这是一篇来自已证抗体库的有关小鼠 Pax6的综述,是根据135篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Pax6 抗体。
Pax6 同义词: 1500038E17Rik; AEY11; Dey; Gsfaey11; Pax-6; Sey

BioLegend
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 人类; 1:350
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化在人类样本上浓度为1:350. Pharmaceuticals (Basel) (2021) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 人类; 图 1b
BioLegend Pax6抗体(Biolegend, 901302)被用于被用于免疫组化在人类样本上 (图 1b). Nat Commun (2021) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:100; 图 6
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:300; 图 2i
BioLegend Pax6抗体(BioLegend, 901301)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2i). elife (2021) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2i
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2i). Nat Commun (2021) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 人类; 图 2a
BioLegend Pax6抗体(Biolegend, PRB-278P)被用于被用于免疫组化在人类样本上 (图 2a). Cell Stem Cell (2021) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 s1c
  • 免疫细胞化学; 小鼠; 图 1g
BioLegend Pax6抗体(BioLegend, PRB-278P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 s1c) 和 被用于免疫细胞化学在小鼠样本上 (图 1g). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:1000; 图 4b
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4b). Sci Rep (2021) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 人类; 1:200; 图 6b
BioLegend Pax6抗体(BioLegend, 901301)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6b). Nat Commun (2021) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:300; 图 3d
BioLegend Pax6抗体(BioLegend, 901301 (PRB-278P))被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3d). elife (2020) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫印迹; 小鼠; 1:5000; 图 1d
  • 免疫印迹; 人类; 1:5000; 图 1d
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 1d). Sci Adv (2020) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1a
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1a). elife (2020) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:500; 图 3h
BioLegend Pax6抗体(BioLegend, 901302)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3h). Development (2020) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3b
  • 免疫细胞化学; 小鼠; 1:500; 图 s1e
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1e). Sci Rep (2020) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:50; 图 2c
BioLegend Pax6抗体(BioLegend, 901301)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2c). Nat Commun (2020) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-石蜡切片; 人类; 1:700; 图 3f
BioLegend Pax6抗体(Covance, PRB-278-P-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:700 (图 3f). PLoS ONE (2020) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 人类; 1:500; 图 6d
BioLegend Pax6抗体(Biolegend, PRB-278p)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6d). Nat Commun (2020) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:250; 图 1s2b1b
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1s2b1b). elife (2019) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; ; 图 3e
BioLegend Pax6抗体(BioLegend, 901301)被用于被用于免疫组化在小鼠样本上浓度为 (图 3e). PLoS ONE (2019) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 ex2b
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 ex2b). Nature (2019) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; African green monkey; 1:500; 图 s1b
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化在African green monkey样本上浓度为1:500 (图 s1b). Cell (2019) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 人类; 1:300; 图 s5a
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s5a). Science (2018) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
BioLegend Pax6抗体(Convance, PRB-278P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Development (2018) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s6a
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s6a). Science (2018) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫细胞化学; 人类; 1:200; 图 1g
BioLegend Pax6抗体(BioLegend, 901301)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g). Stem Cell Res (2018) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:300; 图 s1b
BioLegend Pax6抗体(biolegend, 901301)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s1b). Nat Commun (2018) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫印迹; 小鼠; 图 1a
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2g
BioLegend Pax6抗体(Covance, prb278p10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2g). elife (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:500; 图 1d
BioLegend Pax6抗体(BioLegend, 901301)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1d). Genes Dev (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫细胞化学; 人类; 图 3a
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫细胞化学在人类样本上 (图 3a). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 豚鼠; 1:100; 图 2b
BioLegend Pax6抗体(BioLegend, PRB-278P)被用于被用于免疫组化在豚鼠样本上浓度为1:100 (图 2b). Dev Growth Differ (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 图 s1a
BioLegend Pax6抗体(BioLegend, 901301)被用于被用于免疫组化在小鼠样本上 (图 s1a). Cell (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 人类; 1:400
  • 免疫细胞化学; 人类; 1:400; 图 e1b
BioLegend Pax6抗体(Biolegend, 901301)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 和 被用于免疫细胞化学在人类样本上浓度为1:400 (图 e1b). Nature (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1b
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1b). Nat Commun (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫细胞化学; 人类; 图 2a
BioLegend Pax6抗体(Covance, PRB- 278P)被用于被用于免疫细胞化学在人类样本上 (图 2a). Stem Cells Transl Med (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7e
BioLegend Pax6抗体(Convance, PRB-278P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 7e). Dev Biol (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫细胞化学; 人类; 1:100; 图 st4
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 st4). Nat Biotechnol (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫细胞化学; 人类; 图 3a
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫细胞化学在人类样本上 (图 3a). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6a
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6a). Neural Dev (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1
BioLegend Pax6抗体(BioLegend, 901301)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:500; 表 1
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). elife (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 流式细胞仪; 人类; 1:100; 图 1d
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1d). J Cell Biol (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:200; 图 s9
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s9). Nat Genet (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:100; 图 5
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Mol Ther Methods Clin Dev (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 斑马鱼; 图 5
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化在斑马鱼样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫细胞化学; 人类; 1:1000; 图 2c
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2c). elife (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; black ferret; 图 1
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化-冰冻切片在black ferret样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-自由浮动切片; 人类; 1:300; 图 4
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:300 (图 4). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s3b
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s3b). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫细胞化学; 人类; 1:250; 图 1
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆(Poly19013)
BioLegend Pax6抗体(Covance, PRB-278P)被用于. Nat Commun (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化; 小鼠; 1:200; 图 1
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; Japanese common newt; 1:1000; 图 2
BioLegend Pax6抗体(Covance, PRB-278P)被用于被用于免疫组化-冰冻切片在Japanese common newt样本上浓度为1:1000 (图 2). Zoolog Sci (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫组化-冰冻切片; 人类; 图 1b
BioLegend Pax6抗体(BioLegend, PRB-278P)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1b). Nat Methods (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫细胞化学; 人类; 1:1000; 图 3c
BioLegend Pax6抗体(BioLegend, 901301)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3c). Ophthalmology (2016) ncbi
domestic rabbit 多克隆(Poly19013)
  • 免疫印迹; 人类
BioLegend Pax6抗体(Covance, PRB-278P-100)被用于被用于免疫印迹在人类样本上. Cereb Cortex (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1d
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d). Int J Ophthalmol (2021) ncbi
小鼠 单克隆(AD2.38)
  • 免疫细胞化学; 人类; 1:200; 图 s13c
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab78545)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s13c). Nat Cell Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2g
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2g). Nat Commun (2021) ncbi
小鼠 单克隆(AD2.38)
  • 免疫组化; 小鼠; 1:500; 图 2f, 2g
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, AB78545)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2f, 2g). EMBO Mol Med (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, USA, #ab109233)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Int J Mol Sci (2020) ncbi
小鼠 单克隆(AD2.38)
  • 免疫细胞化学; 人类; 图 2d
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab78545)被用于被用于免疫细胞化学在人类样本上 (图 2d). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1c
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1c). Cell Death Differ (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s8
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s8). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-冰冻切片; black ferret; 图 2d
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-冰冻切片在black ferret样本上 (图 2d). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5e). Eneuro (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫组化在小鼠样本上. BMC Ophthalmol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, AB5790)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s2
  • 免疫组化; 人类; 1:200; 图 s1
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2) 和 被用于免疫组化在人类样本上浓度为1:200 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; Holothuria glaberrima; 1:100; 图 3
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫组化在Holothuria glaberrima样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab5790)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(AD2.38)
  • 免疫细胞化学; 人类; 1:200; 图 s17
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab78545)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s17). Nat Commun (2016) ncbi
小鼠 单克隆(AD2.38)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab78545)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Neurosci Lett (2014) ncbi
小鼠 单克隆(AD2.38)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, ab78545)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Mol Neurosci (2014) ncbi
小鼠 单克隆(AD2.38)
  • 免疫组化-石蜡切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, AD2.38)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. Toxicol Lett (2014) ncbi
小鼠 单克隆(AD2.38)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Pax6抗体(Abcam, AD2.38)被用于被用于免疫组化在小鼠样本上浓度为1:500. Reprod Toxicol (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(PAX6)
  • 免疫组化; 人类; 图 1c
  • 免疫印迹; 人类; 图 1f, 4g
圣克鲁斯生物技术 Pax6抗体(Santa Cruz, sc-81649)被用于被用于免疫组化在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 1f, 4g). Clin Transl Med (2021) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 小鼠; 1:400; 图 s2-1a
圣克鲁斯生物技术 Pax6抗体(Santa Cruz Biotechnology, sc-81649)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s2-1a). elife (2020) ncbi
小鼠 单克隆(AD2.35)
  • 免疫细胞化学; 人类; 1:100; 图 3b
圣克鲁斯生物技术 Pax6抗体(SantaCruz, sc-53108)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Methods Mol Biol (2018) ncbi
小鼠 单克隆(AD2.38)
  • 免疫组化; 小鼠; 1:25; 图 1b
圣克鲁斯生物技术 Pax6抗体(Santa Cruz, SC-32766)被用于被用于免疫组化在小鼠样本上浓度为1:25 (图 1b). Dev Biol (2017) ncbi
小鼠 单克隆(AD2.35)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
圣克鲁斯生物技术 Pax6抗体(Santa Cruz, SC-53108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). Eur J Histochem (2016) ncbi
小鼠 单克隆(AD2.38)
  • 免疫组化-冰冻切片; newts; 1:200; 图 3b
  • 免疫组化; newts; 1:200; 图 2c
圣克鲁斯生物技术 Pax6抗体(Santa Cruz, sc-32766)被用于被用于免疫组化-冰冻切片在newts样本上浓度为1:200 (图 3b) 和 被用于免疫组化在newts样本上浓度为1:200 (图 2c). Sci Rep (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 小鼠; 1:100; 图 5
圣克鲁斯生物技术 Pax6抗体(Santa Cruz Biotechnology, sc-81649)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Eneuro (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 1:1000; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Pax6抗体(Santa Cruz, sc81649)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Mol Cell Biol (2016) ncbi
小鼠 单克隆(AD2.38)
  • ChIP-Seq; 人类
圣克鲁斯生物技术 Pax6抗体(Santa Cruz, sc-32766X)被用于被用于ChIP-Seq在人类样本上. Front Genet (2015) ncbi
小鼠 单克隆(AD2.38)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 Pax6抗体(Santa Cruz, sc-32766)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(AD2.38)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Pax6抗体(Santa Cruz Biotechnology, sc-32766)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
赛默飞世尔
小鼠 单克隆(13B10-1A10)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 1b
  • 免疫组化-冰冻切片; African green monkey; 1:1000; 图 1b
赛默飞世尔 Pax6抗体(Thermo Fisher, MA1-109)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:1000 (图 1b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 表 1
赛默飞世尔 Pax6抗体(Thermo Fisher, 426600)被用于被用于免疫组化在小鼠样本上浓度为1:300 (表 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 s1
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Pax6抗体(Invitrogen, 42-6600)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000. Sci Rep (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(PAX6)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 8a
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 8a). Nat Commun (2021) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 图 5a
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, AB_528427)被用于被用于免疫细胞化学在人类样本上 (图 5a). Methods Protoc (2021) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-冰冻切片; 鸡; 图 3s1j
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, RRID: AB_528427)被用于被用于免疫组化-冰冻切片在鸡样本上 (图 3s1j). elife (2021) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 小鼠; 1:25
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, PAX6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:25. elife (2021) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 鸡; 1:100
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫组化在鸡样本上浓度为1:100. elife (2021) ncbi
小鼠 单克隆(PAX6)
  • 免疫印迹; 小鼠; 1:500; 图 2s1c
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, AB_528427)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2s1c). elife (2020) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 s1a
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, PAX6)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 s1a). Science (2020) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 小鼠; 2 ug/ml; 图 1f"
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, pAX6)被用于被用于免疫组化在小鼠样本上浓度为2 ug/ml (图 1f"). Invest Ophthalmol Vis Sci (2019) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 1:100; 图 1h
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, pax6)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1h). Stem Cell Res (2019) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学基因敲除验证; 人类; 1:37; 图 1b
  • 免疫印迹基因敲除验证; 人类; 1:37; 图 1a
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, University of Iowa, pax6)被用于被用于免疫细胞化学基因敲除验证在人类样本上浓度为1:37 (图 1b) 和 被用于免疫印迹基因敲除验证在人类样本上浓度为1:37 (图 1a). BMC Cancer (2018) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 1:200; 图 1h
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, pax6)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1h). Stem Cell Res (2018) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). elife (2017) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 小鼠; 图 s2b
Developmental Studies Hybridoma Bank Pax6抗体(Hybridoma bank, PAX6)被用于被用于免疫细胞化学在小鼠样本上 (图 s2b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 人类; 1:25; 图 2A
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, PAX6)被用于被用于免疫组化在人类样本上浓度为1:25 (图 2A). PLoS ONE (2017) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 表 1
Developmental Studies Hybridoma Bank Pax6抗体(DHSB, PAX6)被用于被用于免疫细胞化学在人类样本上 (表 1). Cell Stem Cell (2017) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 小鼠; 1:100; 图 6e
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, AB528427)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6e). J Neurosci (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 1:1000; 图 1
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, AB-528427)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 图 1e
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, P3U1)被用于被用于免疫细胞化学在人类样本上 (图 1e). Neuroscience (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 小鼠; 1:5; 图 3
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, PAX6)被用于被用于免疫组化在小鼠样本上浓度为1:5 (图 3). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-冰冻切片; 鸡; 1:50; 图 2
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, PAX6)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:50 (图 2). BMC Biol (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 1:2000; 图 2
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, PAX6)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2). Nat Med (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 小鼠; 1:100; 图 4b
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4b). Stem Cells Int (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-石蜡切片; 鸡; 1:100; 图 3
  • 免疫组化; 鸡; 1:100; 图 3
  • 免疫印迹; 鸡; 1:1000; 图 5
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, AB 528427)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:100 (图 3), 被用于免疫组化在鸡样本上浓度为1:100 (图 3) 和 被用于免疫印迹在鸡样本上浓度为1:1000 (图 5). Dis Model Mech (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 图 4
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, PAX6)被用于被用于免疫细胞化学在人类样本上 (图 4). Nat Biotechnol (2015) ncbi
小鼠 单克隆(PAX6)
  • 免疫印迹; 人类; 1:1000; 图 1
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, P3U1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nature (2015) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 1:5000
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫细胞化学在人类样本上浓度为1:5000. Methods (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 小鼠; 1:200; 图 s7e
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, Pax6)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s7e). PLoS Genet (2015) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4). Cell Rep (2015) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类; 1:50
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Curr Protoc Stem Cell Biol (2015) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 人类
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫细胞化学在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 鸡; 1:50
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, PAX6)被用于被用于免疫组化在鸡样本上浓度为1:50. Glia (2014) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 小鼠; 1:100
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Neurotoxicol Teratol (2014) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-冰冻切片; 鸡; 1:20
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:20. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-自由浮动切片; Spanish newt; 1:250
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:250. J Comp Neurol (2013) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 鸡
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫组化在鸡样本上. J Mol Neurosci (2013) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 鸡; 1:100
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫组化在鸡样本上浓度为1:100. Exp Eye Res (2013) ncbi
小鼠 单克隆(PAX6)
  • 免疫印迹; 大鼠
  • 免疫组化-自由浮动切片; Spanish newt; 1:250
  • 免疫印迹; Spanish newt
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫印迹在大鼠样本上, 被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:250 和 被用于免疫印迹在Spanish newt样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-石蜡切片; Gallot's lizard; 1:100
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫组化-石蜡切片在Gallot's lizard样本上浓度为1:100. J Comp Neurol (2012) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; dime-store turtle; 1:500
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫组化在dime-store turtle样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 小鼠; 1:200
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Hybridoma Bank, Pax6)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Comp Neurol (2011) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-冰冻切片; dime-store turtle; 1:500
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫组化-冰冻切片在dime-store turtle样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-石蜡切片; lepidosaurs; 1:100
  • 免疫印迹; lepidosaurs; 1:100
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫组化-石蜡切片在lepidosaurs样本上浓度为1:100 和 被用于免疫印迹在lepidosaurs样本上浓度为1:100. J Comp Neurol (2010) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. J Comp Neurol (2010) ncbi
小鼠 单克隆(PAX6)
  • 免疫细胞化学; 鸡; 1:100
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫细胞化学在鸡样本上浓度为1:100. J Comp Neurol (2010) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化; 小鼠; 1:200
Developmental Studies Hybridoma Bank Pax6抗体(DSHB, Pax6)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Comp Neurol (2007) ncbi
小鼠 单克隆(PAX6)
  • 免疫组化-冰冻切片; 鸡; 1:50
Developmental Studies Hybridoma Bank Pax6抗体(Developmental Studies Hybridoma Bank, PAX6)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:50. J Comp Neurol (2007) ncbi
MBL International
多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4c
MBL International Pax6抗体(Medical and Biological Laboratories, PD022)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4c). Sci Rep (2020) ncbi
多克隆
  • 免疫组化; 豚鼠; 1:1000; 图 2a
MBL International Pax6抗体(MBL, PD022)被用于被用于免疫组化在豚鼠样本上浓度为1:1000 (图 2a). Dev Growth Differ (2017) ncbi
多克隆
  • 免疫组化; 小鼠; 1:500; 图 5b
MBL International Pax6抗体(Medical and Biological Laboratories, PD022)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5b). J Neurosci (2016) ncbi
文章列表
  1. Sapir G, Steinberg D, Aqeilan R, Katz Brull R. Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids-A New Method to Characterize the Metabolism of Brain Organoids?. Pharmaceuticals (Basel). 2021;14: pubmed 出版商
  2. de Jong J, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun. 2021;12:4087 pubmed 出版商
  3. Zhang Y, He L, Huang L, Yao S, Lin N, Li P, et al. Oncogenic PAX6 elicits CDK4/6 inhibitor resistance by epigenetically inactivating the LATS2-Hippo signaling pathway. Clin Transl Med. 2021;11:e503 pubmed 出版商
  4. Walker H, Taiyab A, Deschamps P, Williams T, West Mays J. Conditional Deletion of AP-2β in the Periocular Mesenchyme of Mice Alters Corneal Epithelial Cell Fate and Stratification. Int J Mol Sci. 2021;22: pubmed 出版商
  5. Viais R, Fariña Mosquera M, Villamor Payà M, Watanabe S, Palenzuela L, Lacasa C, et al. Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. elife. 2021;10: pubmed 出版商
  6. Xu H, Li Q, Zou T, Yin Z. Development-related mitochondrial properties of retinal pigment epithelium cells derived from hEROs. Int J Ophthalmol. 2021;14:1138-1150 pubmed 出版商
  7. Cho A, Jin Y, An Y, Kim J, Choi Y, Lee J, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730 pubmed 出版商
  8. Chen C, Abdian N, Maussion G, Thomas R, Demirova I, Cai E, et al. A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods Protoc. 2021;4: pubmed 出版商
  9. Truong D, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, et al. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol. 2021;23:652-663 pubmed 出版商
  10. Eriksen A, Møller R, Makovoz B, Uhl S, tenOever B, Blenkinsop T. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell. 2021;28:1205-1220.e7 pubmed 出版商
  11. Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, et al. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun. 2021;12:3005 pubmed 出版商
  12. Nasu M, Esumi S, Hatakeyama J, Tamamaki N, Shimamura K. Two-Phase Lineage Specification of Telencephalon Progenitors Generated From Mouse Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:632381 pubmed 出版商
  13. Ezan J, Moreau M, Mamo T, Shimbo M, Decroo M, Richter M, et al. Early loss of Scribble affects cortical development, interhemispheric connectivity and psychomotor activity. Sci Rep. 2021;11:9106 pubmed 出版商
  14. Inak G, Rybak Wolf A, Lisowski P, Pentimalli T, Jüttner R, Glažar P, et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun. 2021;12:1929 pubmed 出版商
  15. Baeriswyl T, Dumoulin A, Schaettin M, Tsapara G, Niederkofler V, Helbling D, et al. Endoglycan plays a role in axon guidance by modulating cell adhesion. elife. 2021;10: pubmed 出版商
  16. Hall E, Dillard M, Stewart D, Zhang Y, Wagner B, Levine R, et al. Cytoneme delivery of Sonic Hedgehog from ligand-producing cells requires Myosin 10 and a Dispatched-BOC/CDON co-receptor complex. elife. 2021;10: pubmed 出版商
  17. Yamagata M, Yan W, Sanes J. A cell atlas of the chick retina based on single-cell transcriptomics. elife. 2021;10: pubmed 出版商
  18. Atkins A, Xu M, Li M, Rogers N, Pryzhkova M, Jordan P. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. elife. 2020;9: pubmed 出版商
  19. Kim K, Wu Y, Yoon J, Adachi K, Wu G, Velychko S, et al. Reprogramming competence of OCT factors is determined by transactivation domains. Sci Adv. 2020;6: pubmed 出版商
  20. Hasenpusch Theil K, Laclef C, Colligan M, Fitzgerald E, Howe K, Carroll E, et al. A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. elife. 2020;9: pubmed 出版商
  21. Yoshida S, Aoki K, Fujiwara K, Nakakura T, Kawamura A, Yamada K, et al. The novel ciliogenesis regulator DYRK2 governs Hedgehog signaling during mouse embryogenesis. elife. 2020;9: pubmed 出版商
  22. Quintana Urzainqui I, Hernández Malmierca P, Clegg J, Li Z, Kozic Z, Price D. The role of the diencephalon in the guidance of thalamocortical axons in mice. Development. 2020;147: pubmed 出版商
  23. Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, et al. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med. 2020;12:e11419 pubmed 出版商
  24. Mondal B, Jin H, Kallappagoudar S, Sedkov Y, Martinez T, Sentmanat M, et al. The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. elife. 2020;9: pubmed 出版商
  25. Mukhtar T, Breda J, Grison A, Karimaddini Z, Grobecker P, Iber D, et al. Tead transcription factors differentially regulate cortical development. Sci Rep. 2020;10:4625 pubmed 出版商
  26. Matsumura K, Seiriki K, Okada S, Nagase M, Ayabe S, Yamada I, et al. Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes. Nat Commun. 2020;11:859 pubmed 出版商
  27. Furube E, Ishii H, Nambu Y, Kurganov E, Nagaoka S, Morita M, et al. Neural stem cell phenotype of tanycyte-like ependymal cells in the circumventricular organs and central canal of adult mouse brain. Sci Rep. 2020;10:2826 pubmed 出版商
  28. Polis B, Srikanth K, Gurevich V, Bloch N, Gil Henn H, Samson A. Arginase Inhibition Supports Survival and Differentiation of Neuronal Precursors in Adult Alzheimer's Disease Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  29. Devlin L, Ramsbottom S, Overman L, Lisgo S, Clowry G, Molinari E, et al. Embryonic and foetal expression patterns of the ciliopathy gene CEP164. PLoS ONE. 2020;15:e0221914 pubmed 出版商
  30. Kielkowski P, Buchsbaum I, Kirsch V, Bach N, Drukker M, Cappello S, et al. FICD activity and AMPylation remodelling modulate human neurogenesis. Nat Commun. 2020;11:517 pubmed 出版商
  31. Trevino A, Sinnott Armstrong N, Andersen J, Yoon S, Huber N, Pritchard J, et al. Chromatin accessibility dynamics in a model of human forebrain development. Science. 2020;367: pubmed 出版商
  32. Kanton S, Boyle M, He Z, Santel M, Weigert A, Sanchís Calleja F, et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature. 2019;574:418-422 pubmed 出版商
  33. S nchez Guardado L, Lois C. Lineage does not regulate the sensory synaptic input of projection neurons in the mouse olfactory bulb. elife. 2019;8: pubmed 出版商
  34. Jin J, Ravindran P, Di Meo D, Püschel A. Igf1R/InsR function is required for axon extension and corpus callosum formation. PLoS ONE. 2019;14:e0219362 pubmed 出版商
  35. Shin W, Seo J, Choi H, Hong Y, Lee W, Chae J, et al. Derivation of primitive neural stem cells from human-induced pluripotent stem cells. J Comp Neurol. 2019;527:3023-3033 pubmed 出版商
  36. Velasco S, Kedaigle A, Simmons S, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;: pubmed 出版商
  37. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  38. Rathore A, Saron W, Lim T, Jahan N, St John A. Maternal immunity and antibodies to dengue virus promote infection and Zika virus-induced microcephaly in fetuses. Sci Adv. 2019;5:eaav3208 pubmed 出版商
  39. Pollen A, Bhaduri A, Andrews M, Nowakowski T, Meyerson O, Mostajo Radji M, et al. Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell. 2019;176:743-756.e17 pubmed 出版商
  40. Webster M, Barnett B, Stanchfield M, Paris J, Webster S, Cooley Themm C, et al. Stimulation of Retinal Pigment Epithelium With an α7 nAChR Agonist Leads to Müller Glia Dependent Neurogenesis in the Adult Mammalian Retina. Invest Ophthalmol Vis Sci. 2019;60:570-579 pubmed 出版商
  41. Lü Y, Dong E, Yang W, Lai L, Lin X, Ma L, et al. Generation of an integration-free induced pluripotent stem cell line, FJMUi001-A, from a hereditary spastic paraplegia patient carrying compound heterozygous p.P498L and p.R618W mutations in CAPN1 (SPG76). Stem Cell Res. 2019;34:101354 pubmed 出版商
  42. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  43. Han S, Dennis D, Balakrishnan A, Dixit R, Britz O, Zinyk D, et al. A non-canonical role for the proneural gene Neurog1 as a negative regulator of neocortical neurogenesis. Development. 2018;145: pubmed 出版商
  44. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  45. Klein T, Günther K, Kwok C, Edenhofer F, Uceyler N. Generation of the human induced pluripotent stem cell line (UKWNLi001-A) from skin fibroblasts of a woman with Fabry disease carrying the X-chromosomal heterozygous c.708 G > C (W236C) missense mutation in exon 5 of the alpha-galactosidase-A gene. Stem Cell Res. 2018;31:222-226 pubmed 出版商
  46. Luisier R, Tyzack G, Hall C, Mitchell J, Devine H, Taha D, et al. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun. 2018;9:2010 pubmed 出版商
  47. Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, et al. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res. 2018;46:6026-6040 pubmed 出版商
  48. Hegge B, Sjøttem E, Mikkola I. Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress. BMC Cancer. 2018;18:496 pubmed 出版商
  49. Johnson M, Sun X, Kodani A, Borges Monroy R, Girskis K, Ryu S, et al. Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature. 2018;556:370-375 pubmed 出版商
  50. Gao Y, Wilson G, Bozaoglu K, Elefanty A, Stanley E, Dottori M, et al. Generation of RAB39B knockout isogenic human embryonic stem cell lines to model RAB39B-mediated Parkinson's disease. Stem Cell Res. 2018;28:161-164 pubmed 出版商
  51. He J, Weng Z, Wu S, Boheler K. Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses. Methods Mol Biol. 2018;1722:261-302 pubmed 出版商
  52. Tseng K, Danilova T, Domanskyi A, Saarma M, Lindahl M, Airavaara M. MANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex. Eneuro. 2017;4: pubmed 出版商
  53. Connell M, Chen H, Jiang J, Kuan C, Fotovati A, Chu T, et al. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. elife. 2017;6: pubmed 出版商
  54. Remez L, Onishi A, Menuchin Lasowski Y, Biran A, Blackshaw S, Wahlin K, et al. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev Biol. 2017;432:140-150 pubmed 出版商
  55. Nakagawa N, Li J, Yabuno Nakagawa K, Eom T, Cowles M, Mapp T, et al. APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. 2017;31:1679-1692 pubmed 出版商
  56. Tchieu J, Zimmer B, Fattahi F, Amin S, Zeltner N, Chen S, et al. A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages. Cell Stem Cell. 2017;21:399-410.e7 pubmed 出版商
  57. Hatakeyama J, Sato H, Shimamura K. Developing guinea pig brain as a model for cortical folding. Dev Growth Differ. 2017;59:286-301 pubmed 出版商
  58. del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit Bremer G, Borrell V, et al. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell. 2017;169:621-635.e16 pubmed 出版商
  59. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  60. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  61. Jang S, Choubey S, Furchtgott L, Zou L, Doyle A, Menon V, et al. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. elife. 2017;6: pubmed 出版商
  62. Cruz Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, Fueyo R, et al. PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell. 2017;20:689-705.e9 pubmed 出版商
  63. Geng Z, Walsh P, Truong V, Hill C, Ebeling M, Kapphahn R, et al. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS ONE. 2017;12:e0173575 pubmed 出版商
  64. Choudhary P, Booth H, Gutteridge A, Surmacz B, Louca I, Steer J, et al. Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage. Stem Cells Transl Med. 2017;6:490-501 pubmed 出版商
  65. Zhang Y, Zeng S, Hao Q, Lu H. Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner. Dev Biol. 2017;423:34-45 pubmed 出版商
  66. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  67. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  68. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  69. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  70. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  71. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  72. Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  73. Cho S, Song J, Shin J, Kim S. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model. BMC Ophthalmol. 2016;16:193 pubmed
  74. Fujimura K, Mitsuhashi T, Shibata S, Shimozato S, Takahashi T. In Utero Exposure to Valproic Acid Induces Neocortical Dysgenesis via Dysregulation of Neural Progenitor Cell Proliferation/Differentiation. J Neurosci. 2016;36:10908-10919 pubmed
  75. Pibiri V, Ravarino A, Gerosa C, Pintus M, Fanos V, Faa G. Stem/progenitor cells in the developing human cerebellum: an immunohistochemical study. Eur J Histochem. 2016;60:2686 pubmed 出版商
  76. Broix L, Jagline H, Ivanova E, Schmucker S, Drouot N, Clayton Smith J, et al. Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat Genet. 2016;48:1349-1358 pubmed 出版商
  77. Borgs L, Peyre E, Alix P, Hanon K, Grobarczyk B, Godin J, et al. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Sci Rep. 2016;6:33377 pubmed 出版商
  78. Casco Robles M, Islam M, Inami W, Tanaka H, Kunahong A, Yasumuro H, et al. Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts. Sci Rep. 2016;6:33761 pubmed 出版商
  79. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  80. Hickmott J, Chen C, Arenillas D, Korecki A, Lam S, Molday L, et al. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Mol Ther Methods Clin Dev. 2016;3:16051 pubmed 出版商
  81. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed 出版商
  82. Fang D, Yan S, Yu Q, Chen D, Yan S. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci Rep. 2016;6:31462 pubmed 出版商
  83. Ju X, Hou Q, Sheng A, Wu K, Zhou Y, Jin Y, et al. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. elife. 2016;5: pubmed 出版商
  84. Sun Y, Paşca S, Portmann T, Goold C, Worringer K, Guan W, et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. elife. 2016;5: pubmed 出版商
  85. Gygli P, Chang J, Gokozan H, Catacutan F, Schmidt T, Kaya B, et al. Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging (Albany NY). 2016;8:1540-70 pubmed 出版商
  86. Toda T, Shinmyo Y, Dinh Duong T, Masuda K, Kawasaki H. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals. Sci Rep. 2016;6:29578 pubmed 出版商
  87. Peretz Y, Eren N, Kohl A, Hen G, Yaniv K, Weisinger K, et al. A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biol. 2016;14:57 pubmed 出版商
  88. Wu J, Hussaini S, Bastille I, Rodriguez G, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085-92 pubmed 出版商
  89. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  90. Momcilovic O, Sivapatham R, Oron T, Meyer M, Mooney S, Rao M, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS ONE. 2016;11:e0154890 pubmed 出版商
  91. Douvaras P, Rusielewicz T, Kim K, Haines J, CASACCIA P, Fossati V. Epigenetic Modulation of Human Induced Pluripotent Stem Cell Differentiation to Oligodendrocytes. Int J Mol Sci. 2016;17: pubmed 出版商
  92. Fang J, Shaw P, Wang Y, Goldberg J. Krüppel-Like Factor 4 (KLF4) Is Not Required for Retinal Cell Differentiation. Eneuro. 2016;3: pubmed 出版商
  93. Wu W, Zeng Y, Li Z, Li Q, Xu H, Yin Z. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures - a new donor for cell therapy. Oncotarget. 2016;7:22819-33 pubmed 出版商
  94. Francis K, Ton A, Xin Y, O Halloran P, Wassif C, Malik N, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med. 2016;22:388-96 pubmed 出版商
  95. Díaz Balzac C, Lázaro Peña M, Vázquez Figueroa L, Díaz Balzac R, Garcia Arraras J. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis. PLoS ONE. 2016;11:e0151129 pubmed 出版商
  96. Wang W, Jossin Y, Chai G, Lien W, Tissir F, Goffinet A. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun. 2016;7:10936 pubmed 出版商
  97. Taverna E, Mora Bermúdez F, Strzyz P, Florio M, Icha J, Haffner C, et al. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep. 2016;6:21206 pubmed 出版商
  98. Inami W, Islam M, Nakamura K, Yoshikawa T, Yasumuro H, Casco Robles M, et al. Expression of Two Classes of Pax6 Transcripts in Reprogramming Retinal Pigment Epithelium Cells of the Adult Newt. Zoolog Sci. 2016;33:21-30 pubmed 出版商
  99. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  100. Kovacs G, Szabo V, Pirity M. Absence of Rybp Compromises Neural Differentiation of Embryonic Stem Cells. Stem Cells Int. 2016;2016:4034620 pubmed 出版商
  101. Zhang S, Li Y, Tan R, Tsoi B, Huang W, Huang Y, et al. A new gestational diabetes mellitus model: hyperglycemia-induced eye malformation via inhibition of Pax6 in the chick embryo. Dis Model Mech. 2016;9:177-86 pubmed 出版商
  102. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  103. Grandy R, Whitfield T, Wu H, Fitzgerald M, VanOudenhove J, Zaidi S, et al. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Mol Cell Biol. 2016;36:615-27 pubmed 出版商
  104. Lizio M, Ishizu Y, Itoh M, Lassmann T, Hasegawa A, Kubosaki A, et al. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Front Genet. 2015;6:331 pubmed 出版商
  105. Thomsen E, Mich J, Yao Z, Hodge R, Doyle A, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13:87-93 pubmed 出版商
  106. Small K, DeLuca A, Whitmore S, Rosenberg T, Silva Garcia R, Udar N, et al. North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology. 2016;123:9-18 pubmed 出版商
  107. Choi J, Lee S, Mallard W, Clement K, Tagliazucchi G, Lim H, et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol. 2015;33:1173-81 pubmed 出版商
  108. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  109. Ahn S, Kim T, Kim K, Chung S. Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells. Methods. 2016;101:103-12 pubmed 出版商
  110. Imai Y, Kobayashi Y, Inoshita T, Meng H, Arano T, Uemura K, et al. The Parkinson's Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway. PLoS Genet. 2015;11:e1005503 pubmed 出版商
  111. Parchem R, Moore N, Fish J, Parchem J, Braga T, Shenoy A, et al. miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep. 2015;12:760-73 pubmed 出版商
  112. Ohlemacher S, Iglesias C, Sridhar A, Gamm D, Meyer J. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol. 2015;32:1H.8.1-20 pubmed 出版商
  113. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  114. Zhang P, Yan Z, Wu C, Niu L, Liu N, Xu R. Three puncture sites used for in utero electroporation show no significantly different negative impacts during gene transfer into the embryonic mouse brain. Neurosci Lett. 2014;578:176-81 pubmed 出版商
  115. Fischer A, Zelinka C, Gallina D, Scott M, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 2014;62:1608-28 pubmed 出版商
  116. Akeju O, Davis Dusenbery B, Cassel S, Ichida J, Eggan K. Ketamine exposure in early development impairs specification of the primary germ cell layers. Neurotoxicol Teratol. 2014;43:59-68 pubmed 出版商
  117. Zhang P, Wu C, Liu N, Niu L, Yan Z, Feng Y, et al. Protocadherin 11 x regulates differentiation and proliferation of neural stem cell in vitro and in vivo. J Mol Neurosci. 2014;54:199-210 pubmed 出版商
  118. Lee K, Seo J, Shin J, Ji E, Roh J, Kim J, et al. Positive feedback loop between Sox2 and Sox6 inhibits neuronal differentiation in the developing central nervous system. Proc Natl Acad Sci U S A. 2014;111:2794-9 pubmed 出版商
  119. Singh A, Archer T. Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation. Nucleic Acids Res. 2014;42:2958-75 pubmed 出版商
  120. Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Abe H, et al. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol Lett. 2014;224:424-32 pubmed 出版商
  121. Joven A, Morona R, González A, Moreno N. Spatiotemporal patterns of Pax3, Pax6, and Pax7 expression in the developing brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:3913-53 pubmed 出版商
  122. Boije H, Ring H, Shirazi Fard S, Grundberg I, Nilsson M, Hallböök F. Alternative splicing of the chromodomain protein Morf4l1 pre-mRNA has implications on cell differentiation in the developing chicken retina. J Mol Neurosci. 2013;51:615-28 pubmed 出版商
  123. Liu C, Wang I, Wei F, Chien C. Neuronal intermediate filament ?-internexin is expressed by neuronal lineages in the developing chicken retina. Exp Eye Res. 2013;110:18-25 pubmed 出版商
  124. Wang L, Ohishi T, Akane H, Shiraki A, Itahashi M, Mitsumori K, et al. Reversible effect of developmental exposure to chlorpyrifos on late-stage neurogenesis in the hippocampal dentate gyrus in mouse offspring. Reprod Toxicol. 2013;38:25-36 pubmed 出版商
  125. Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:2088-124 pubmed 出版商
  126. Romero Alemán M, Monzon Mayor M, Santos E, Lang D, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol. 2012;520:2163-84 pubmed 出版商
  127. Moreno N, Dominguez L, Morona R, González A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol. 2012;520:453-78 pubmed 出版商
  128. Bupesh M, Abellan A, Medina L. Genetic and experimental evidence supports the continuum of the central extended amygdala and a mutiple embryonic origin of its principal neurons. J Comp Neurol. 2011;519:3507-31 pubmed 出版商
  129. Moreno N, Morona R, Lopez J, González A. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. J Comp Neurol. 2010;518:4877-902 pubmed 出版商
  130. Romero Alemán M, Monzon Mayor M, Santos E, Yanes C. Expression of neuronal markers, synaptic proteins, and glutamine synthetase in the control and regenerating lizard visual system. J Comp Neurol. 2010;518:4067-87 pubmed 出版商
  131. Tseng Y, Gruzdeva N, Li A, Chuang J, Sung C. Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain. J Comp Neurol. 2010;518:3327-42 pubmed 出版商
  132. Bastien Dionne P, David L, Parent A, Saghatelyan A. Role of sensory activity on chemospecific populations of interneurons in the adult olfactory bulb. J Comp Neurol. 2010;518:1847-61 pubmed 出版商
  133. Yan R, Liang L, Ma W, Li X, Xie W, Wang S. Neurogenin1 effectively reprograms cultured chick retinal pigment epithelial cells to differentiate toward photoreceptors. J Comp Neurol. 2010;518:526-46 pubmed 出版商
  134. Elshatory Y, Deng M, Xie X, Gan L. Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J Comp Neurol. 2007;503:182-97 pubmed
  135. Fischer A, Stanke J, Aloisio G, Hoy H, Stell W. Heterogeneity of horizontal cells in the chicken retina. J Comp Neurol. 2007;500:1154-71 pubmed