版商
  400. Muller M, Triaca V, Besusso D, Costanzi M, Horn J, Koudelka J, et al. Loss of NGF-TrkA signaling from the CNS is not sufficient to induce cognitive impairments in young adult or intermediate-aged mice. J Neurosci. 2012;32:14885-98 pubmed 出版商
  401. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商
  402. Jarosz M, Robbez Masson L, Chioni A, Cross B, Rosewell I, Grose R. Fibroblast growth factor 22 is not essential for skin development and repair but plays a role in tumorigenesis. PLoS ONE. 2012;7:e39436 pubmed 出版商
  403. Joaquin M, Gubern A, Gonzalez Nunez D, Josué Ruiz E, Ferreiro I, de Nadal E, et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J. 2012;31:2952-64 pubmed 出版商
  404. Iio W, Matsukawa N, Tsukahara T, Toyoda A. The effects of oral taurine administration on behavior and hippocampal signal transduction in rats. Amino Acids. 2012;43:2037-46 pubmed 出版商
  405. Yoo S, Starnes T, Deng Q, Huttenlocher A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature. 2011;480:109-12 pubmed 出版商
  406. Gruol D, Puro A, Hao C, Blakely P, Janneke E, Vo K. Neuroadaptive changes in cerebellar neurons induced by chronic exposure to IL-6. J Neuroimmunol. 2011;239:28-36 pubmed 出版商
  407. Machado Neto J, Favaro P, Lazarini M, Costa F, Olalla Saad S, Traina F. Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta. 2011;1813:1404-11 pubmed 出版商
  408. Urbanet R, Pilon C, Giorgino F, Vettor R, Fallo F. Insulin signaling in adipose tissue of patients with primary aldosteronism. J Endocrinol Invest. 2011;34:86-9 pubmed
  409. Witte K, Schuh A, Hegermann J, Sarkeshik A, Mayers J, Schwarze K, et al. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol. 2011;13:550-8 pubmed 出版商
  410. Chang J, Adams M, Clifton M, Liao M, Brooks J, Hasdemir B, et al. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol. 2011;300:G884-94 pubmed 出版商
  411. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed 出版商
  412. Grassian A, Schafer Z, Brugge J. ErbB2 stabilizes epidermal growth factor receptor (EGFR) expression via Erk and Sprouty2 in extracellular matrix-detached cells. J Biol Chem. 2011;286:79-90 pubmed 出版商
  413. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed 出版商
  414. Yang L, Zhang Q, Zhou C, Yang F, Zhang Y, Wang R, et al. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS ONE. 2010;5:e9851 pubmed 出版商
  415. Lu Z, Cox Hipkin M, Windsor W, Boyapati A. 3-phosphoinositide-dependent protein kinase-1 regulates proliferation and survival of cancer cells with an activated mitogen-activated protein kinase pathway. Mol Cancer Res. 2010;8:421-32 pubmed 出版商
  416. Musumeci G, Sciarretta C, Rodríguez Moreno A, Al Banchaabouchi M, Negrete Díaz V, Costanzi M, et al. TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites. J Neurosci. 2009;29:10131-43 pubmed 出版商
  417. Cerezo A, Guadamillas M, Goetz J, Sánchez Perales S, Klein E, Assoian R, et al. The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Mol Cell Biol. 2009;29:5046-59 pubmed 出版商
  418. Molad Y, Amit Vasina M, Bloch O, Yona E, Rapoport M. Increased ERK and JNK activities correlate with disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis. 2010;69:175-80 pubmed 出版商
  419. Lee J, Kang M, Jang S, Qian T, Kim H, Kim C, et al. Id-1 activates Akt-mediated Wnt signaling and p27(Kip1) phosphorylation through PTEN inhibition. Oncogene. 2009;28:824-31 pubmed 出版商
  420. Bajova H, Nelson T, Gruol D. Chronic CXCL10 alters the level of activated ERK1/2 and transcriptional factors CREB and NF-kappaB in hippocampal neuronal cell culture. J Neuroimmunol. 2008;195:36-46 pubmed 出版商
  421. Søland T, Husvik C, Koppang H, Boysen M, Sandvik L, Clausen O, et al. A study of phosphorylated ERK1/2 and COX-2 in early stage (T1-T2) oral squamous cell carcinomas. J Oral Pathol Med. 2008;37:535-42 pubmed 出版商
  422. Rauh Adelmann C, Moskow J, Graham J, Yen L, Boucher J, Murphy C, et al. Quantitative measurement of epidermal growth factor receptor-mitogen-activated protein kinase signal transduction using a nine-plex, peptide-based immunoassay. Anal Biochem. 2008;375:255-64 pubmed 出版商
  423. Klees R, Salasznyk R, Ward D, Crone D, Williams W, Harris M, et al. Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Exp Cell Res. 2008;314:763-73 pubmed 出版商
  424. Lefloch R, Pouyssegur J, Lenormand P. Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol. 2008;28:511-27 pubmed
  425. Wu J, Jin Y, Calaf G, Huang W, Yin Y. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene. 2007;26:6526-35 pubmed
  426. Zha Y, Marks R, Ho A, Peterson A, Janardhan S, Brown I, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7:1166-73 pubmed
  427. Salasznyk R, Klees R, Boskey A, Plopper G. Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. J Cell Biochem. 2007;100:499-514 pubmed
  428. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006;72:152-62 pubmed
  429. Hao H, Schwaber J. Epidermal growth factor receptor induced Erk phosphorylation in the suprachiasmatic nucleus. Brain Res. 2006;1088:45-8 pubmed
  430. Carulli M, Ong V, Ponticos M, Shiwen X, Abraham D, Black C, et al. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum. 2005;52:3772-82 pubmed
  431. Riemenschneider M, Mueller W, Betensky R, Mohapatra G, Louis D. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am J Pathol. 2005;167:1379-87 pubmed
  432. Auger R, Motta I, Benihoud K, Ojcius D, Kanellopoulos J. A role for mitogen-activated protein kinase(Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem. 2005;280:28142-51 pubmed
  433. Lo I, Shih J, Jiang M. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci. 2005;12:377-88 pubmed
  434. Tsai M, Jiang M. Extracellular signal-regulated kinase1/2 in contraction of vascular smooth muscle. Life Sci. 2005;76:877-88 pubmed
  435. Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, et al. Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem. 2004;279:12300-11 pubmed
  436. Farnier C, Krief S, Blache M, Diot Dupuy F, Mory G, Ferre P, et al. Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int J Obes Relat Metab Disord. 2003;27:1178-86 pubmed
  437. Hernandez M, Barrero M, Crespo M, Nieto M. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem. 2000;75:1575-82 pubmed
  438. Chan E, Stang S, Bottorff D, Stone J. Hypothermic stress leads to activation of Ras-Erk signaling. J Clin Invest. 1999;103:1337-44 pubmed
  439. Korneyev A. Stress-induced tau phosphorylation in mouse strains with different brain Erk 1 + 2 immunoreactivity. Neurochem Res. 1998;23:1539-43 pubmed
  440. Webb C, Van Aelst L, Wigler M, Vande Woude G. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998;95:8773-8 pubmed
  441. Duesbery N, Webb C, Leppla S, Gordon V, Klimpel K, Copeland T, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998;280:734-7 pubmed
  442. Hidari K, Weyrich A, Zimmerman G, McEver R. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem. 1997;272:28750-6 pubmed