这是一篇来自已证抗体库的有关小鼠 NK1.1 (NK1.1) 的综述,是根据281篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合NK1.1 抗体。
NK1.1 同义词: AI462337; CD161; Klrb1b; Ly-59; Ly55c; Ly59; NK-RP1; NK1.1; NKR-P1.9; NKRP1; NKRP140; Nk-1; Nk-1.2; Nk1; Nk1.2; Nkrp1b; Nkrp1c; ly-55c

BioLegend
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:20
BioLegendNK1.1抗体(Biolegend, 108741)被用于被用于流式细胞仪在小鼠样本上浓度为1:20. Nat Commun (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Front Cell Infect Microbiol (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2f
BioLegendNK1.1抗体(Biolegend, 108713)被用于被用于流式细胞仪在小鼠样本上 (图 2f). iScience (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1a, s2
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1a, s2). J Immunother Cancer (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 s2f
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2f). PLoS Pathog (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 s3a
BioLegendNK1.1抗体(BioLegend, 108745)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s3a). Development (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4c
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Basic Res Cardiol (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100; 图 2, s1
BioLegendNK1.1抗体(Biolegend, 108749)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2, s1). Front Immunol (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3f
BioLegendNK1.1抗体(BioLegend, 108710)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Immunother Cancer (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s4c
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s4c). Gut Microbes (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3b, 4f
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3b, 4f). Immunol Cell Biol (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Immunother Cancer (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:700; 图 2d
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:700 (图 2d). Sci Adv (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:300; 图 2f
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 2f). Nat Commun (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 1j
BioLegendNK1.1抗体(BioLegend, 108705)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1j). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, 108745)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 6c
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Front Immunol (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s7
BioLegendNK1.1抗体(Biolegend, 108708)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Mol Cancer (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
BioLegendNK1.1抗体(Biolegend, 108706)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). elife (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100; 图 s7b
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7b). Nat Commun (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendNK1.1抗体(BioLegend, 108714)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2e
BioLegendNK1.1抗体(Biolegend, 108739)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cell Rep (2021) ncbi
小鼠 单克隆(PK136)
  • mass cytometry; 小鼠
BioLegendNK1.1抗体(BioLegend, 108702)被用于被用于mass cytometry在小鼠样本上. Br J Cancer (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(Biolegend, 108707)被用于被用于流式细胞仪在小鼠样本上. Cell Rep (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 3h
BioLegendNK1.1抗体(BioLegend, 108704)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3h). Transl Psychiatry (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 8a
BioLegendNK1.1抗体(BioLegend, 108707)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendNK1.1抗体(Biolegend, 108724)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cancer Res (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:300
BioLegendNK1.1抗体(BioLegend, 108741)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. Nature (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s7c
BioLegendNK1.1抗体(Biolegend, 108729)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Sci Adv (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3e
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunother Cancer (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Hepatol Commun (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 s6-1b
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6-1b). elife (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, 108702)被用于被用于流式细胞仪在小鼠样本上. Cell (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 7b
BioLegendNK1.1抗体(Biolegend, 108710)被用于被用于流式细胞仪在小鼠样本上 (图 7b). elife (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:800; 图 2s1b
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 2s1b). elife (2020) ncbi
小鼠 单克隆(PK136)
BioLegendNK1.1抗体(BioLegend, PK136)被用于. Nature (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:400; 图 1a, 1d
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1a, 1d). Commun Biol (2020) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; ; 图 2f
  • 流式细胞仪; 小鼠; 图 2g
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 2f) 和 被用于流式细胞仪在小鼠样本上 (图 2g). Sci Adv (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s3, 1g
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s3, 1g). PLoS Pathog (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Aging Cell (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
BioLegendNK1.1抗体(BioLegend, 108747)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). elife (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 2 ug/ml; 图 s3a
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml (图 s3a). Science (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 3a
BioLegendNK1.1抗体(BioLegend, 108728)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3a). Nat Commun (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Front Immunol (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s16d
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s16d). Nat Commun (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Aging Cell (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2f
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Sci Adv (2019) ncbi
小鼠 单克隆(PK136)
  • mass cytometry; 小鼠; 6 ug/ml; 图 5d
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于mass cytometry在小鼠样本上浓度为6 ug/ml (图 5d). Science (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s7c
BioLegendNK1.1抗体(Biolegend, 108729)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). Cell Rep (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:33; 图 3d
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:33 (图 3d). Cancer Sci (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendNK1.1抗体(BioLegend, 108710)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 8a
BioLegendNK1.1抗体(Biolegend, 108710)被用于被用于流式细胞仪在小鼠样本上 (图 8a). J Clin Invest (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s19c
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s19c). Science (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100; 图 e6f
BioLegendNK1.1抗体(Biolegend, 108717)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e6f). Nature (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s3j
BioLegendNK1.1抗体(BioLegend, 108706)被用于被用于流式细胞仪在小鼠样本上 (图 s3j). Nature (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 e3u
BioLegendNK1.1抗体(BioLegend, 108724)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3u). Nature (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendNK1.1抗体(BioLegend, 108743)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 e6a
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 e6a). Nature (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100; 图 3b
BioLegendNK1.1抗体(BioLegend, 108708)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3b). Nat Commun (2019) ncbi
小鼠 单克隆(PK136)
  • 其他; 小鼠; 图 2b
BioLegendNK1.1抗体(BioLegend, 108707)被用于被用于其他在小鼠样本上 (图 2b). Int Immunol (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendNK1.1抗体(Biolegend, 108715)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100; 图 s3b
BioLegendNK1.1抗体(Biolegend, 108708)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3b). Nat Commun (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Science (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendNK1.1抗体(Biolegend, 108731)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int J Cancer (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s5e
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s5e). Science (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nature (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1c
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Transl Oncol (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1f
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Am J Transplant (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1e
BioLegendNK1.1抗体(BioLegend, 108726)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). Cell (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol Res (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 人类; 图 s1a
BioLegendNK1.1抗体(Biolegend, 108724)被用于被用于流式细胞仪在人类样本上 (图 s1a). Immunity (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Nature (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3f
BioLegendNK1.1抗体(Biolegend, 108710)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Clin Invest (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendNK1.1抗体(Biolegend, 108707)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 人类; 图 1a
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell Immunol (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cell Metab (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2e
BioLegendNK1.1抗体(Biolegend, 108707)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nat Med (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 s4c
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4c). J Immunol (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3
BioLegendNK1.1抗体(Biolegend, 108708)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendNK1.1抗体(BioLegend, 108709)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Rep (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Diabetologia (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). Cancer Res (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendNK1.1抗体(BioLegend, 108732)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Immunity (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3f
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Immunity (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell Mol Immunol (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1h
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Science (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendNK1.1抗体(Biolegend, 108745)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Clin Invest (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Clin Invest (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Immunology (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendNK1.1抗体(Biolegend, 108716)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Methods Mol Biol (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3g
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3g). PLoS ONE (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s8d
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s8d). Nature (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a). J Exp Med (2017) ncbi
小鼠 单克隆(PK136)
BioLegendNK1.1抗体(biolegend, PK136)被用于. Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Nat Commun (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:300; 图 s3c
BioLegendNK1.1抗体(BioLegend, 108708)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s3c). Nature (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1G
BioLegendNK1.1抗体(Biolegend, 108704)被用于被用于流式细胞仪在小鼠样本上 (图 1G). Cell (2016) ncbi
小鼠 单克隆(PK136)
BioLegendNK1.1抗体(eBioscience, 108715)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendNK1.1抗体(Biolegend, 108736)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Mucosal Immunol (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1
BioLegendNK1.1抗体(BioLegend, 108705)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, 108735)被用于被用于流式细胞仪在小鼠样本上. Cell (2016) ncbi
小鼠 单克隆(PK136)
  • 免疫组化-冰冻切片; 人类
BioLegendNK1.1抗体(BioLegend, PK138)被用于被用于免疫组化-冰冻切片在人类样本上. Cancer Res (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Science (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 人类; 图 5
  • 流式细胞仪; 人类; 图 5
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于抑制或激活实验在人类样本上 (图 5) 和 被用于流式细胞仪在人类样本上 (图 5). J Virol (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Science (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mucosal Immunol (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s13
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s13). Science (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1d
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s7
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s7). elife (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 表 s1
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 7d
BioLegendNK1.1抗体(BioLegend, 108708)被用于被用于流式细胞仪在小鼠样本上 (图 7d). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(Biolegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Immunology (2014) ncbi
小鼠 单克隆(PK136)
BioLegendNK1.1抗体(BioLegend, PK136)被用于. J Immunol (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2014) ncbi
小鼠 单克隆(PK136)
BioLegendNK1.1抗体(Biolegend, 108723)被用于. J Vis Exp (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
小鼠 单克隆(PK136)
BioLegendNK1.1抗体(Biolegend, PK136)被用于. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
BioLegendNK1.1抗体(BioLegend, PK136)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
赛默飞世尔
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:1000
赛默飞世尔NK1.1抗体(Invitrogen, 67-5941-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Theranostics (2022) ncbi
小鼠 单克隆(PK136)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1e
赛默飞世尔NK1.1抗体(Thermo Fisher, MA1-70100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1e). iScience (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1l
赛默飞世尔NK1.1抗体(eBioscience, 11-5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1l). Cell Rep (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔NK1.1抗体(eBioscience, 11-5941-85)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cell Death Dis (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 s1c
赛默飞世尔NK1.1抗体(eBioscience, 11-5941-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1c). Nat Commun (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2k
赛默飞世尔NK1.1抗体(eBioscience, 12-5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2k). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100; 图 2s1g
赛默飞世尔NK1.1抗体(eBioscience, 11-5941-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2s1g). elife (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔NK1.1抗体(eBioscience, 48?C5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cell Rep (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100; 图 5e
赛默飞世尔NK1.1抗体(ThermoFisher, 11-5941-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5e). FASEB J (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s18
赛默飞世尔NK1.1抗体(eBioscience, 17-5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 s18). Nat Commun (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔NK1.1抗体(eBioscience, 12-5941-81)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Commun Biol (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔NK1.1抗体(Thermo Fisher Scientific, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Immunol (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔NK1.1抗体(eBioscience (Thermo Fisher Scientific), PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Sci Transl Med (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔NK1.1抗体(Thermo Fisher Scientific, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4c). elife (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). elife (2020) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 4s1
赛默飞世尔NK1.1抗体(eBiosciences, 11-5941-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4s1). elife (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2s2a
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2s2a). elife (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔NK1.1抗体(eBioscience, 11-5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Cell (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔NK1.1抗体(eBioscience, 25-5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Cell (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔NK1.1抗体(eBioscience, 47-5941)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell (2019) ncbi
小鼠 单克隆(PK136)
  • 其他; 小鼠; 图 2b
赛默飞世尔NK1.1抗体(eBioscience, 13-5941-85)被用于被用于其他在小鼠样本上 (图 2b). Int Immunol (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 e3b
赛默飞世尔NK1.1抗体(Invitrogen, 47-5941-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3b). Nature (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:2000; 图 e2j, 4g
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:2000 (图 e2j, 4g). Nature (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:1000; 图 1a
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1a). Sci Rep (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3s1b
赛默飞世尔NK1.1抗体(eBioscience, 47-5941-80)被用于被用于流式细胞仪在小鼠样本上 (图 3s1b). elife (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔NK1.1抗体(eBioscience, 12-5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Clin Invest (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1b). PLoS Pathog (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔NK1.1抗体(eBioscience, 47-5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 ev2c
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 ev2c). EMBO J (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:300; 图 1d
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1d). Nat Commun (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Front Immunol (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1e
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1e). J Clin Invest (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1). Front Immunol (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Virol (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔NK1.1抗体(eBioscience, 48-5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Science (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔NK1.1抗体(eBiosciences, 45-5941-82)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cell (2018) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 2a
赛默飞世尔NK1.1抗体(ebioscience, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s10d
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s10d). Science (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔NK1.1抗体(eBioscience, 17-5941-63)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Immunity (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1.4d
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1.4d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔NK1.1抗体(eBioscience, PK-136)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Eur J Immunol (2017) ncbi
小鼠 单克隆(PK136)
  • 其他; 小鼠; 图 s2a
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于其他在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Nat Commun (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔NK1.1抗体(eBioscience, 14-5941)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Exp Med (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:200; 图 5c
赛默飞世尔NK1.1抗体(eBioscience, 12-5941)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5c). Nat Commun (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Rep (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔NK1.1抗体(ebioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3g
赛默飞世尔NK1.1抗体(ebioscience, 17-5941-81)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Front Immunol (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 9b
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 9b). J Clin Invest (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2h
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2h). J Leukoc Biol (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Exp Med (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 6A
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 6A). Oncoimmunology (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔NK1.1抗体(BD Pharmingen or eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mol Cell Biol (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Immunity (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1c
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上. Bio Protoc (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(e-Bioscience, 175941)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠
  • 流式细胞仪; 小鼠; 1:100; 图 s2
赛默飞世尔NK1.1抗体(eBioscience, PK-136)被用于被用于抑制或激活实验在小鼠样本上 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBiocience, PK136)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. Nat Genet (2016) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔NK1.1抗体(eBioscience, 12-5941-83)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Exp Med (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Virol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Eur J Immunol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔NK1.1抗体(Thermo Fisher Scientific, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Immunity (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBiosciences, 12-5941-81)被用于被用于流式细胞仪在小鼠样本上. Autophagy (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4). Infect Immun (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔NK1.1抗体(eBioscience (Affymetrix), PK136)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3). Immunology (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Neuroinflammation (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. Exp Hematol (2015) ncbi
小鼠 单克隆(PK136)
  • 染色质免疫沉淀 ; 人类
赛默飞世尔NK1.1抗体(eBioscience, PK126)被用于被用于染色质免疫沉淀 在人类样本上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Leukoc Biol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Lett (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2015) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 170 ug/ml
赛默飞世尔NK1.1抗体(Invitrogen, clone PK136)被用于被用于流式细胞仪在小鼠样本上浓度为170 ug/ml. Development (2014) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, 16-5941)被用于被用于抑制或激活实验在小鼠样本上. Cancer Res (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mucosal Immunol (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
  • 免疫组化; 小鼠
赛默飞世尔NK1.1抗体(ebioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫组化在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. Nature (2013) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(e-Bioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. Nature (2012) ncbi
小鼠 单克隆(PK136)
  • 免疫组化; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于免疫组化在小鼠样本上. EMBO J (2012) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, ebio 45-5941)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2011) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 5). BMC Immunol (2011) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Immunol (2010) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2009) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(Caltag, PK136)被用于被用于流式细胞仪在小鼠样本上. Cell Tissue Res (2008) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBiosciences, PK136)被用于被用于流式细胞仪在小鼠样本上. Gastroenterology (2008) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(eBioscience, PK136)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔NK1.1抗体(eBioscience, PK1316)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2006) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔NK1.1抗体(e-Bioscience, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2004) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(Caltag, PK136)被用于被用于流式细胞仪在小鼠样本上. Blood (2002) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔NK1.1抗体(noco, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4). Int Immunol (2001) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(Biosource, PK136)被用于被用于流式细胞仪在小鼠样本上. Blood (2000) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
  • 免疫沉淀; 小鼠
赛默飞世尔NK1.1抗体(noco, PK136)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫沉淀在小鼠样本上. J Immunol (1999) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠
赛默飞世尔NK1.1抗体(noco, PK136)被用于被用于流式细胞仪在小鼠样本上. Immunol Cell Biol (1998) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 1
  • 流式细胞仪; 小鼠; 1:80; 图 2
赛默飞世尔NK1.1抗体(noco, noca)被用于被用于抑制或激活实验在小鼠样本上 (图 1) 和 被用于流式细胞仪在小鼠样本上浓度为1:80 (图 2). J Immunol (1986) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔NK1.1抗体(noco, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 3). Hybridoma (1989) ncbi
Bio X Cell
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; ; 图 2d
Bio X CellNK1.1抗体(Bio X Cell, PK136)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 2d). J Immunother Cancer (2022) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 4a
Bio X CellNK1.1抗体(Bio X Cell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). Development (2022) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 3a
Bio X CellNK1.1抗体(Bioxcell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 3a). Front Pharmacol (2021) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 s5a
Bio X CellNK1.1抗体(BioXcell, BE0036)被用于被用于抑制或激活实验在小鼠样本上 (图 s5a). Nat Commun (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 4a
Bio X CellNK1.1抗体(Bio X cell, PK136)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Nature (2020) ncbi
小鼠 单克隆(PK136)
  • 其他; 小鼠
Bio X CellNK1.1抗体(Bio X Cell, PK136)被用于被用于其他在小鼠样本上. Infect Immun (2020) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 s8
  • 流式细胞仪; 小鼠; 图 s5e
Bio X CellNK1.1抗体(BioXcell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 s8) 和 被用于流式细胞仪在小鼠样本上 (图 s5e). Science (2018) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 2c
Bio X CellNK1.1抗体(BioXcell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 2c). JCI Insight (2018) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 3c
Bio X CellNK1.1抗体(Bioxcell, BE0036)被用于被用于抑制或激活实验在小鼠样本上 (图 3c). Cell (2018) ncbi
小鼠 单克隆(PK136)
  • 其他; 小鼠; 图 2f
Bio X CellNK1.1抗体(BioXcell, PK136)被用于被用于其他在小鼠样本上 (图 2f). Science (2018) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠
Bio X CellNK1.1抗体(Bioxcell, PK136)被用于被用于抑制或激活实验在小鼠样本上. Science (2017) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 6b
Bio X CellNK1.1抗体(BioXcell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 6b). J Exp Med (2017) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 2a
  • 流式细胞仪; 小鼠
Bio X CellNK1.1抗体(BioXCell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 2a) 和 被用于流式细胞仪在小鼠样本上. Am J Transplant (2017) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 2f
  • 免疫组化-冰冻切片; 小鼠; 图 2a
Bio X CellNK1.1抗体(BioXCell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 2f) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 3g
Bio X CellNK1.1抗体(BioXcell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 3g). J Clin Invest (2017) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 4f
Bio X CellNK1.1抗体(BioXCell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 4f). Nature (2017) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 7a
Bio X CellNK1.1抗体(BioXcell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 7a). J Leukoc Biol (2017) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 8a
Bio X CellNK1.1抗体(BioXcell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 8a). J Virol (2016) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 6f
Bio X CellNK1.1抗体(Bio-X-Cell, PK136)被用于被用于抑制或激活实验在小鼠样本上 (图 6f). J Virol (2016) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 小鼠; 图 s3
Bio X CellNK1.1抗体(BioXcell, BE0036)被用于被用于抑制或激活实验在小鼠样本上 (图 s3). Cancer Discov (2016) ncbi
小鼠 单克隆(PK136)
  • 抑制或激活实验; 人类; 图 s1
Bio X CellNK1.1抗体(BioXcell, PK146)被用于被用于抑制或激活实验在人类样本上 (图 s1). Cell Res (2015) ncbi
美天旎
小鼠 单克隆(PK136)
  • 免疫组化-冰冻切片; 小鼠; 图 s6
美天旎NK1.1抗体(Miltenyi Biotec, 130-116-504)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6). Sci Rep (2022) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 8a
美天旎NK1.1抗体(Miltenyi, 130-118-558)被用于被用于流式细胞仪在小鼠样本上 (图 8a). J Clin Invest (2019) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 0.5 ug/ml; 图 st4
美天旎NK1.1抗体(Miltenyi Biotec, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为0.5 ug/ml (图 st4). Nature (2017) ncbi
Novus Biologicals
小鼠 单克隆(PK136)
  • 免疫组化; 小鼠; 图 s2d
Novus BiologicalsNK1.1抗体(Novus Biological, NB100-77528)被用于被用于免疫组化在小鼠样本上 (图 s2d). PLoS Genet (2018) ncbi
Tonbo Biosciences
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 图 ds1a
Tonbo BiosciencesNK1.1抗体(Tonbo, 50-5941)被用于被用于流式细胞仪在小鼠样本上 (图 ds1a). Cell Rep (2021) ncbi
小鼠 单克隆(PK136)
  • 流式细胞仪; 小鼠; 1:300
Tonbo BiosciencesNK1.1抗体(TONBO Bioscience, PK136)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. Proc Natl Acad Sci U S A (2016) ncbi
Cedarlanelabs
单克隆(PK136)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
CedarlanelabsNK1.1抗体(Cedarlane, CL8994AP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Int J Cancer (2018) ncbi
文章列表
  1. Yang P, Qin H, Li Y, Xiao A, Zheng E, Zeng H, et al. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat Commun. 2022;13:5782 pubmed 出版商
  2. Hou X, Shi Y, Kang X, Rousu Z, Li D, Wang M, et al. Echinococcus granulosus: The establishment of the metacestode in the liver is associated with control of the CD4+ T-cell-mediated immune response in patients with cystic echinococcosis and a mouse model. Front Cell Infect Microbiol. 2022;12:983119 pubmed 出版商
  3. Cao S, Hung Y, Wang Y, Chung Y, Qi Y, Ouyang C, et al. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics. 2022;12:6038-6056 pubmed 出版商
  4. Zhao X, Hu S, Zeng L, Liu X, Song Y, Zhang Y, et al. Irradiation combined with PD-L1-/- and autophagy inhibition enhances the antitumor effect of lung cancer via cGAS-STING-mediated T cell activation. iScience. 2022;25:104690 pubmed 出版商
  5. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  6. Tan H, Yong Y, Xue Y, Liu H, Furihata T, Shankar E, et al. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience. 2022;25:104404 pubmed 出版商
  7. Aiken T, Erbe A, Zebertavage L, Komjathy D, Feils A, Rodriguez M, et al. Mechanism of effective combination radio-immunotherapy against 9464D-GD2, an immunologically cold murine neuroblastoma. J Immunother Cancer. 2022;10: pubmed 出版商
  8. Bartsch P, Kilian C, Hellmig M, Paust H, Borchers A, Sivayoganathan A, et al. Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathog. 2022;18:e1010430 pubmed 出版商
  9. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  10. Meléndez E, Chondronasiou D, Mosteiro L, Mart xed nez de Villarreal J, Fern xe1 ndez Alfara M, Lynch C, et al. Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development. 2022;149: pubmed 出版商
  11. Seung H, Wröbel J, Wadle C, B xfc hler T, Chiang D, Rettkowski J, et al. P2Y12-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction. Basic Res Cardiol. 2022;117:16 pubmed 出版商
  12. Abbas Z, GEORGE C, Ancliffe M, Howlett M, Jones A, Kuchibhotla M, et al. Conventional Therapies Deplete Brain-Infiltrating Adaptive Immune Cells in a Mouse Model of Group 3 Medulloblastoma Implicating Myeloid Cells as Favorable Immunotherapy Targets. Front Immunol. 2022;13:837013 pubmed 出版商
  13. van Vloten J, Matuszewska K, Minow M, Minott J, Santry L, Pereira M, et al. Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  14. Li S, Dou B, Shu S, Wei L, Zhu S, Ke Z, et al. Suppressing NK Cells by Astragaloside IV Protects Against Acute Ischemic Stroke in Mice Via Inhibiting STAT3. Front Pharmacol. 2021;12:802047 pubmed 出版商
  15. Wang H, Wang Q, Yang C, Guo M, Cui X, Jing Z, et al. Bacteroides acidifaciens in the gut plays a protective role against CD95-mediated liver injury. Gut Microbes. 2022;14:2027853 pubmed 出版商
  16. Kinkhabwala A, Herbel C, Pankratz J, Yushchenko D, R xfc berg S, Praveen P, et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep. 2022;12:1911 pubmed 出版商
  17. Clayer E, Frank D, Anderton H, Zhang S, Kueh A, Heim V, et al. ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skin-draining lymph nodes. Immunol Cell Biol. 2022;100:160-173 pubmed 出版商
  18. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  19. Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021;12:853 pubmed 出版商
  20. Rizvi Z, Dalal R, Sadhu S, Kumar Y, Kumar S, Gupta S, et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci Adv. 2021;7:eabg5016 pubmed 出版商
  21. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  22. Petley E, Koay H, Henderson M, Sek K, Todd K, Keam S, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746 pubmed 出版商
  23. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  24. Goyette M, Elkholi I, Apcher C, Kuasne H, Rothlin C, Muller W, et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  25. Ortega Molina A, Lebrero Fernández C, Sanz A, Deleyto Seldas N, Plata Gómez A, Menéndez C, et al. Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36:109372 pubmed 出版商
  26. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  27. Kong W, Tsuyama N, Inoue H, Guo Y, Mokuda S, Nobukiyo A, et al. Long-chain saturated fatty acids in breast milk are associated with the pathogenesis of atopic dermatitis via induction of inflammatory ILC3s. Sci Rep. 2021;11:13109 pubmed 出版商
  28. Okunuki Y, Tabor S, Lee M, Connor K. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol. 2021;12:680568 pubmed 出版商
  29. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  30. Demandt J, van Kuijk K, Theelen T, Marsch E, Heffron S, Fisher E, et al. Whole-Body Prolyl Hydroxylase Domain (PHD) 3 Deficiency Increased Plasma Lipids and Hematocrit Without Impacting Plaque Size in Low-Density Lipoprotein Receptor Knockout Mice. Front Cell Dev Biol. 2021;9:664258 pubmed 出版商
  31. Lebratti T, Lim Y, Cofie A, Andhey P, Jiang X, Scott J, et al. A sustained type I IFN-neutrophil-IL-18 axis drives pathology during mucosal viral infection. elife. 2021;10: pubmed 出版商
  32. Glassman C, Su L, Majri Morrison S, Winkelmann H, Mo F, Li P, et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. elife. 2021;10: pubmed 出版商
  33. Ercolano G, Gomez Cadena A, Dumauthioz N, Vanoni G, Kreutzfeldt M, Wyss T, et al. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat Commun. 2021;12:2538 pubmed 出版商
  34. Go D, Lee S, Lee S, Woo S, Kim K, Kim K, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol. 2021;12:715-739 pubmed 出版商
  35. Kastenschmidt J, Coulis G, Farahat P, Pham P, Rios R, Cristal T, et al. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep. 2021;35:108997 pubmed 出版商
  36. Melin N, Sánchez Taltavull D, Fahrner R, Keogh A, Dosch M, Büchi I, et al. Synergistic effect of the TLR5 agonist CBLB502 and its downstream effector IL-22 against liver injury. Cell Death Dis. 2021;12:366 pubmed 出版商
  37. Joseph R, Soundararajan R, Vasaikar S, Yang F, Allton K, Tian L, et al. CD8+ T cells inhibit metastasis and CXCL4 regulates its function. Br J Cancer. 2021;125:176-189 pubmed 出版商
  38. Goncalves S, Yin K, Ito Y, Chan A, Olan I, Gough S, et al. COX2 regulates senescence secretome composition and senescence surveillance through PGE2. Cell Rep. 2021;34:108860 pubmed 出版商
  39. Beins E, Beiert T, Jenniches I, Hansen J, Leidmaa E, Schrickel J, et al. Cannabinoid receptor 1 signalling modulates stress susceptibility and microglial responses to chronic social defeat stress. Transl Psychiatry. 2021;11:164 pubmed 出版商
  40. Berg N, Li J, Kim B, Mills T, Pei G, Zhao Z, et al. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J. 2021;35:e21334 pubmed 出版商
  41. Mao F, Lv Y, Hao C, Teng Y, Liu Y, Cheng P, et al. Helicobacter pylori-Induced Rev-erbα Fosters Gastric Bacteria Colonization by Impairing Host Innate and Adaptive Defense. Cell Mol Gastroenterol Hepatol. 2021;12:395-425 pubmed 出版商
  42. Santos Zas I, Lemari xe9 J, Zlatanova I, Cachanado M, Seghezzi J, Benamer H, et al. Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat Commun. 2021;12:1483 pubmed 出版商
  43. Song L, Chang R, Sun X, Lu L, Gao H, Lu H, et al. Macrophage-derived EDA-A2 inhibits intestinal stem cells by targeting miR-494/EDA2R/β-catenin signaling in mice. Commun Biol. 2021;4:213 pubmed 出版商
  44. Yao C, Lou G, Sun H, Zhu Z, Sun Y, Chen Z, et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat Immunol. 2021;22:370-380 pubmed 出版商
  45. Henrich I, Jain K, Young R, Quick L, Lindsay J, Park D, et al. Ubiquitin-specific protease 6 functions as a tumor suppressor in Ewing Sarcoma through immune activation. Cancer Res. 2021;: pubmed 出版商
  46. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  47. Wang Y, Yang Y, Wang M, Wang S, Jeong J, Xu L, et al. Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Sci Transl Med. 2021;13: pubmed 出版商
  48. Phan T, Schink L, Mann J, Merk V, Zwicky P, Mundt S, et al. Keratinocytes control skin immune homeostasis through de novo-synthesized glucocorticoids. Sci Adv. 2021;7: pubmed 出版商
  49. Brownlie D, Doughty Shenton D, Yh Soong D, Nixon C, O Carragher N, M Carlin L, et al. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β. J Immunother Cancer. 2021;9: pubmed 出版商
  50. Gao L, Li B, Wang J, Shen D, Yang M, Sun R, et al. Activation of Liver X Receptor α Sensitizes Mice to T-Cell Mediated Hepatitis. Hepatol Commun. 2020;4:1664-1679 pubmed 出版商
  51. Lissner M, Cumnock K, Davis N, Vilches Moure J, Basak P, Navarrete D, et al. Metabolic profiling during malaria reveals the role of the aryl hydrocarbon receptor in regulating kidney injury. elife. 2020;9: pubmed 出版商
  52. Shi H, Lo T, Ma D, Condor B, Lesmana B, Parungao R, et al. Dihydrotestosterone (DHT) Enhances Wound Healing of Major Burn Injury by Accelerating Resolution of Inflammation in Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  53. Ricci B, Tycksen E, Celik H, Belle J, Fontana F, Civitelli R, et al. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. elife. 2020;9: pubmed 出版商
  54. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A. 2020;117:20159-20170 pubmed 出版商
  55. Piersma S, Poursine Laurent J, Yang L, Barber G, Parikh B, Yokoyama W. Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING. elife. 2020;9: pubmed 出版商
  56. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  57. Manils J, Webb L, Howes A, Janzen J, Boeing S, Bowcock A, et al. CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. elife. 2020;9: pubmed 出版商
  58. Zhou T, Damsky W, Weizman O, McGeary M, Hartmann K, Rosen C, et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature. 2020;583:609-614 pubmed 出版商
  59. Alexander R, Liou Y, Knudsen N, Starost K, Xu C, Hyde A, et al. Bmal1 integrates mitochondrial metabolism and macrophage activation. elife. 2020;9: pubmed 出版商
  60. Burfeind K, Zhu X, Norgard M, Levasseur P, Huisman C, Buenafe A, et al. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. elife. 2020;9: pubmed 出版商
  61. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  62. Wuggenig P, Kaya B, Melhem H, Ayata C, Hruz P, Sayan A, et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol. 2020;3:130 pubmed 出版商
  63. Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6:eaay9269 pubmed 出版商
  64. Sun D, Zhang M, Sun P, Liu G, Strickland A, Chen Y, et al. VCAM1/VLA4 interaction mediates Ly6Clow monocyte recruitment to the brain in a TNFR signaling dependent manner during fungal infection. PLoS Pathog. 2020;16:e1008361 pubmed 出版商
  65. Clark D, Brazina S, Yang F, Hu D, Hsieh C, Niemi E, et al. Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell. 2020;19:e13112 pubmed 出版商
  66. Monzon Casanova E, Matheson L, Tabbada K, Zarnack K, Smith C, Turner M. Polypyrimidine tract-binding proteins are essential for B cell development. elife. 2020;9: pubmed 出版商
  67. Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367: pubmed 出版商
  68. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  69. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  70. Schanoski A, Le T, Kaiserman D, Rowe C, Prow N, Barboza D, et al. Granzyme A in Chikungunya and Other Arboviral Infections. Front Immunol. 2019;10:3083 pubmed 出版商
  71. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  72. Cheng M, Chen Y, Huang D, Chen W, Xu W, Chen Y, et al. Intrinsically altered lung-resident γδT cells control lung melanoma by producing interleukin-17A in the elderly. Aging Cell. 2020;19:e13099 pubmed 出版商
  73. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  74. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  75. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  76. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  77. Koprivsek J, He Y, Song C, Zhang N, Tumanov A, Zhong G. Evasion of Innate Lymphoid Cell-Regulated Gamma Interferon Responses by Chlamydia muridarum To Achieve Long-Lasting Colonization in Mouse Colon. Infect Immun. 2020;88: pubmed 出版商
  78. Fukuda Y, Asaoka T, Eguchi H, Yokota Y, Kubo M, Kinoshita M, et al. Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci. 2020;111:323-333 pubmed 出版商
  79. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  80. Nagai J, Balestrieri B, Fanning L, Kyin T, Cirka H, Lin J, et al. P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation. J Clin Invest. 2019;129:5169-5186 pubmed 出版商
  81. Stewart B, Ferdinand J, Young M, Mitchell T, Loudon K, Riding A, et al. Spatiotemporal immune zonation of the human kidney. Science. 2019;365:1461-1466 pubmed 出版商
  82. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  83. Carpentier K, Davenport B, HAIST K, McCarthy M, May N, Robison A, et al. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. elife. 2019;8: pubmed 出版商
  84. Benechet A, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature. 2019;574:200-205 pubmed 出版商
  85. Yoshimi A, Lin K, Wiseman D, Rahman M, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574:273-277 pubmed 出版商
  86. Liu Z, Gu Y, Chakarov S, Blériot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178:1509-1525.e19 pubmed 出版商
  87. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  88. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  89. Solis A, Bielecki P, Steach H, Sharma L, Harman C, Yun S, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 2019;573:69-74 pubmed 出版商
  90. Benci J, Johnson L, Choa R, Xu Y, Qiu J, Zhou Z, et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell. 2019;178:933-948.e14 pubmed 出版商
  91. Niemann J, Woller N, Brooks J, Fleischmann Mundt B, Martin N, Kloos A, et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun. 2019;10:3236 pubmed 出版商
  92. Leach S, Shinnakasu R, Adachi Y, Momota M, Makino Okamura C, Yamamoto T, et al. Requirement for memory B cell activation in protection from heterologous influenza virus reinfection. Int Immunol. 2019;: pubmed 出版商
  93. Escolano A, Gristick H, Abernathy M, Merkenschlager J, Gautam R, Oliveira T, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019;: pubmed 出版商
  94. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  95. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  96. Jacome Galarza C, Percin G, Muller J, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568:541-545 pubmed 出版商
  97. LaFleur M, Nguyen T, Coxe M, Yates K, Trombley J, Weiss S, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10:1668 pubmed 出版商
  98. Kumar P, Rajasekaran K, Nanbakhsh A, Gorski J, Thakar M, Malarkannan S. IL-27 promotes NK cell effector functions via Maf-Nrf2 pathway during influenza infection. Sci Rep. 2019;9:4984 pubmed 出版商
  99. Qian L, Bajana S, Georgescu C, Peng V, Wang H, Adrianto I, et al. Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med. 2019;216:884-899 pubmed 出版商
  100. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  101. Martins J, Andoniou C, Fleming P, Kuns R, Schuster I, Voigt V, et al. Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science. 2019;363:288-293 pubmed 出版商
  102. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  103. Collins P, Cella M, Porter S, Li S, Gurewitz G, Hong H, et al. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell. 2019;176:348-360.e12 pubmed 出版商
  104. Cornelissen L, Blanas A, van der Horst J, Kruijssen L, Zaal A, O Toole T, et al. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer. 2019;144:2290-2302 pubmed 出版商
  105. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  106. Mantri C, St John A. Immune synapses between mast cells and γδ T cells limit viral infection. J Clin Invest. 2019;129:1094-1108 pubmed 出版商
  107. Ishizuka J, Manguso R, Cheruiyot C, Bi K, Panda A, Iracheta Vellve A, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature. 2019;565:43-48 pubmed 出版商
  108. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  109. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  110. Wiedemann G, Aithal C, Kraechan A, Heise C, Cadilha B, Zhang J, et al. Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Transl Oncol. 2019;12:350-360 pubmed 出版商
  111. Jensen I, Winborn C, Fosdick M, Shao P, Tremblay M, Shan Q, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018;14:e1007405 pubmed 出版商
  112. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  113. Mahr B, Pilat N, Granofszky N, Wiletel M, Muckenhuber M, Maschke S, et al. Hybrid resistance to parental bone marrow grafts in nonlethally irradiated mice. Am J Transplant. 2019;19:591-596 pubmed 出版商
  114. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  115. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  116. Qu J, Li L, Xie H, Zhang X, Yang Q, Qiu H, et al. TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res. 2018;2018:7519856 pubmed 出版商
  117. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  118. Li J, Byrne K, Yan F, Yamazoe T, Chen Z, Baslan T, et al. Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity. 2018;49:178-193.e7 pubmed 出版商
  119. Nusse Y, Savage A, Marangoni P, Rosendahl Huber A, Landman T, De Sauvage F, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018;559:109-113 pubmed 出版商
  120. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed 出版商
  121. Abel A, Tiwari A, Gerbec Z, Siebert J, Yang C, Schloemer N, et al. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol. 2018;9:1168 pubmed 出版商
  122. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  123. Wu X, Tommasi di Vignano A, Zhou Q, Michel Dziunycz P, Bai F, Mi J, et al. The ARE-binding protein Tristetraprolin (TTP) is a novel target and mediator of calcineurin tumor suppressing function in the skin. PLoS Genet. 2018;14:e1007366 pubmed 出版商
  124. Kling J, Jordan M, Pitt L, Meiners J, Thanh Tran T, Tran L, et al. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling. Front Immunol. 2018;9:483 pubmed 出版商
  125. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  126. Ferrari de Andrade L, Tay R, Pan D, Luoma A, Ito Y, Badrinath S, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 2018;359:1537-1542 pubmed 出版商
  127. Harker J, Wong K, Dallari S, Bao P, Dolgoter A, Jo Y, et al. Interleukin-27R Signaling Mediates Early Viral Containment and Impacts Innate and Adaptive Immunity after Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol. 2018;92: pubmed 出版商
  128. Xiao F, Ai G, Yan W, Wan X, Luo X, Ning Q. Intrahepatic recruitment of cytotoxic NK cells contributes to autoimmune hepatitis progression. Cell Immunol. 2018;327:13-20 pubmed 出版商
  129. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  130. Sockolosky J, Trotta E, Parisi G, Picton L, Su L, Le A, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359:1037-1042 pubmed 出版商
  131. Qu S, Xue H, Dong X, Lin D, Wu R, Nabavi N, et al. Aneustat (OMN54) has aerobic glycolysis-inhibitory activity and also immunomodulatory activity as indicated by a first-generation PDX prostate cancer model. Int J Cancer. 2018;143:419-429 pubmed 出版商
  132. Mathew N, Baumgartner F, Braun L, O Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24:282-291 pubmed 出版商
  133. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  134. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  135. Campana L, Starkey Lewis P, Pellicoro A, Aucott R, Man J, O Duibhir E, et al. The STAT3-IL-10-IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. J Immunol. 2018;200:1169-1187 pubmed 出版商
  136. Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed 出版商
  137. Glasner A, Isaacson B, Viukov S, Neuman T, Friedman N, Mandelboim M, et al. Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Sci Rep. 2017;7:13090 pubmed 出版商
  138. Bern M, Beckman D, Ebihara T, Taffner S, Poursine Laurent J, White J, et al. Immunoreceptor tyrosine-based inhibitory motif-dependent functions of an MHC class I-specific NK cell receptor. Proc Natl Acad Sci U S A. 2017;114:E8440-E8447 pubmed 出版商
  139. Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, et al. The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation. Cell Rep. 2017;20:600-612 pubmed 出版商
  140. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  141. Hannibal T, Schmidt Christensen A, Nilsson J, Fransén Pettersson N, Hansen L, Holmberg D. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia. 2017;60:2033-2041 pubmed 出版商
  142. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  143. Mildner A, Schönheit J, Giladi A, David E, Lara Astiaso D, Lorenzo Vivas E, et al. Genomic Characterization of Murine Monocytes Reveals C/EBP? Transcription Factor Dependence of Ly6C- Cells. Immunity. 2017;46:849-862.e7 pubmed 出版商
  144. Miyazaki M, Miyazaki K, Chen K, Jin Y, Turner J, Moore A, et al. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development. Immunity. 2017;46:818-834.e4 pubmed 出版商
  145. Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, et al. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol. 2018;15:973-982 pubmed 出版商
  146. Minutti C, Jackson Jones L, Garcia Fojeda B, Knipper J, Sutherland T, Logan N, et al. Local amplifiers of IL-4R?-mediated macrophage activation promote repair in lung and liver. Science. 2017;356:1076-1080 pubmed 出版商
  147. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  148. Kwan B, Zhu E, Tzeng A, Sugito H, Eltahir A, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med. 2017;214:1679-1690 pubmed 出版商
  149. Audzevich T, Bashford Rogers R, Mabbott N, Frampton D, Freeman T, Potocnik A, et al. Pre/pro-B cells generate macrophage populations during homeostasis and inflammation. Proc Natl Acad Sci U S A. 2017;114:E3954-E3963 pubmed 出版商
  150. Lan P, Fan Y, Zhao Y, Lou X, Monsour H, Zhang X, et al. TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury. J Clin Invest. 2017;127:2222-2234 pubmed 出版商
  151. Lee H, Tian L, Bouladoux N, Davis J, Quinones M, Belkaid Y, et al. Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation. J Clin Invest. 2017;127:1905-1917 pubmed 出版商
  152. Lino C, Barros Martins J, Oberdörfer L, Walzer T, Prinz I. Eomes expression reports the progressive differentiation of IFN-?-producing Th1-like ?? T cells. Eur J Immunol. 2017;47:970-981 pubmed 出版商
  153. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  154. Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214:905-917 pubmed 出版商
  155. Schuetz C, Lee K, Scott R, Kojima L, Washburn L, Liu L, et al. Regulatory B Cell-Dependent Islet Transplant Tolerance Is Also Natural Killer Cell Dependent. Am J Transplant. 2017;17:1656-1662 pubmed 出版商
  156. Kogo H, Shimizu M, Negishi Y, Uchida E, Takahashi H. Suppression of murine tumour growth through CD8+ cytotoxic T lymphocytes via activated DEC-205+ dendritic cells by sequential administration of ?-galactosylceramide in vivo. Immunology. 2017;151:324-339 pubmed 出版商
  157. Tang P, Zhou S, Meng X, Wang Q, Li C, Lian G, et al. Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat Commun. 2017;8:14677 pubmed 出版商
  158. Stacey M, Clare S, Clement M, Marsden M, Abdul Karim J, Kane L, et al. The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis. J Clin Invest. 2017;127:1463-1474 pubmed 出版商
  159. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  160. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  161. Gardner P, Liyanage S, Cristante E, Sampson R, Dick A, Ali R, et al. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye. Sci Rep. 2017;7:40830 pubmed 出版商
  162. Nowyhed H, Chandra S, Kiosses W, Marcovecchio P, Andary F, Zhao M, et al. ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Sci Rep. 2017;7:40273 pubmed 出版商
  163. Scott C, Bain C, Mowat A. Isolation and Identification of Intestinal Myeloid Cells. Methods Mol Biol. 2017;1559:223-239 pubmed 出版商
  164. Rombouts M, Cools N, Grootaert M, de Bakker F, Van Brussel I, Wouters A, et al. Long-Term Depletion of Conventional Dendritic Cells Cannot Be Maintained in an Atherosclerotic Zbtb46-DTR Mouse Model. PLoS ONE. 2017;12:e0169608 pubmed 出版商
  165. van der Weyden L, Arends M, Campbell A, Bald T, Wardle Jones H, Griggs N, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233-236 pubmed 出版商
  166. Engler J, Kursawe N, Solano M, Patas K, Wehrmann S, Heckmann N, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A. 2017;114:E181-E190 pubmed 出版商
  167. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475-489 pubmed 出版商
  168. von Moltke J, O Leary C, Barrett N, Kanaoka Y, Austen K, Locksley R. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. J Exp Med. 2017;214:27-37 pubmed 出版商
  169. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  170. Tripathi D, Venkatasubramanian S, Cheekatla S, Paidipally P, Welch E, Tvinnereim A, et al. A TLR9 agonist promotes IL-22-dependent pancreatic islet allograft survival in type 1 diabetic mice. Nat Commun. 2016;7:13896 pubmed 出版商
  171. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  172. Yanagisawa H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:L122-L130 pubmed 出版商
  173. Yu V, Yusuf R, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:1310-1322.e17 pubmed 出版商
  174. Shifrin N, Kissiov D, Ardolino M, Joncker N, Raulet D. Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. J Immunol. 2016;197:4127-4136 pubmed 出版商
  175. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  176. Paszkiewicz P, Fräßle S, Srivastava S, Sommermeyer D, Hudecek M, Drexler I, et al. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest. 2016;126:4262-4272 pubmed 出版商
  177. Lopez Guadamillas E, Fernandez Marcos P, Pantoja C, Muñoz Martin M, Martinez D, Gomez Lopez G, et al. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPAR?. Sci Rep. 2016;6:34542 pubmed 出版商
  178. Coursey T, Bian F, Zaheer M, Pflugfelder S, Volpe E, de Paiva C. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells. Mucosal Immunol. 2017;10:743-756 pubmed 出版商
  179. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  180. Ippagunta S, Gangwar R, Finkelstein D, Vogel P, Pelletier S, Gingras S, et al. Keratinocytes contribute intrinsically to psoriasis upon loss of Tnip1 function. Proc Natl Acad Sci U S A. 2016;113:E6162-E6171 pubmed
  181. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  182. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  183. Klarquist J, Tobin K, Farhangi Oskuei P, Henning S, Fernandez M, Dellacecca E, et al. Ccl22 Diverts T Regulatory Cells and Controls the Growth of Melanoma. Cancer Res. 2016;76:6230-6240 pubmed
  184. Hirai Yuki A, Hensley L, McGivern D, Gonzalez Lopez O, Das A, Feng H, et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science. 2016;353:1541-1545 pubmed
  185. Hoegl S, Ehrentraut H, Brodsky K, Victorino F, Golden Mason L, Eltzschig H, et al. NK cells regulate CXCR2+ neutrophil recruitment during acute lung injury. J Leukoc Biol. 2017;101:471-480 pubmed 出版商
  186. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  187. Kong S, Yang Y, Xu Y, Wang Y, Zhang Y, Melo Cardenas J, et al. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas. Proc Natl Acad Sci U S A. 2016;113:10394-9 pubmed 出版商
  188. Guo H, Cranert S, Lu Y, Zhong M, Zhang S, Chen J, et al. Deletion of Slam locus in mice reveals inhibitory role of SLAM family in NK cell responses regulated by cytokines and LFA-1. J Exp Med. 2016;213:2187-207 pubmed 出版商
  189. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  190. Henry E, Sy C, Inclan Rico J, Espinosa V, Ghanny S, Dwyer D, et al. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 2016;213:1663-73 pubmed 出版商
  191. Veinotte L, Gebremeskel S, Johnston B. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFN? production and tumor control. Oncoimmunology. 2016;5:e1160979 pubmed 出版商
  192. Lawler C, Tan C, Simas J, Stevenson P. Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection. J Virol. 2016;90:9046-57 pubmed 出版商
  193. Chen S, Miyazaki M, Chandra V, Fisch K, Chang A, Murre C. Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol. 2016;36:2543-52 pubmed 出版商
  194. Di Scala M, Otano I, Gil Farina I, Vanrell L, Hommel M, Olague C, et al. Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice. J Virol. 2016;90:8563-74 pubmed 出版商
  195. Shivkumar M, Lawler C, Milho R, Stevenson P. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol. 2016;90:8661-72 pubmed 出版商
  196. Wang S, Xia P, Chen Y, Huang G, Xiong Z, Liu J, et al. Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection. Immunity. 2016;45:131-44 pubmed 出版商
  197. Orta Mascaró M, Consuegra Fernández M, Carreras E, Roncagalli R, Carreras Sureda A, Alvarez P, et al. CD6 modulates thymocyte selection and peripheral T cell homeostasis. J Exp Med. 2016;213:1387-97 pubmed 出版商
  198. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  199. De Grove K, Provoost S, Hendriks R, McKenzie A, Seys L, Kumar S, et al. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses. J Allergy Clin Immunol. 2017;139:246-257.e4 pubmed 出版商
  200. Seehus C, Kaye J. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells. Bio Protoc. 2016;6: pubmed
  201. Qualai J, Li L, Cantero J, Tarrats A, Fernández M, Sumoy L, et al. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS ONE. 2016;11:e0154253 pubmed 出版商
  202. Li Z, Hodgkinson T, Gothard E, Boroumand S, Lamb R, Cummins I, et al. Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 2016;7:11394 pubmed 出版商
  203. Spiegel A, Brooks M, Houshyar S, Reinhardt F, Ardolino M, Fessler E, et al. Neutrophils Suppress Intraluminal NK Cell-Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discov. 2016;6:630-49 pubmed 出版商
  204. Llopiz D, Aranda F, Díaz Valdés N, Ruiz M, Infante S, Belsue V, et al. Vaccine-induced but not tumor-derived Interleukin-10 dictates the efficacy of Interleukin-10 blockade in therapeutic vaccination. Oncoimmunology. 2016;5:e1075113 pubmed
  205. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  206. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  207. Pelly V, Kannan Y, Coomes S, Entwistle L, Rückerl D, Seddon B, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol. 2016;9:1407-1417 pubmed 出版商
  208. Chen J, Miyanishi M, Wang S, Yamazaki S, Sinha R, Kao K, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530:223-7 pubmed 出版商
  209. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  210. Roffê E, Marino A, Weaver J, Wan W, de Araújo F, Hoffman V, et al. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infect Immun. 2016;84:1123-1136 pubmed 出版商
  211. Howitt M, Lavoie S, Michaud M, Blum A, Tran S, Weinstock J, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329-33 pubmed 出版商
  212. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  213. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  214. von Moltke J, Ji M, Liang H, Locksley R. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016;529:221-5 pubmed 出版商
  215. Jabara H, Boyden S, Chou J, Ramesh N, Massaad M, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8 pubmed 出版商
  216. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  217. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  218. McCormack R, de Armas L, Shiratsuchi M, Fiorentino D, Olsson M, Lichtenheld M, et al. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. elife. 2015;4: pubmed 出版商
  219. Aparicio Domingo P, Romera Hernandez M, Karrich J, Cornelissen F, Papazian N, Lindenbergh Kortleve D, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med. 2015;212:1783-91 pubmed 出版商
  220. Brasseit J, Althaus Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, et al. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol. 2016;9:689-701 pubmed 出版商
  221. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  222. Kaminsky L, Sei J, Parekh N, Davies M, Reider I, Krouse T, et al. Redundant Function of Plasmacytoid and Conventional Dendritic Cells Is Required To Survive a Natural Virus Infection. J Virol. 2015;89:9974-85 pubmed 出版商
  223. Lowe K, Navarro Núñez L, Bénézech C, Nayar S, Kingston B, Nieswandt B, et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol. 2015;45:2484-93 pubmed 出版商
  224. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  225. Weindel C, Richey L, Bolland S, Mehta A, Kearney J, Huber B. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy. 2015;11:1010-24 pubmed 出版商
  226. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  227. Hernández P, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol. 2015;16:698-707 pubmed 出版商
  228. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  229. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  230. Koh F, Lizama C, Wong P, Hawkins J, Zovein A, Ramalho Santos M. Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc Natl Acad Sci U S A. 2015;112:E1734-43 pubmed 出版商
  231. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  232. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  233. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  234. Zhan R, Han Q, Zhang C, Tian Z, Zhang J. Toll-Like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica serovar Typhimurium infection. Infect Immun. 2015;83:1641-9 pubmed 出版商
  235. Karsten C, Laumonnier Y, Eurich B, Ender F, Bröker K, Roy S, et al. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. J Immunol. 2015;194:1841-55 pubmed 出版商
  236. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  237. Teixeira L, Moreira J, Melo J, Bezerra F, Marques R, Ferreirinha P, et al. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology. 2015;145:242-57 pubmed 出版商
  238. Djukic M, Sostmann N, Bertsch T, Mecke M, Nessler S, Manig A, et al. Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice. J Neuroinflammation. 2015;12:208 pubmed 出版商
  239. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  240. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  241. Evrard M, Chong S, Devi S, Chew W, Lee B, Poidinger M, et al. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L-/- reporter mouse by multiphoton intravital microscopy. J Leukoc Biol. 2015;97:611-9 pubmed 出版商
  242. Guo X, Tanaka Y, Kondo M. Thymic precursors of TCRαβ(+)CD8αα(+) intraepithelial lymphocytes are negative for CD103. Immunol Lett. 2015;163:40-8 pubmed 出版商
  243. Fahl S, Harris B, Coffey F, Wiest D. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. J Immunol. 2015;194:200-9 pubmed
  244. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  245. Schwartz C, Turqueti Neves A, Hartmann S, Yu P, Nimmerjahn F, Voehringer D. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci U S A. 2014;111:E5169-77 pubmed 出版商
  246. Edwards C, Best S, Gun S, Claser C, James K, de Oca M, et al. Spatiotemporal requirements for IRF7 in mediating type I IFN-dependent susceptibility to blood-stage Plasmodium infection. Eur J Immunol. 2015;45:130-41 pubmed 出版商
  247. Guttman O, Yossef R, Freixo Lima G, Rider P, Porgador A, Lewis E. α1-Antitrypsin modifies general NK cell interactions with dendritic cells and specific interactions with islet β-cells in favor of protection from autoimmune diabetes. Immunology. 2014;: pubmed 出版商
  248. Schwartz M, Kolhatkar N, Thouvenel C, Khim S, Rawlings D. CD4+ T cells and CD40 participate in selection and homeostasis of peripheral B cells. J Immunol. 2014;193:3492-502 pubmed 出版商
  249. Chen J, Zhao Y, Zhang C, Chen H, Feng J, Chi X, et al. Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res. 2014;24:1050-66 pubmed 出版商
  250. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  251. Reeh K, Cardenas K, Bain V, Liu Z, LAURENT M, Manley N, et al. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development. 2014;141:2950-8 pubmed 出版商
  252. Chung Y, Kim E, Abdel Wahab O. Femoral bone marrow aspiration in live mice. J Vis Exp. 2014;: pubmed 出版商
  253. Baker G, Chockley P, Yadav V, Doherty R, Ritt M, Sivaramakrishnan S, et al. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity. Cancer Res. 2014;74:5079-90 pubmed 出版商
  254. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  255. Madireddi S, Eun S, Lee S, Nemčovičová I, Mehta A, Zajonc D, et al. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med. 2014;211:1433-48 pubmed 出版商
  256. Geem D, Medina Contreras O, McBride M, Newberry R, Koni P, Denning T. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J Immunol. 2014;193:431-8 pubmed 出版商
  257. Xu Y, Hyun Y, Lim K, Lee H, Cummings R, Gerber S, et al. Optogenetic control of chemokine receptor signal and T-cell migration. Proc Natl Acad Sci U S A. 2014;111:6371-6 pubmed 出版商
  258. Webster K, Kim H, Kyparissoudis K, Corpuz T, Pinget G, Uldrich A, et al. IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival. Mucosal Immunol. 2014;7:1058-67 pubmed 出版商
  259. Wickström S, Oberg L, Kärre K, Johansson M. A genetic defect in mice that impairs missing self recognition despite evidence for normal maturation and MHC class I-dependent education of NK cells. J Immunol. 2014;192:1577-86 pubmed 出版商
  260. Murphy K, Erickson J, Johnson C, Seiler C, Bedi J, Hu P, et al. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol. 2014;192:224-33 pubmed 出版商
  261. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  262. Lee P, Puppi M, Schluns K, Yu Lee L, Dong C, Lacorazza H. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. J Immunol. 2014;192:178-88 pubmed 出版商
  263. Nussbaum J, Van Dyken S, von Moltke J, Cheng L, Mohapatra A, Molofsky A, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245-8 pubmed 出版商
  264. Mathew R, Seiler M, Scanlon S, Mao A, Constantinides M, Bertozzi Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618-21 pubmed 出版商
  265. Barral P, Sanchez Nino M, Van Rooijen N, Cerundolo V, Batista F. The location of splenic NKT cells favours their rapid activation by blood-borne antigen. EMBO J. 2012;31:2378-90 pubmed 出版商
  266. Hemmers S, Teijaro J, Arandjelovic S, Mowen K. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS ONE. 2011;6:e22043 pubmed 出版商
  267. Werner J, Busl E, Farkas S, Schlitt H, Geissler E, Hornung M. DX5+NKT cells display phenotypical and functional differences between spleen and liver as well as NK1.1-Balb/c and NK1.1+ C57Bl/6 mice. BMC Immunol. 2011;12:26 pubmed 出版商
  268. Zavitz C, Bauer C, Gaschler G, Fraser K, Strieter R, Hogaboam C, et al. Dysregulated macrophage-inflammatory protein-2 expression drives illness in bacterial superinfection of influenza. J Immunol. 2010;184:2001-13 pubmed 出版商
  269. Fahl S, Crittenden R, Allman D, Bender T. c-Myb is required for pro-B cell differentiation. J Immunol. 2009;183:5582-92 pubmed 出版商
  270. Kanwar N, Fayyazi A, Backofen B, Nitsche M, Dressel R, von Mollard G. Thymic alterations in mice deficient for the SNARE protein VAMP8/endobrevin. Cell Tissue Res. 2008;334:227-42 pubmed 出版商
  271. Sprengers D, Sillé F, Derkow K, Besra G, Janssen H, Schott E, et al. Critical role for CD1d-restricted invariant NKT cells in stimulating intrahepatic CD8 T-cell responses to liver antigen. Gastroenterology. 2008;134:2132-43 pubmed 出版商
  272. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  273. Matsuda J, Zhang Q, Ndonye R, Richardson S, Howell A, Gapin L. T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood. 2006;107:2797-805 pubmed
  274. Lian Z, Kikuchi K, Yang G, Ansari A, Ikehara S, Gershwin M. Expansion of bone marrow IFN-alpha-producing dendritic cells in New Zealand Black (NZB) mice: high level expression of TLR9 and secretion of IFN-alpha in NZB bone marrow. J Immunol. 2004;173:5283-9 pubmed
  275. Chen B, Cui X, Sempowski G, Gooding M, Liu C, Haynes B, et al. A comparison of murine T-cell-depleted adult bone marrow and full-term fetal blood cells in hematopoietic engraftment and immune reconstitution. Blood. 2002;99:364-71 pubmed
  276. Routes J, Ryan J, Ryan S, Nakamura M. MHC class I molecules on adenovirus E1A-expressing tumor cells inhibit NK cell killing but not NK cell-mediated tumor rejection. Int Immunol. 2001;13:1301-7 pubmed
  277. Bracy J, Iacomini J. Induction of B-cell tolerance by retroviral gene therapy. Blood. 2000;96:3008-15 pubmed
  278. Carlyle J, Martin A, Mehra A, Attisano L, Tsui F, Zúñiga Pflücker J. Mouse NKR-P1B, a novel NK1.1 antigen with inhibitory function. J Immunol. 1999;162:5917-23 pubmed
  279. Reichlin A, Yokoyama W. Natural killer cell proliferation induced by anti-NK1.1 and IL-2. Immunol Cell Biol. 1998;76:143-52 pubmed
  280. Koo G, Dumont F, Tutt M, Hackett J, Kumar V. The NK-1.1(-) mouse: a model to study differentiation of murine NK cells. J Immunol. 1986;137:3742-7 pubmed
  281. Sentman C, Hackett J, Moore T, Tutt M, Bennett M, Kumar V. Pan natural killer cell monoclonal antibodies and their relationship to the NK1.1 antigen. Hybridoma. 1989;8:605-14 pubmed