这是一篇来自已证抗体库的有关小鼠 PD 1 (PD 1) 的综述,是根据156篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合PD 1 抗体。
PD 1 同义词: Ly101; PD-1; Pdc1

BioLegend
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegendPD 1抗体(BioLegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Sci Adv (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 s3e
BioLegendPD 1抗体(BioLegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Science (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendPD 1抗体(BioLegend, 29F)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Aging (Albany NY) (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 5d
BioLegendPD 1抗体(Biolegend, 135206)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Cell (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 s4f
BioLegendPD 1抗体(Biolegend, 109110)被用于被用于流式细胞仪在小鼠样本上 (图 s4f). Cell (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 1:200; 图 2s1a
BioLegendPD 1抗体(Biolegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2s1a). elife (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 2d
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nature (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 s1b
BioLegendPD 1抗体(Biolegend, 109104)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Cell Rep (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 1:80; 图 s3a
BioLegendPD 1抗体(Biolegend, 135208)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 s3a). Nat Commun (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendPD 1抗体(Biolegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Front Immunol (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendPD 1抗体(Biolegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Science (2019) ncbi
大鼠 单克隆(RMP1-14)
  • 流式细胞仪; 小鼠; 图 s5l
BioLegendPD 1抗体(Biolegend, 114118)被用于被用于流式细胞仪在小鼠样本上 (图 s5l). Cell (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 s6e
BioLegendPD 1抗体(BD Biosciences, 135215)被用于被用于流式细胞仪在小鼠样本上 (图 s6e). Cell (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
BioLegendPD 1抗体(Biolegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Science (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 ex2b
BioLegendPD 1抗体(Biolegend, 135221)被用于被用于流式细胞仪在小鼠样本上 (图 ex2b). Nature (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 2c
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Exp Med (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 s8b
BioLegendPD 1抗体(BioLegend, 135216)被用于被用于流式细胞仪在小鼠样本上 (图 s8b). Nat Commun (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendPD 1抗体(Biolegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Science (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 5e
BioLegendPD 1抗体(Biolegend, 109110)被用于被用于流式细胞仪在小鼠样本上 (图 5e). Cell (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendPD 1抗体(BioLegend, RMPI-30)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Exp Med (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 6c
BioLegendPD 1抗体(BioLegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 6c). J Immunol (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendPD 1抗体(Biolegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Int J Cancer (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 e1b
BioLegendPD 1抗体(Biolegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 e1b). Nature (2019) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 s2b, s2k
BioLegendPD 1抗体(BioLegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 s2b, s2k). Cell Rep (2018) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 s14a
BioLegendPD 1抗体(BioLegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 s14a). J Clin Invest (2019) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 2a, 3a
BioLegendPD 1抗体(BioLegend, 109116)被用于被用于流式细胞仪在小鼠样本上 (图 2a, 3a). Cell (2018) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 s7d
BioLegendPD 1抗体(Biolegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Science (2018) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendPD 1抗体(BioLegend, 109110)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Immunity (2018) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegendPD 1抗体(BioLegend, 135219)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Immunity (2018) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 e4c
BioLegendPD 1抗体(Biolegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 e4c). Nature (2018) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Oncoimmunology (2018) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 1:200; 图 3c
BioLegendPD 1抗体(BioLegend, RMPI.30)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3c). J Clin Invest (2018) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendPD 1抗体(Biolegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Sci Rep (2018) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 7b
BioLegendPD 1抗体(BioLegend, 109103)被用于被用于流式细胞仪在小鼠样本上 (图 7b). Cell (2018) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 7b
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 7b). J Immunol (2018) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 3e
BioLegendPD 1抗体(Biolegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 3e). JCI Insight (2017) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 4b
BioLegendPD 1抗体(Biolegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Immunol (2018) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 4a
BioLegendPD 1抗体(Biolegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2018) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 1:400; 图 4a
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a). Nat Commun (2017) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 1b
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immunology (2017) ncbi
大鼠 单克隆(29F.1A12)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendPD 1抗体(Biolegend, 29F.1A12)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Eur J Immunol (2017) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendPD 1抗体(Biolegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Science (2017) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 s8c
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 s8c). Science (2017) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 4h
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 s3f
BioLegendPD 1抗体(BioLegend, 109110)被用于被用于流式细胞仪在小鼠样本上 (图 s3f). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 6a
BioLegendPD 1抗体(Biolegend, 109111)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Oncoimmunology (2016) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 3e
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Clin Invest (2016) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 4e
BioLegendPD 1抗体(BioLegend, 109109)被用于被用于流式细胞仪在小鼠样本上 (图 4e). J Exp Med (2016) ncbi
大鼠 单克隆(RMP1-30)
BioLegendPD 1抗体(Biolenged, RMPI 1-30)被用于. PLoS ONE (2016) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2016) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Exp Med (2015) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠
BioLegendPD 1抗体(BioLegend, RMP1-30)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛默飞世尔PD 1抗体(Thermo Fisher, PA5-20350)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Adv (2020) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:100; 图 e8a
赛默飞世尔PD 1抗体(ThermoFisher Scientific, 12-9985-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e8a). Nature (2019) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 2a). BMC Complement Altern Med (2019) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:200; 图 3c, 3f, s8d, s8e
赛默飞世尔PD 1抗体(invitrogen, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3c, 3f, s8d, s8e). Science (2019) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔PD 1抗体(Invitrogen, J43)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cell Rep (2019) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Oncoimmunology (2019) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Virol (2019) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 s3e
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Front Immunol (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔PD 1抗体(eBiosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nat Commun (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:200; 图 4c
赛默飞世尔PD 1抗体(eBioscience, 46-9985-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4c). Cell Rep (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 6k
赛默飞世尔PD 1抗体(eBioscience, 25-9985-82)被用于被用于流式细胞仪在小鼠样本上 (图 6k). Cell Rep (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:500; 图 4d
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 4d). Nat Commun (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Front Immunol (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1h
赛默飞世尔PD 1抗体(ebioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Nat Commun (2018) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 4e). J Clin Invest (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔PD 1抗体(eBioScience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Front Immunol (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔PD 1抗体(eBiosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cancer Cell (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Immunol (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔PD 1抗体(Thermo Fisher Scientific, 11-9985-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 s3h
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 s3h). Cancer Res (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:50; 图 1b
赛默飞世尔PD 1抗体(ebioscience, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1b). Nat Commun (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:200; 图 1a, 1e
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a, 1e). Nat Commun (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Immunol Lett (2017) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 s12c
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 s12c). Science (2017) ncbi
仓鼠 单克隆(J43)
  • 免疫组化; 小鼠; 图 1b
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于免疫组化在小鼠样本上 (图 1b). Nature (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 7a). Eur J Immunol (2017) ncbi
小鼠 单克隆(7A11B1)
  • 免疫组化-石蜡切片; 大鼠; 图 4f
  • 免疫沉淀; 大鼠; 图 2b
  • 免疫细胞化学; 大鼠; 图 5b
  • 免疫印迹; 大鼠; 图 3b
赛默飞世尔PD 1抗体(Thermo Fisher, MA5-15780)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4f), 被用于免疫沉淀在大鼠样本上 (图 2b), 被用于免疫细胞化学在大鼠样本上 (图 5b) 和 被用于免疫印迹在大鼠样本上 (图 3b). J Neuroinflammation (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:200; 图 3g
赛默飞世尔PD 1抗体(eBioscience, 25-9985)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3g). Nat Commun (2017) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Blood (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 6b
赛默飞世尔PD 1抗体(eBiosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Cell Mol Life Sci (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Front Immunol (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Exp Med (2017) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 1:400; 图 3a
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a). J Clin Invest (2016) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Circ Res (2016) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nature (2016) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 人类; 1:200; 图 1
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔PD 1抗体(eBiosciences, 17-9981-82)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1) 和 被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Clin Invest (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔PD 1抗体(eBiosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Antimicrob Agents Chemother (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 5). Clin Cancer Res (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 3g
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 3g). J Exp Med (2016) ncbi
仓鼠 单克隆(J43)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Death Dis (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔PD 1抗体(eBiosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Science (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Commun (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Arthritis Rheumatol (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:100; 图 4, 7
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4, 7). Nat Commun (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 2f
赛默飞世尔PD 1抗体(eBiosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 2f). J Immunol (2015) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔PD 1抗体(eBioscience, RMPI-30)被用于被用于流式细胞仪在小鼠样本上 (图 3). Oncotarget (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔PD 1抗体(eBiosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cancer Res (2015) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔PD 1抗体(eBiosciences, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 3A
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 3A). Ann Hematol (2015) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2015) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔PD 1抗体(eBioscience, 12-9981)被用于被用于流式细胞仪在小鼠样本上 (图 2). EMBO Mol Med (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS ONE (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunother Cancer (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS Pathog (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上. Immunol Lett (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔PD 1抗体(ebioscience, 14-9981-82)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Clin Cancer Res (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 人类
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). Nat Commun (2014) ncbi
大鼠 单克隆(RMP1-30)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔PD 1抗体(eBioscience, RMP1-30)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Neuroinflammation (2013) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔PD 1抗体(Ebioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2013) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔PD 1抗体(eBiosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2011) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔PD 1抗体(eBiosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2007) ncbi
仓鼠 单克隆(J43)
  • 抑制或激活实验; 小鼠
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于抑制或激活实验在小鼠样本上. Eur J Immunol (2006) ncbi
仓鼠 单克隆(J43)
  • 抑制或激活实验; 小鼠; 10 ug/ml
  • 流式细胞仪; 小鼠
赛默飞世尔PD 1抗体(eBioscience, J43)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml 和 被用于流式细胞仪在小鼠样本上. Nephrol Dial Transplant (2004) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, ab52587)被用于被用于免疫组化-石蜡切片在人类样本上. elife (2020) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 图 1b
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, NAT105)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). J Exp Med (2019) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, AB52587)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Clin Invest (2019) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 图 2c
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, NAT105)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, NAT105)被用于被用于免疫组化在人类样本上 (图 5a). Oncoimmunology (2017) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, ab52587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a). J Immunol Res (2016) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化; 小鼠; 1:2000; 图 5j
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, ab52587)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 5j). Nat Commun (2016) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, NAT105)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Mod Pathol (2016) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司PD 1抗体(AbCam, ab52587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2c). Oncoimmunology (2015) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1b
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, 52587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 1:50
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, ab52587)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Blood Cancer J (2015) ncbi
小鼠 单克隆(NAT105)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司PD 1抗体(Abcam, ab52587)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2015) ncbi
Bio X Cell
大鼠 单克隆(RMP1-14)
  • 抑制或激活实验; 小鼠; ; 图 1f
Bio X CellPD 1抗体(Bio X cell, RMP1-14)被用于被用于抑制或激活实验在小鼠样本上浓度为 (图 1f). Science (2019) ncbi
仓鼠 单克隆(J43)
  • 其他; 小鼠; 200 ug/mouse; 图 1B
Bio X CellPD 1抗体(Bio X Cell, J43)被用于被用于其他在小鼠样本上浓度为200 ug/mouse (图 1B). J Immunol (2015) ncbi
西格玛奥德里奇
单克隆(NAT105)
  • 免疫组化-石蜡切片; 人类; 图 2d
西格玛奥德里奇PD 1抗体(Ventana Medical Systems, 760-4895)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d). Nat Med (2018) ncbi
碧迪BD
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:400; 图 3f
碧迪BDPD 1抗体(BD, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3f). Nat Med (2019) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 2d
碧迪BDPD 1抗体(BD Biosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Circulation (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 6e
碧迪BDPD 1抗体(BD, 562671)被用于被用于流式细胞仪在小鼠样本上 (图 6e). Nat Commun (2018) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDPD 1抗体(BD Bioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 s7c
碧迪BDPD 1抗体(BD Pharmingen, J43)被用于被用于流式细胞仪在小鼠样本上 (图 s7c). J Clin Invest (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BDPD 1抗体(BD Pharmingen, J43)被用于被用于流式细胞仪在小鼠样本上 (图 2b). PLoS Pathog (2017) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:100; 图 2c
碧迪BDPD 1抗体(BD Biosciences, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2c). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:200; 表 s2
碧迪BDPD 1抗体(BD, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 s2). Nat Immunol (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDPD 1抗体(BD Bioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Clin Invest (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1, 2
碧迪BDPD 1抗体(BD Biosciences, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2). J Allergy Clin Immunol (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 4, 5
碧迪BDPD 1抗体(BD Bioscience, J43)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). PLoS Pathog (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 1G
碧迪BDPD 1抗体(BD, J43)被用于被用于流式细胞仪在小鼠样本上 (图 1G). J Exp Med (2016) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠
碧迪BDPD 1抗体(BD Pharmingen, J43)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:400; 图 s3
碧迪BDPD 1抗体(BD, 562584)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s3). Nat Commun (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 1:100; 图 1
碧迪BDPD 1抗体(BD Pharmingen, J43)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Nat Commun (2015) ncbi
仓鼠 单克隆(J43)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDPD 1抗体(BD, J43)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Exp Med (2014) ncbi
仓鼠 单克隆(J43)
  • 抑制或激活实验; 小鼠
碧迪BDPD 1抗体(BD Pharmingen, #551891)被用于被用于抑制或激活实验在小鼠样本上. Cancer Res (2014) ncbi
文章列表
  1. Tezera L, Bielecka M, Ogongo P, Walker N, Ellis M, Garay Baquero D, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. elife. 2020;9: pubmed 出版商
  2. Marasco M, Berteotti A, Weyershaeuser J, Thorausch N, Sikorska J, Krausze J, et al. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci Adv. 2020;6:eaay4458 pubmed 出版商
  3. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  4. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  5. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  6. Shikama Y, Kurosawa M, Furukawa M, Ishimaru N, Matsushita K. Involvement of adiponectin in age-related increases in tear production in mice. Aging (Albany NY). 2019;11:8329-8346 pubmed 出版商
  7. Dong M, Wang G, Chow R, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019;178:1189-1204.e23 pubmed 出版商
  8. Benci J, Johnson L, Choa R, Xu Y, Qiu J, Zhou Z, et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell. 2019;178:933-948.e14 pubmed 出版商
  9. Pan X, Ma B, You X, Chen S, Wu J, Wang T, et al. Synthesized natural peptides from amphibian skin secretions increase the efficacy of a therapeutic vaccine by recruiting more T cells to the tumour site. BMC Complement Altern Med. 2019;19:163 pubmed 出版商
  10. Koike T, Harada K, Horiuchi S, Kitamura D. The quantity of CD40 signaling determines the differentiation of B cells into functionally distinct memory cell subsets. elife. 2019;8: pubmed 出版商
  11. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  12. Khan O, Giles J, McDonald S, Manne S, Ngiow S, Patel K, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;: pubmed 出版商
  13. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  14. Pascual García M, Bonfill Teixidor E, Planas Rigol E, Rubio Perez C, Iurlaro R, Arias A, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416 pubmed 出版商
  15. Qiu J, Villa M, Sanin D, Buck M, O Sullivan D, Ching R, et al. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27:2063-2074.e5 pubmed 出版商
  16. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki I, et al. PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Front Immunol. 2019;10:630 pubmed 出版商
  17. Sugiura D, Maruhashi T, Okazaki I, Shimizu K, Maeda T, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364:558-566 pubmed 出版商
  18. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  19. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  20. Poggio M, Hu T, Pai C, Chu B, BELAIR C, Chang A, et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell. 2019;177:414-427.e13 pubmed 出版商
  21. Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med. 2019;: pubmed 出版商
  22. Grootjans J, Krupka N, Hosomi S, Matute J, Hanley T, Saveljeva S, et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science. 2019;363:993-998 pubmed 出版商
  23. Chen J, López Moyado I, Seo H, Lio C, Hempleman L, Sekiya T, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019;567:530-534 pubmed 出版商
  24. Melo Gonzalez F, Kammoun H, Evren E, Dutton E, Papadopoulou M, Bradford B, et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J Exp Med. 2019;216:728-742 pubmed 出版商
  25. Michaels Y, Barnkob M, Barbosa H, Baeumler T, Thompson M, Andre V, et al. Precise tuning of gene expression levels in mammalian cells. Nat Commun. 2019;10:818 pubmed 出版商
  26. Cox M, Duncan G, Lin G, Steinberg B, Yu L, Brenner D, et al. Choline acetyltransferase-expressing T cells are required to control chronic viral infection. Science. 2019;363:639-644 pubmed 出版商
  27. Salerno F, Guislain A, Freen van Heeren J, Nicolet B, Young H, Wolkers M. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8:e1532762 pubmed 出版商
  28. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  29. Faliti C, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-336 pubmed 出版商
  30. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  31. Eldi P, Chaudhri G, Nutt S, Newsome T, Karupiah G. Viral Replicative Capacity, Antigen Availability via Hematogenous Spread, and High TFH:TFR Ratios Drive Induction of Potent Neutralizing Antibody Responses. J Virol. 2019;93: pubmed 出版商
  32. Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Front Immunol. 2018;9:2981 pubmed 出版商
  33. Cornelissen L, Blanas A, van der Horst J, Kruijssen L, Zaal A, O Toole T, et al. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer. 2019;144:2290-2302 pubmed 出版商
  34. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  35. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  36. Obino D, Fetler L, Soza A, Malbec O, Saez J, Labarca M, et al. Galectin-8 Favors the Presentation of Surface-Tethered Antigens by Stabilizing the B Cell Immune Synapse. Cell Rep. 2018;25:3110-3122.e6 pubmed 出版商
  37. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  38. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  39. Tan H, Jegaskanda S, Juno J, Esterbauer R, Wong J, Kelly H, et al. Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem. J Clin Invest. 2019;129:850-862 pubmed 出版商
  40. Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129:1047-1060 pubmed 出版商
  41. Andre P, Denis C, Soulas C, Bourbon Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731-1743.e13 pubmed 出版商
  42. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed 出版商
  43. Shi J, Hou S, Fang Q, Liu X, Liu X, Qi H. PD-1 Controls Follicular T Helper Cell Positioning and Function. Immunity. 2018;49:264-274.e4 pubmed 出版商
  44. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  45. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  46. Gisterå A, Klement M, Polyzos K, Mailer R, Duhlin A, Karlsson M, et al. LDL-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation. 2018;: pubmed 出版商
  47. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu Y, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24:724-730 pubmed 出版商
  48. Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed 出版商
  49. Crosby E, Wei J, Yang X, Lei G, Wang T, Liu C, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology. 2018;7:e1421891 pubmed 出版商
  50. Georgiev H, Ravens I, Papadogianni G, Halle S, Malissen B, Loots G, et al. Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Front Immunol. 2018;9:714 pubmed 出版商
  51. Anker J, Naseem A, Mok H, Schaeffer A, Abdulkadir S, Thumbikat P. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat Commun. 2018;9:1591 pubmed 出版商
  52. Gaddis D, Padgett L, Wu R, McSkimming C, Romines V, Taylor A, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9:1095 pubmed 出版商
  53. Khan A, Carpenter B, Santos e Sousa P, Pospori C, Khorshed R, Griffin J, et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J Clin Invest. 2018;128:2010-2024 pubmed 出版商
  54. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  55. Mittelstadt P, Taves M, Ashwell J. Cutting Edge: De Novo Glucocorticoid Synthesis by Thymic Epithelial Cells Regulates Antigen-Specific Thymocyte Selection. J Immunol. 2018;200:1988-1994 pubmed 出版商
  56. Ellestad K, Thangavelu G, Haile Y, Lin J, Boon L, Anderson C. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol. 2018;9:12 pubmed 出版商
  57. Cortes J, Ambesi Impiombato A, Couronné L, Quinn S, Kim C, da Silva Almeida A, et al. RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis. Cancer Cell. 2018;33:259-273.e7 pubmed 出版商
  58. Ferdinand J, Richard A, Meylan F, Al Shamkhani A, Siegel R. Cleavage of TL1A Differentially Regulates Its Effects on Innate and Adaptive Immune Cells. J Immunol. 2018;200:1360-1369 pubmed 出版商
  59. Nakashima H, Alayo Q, Penaloza MacMaster P, Freeman G, Kuchroo V, Reardon D, et al. Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Sci Rep. 2018;8:208 pubmed 出版商
  60. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  61. Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B, Warren Navia A, et al. Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells. Cell. 2018;172:517-533.e20 pubmed 出版商
  62. Ibitokou S, Dillon B, Sinha M, Szczesny B, Delgadillo A, Reda Abdelrahman D, et al. Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. J Immunol. 2018;200:643-656 pubmed 出版商
  63. Pedros C, Canonigo Balancio A, Kong K, Altman A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight. 2017;2: pubmed 出版商
  64. Shi B, Geng J, Wang Y, Wei H, Walters B, Li W, et al. Foxp1 Negatively Regulates T Follicular Helper Cell Differentiation and Germinal Center Responses by Controlling Cell Migration and CTLA-4. J Immunol. 2018;200:586-594 pubmed 出版商
  65. Harly C, Cam M, Kaye J, Bhandoola A. Development and differentiation of early innate lymphoid progenitors. J Exp Med. 2018;215:249-262 pubmed 出版商
  66. Singh M, Vianden C, Cantwell M, Dai Z, Xiao Z, Sharma M, et al. Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain. Nat Commun. 2017;8:1447 pubmed 出版商
  67. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  68. Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed 出版商
  69. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  70. Kim S, Kwon J, Park J, Seo H, Jung K, Moon Y, et al. Achaete-scute complex homologue 2 accelerates the development of Sjögren's syndrome-like disease in the NOD/ShiLtJ mouse. Immunol Lett. 2017;190:26-33 pubmed 出版商
  71. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  72. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  73. Lynch A, Hawk W, Nylen E, Ober S, Autin P, Barber A. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma. Immunology. 2017;152:472-483 pubmed 出版商
  74. Xie M, Koh B, Hollister K, Wu H, Sun J, Kaplan M, et al. Bcl6 promotes follicular helper T-cell differentiation and PD-1 expression in a Blimp1-independent manner in mice. Eur J Immunol. 2017;47:1136-1141 pubmed 出版商
  75. Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495-499 pubmed 出版商
  76. Torcellan T, Hampton H, Bailey J, Tomura M, Brink R, Chtanova T. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A. 2017;114:5677-5682 pubmed 出版商
  77. Lu P, Shih C, Qi H. Ephrin B1-mediated repulsion and signaling control germinal center T cell territoriality and function. Science. 2017;356: pubmed 出版商
  78. Chien C, Yu H, Chen S, Chiang B. Characterization of c-Maf+Foxp3- Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells. Sci Rep. 2017;7:46348 pubmed 出版商
  79. Lino C, Barros Martins J, Oberdörfer L, Walzer T, Prinz I. Eomes expression reports the progressive differentiation of IFN-?-producing Th1-like ?? T cells. Eur J Immunol. 2017;47:970-981 pubmed 出版商
  80. Martinez Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436 pubmed 出版商
  81. Sindhava V, Oropallo M, Moody K, Naradikian M, Higdon L, Zhou L, et al. A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. J Clin Invest. 2017;127:1651-1663 pubmed 出版商
  82. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  83. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  84. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558 pubmed 出版商
  85. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14:36 pubmed 出版商
  86. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  87. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  88. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  89. Blanquiceth Y, Rodríguez Perea A, Tabares Guevara J, Correa L, Sánchez M, Ramirez Pineda J, et al. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma. Front Immunol. 2016;7:620 pubmed 出版商
  90. Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, et al. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med. 2017;214:475-489 pubmed 出版商
  91. Kinosada H, Yasunaga J, Shimura K, Miyazato P, Onishi C, Iyoda T, et al. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors. PLoS Pathog. 2017;13:e1006120 pubmed 出版商
  92. Morita K, Okamura T, Inoue M, Komai T, Teruya S, Iwasaki Y, et al. Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production. Proc Natl Acad Sci U S A. 2016;113:E8131-E8140 pubmed
  93. Li J, Shayan G, Avery L, Jie H, Gildener Leapman N, Schmitt N, et al. Tumor-infiltrating Tim-3+ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology. 2016;5:e1200778 pubmed
  94. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. 2016;126:4626-4639 pubmed 出版商
  95. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  96. Kaewkangsadan V, Verma C, Eremin J, Cowley G, Ilyas M, Eremin O. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J Immunol Res. 2016;2016:4757405 pubmed
  97. Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest. 2016;126:4417-4429 pubmed 出版商
  98. Butcher M, Filipowicz A, Waseem T, McGary C, Crow K, Magilnick N, et al. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFN?+ Th1/Tregs. Circ Res. 2016;119:1190-1203 pubmed 出版商
  99. Li C, Lim S, Xia W, Lee H, Chan L, Kuo C, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632 pubmed 出版商
  100. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  101. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  102. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  103. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  104. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  105. Liu W, Kang S, Huang Z, Wu C, Jin H, Maine C, et al. A miR-155-Peli1-c-Rel pathway controls the generation and function of T follicular helper cells. J Exp Med. 2016;213:1901-19 pubmed 出版商
  106. Yoshioka D, Kajiwara C, Ishii Y, Umeki K, Hiramatsu K, Kadota J, et al. Efficacy of ?-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob Agents Chemother. 2016;60:6146-54 pubmed 出版商
  107. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  108. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  109. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  110. Friedman K, Brodsky A, Lu S, Wood S, Gill A, Lombardo K, et al. Medullary carcinoma of the colon: a distinct morphology reveals a distinctive immunoregulatory microenvironment. Mod Pathol. 2016;29:528-41 pubmed 出版商
  111. Chen W, Wang J, Jia L, Liu J, Tian Y. Attenuation of the programmed cell death-1 pathway increases the M1 polarization of macrophages induced by zymosan. Cell Death Dis. 2016;7:e2115 pubmed 出版商
  112. Kim J, Choi Y, Lee B, Song M, Ban C, Kim J, et al. Programmed cell death ligand 1 alleviates psoriatic inflammation by suppressing IL-17A production from programmed cell death 1-high T cells. J Allergy Clin Immunol. 2016;137:1466-1476.e3 pubmed 出版商
  113. Tubo N, Fife B, Pagán A, Kotov D, Goldberg M, Jenkins M. Most microbe-specific naïve CD4? T cells produce memory cells during infection. Science. 2016;351:511-4 pubmed 出版商
  114. Aloulou M, Carr E, Gador M, Bignon A, Liblau R, Fazilleau N, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun. 2016;7:10579 pubmed 出版商
  115. Chandrasekaran U, Yi W, Gupta S, Weng C, Giannopoulou E, Chinenov Y, et al. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol. 2016;68:1454-66 pubmed 出版商
  116. McDonald P, Read K, Baker C, Anderson A, Powell M, Ballesteros Tato A, et al. IL-7 signalling represses Bcl-6 and the TFH gene program. Nat Commun. 2016;7:10285 pubmed 出版商
  117. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  118. Everts B, Tussiwand R, Dreesen L, Fairfax K, Huang S, Smith A, et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med. 2016;213:35-51 pubmed 出版商
  119. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  120. Laurent C, Charmpi K, Gravelle P, Tosolini M, Franchet C, Ysebaert L, et al. Several immune escape patterns in non-Hodgkin's lymphomas. Oncoimmunology. 2015;4:e1026530 pubmed
  121. Manlove L, Berquam Vrieze K, Pauken K, Williams R, Jenkins M, Farrar M. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells. J Immunol. 2015;195:4028-37 pubmed 出版商
  122. Andersson K, Brisslert M, Cavallini N, Svensson M, Welin A, Erlandsson M, et al. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget. 2015;6:20043-57 pubmed
  123. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE. 2015;10:e0136023 pubmed 出版商
  124. Choi Y, Gullicksrud J, Xing S, Zeng Z, Shan Q, Li F, et al. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol. 2015;16:980-90 pubmed 出版商
  125. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  126. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  127. Imai Y, Ayithan N, Wu X, Yuan Y, Wang L, Hwang S. Cutting Edge: PD-1 Regulates Imiquimod-Induced Psoriasiform Dermatitis through Inhibition of IL-17A Expression by Innate γδ-Low T Cells. J Immunol. 2015;195:421-5 pubmed 出版商
  128. Shao L, Lie A, Zhang Y, Wong C, Kwong Y. Aberrant germinal center formation, follicular T-helper cells, and germinal center B-cells were involved in chronic graft-versus-host disease. Ann Hematol. 2015;94:1493-504 pubmed 出版商
  129. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  130. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  131. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  132. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  133. Kim Y, Lim H, Jung H, Wetsel R, Chung Y. Regulation of autoimmune germinal center reactions in lupus-prone BXD2 mice by follicular helper T cells. PLoS ONE. 2015;10:e0120294 pubmed 出版商
  134. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  135. Yang Z, Grote D, Ziesmer S, Xiu B, Novak A, Ansell S. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015;5:e281 pubmed 出版商
  136. Okamura T, Sumitomo S, Morita K, Iwasaki Y, Inoue M, Nakachi S, et al. TGF-β3-expressing CD4+CD25(-)LAG3+ regulatory T cells control humoral immune responses. Nat Commun. 2015;6:6329 pubmed 出版商
  137. Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed 出版商
  138. Clouthier D, Zhou A, Wortzman M, Luft O, Levy G, Watts T. GITR intrinsically sustains early type 1 and late follicular helper CD4 T cell accumulation to control a chronic viral infection. PLoS Pathog. 2015;11:e1004517 pubmed 出版商
  139. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  140. Guo X, Tanaka Y, Kondo M. Thymic precursors of TCRαβ(+)CD8αα(+) intraepithelial lymphocytes are negative for CD103. Immunol Lett. 2015;163:40-8 pubmed 出版商
  141. Buchan S, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, et al. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. J Immunol. 2015;194:125-133 pubmed 出版商
  142. Gao F, Wang W. MicroRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a. Mol Med Rep. 2015;11:1200-6 pubmed 出版商
  143. Naik E, Webster J, DeVoss J, Liu J, Suriben R, Dixit V. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med. 2014;211:1947-55 pubmed 出版商
  144. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  145. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  146. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  147. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  148. León B, Bradley J, Lund F, Randall T, Ballesteros Tato A. FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat Commun. 2014;5:3495 pubmed 出版商
  149. Barsoum I, Smallwood C, Siemens D, Graham C. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014;74:665-74 pubmed 出版商
  150. Bodhankar S, Chen Y, Vandenbark A, Murphy S, Offner H. PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation. 2013;10:111 pubmed 出版商
  151. Van Der Werf N, Redpath S, Azuma M, Yagita H, Taylor M. Th2 cell-intrinsic hypo-responsiveness determines susceptibility to helminth infection. PLoS Pathog. 2013;9:e1003215 pubmed 出版商
  152. Wollenberg I, Agua Doce A, Hernandez A, Almeida C, Oliveira V, Faro J, et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J Immunol. 2011;187:4553-60 pubmed 出版商
  153. Tousif S, Singh Y, Prasad D, Sharma P, Van Kaer L, Das G. T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS ONE. 2011;6:e19864 pubmed 出版商
  154. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed
  155. Kuipers H, Muskens F, Willart M, Hijdra D, van Assema F, Coyle A, et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol. 2006;36:2472-82 pubmed
  156. Schoop R, Wahl P, Le Hir M, Heemann U, Wang M, Wuthrich R. Suppressed T-cell activation by IFN-gamma-induced expression of PD-L1 on renal tubular epithelial cells. Nephrol Dial Transplant. 2004;19:2713-20 pubmed