这是一篇来自已证抗体库的有关小鼠 Nanog的综述,是根据108篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Nanog 抗体。
Nanog 同义词: 2410002E02Rik; ENK; ecat4

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 4a
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4a). JCI Insight (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1c
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, Ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s1c). Nucleic Acids Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2f
  • 免疫印迹; 人类; 图 2g
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上 (图 2g). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上. elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上 (图 1b). Dev Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 5c
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1d, e2i
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1d, e2i). Mol Syst Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, 21624)被用于被用于免疫细胞化学在人类样本上 (图 1d). PLoS Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s5d
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5d). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上 (图 1f). Med Sci Monit (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1e
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1e). Bone Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1c
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s1c). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2a
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s2a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上 (图 3a). Dev Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, 80892)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). Methods Mol Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab808692)被用于被用于免疫细胞化学在小鼠样本上 (图 3b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5d
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上 (图 s5d). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1b). Front Surg (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; domestic goat; 图 3A
  • 免疫印迹; domestic goat; 1:1000; 图 5C
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在domestic goat样本上 (图 3A) 和 被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 5C). BMC Biotechnol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5d
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 5d). Stem Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1e
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 s1e). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1C
  • 免疫印迹; 人类; 图 1E; 3F
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 1C) 和 被用于免疫印迹在人类样本上 (图 1E; 3F). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). Front Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 1b). Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Open Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, Ab80892)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:700; 图 s1b
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:700 (图 s1b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1d
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Nanog抗体(abcam, ab80892)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Cell Reprogram (2016) ncbi
  • 免疫细胞化学; 小鼠; 1:100; 图 s2c
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab14959)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, AB80892)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 Nanog抗体(abcam, ab21624)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Nanog抗体(abcam, 21624)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1) 和 被用于免疫印迹在人类样本上. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, Ab-21624)被用于被用于免疫细胞化学在人类样本上 (图 2). Nucleic Acids Res (2016) ncbi
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab14959)被用于被用于免疫印迹在小鼠样本上 (图 1b). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Nanog抗体(abcam, ab21624)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:500 (图 5a). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s3g
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s3g). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Nanog抗体(AbCam, Ab21624)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Biol Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Nanog抗体(abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 国内马; 1:500; 图 1
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫组化在国内马样本上浓度为1:500 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s1
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7
艾博抗(上海)贸易有限公司 Nanog抗体(abcam, ab21624)被用于被用于免疫细胞化学在人类样本上 (图 7). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1B
  • 免疫印迹; 小鼠; 图 1C
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab80892)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1B) 和 被用于免疫印迹在小鼠样本上 (图 1C). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3b
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab21624,)被用于被用于免疫细胞化学在人类样本上 (图 3b). Methods Mol Biol (2016) ncbi
  • 免疫沉淀; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab14959)被用于被用于免疫沉淀在小鼠样本上 (图 3). Stem Cells (2015) ncbi
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab106465)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab14959)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2015) ncbi
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Nanog抗体(Abcam, ab14959)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
赛默飞世尔
大鼠 单克隆(eBioMLC-51)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3a
赛默飞世尔 Nanog抗体(Invitrogen, 14-5761-80)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3a). Nat Commun (2021) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1d
赛默飞世尔 Nanog抗体(eBiosciences, MLC-51)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1d). Development (2018) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 1:200; 图 3f
赛默飞世尔 Nanog抗体(eBiosciences, 14-5761)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3f). elife (2017) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 1:800; 图 3e
赛默飞世尔 Nanog抗体(eBiosciences, 14-5761)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 3e). elife (2017) ncbi
大鼠 单克隆(eBioMLC-51)
  • 流式细胞仪; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 2c
赛默飞世尔 Nanog抗体(eBioscience, 50-5761-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 2c). Stem Cell Reports (2017) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 2500 ng/ml; 图 3
赛默飞世尔 Nanog抗体(eBioscience, 14-5761)被用于被用于免疫细胞化学在小鼠样本上浓度为2500 ng/ml (图 3). elife (2016) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫组化; 小鼠; 1:200; 图 1b
赛默飞世尔 Nanog抗体(eBioscience, 14-5761-80)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Open Biol (2016) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
  • 免疫组化; 小鼠; 1:200; 图 3
赛默飞世尔 Nanog抗体(eBioscience, 14-5761)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 3a
赛默飞世尔 Nanog抗体(Invitrogen, PA5- 20889)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3a). Methods Mol Biol (2016) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫印迹; 小鼠; 1:500; 图 3
赛默飞世尔 Nanog抗体(eBioscience, 14-5761)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Nature (2016) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Nanog抗体(eBiosciences, 14-5761-80)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Development (2016) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 1:50; 表 2
赛默飞世尔 Nanog抗体(eBioscience, 53-5761)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (表 2). J Cell Physiol (2016) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 图 3d
赛默飞世尔 Nanog抗体(Affymetrix, 14-5761-80)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Curr Mol Pharmacol (2016) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 图 s5a
赛默飞世尔 Nanog抗体(eBioscience, eBio14-5761)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). Nucleic Acids Res (2015) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 Nanog抗体(eBiosciences, 14-5761-80)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Cell Biol (2015) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Nanog抗体(eBioscience, 14-5761)被用于被用于免疫组化-石蜡切片在小鼠样本上. Science (2015) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Nanog抗体(eBioscience, 53-5761)被用于被用于免疫细胞化学在小鼠样本上. Stem Cells (2015) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 Nanog抗体(eBioscience, 14-5761)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
大鼠 单克隆(eBioMLC-51)
  • 免疫细胞化学; 小鼠; 1:500; 图 7
  • 免疫组化; 小鼠; 1:500; 图 4
赛默飞世尔 Nanog抗体(eBiosciences, 14-5761-80)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Cell (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-2)
  • 免疫细胞化学; 人类; 1:50; 图 3s1b
圣克鲁斯生物技术 Nanog抗体(SCBT, H-2)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3s1b). elife (2019) ncbi
小鼠 单克隆(5A10)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Nanog抗体(Santa Cruz, sc-134218)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(C-4)
  • 免疫细胞化学; 小鼠; 图 1b
圣克鲁斯生物技术 Nanog抗体(Santa Cruz, SC-376915)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(5A10)
  • 免疫细胞化学; domestic water buffalo; 图 2
圣克鲁斯生物技术 Nanog抗体(Santa Cruz, SC134218)被用于被用于免疫细胞化学在domestic water buffalo样本上 (图 2). Cell J (2015) ncbi
小鼠 单克隆(C-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Nanog抗体(Santa Cruz, C-4)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(A-11)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Nanog抗体(Santa Cruz, sc-374001)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(5A10)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 Nanog抗体(Santa Cruz, sc-134218)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Exp Cell Res (2014) ncbi
小鼠 单克隆(H-2)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 Nanog抗体(Santa Cruz, sc-374103)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Biol Chem (2013) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
Novus Biologicals Nanog抗体(Novus Biologicals, NBP1-77109)被用于被用于免疫印迹在大鼠样本上 (图 5b). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 1
Novus Biologicals Nanog抗体(Novus Biologicals, NB100-58842)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1). Genome Biol (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals Nanog抗体(Novus Biologicals, NB100-58842)被用于. Stem Cell Reports (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Nanog抗体(Novus Biologicals, NB100-58842)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals Nanog抗体(Novus Biologicals, NB100-58842)被用于. Nat Commun (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D2A3)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Nanog抗体(CST, 8822T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). JCI Insight (2020) ncbi
domestic rabbit 单克隆(D2A3)
  • 免疫印迹; 人类; 图 2a, 2h
赛信通(上海)生物试剂有限公司 Nanog抗体(CST, 8822)被用于被用于免疫印迹在人类样本上 (图 2a, 2h). Theranostics (2019) ncbi
domestic rabbit 单克隆(D2A3)
  • 免疫组化-石蜡切片; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Nanog抗体(Cell Signaling, 8822)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b). Mol Cancer Res (2017) ncbi
domestic rabbit 单克隆(D2A3)
  • 免疫细胞化学; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 Nanog抗体(Cell Signaling, 8822)被用于被用于免疫细胞化学在小鼠样本上 (图 4f). Stem Cell Res (2017) ncbi
domestic rabbit 单克隆(D2A3)
  • 流式细胞仪; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Nanog抗体(Cell Signaling, D2A3)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(D2A3)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Nanog抗体(Cell Signalling, 8822)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). Science (2016) ncbi
domestic rabbit 单克隆(D2A3)
  • 染色质免疫沉淀 ; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 Nanog抗体(Cell Signaling, 8822)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 s5). Biol Open (2016) ncbi
domestic rabbit 单克隆(D2A3)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Nanog抗体(Cell Signaling Technology, D2A3)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D2A3)
  • 染色质免疫沉淀 ; 人类; 图 5
  • 染色质免疫沉淀 ; 非洲爪蛙; 图 5
赛信通(上海)生物试剂有限公司 Nanog抗体(Cell Signaling, 8822)被用于被用于染色质免疫沉淀 在人类样本上 (图 5) 和 被用于染色质免疫沉淀 在非洲爪蛙样本上 (图 5). PLoS ONE (2015) ncbi
碧迪BD
小鼠 单克隆(M55-312)
  • 流式细胞仪; 小鼠; 图 1a
  • 免疫细胞化学; 小鼠; 图 3c
碧迪BD Nanog抗体(BD Pharmingen, 560261)被用于被用于流式细胞仪在小鼠样本上 (图 1a) 和 被用于免疫细胞化学在小鼠样本上 (图 3c). Oncotarget (2017) ncbi
小鼠 单克隆(M55-312)
  • 免疫细胞化学; 小鼠; 1:500; 图 2d
碧迪BD Nanog抗体(BD Biosciences, 560259)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2d). In Vitro Cell Dev Biol Anim (2016) ncbi
小鼠 单克隆(M55-312)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD Nanog抗体(BD Biosciences, 560279)被用于被用于流式细胞仪在小鼠样本上 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(M55-312)
  • 流式细胞仪; 小鼠; 图 s4
碧迪BD Nanog抗体(BD Pharmingen, 560259)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Nature (2015) ncbi
小鼠 单克隆(M55-312)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1f
碧迪BD Nanog抗体(BD Bioscience, 560260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1f). Sci Rep (2015) ncbi
小鼠 单克隆(M55-312)
  • 免疫细胞化学; 小鼠; 1:100
碧迪BD Nanog抗体(BD Pharmingen, 560259)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Hum Reprod (2014) ncbi
小鼠 单克隆(M55-312)
  • 免疫细胞化学; 人类
碧迪BD Nanog抗体(BD Pharmingen, M55-312)被用于被用于免疫细胞化学在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(M55-312)
  • 免疫细胞化学; 小鼠; 1:400
碧迪BD Nanog抗体(BD Bioscience, 560259)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Stem Cell Res (2013) ncbi
Cosmo Bio
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 5b
Cosmo Bio Nanog抗体(Cosmo Bio Co, RCAB0001P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2016) ncbi
domestic rabbit
  • 免疫细胞化学; 小鼠; 1:100; 图 2
Cosmo Bio Nanog抗体(Cosmobio, RCAB0002P-F)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Stem Cell Reports (2016) ncbi
domestic rabbit
  • 免疫组化; 小鼠
Cosmo Bio Nanog抗体(Cosmobio, REC-RCAB002P-F)被用于被用于免疫组化在小鼠样本上. elife (2015) ncbi
domestic rabbit
  • 免疫细胞化学; 小鼠; 1:50; 图 7
Cosmo Bio Nanog抗体(Cosmo Bio, RCAB0002P-F)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 7). PLoS ONE (2015) ncbi
domestic rabbit
  • 免疫细胞化学; 小鼠; 1:100
Cosmo Bio Nanog抗体(COSMO BIO CO, REC-RCAB0002P-F)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Cell Cycle (2015) ncbi
domestic rabbit
  • 免疫细胞化学; 小鼠; 1:100; 图 2
Cosmo Bio Nanog抗体(CosmoBio Co, RCAB0002P-F)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
domestic rabbit
  • 免疫细胞化学; 小鼠; 1:200
Cosmo Bio Nanog抗体(Cosmo Bio Company, REC-RCAB0002P-F)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. FASEB J (2015) ncbi
文章列表
  1. Ji Z, Chen S, Cui J, Huang W, Zhang R, Wei J, et al. Oct4-dependent FoxC1 activation improves the survival and neovascularization of mesenchymal stem cells under myocardial ischemia. Stem Cell Res Ther. 2021;12:483 pubmed 出版商
  2. Xu P, Borges R, Fillatre J, de Oliveira Melo M, Cheng T, Thisse B, et al. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun. 2021;12:3277 pubmed 出版商
  3. Li W, Zhang N, Jin C, Long M, Rajabi H, Yasumizu Y, et al. MUC1-C drives stemness in progression of colitis to colorectal cancer. JCI Insight. 2020;5: pubmed 出版商
  4. Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 2020;48:6001-6018 pubmed 出版商
  5. Guo C, Ma X, Xing Y, Zheng C, Xu Y, Shan L, et al. Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell. 2020;181:621-636.e22 pubmed 出版商
  6. Atashpaz S, Samadi Shams S, Gonzalez J, Sebestyén E, Arghavanifard N, Gnocchi A, et al. ATR expands embryonic stem cell fate potential in response to replication stress. elife. 2020;9: pubmed 出版商
  7. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  8. Casanova M, Moscatelli M, Chauvière L, Huret C, Samson J, Liyakat Ali T, et al. A primate-specific retroviral enhancer wires the XACT lncRNA into the core pluripotency network in humans. Nat Commun. 2019;10:5652 pubmed 出版商
  9. Selvaraj S, Mondragón González R, Xu B, Magli A, Kim H, Laine J, et al. Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. elife. 2019;8: pubmed 出版商
  10. Strebinger D, Deluz C, Friman E, Govindan S, Alber A, Suter D. Endogenous fluctuations of OCT4 and SOX2 bias pluripotent cell fate decisions. Mol Syst Biol. 2019;15:e9002 pubmed 出版商
  11. Fu L, Hu Y, Song M, Liu Z, Zhang W, Yu F, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019;17:e3000201 pubmed 出版商
  12. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  13. Chen H, Poran A, Unni A, Huang S, Elemento O, Snoeck H, et al. Generation of pulmonary neuroendocrine cells and SCLC-like tumors from human embryonic stem cells. J Exp Med. 2019;216:674-687 pubmed 出版商
  14. Chen L, Yang G, Dong H. Everolimus Reverses Palbociclib Resistance in ER+ Human Breast Cancer Cells by Inhibiting Phosphatidylinositol 3-Kinase(PI3K)/Akt/Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit. 2019;25:77-86 pubmed 出版商
  15. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  16. Yamane M, Ohtsuka S, Matsuura K, Nakamura A, Niwa H. Overlapping functions of Krüppel-like factor family members: targeting multiple transcription factors to maintain the naïve pluripotency of mouse embryonic stem cells. Development. 2018;145: pubmed 出版商
  17. Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, et al. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res. 2018;46:6026-6040 pubmed 出版商
  18. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  19. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  20. Meng Y, Moore R, Tao W, Smith E, Tse J, Caslini C, et al. GATA6 phosphorylation by Erk1/2 propels exit from pluripotency and commitment to primitive endoderm. Dev Biol. 2018;436:55-65 pubmed 出版商
  21. He J, Weng Z, Wu S, Boheler K. Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses. Methods Mol Biol. 2018;1722:261-302 pubmed 出版商
  22. Tang L, Wang M, Liu D, Gong M, Ying Q, Ye S. Sp5 induces the expression of Nanog to maintain mouse embryonic stem cell self-renewal. PLoS ONE. 2017;12:e0185714 pubmed 出版商
  23. Li M, Amaral P, Cheung P, Bergmann J, Kinoshita M, Kalkan T, et al. A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. elife. 2017;6: pubmed 出版商
  24. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  25. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  26. Yan Y, Zhao W, Huang Y, Tong H, Xia Y, Jiang Q, et al. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells. Sci Rep. 2017;7:46276 pubmed 出版商
  27. Choi J, Clement K, Huebner A, Webster J, Rose C, Brumbaugh J, et al. DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell. 2017;20:706-719.e7 pubmed 出版商
  28. Ram R, Brasch H, Dunne J, Davis P, Tan S, Itinteang T. The Identification of Three Cancer Stem Cell Subpopulations within Moderately Differentiated Lip Squamous Cell Carcinoma. Front Surg. 2017;4:12 pubmed 出版商
  29. Jang S, Choubey S, Furchtgott L, Zou L, Doyle A, Menon V, et al. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. elife. 2017;6: pubmed 出版商
  30. Kakiuchi S, Minami Y, Miyata Y, Mizutani Y, Goto H, Kawamoto S, et al. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia. Int J Mol Sci. 2017;18: pubmed 出版商
  31. Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol. 2017;17:11 pubmed 出版商
  32. Arioka Y, Ito H, Hirata A, Semi K, Yamada Y, Seishima M. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Res. 2017;20:1-9 pubmed 出版商
  33. Cirera Salinas D, Yu J, Bodak M, Ngondo R, Herbert K, Ciaudo C. Noncanonical function of DGCR8 controls mESC exit from pluripotency. J Cell Biol. 2017;216:355-366 pubmed 出版商
  34. Lo Nigro A, de Jaime Soguero A, Khoueiry R, Cho D, Ferlazzo G, Perini I, et al. PDGFR?+ Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports. 2017;8:318-333 pubmed 出版商
  35. Corbineau S, Lassalle B, Givelet M, Souissi Sarahoui I, Firlej V, Romeo P, et al. Spermatogonial stem cells and progenitors are refractory to reprogramming to pluripotency by the transcription factors Oct3/4, c-Myc, Sox2 and Klf4. Oncotarget. 2017;8:10050-10063 pubmed 出版商
  36. Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, et al. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem. 2017;292:1438-1448 pubmed 出版商
  37. Lin J, Khan M, Zapiec B, Mombaerts P. Efficient derivation of extraembryonic endoderm stem cell lines from mouse postimplantation embryos. Sci Rep. 2016;6:39457 pubmed 出版商
  38. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  39. Mosteiro L, Pantoja C, Alcazar N, Marion R, Chondronasiou D, Rovira M, et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science. 2016;354: pubmed
  40. Illingworth R, Hölzenspies J, Roske F, Bickmore W, Brickman J. Polycomb enables primitive endoderm lineage priming in embryonic stem cells. elife. 2016;5: pubmed 出版商
  41. Okata S, Yuasa S, Suzuki T, Ito S, Makita N, Yoshida T, et al. Embryonic type Na+ channel ?-subunit, SCN3B masks the disease phenotype of Brugada syndrome. Sci Rep. 2016;6:34198 pubmed 出版商
  42. Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, et al. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev. 2016;30:1991-2004 pubmed 出版商
  43. BRADSHAW A, Wickremesekera A, Brasch H, Chibnall A, Davis P, Tan S, et al. Cancer Stem Cells in Glioblastoma Multiforme. Front Surg. 2016;3:48 pubmed 出版商
  44. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  45. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  46. Liu Z, Ning G, Xu R, Cao Y, Meng A, Wang Q. Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation. Nat Commun. 2016;7:12603 pubmed 出版商
  47. Martin Gonzalez J, Morgani S, Bone R, Bonderup K, Abelchian S, Brakebusch C, et al. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency. Stem Cell Reports. 2016;7:177-91 pubmed 出版商
  48. Zhang Y, Cabarcas S, Zheng J, Sun L, Mathews L, Zhang X, et al. Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression. Oncol Lett. 2016;11:3803-3812 pubmed
  49. Desrochers L, Bordeleau F, Reinhart King C, Cerione R, Antonyak M. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958 pubmed 出版商
  50. Jang H, Hong Y, Choi H, Song H, Byun S, Uhm S, et al. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion. PLoS ONE. 2016;11:e0156491 pubmed 出版商
  51. Pandolfini L, Luzi E, Bressan D, Ucciferri N, Bertacchi M, Brandi R, et al. RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biol. 2016;17:94 pubmed 出版商
  52. Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, et al. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports. 2016;6:772-783 pubmed 出版商
  53. Sharova L, Sharov A, Piao Y, Stagg C, Amano T, Qian Y, et al. Emergence of undifferentiated colonies from mouse embryonic stem cells undergoing differentiation by retinoic acid treatment. In Vitro Cell Dev Biol Anim. 2016;52:616-24 pubmed 出版商
  54. Isotani A, Yamagata K, Okabe M, Ikawa M. Generation of Hprt-disrupted rat through mouse?rat ES chimeras. Sci Rep. 2016;6:24215 pubmed 出版商
  55. Liu Q, Zhang R, Li D, Cheng S, Yang Y, Tian T, et al. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts. Cell Reprogram. 2016;18:67-77 pubmed 出版商
  56. Meng G, Poon A, Liu S, Rancourt D. An Effective and Reliable Xeno-free Cryopreservation Protocol for Single Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1516:47-56 pubmed 出版商
  57. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  58. Wang X, Hodgkinson C, Lu K, Payne A, Pratt R, Dzau V. Selenium Augments microRNA Directed Reprogramming of Fibroblasts to Cardiomyocytes via Nanog. Sci Rep. 2016;6:23017 pubmed 出版商
  59. Borkent M, Bennett B, Lackford B, Bar Nur O, Brumbaugh J, Wang L, et al. A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Reports. 2016;6:704-716 pubmed 出版商
  60. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  61. Jackson S, Olufs Z, Tran K, Zaidan N, Sridharan R. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage. Stem Cell Reports. 2016;6:302-11 pubmed 出版商
  62. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  63. Morales Hernández A, González Rico F, Román A, Rico Leo E, Alvarez Barrientos A, Sánchez L, et al. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res. 2016;44:4665-83 pubmed 出版商
  64. Shin J, Kim T, Kim H, Kim H, Suh M, Lee S, et al. Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells. elife. 2016;5:e10877 pubmed 出版商
  65. Gehlot P, Shukla V, Gupta S, Makidon P. Detection of ALDH1 activity in rabbit hepatic VX2 tumors and isolation of ALDH1 positive cancer stem cells. J Transl Med. 2016;14:49 pubmed 出版商
  66. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  67. Dorris E, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, et al. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther. 2016;17:526-42 pubmed 出版商
  68. Zhang Q, Dan J, Wang H, Guo R, Mao J, Fu H, et al. Tcstv1 and Tcstv3 elongate telomeres of mouse ES cells. Sci Rep. 2016;6:19852 pubmed 出版商
  69. Fuchs C, Gawlas S, Heher P, Nikouli S, Paar H, Ivankovic M, et al. Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the nkx2.5 gene. Biol Open. 2016;5:140-53 pubmed 出版商
  70. Quattrocelli M, Giacomazzi G, Broeckx S, Ceelen L, Bolca S, Spaas J, et al. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports. 2016;6:55-63 pubmed 出版商
  71. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  72. Murakami K, Günesdogan U, Zylicz J, Tang W, Sengupta R, Kobayashi T, et al. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature. 2016;529:403-407 pubmed 出版商
  73. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  74. Hammoud A, Kirstein N, Mournetas V, Darracq A, Broc S, Blanchard C, et al. Murine Embryonic Stem Cell Plasticity Is Regulated through Klf5 and Maintained by Metalloproteinase MMP1 and Hypoxia. PLoS ONE. 2016;11:e0146281 pubmed 出版商
  75. Conrad S, Azizi H, Hatami M, Kubista M, Bonin M, Hennenlotter J, et al. Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells. Stem Cells Int. 2016;2016:8582526 pubmed 出版商
  76. Ou L, Fang L, Tang H, Qiao H, Zhang X, Wang Z. Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep. 2016;13:720-30 pubmed 出版商
  77. Alexandrova S, Kalkan T, Humphreys P, Riddell A, Scognamiglio R, Trumpp A, et al. Selection and dynamics of embryonic stem cell integration into early mouse embryos. Development. 2016;143:24-34 pubmed 出版商
  78. Zylicz J, Dietmann S, Günesdogan U, Hackett J, Cougot D, Lee C, et al. Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. elife. 2015;4: pubmed 出版商
  79. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  80. Neri T, Muggeo S, Paulis M, Caldana M, Crisafulli L, Strina D, et al. Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports. 2015;5:558-68 pubmed 出版商
  81. Zandi M, Muzaffar M, Shah S, Kumar Singh M, Palta P, Kumar Singla S, et al. Optimization of Buffalo (Bubalus bubalis) Embryonic Stem Cell Culture System. Cell J. 2015;17:264-73 pubmed
  82. Fidan K, Ebrahimi A, ÇaÄŸlayan Ã, Özçimen B, Önder T. Transgene-Free Disease-Specific iPSC Generation from Fibroblasts and Peripheral Blood Mononuclear Cells. Methods Mol Biol. 2016;1353:215-31 pubmed 出版商
  83. Higuchi Y, Nguyen C, Yasuda S, McMillan M, Hasegawa K, Kahn M. Specific Direct Small Molecule p300/?-Catenin Antagonists Maintain Stem Cell Potency. Curr Mol Pharmacol. 2016;9:272-279 pubmed
  84. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  85. Letourneau A, Cobellis G, Fort A, Santoni F, Garieri M, Falconnet E, et al. HSA21 Single-Minded 2 (Sim2) Binding Sites Co-Localize with Super-Enhancers and Pioneer Transcription Factors in Pluripotent Mouse ES Cells. PLoS ONE. 2015;10:e0126475 pubmed 出版商
  86. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature. 2015;521:316-21 pubmed 出版商
  87. Kim T, Kang B, Jang H, Kwak S, Shin J, Kim H, et al. Ctbp2 Modulates NuRD-Mediated Deacetylation of H3K27 and Facilitates PRC2-Mediated H3K27me3 in Active Embryonic Stem Cell Genes During Exit from Pluripotency. Stem Cells. 2015;33:2442-55 pubmed 出版商
  88. Laurent A, Calabrese M, Warnatz H, Yaspo M, Tkachuk V, Torres M, et al. ChIP-Seq and RNA-Seq analyses identify components of the Wnt and Fgf signaling pathways as Prep1 target genes in mouse embryonic stem cells. PLoS ONE. 2015;10:e0122518 pubmed 出版商
  89. Sheshadri P, Ashwini A, Jahnavi S, Bhonde R, Prasanna J, Kumar A. Novel role of mitochondrial manganese superoxide dismutase in STAT3 dependent pluripotency of mouse embryonic stem cells. Sci Rep. 2015;5:9516 pubmed 出版商
  90. Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S, Kurimoto K, et al. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 2015;43:e60 pubmed 出版商
  91. Yan H, Solozobova V, Zhang P, Armant O, Kuehl B, Brenner Weiss G, et al. p53 is active in murine stem cells and alters the transcriptome in a manner that is reminiscent of mutant p53. Cell Death Dis. 2015;6:e1662 pubmed 出版商
  92. Liskovykh M, Ponomartsev S, Popova E, Bader M, Kouprina N, Larionov V, et al. Stable maintenance of de novo assembled human artificial chromosomes in embryonic stem cells and their differentiated progeny in mice. Cell Cycle. 2015;14:1268-73 pubmed 出版商
  93. Tran K, Jackson S, Olufs Z, Zaidan N, Leng N, Kendziorski C, et al. Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nat Commun. 2015;6:6188 pubmed 出版商
  94. Bangs F, Schrode N, Hadjantonakis A, Anderson K. Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol. 2015;17:113-22 pubmed 出版商
  95. Geula S, Moshitch Moshkovitz S, Dominissini D, Mansour A, Kol N, Salmon Divon M, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347:1002-6 pubmed 出版商
  96. Anchan R, Lachke S, Gerami Naini B, Lindsey J, Ng N, Naber C, et al. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells. PLoS ONE. 2014;9:e115106 pubmed 出版商
  97. Galvagni F, Lentucci C, Neri F, Dettori D, De Clemente C, Orlandini M, et al. Snai1 promotes ESC exit from the pluripotency by direct repression of self-renewal genes. Stem Cells. 2015;33:742-50 pubmed 出版商
  98. Pastor Clerigues A, Martí Bonmatí E, Milara J, Almudever P, Cortijo J. Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease. PLoS ONE. 2014;9:e115404 pubmed 出版商
  99. Zhang B, Denomme M, White C, Leung K, Lee M, Greene N, et al. Both the folate cycle and betaine-homocysteine methyltransferase contribute methyl groups for DNA methylation in mouse blastocysts. FASEB J. 2015;29:1069-79 pubmed 出版商
  100. Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed 出版商
  101. Hassani S, Pakzad M, Asgari B, Taei A, Baharvand H. Suppression of transforming growth factor ? signaling promotes ground state pluripotency from single blastomeres. Hum Reprod. 2014;29:1739-48 pubmed 出版商
  102. Doughton G, Wei J, Tapon N, Welham M, Chalmers A. Formation of a polarised primitive endoderm layer in embryoid bodies requires fgfr/erk signalling. PLoS ONE. 2014;9:e95434 pubmed 出版商
  103. Peng X, Liu T, Shi C, Zhang L, Wang Y, Zhao W, et al. Germline transmission of an embryonic stem cell line derived from BALB/c cataract mice. PLoS ONE. 2014;9:e90707 pubmed 出版商
  104. Massumi M, Hoveizi E, Baktash P, Hooti A, Ghazizadeh L, Nadri S, et al. Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells. Exp Cell Res. 2014;322:51-61 pubmed 出版商
  105. Volonté A, Di Tomaso T, Spinelli M, Todaro M, Sanvito F, Albarello L, et al. Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. J Immunol. 2014;192:523-32 pubmed 出版商
  106. Jiang K, Ren C, Nair V. MicroRNA-137 represses Klf4 and Tbx3 during differentiation of mouse embryonic stem cells. Stem Cell Res. 2013;11:1299-313 pubmed 出版商
  107. Sharma A, Diecke S, Zhang W, Lan F, He C, Mordwinkin N, et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem. 2013;288:18439-47 pubmed 出版商
  108. Betschinger J, Nichols J, Dietmann S, Corrin P, Paddison P, Smith A. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell. 2013;153:335-47 pubmed 出版商