这是一篇来自已证抗体库的有关小鼠 增殖细胞核抗原 (Pcna) 的综述,是根据457篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合增殖细胞核抗原 抗体。
圣克鲁斯生物技术
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, SC-56)被用于被用于免疫印迹在小鼠样本上 (图 6b). Liver Res (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa-Cruz, sc56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6b). NPJ Breast Cancer (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 1:1000; 图 s7c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s7c). Nat Commun (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 1:50; 图 2g
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2g). Oncogene (2021) ncbi
小鼠 单克隆(F-2)
  • 免疫组化; 人类; 图 6a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫组化在人类样本上 (图 6a). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3f
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3f). Stem Cell Reports (2021) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 大鼠; 图 s5b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫印迹在大鼠样本上 (图 s5b). Theranostics (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:500; 图 1b
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4c
  • 免疫印迹; 小鼠; 1:500; 图 3j
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4c) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3j). Br J Pharmacol (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 s3-4d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3-4d). elife (2020) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Theranostics (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫印迹在小鼠样本上 (图 8). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, SC25280)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). iScience (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化在小鼠样本上. Cell Death Differ (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 1s1a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫印迹在人类样本上 (图 1s1a). elife (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 6a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:800; 图 9c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, Sc-56)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800 (图 9c). Mol Ther Nucleic Acids (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 s8
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s8). Sci Rep (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:100; 图 3d, 3e
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc?\56)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3d, 3e). CNS Neurosci Ther (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3d). Sci Adv (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 2h
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 2h). Nature (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology,, sc-56)被用于被用于免疫印迹在人类样本上 (图 5e). Sci Adv (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Rep (2019) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:1000; 图 4b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa, sc-25280)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). elife (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大西洋鳉; 1:100; 图 4
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在大西洋鳉样本上浓度为1:100 (图 4). Toxicology (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5a). J Clin Invest (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 图 1a
  • 免疫印迹; 人类; 1:3000; 图 1c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 7i
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 7i). Cell (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology Inc, Sc-56)被用于被用于免疫印迹在人类样本上 (图 3d). Genes Dev (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上 (图 2b). Cell (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 4a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, (sc-56)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 4a). Hepatology (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 1:500; 图 s1d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1d). Science (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology Inc, sc56)被用于被用于免疫印迹在小鼠样本上 (图 1b). Mol Cell (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:5000; 图 4f
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4f). Nat Commun (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 s14e, s15f
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在小鼠样本上 (图 s14e, s15f) 和 被用于免疫印迹在人类样本上 (图 4f). Nat Med (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:5000; 图 4b
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4b). Nat Commun (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3b). Mol Cancer Res (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 e10h
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在小鼠样本上 (图 e10h). Nature (2018) ncbi
小鼠 单克隆(PC10)
  • proximity ligation assay; 小鼠; 图 7d
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, sc-56)被用于被用于proximity ligation assay在小鼠样本上 (图 7d). Cell (2018) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 大鼠; 图 5c
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, sc-25280)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5c). Oncotarget (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:2000; 图 1d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Science (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, PC10)被用于被用于免疫印迹在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 5f
  • 免疫组化; 小鼠; 1:5000; 图 5f
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 5f) 和 被用于免疫组化在小鼠样本上浓度为1:5000 (图 5f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 小鼠; 图 3f
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫印迹在小鼠样本上 (图 3f). Dev Biol (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, SC-56)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). J Invest Dermatol (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 图 6c
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz Biotechnology, sc-56)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6c). Mol Cancer Res (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:500; 图 5c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5c). Exp Ther Med (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 6a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, SC-56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 6a). Nat Chem Biol (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 s10f
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 s10f). Nature (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC-10)被用于被用于免疫印迹在小鼠样本上 (图 4c). Development (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 4g). Cancer Lett (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 图 4a
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, sc-56)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4a). Ann Anat (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:2000; 图 1d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹基因敲除验证; 人类; 图 1d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1d). Biotechniques (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogene (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:500; 图 6F
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6F). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 1e
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, Sc-56)被用于被用于免疫印迹在小鼠样本上 (图 1e). Front Immunol (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). PLoS Genet (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 大鼠; 图 1a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在大鼠样本上 (图 1a). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:3000; 图 s1a
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s1a). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(PC10)
  • dot blot; 人类; 1:5000; 图 2a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, SC-56)被用于被用于dot blot在人类样本上浓度为1:5000 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC-10)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS Genet (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 2c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫印迹在人类样本上 (图 2c). Exp Cell Res (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 1:500; 图 4a
  • 免疫印迹; 人类; 1:4000; 图 1b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 1b). Nat Commun (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术增殖细胞核抗原抗体(SantaCruz, sc-25280)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Prolif (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, SC-56)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上 (图 6a). J Cell Biol (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4b). Mol Med Rep (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术增殖细胞核抗原抗体(santa Cruz, sc-25280)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Gene Ther (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 8). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 5c). Cell Rep (2016) ncbi
小鼠 单克隆(PC11)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc53407)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:100; 图 1
圣克鲁斯生物技术增殖细胞核抗原抗体(santa Cruz, sc-56)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). elife (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫组化; 人类; 1:100; 图 4a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc25280)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4a). Oncotarget (2016) ncbi
小鼠 单克隆(F-2)
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 图 1d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC-10)被用于被用于免疫细胞化学在人类样本上 (图 1d). Cell Rep (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:200; 图 2a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2a). Nat Chem Biol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 鸡; 图 s6
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在鸡样本上 (图 s6). EMBO J (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 大鼠; 图 5c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫印迹在大鼠样本上 (图 5c). Cell Signal (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; pigs ; 图 6
圣克鲁斯生物技术增殖细胞核抗原抗体(santa Cruz, Sc-56)被用于被用于免疫印迹在pigs 样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 s1
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Rep (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-自由浮动切片; 大鼠; 1:250; 图 2a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, SC56)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:250 (图 2a). Endocrinology (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 日本大米鱼; 1:500; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化在日本大米鱼样本上浓度为1:500 (图 3). Development (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Signal (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5e
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5e). Dis Model Mech (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 小鼠; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, PC10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5g
  • 免疫印迹; 小鼠; 1:100; 图 5d
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5g) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 5d). J Biol Chem (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术增殖细胞核抗原抗体(santa cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, SC-56)被用于被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 1:1000; 图 5b
圣克鲁斯生物技术增殖细胞核抗原抗体(santa cruz, SC-56)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5b). Nat Commun (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:200; 图 4
圣克鲁斯生物技术增殖细胞核抗原抗体(santa Cruz, sc-56)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Cell Sci (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7c
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7c). Oncotarget (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 1:100; 图 1
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc56)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 大鼠; 图 2
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化在大鼠样本上 (图 2). Nutr Cancer (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 图 5
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫组化在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
小鼠 单克隆(PC10)
  • proximity ligation assay; 人类; 1:500; 图 3
  • 免疫细胞化学; 人类; 1:400; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于proximity ligation assay在人类样本上浓度为1:500 (图 3) 和 被用于免疫细胞化学在人类样本上浓度为1:400 (图 3). Nat Genet (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; tiger salamander; 1:400; 图 2
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotech, sc-56)被用于被用于免疫组化在tiger salamander样本上浓度为1:400 (图 2). elife (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 2e
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc56)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Oncogene (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:1000; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, PC10)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 7c
圣克鲁斯生物技术增殖细胞核抗原抗体(santa, SC-56)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Nat Cell Biol (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neuroscience (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 图 6b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b). Oncotarget (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology., sc-56)被用于被用于免疫印迹在人类样本上 (图 6). Mol Biosyst (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:200; 图 5
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, SC-56)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). PLoS Genet (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-25280)被用于被用于免疫印迹在人类样本上 (图 2b). PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 小鼠; 1:500
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, cat# SC-56)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. EMBO J (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(PC11)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-53407)被用于被用于免疫印迹在人类样本上. Mol Med Rep (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上. J Proteomics (2015) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-25280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a). PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Inc., SC-56)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术增殖细胞核抗原抗体(santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, F-2)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Cancer Immunol Res (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 图 6
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6). Mar Drugs (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:10,000; 图 2
  • 免疫印迹; 大鼠; 1:10,000; 图 2
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2). BMC Gastroenterol (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, SC-56)被用于被用于免疫细胞化学在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, Sc-56)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biochem (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 图 s3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化在人类样本上 (图 s3). Aging Cell (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC-10)被用于被用于免疫印迹在人类样本上 (图 1). Nature (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruiz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:1000
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, SC-56)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Biol Reprod (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, SC56)被用于被用于免疫印迹在小鼠样本上. Neoplasia (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:100; 图 6
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6). Oncogene (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 4A
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7B
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在小鼠样本上 (图 4A) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7B). Sci Rep (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa, sc-56)被用于被用于免疫印迹在人类样本上 (图 6a). Oncoscience (2014) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-25280)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cell Biol (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Immunol (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:2000; 图 5
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Cell Cycle (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:2000; 图 s1b
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa, SC-56)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1b). Nat Commun (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:2000; 图 7
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:5000. Nat Commun (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 大鼠; 1:5000; 图 2
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). J Trace Elem Med Biol (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 日本大米鱼; 1:400
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫细胞化学在日本大米鱼样本上浓度为1:400. Development (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, Sc56)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:3000
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnologies, sc-56)被用于被用于免疫组化在小鼠样本上浓度为1:3000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; axolotl
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, Sc56)被用于被用于免疫组化在axolotl样本上. Dev Biol (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 大鼠; 1:100
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化在大鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa, sc56)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; South American coati; 1:300
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫组化在South American coati样本上浓度为1:300. Reprod Biol Endocrinol (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 鸡; 1:500; 图 1
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, SC-56)被用于被用于免疫组化在鸡样本上浓度为1:500 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫印迹在人类样本上 (图 1). Methods Mol Biol (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在小鼠样本上. Mol Ther (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; African green monkey
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在African green monkey样本上. Proteomics (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa, SC-56)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5a). Nat Neurosci (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上. DNA Repair (Amst) (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(SCB, sc-56)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:40
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC-10)被用于被用于免疫组化在人类样本上浓度为1:40. Leuk Lymphoma (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC10)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(F-2)
  • 免疫组化; 小鼠; 1:100
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-25280)被用于被用于免疫组化在小鼠样本上浓度为1:100. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:500; 图 s1a
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s1a). Nat Chem Biol (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, PC10)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在大鼠样本上浓度为1:500. J Biol Chem (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 大鼠; 1:300
圣克鲁斯生物技术增殖细胞核抗原抗体(Millipore, SC-56)被用于被用于免疫组化在大鼠样本上浓度为1:300. Toxicol Pathol (2014) ncbi
小鼠 单克隆(PC11)
  • 免疫印迹; 小鼠; 1:2500
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-53407)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. Cancer Res (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 小鼠; 1:400
  • 免疫印迹; 小鼠
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-25280)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 和 被用于免疫印迹在小鼠样本上. Stem Cells (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:100; 图 2
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology Inc, sc-56)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Cancer Res (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-自由浮动切片; 人类; 1:500
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500. J Chem Neuroanat (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC-10)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, PC-10)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(PC10)
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于. EMBO J (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫细胞化学在人类样本上. DNA Repair (Amst) (2012) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上. Mol Cancer Res (2012) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化在人类样本上. EMBO J (2011) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2011) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nucleic Acids Res (2011) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz Biotechnology, sc-56)被用于被用于免疫印迹在人类样本上. J Cell Biol (2010) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-自由浮动切片; 大鼠; 1:20000
圣克鲁斯生物技术增殖细胞核抗原抗体(Santa Cruz, sc-56)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:20000. J Comp Neurol (2007) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7c
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7c). Cell Death Discov (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 大鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, Ab29)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3d). Stem Cell Reports (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a). Redox Biol (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Neurooncol Adv (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 1a). Front Cell Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab152112)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2a). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(PC10)
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, Ab29)被用于. NPJ Aging Mech Dis (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 1e
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 1e). Redox Biol (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:10,000; 图 1c
  • 免疫组化; 小鼠; 1:10,000; 图 2a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在人类样本上浓度为1:10,000 (图 1c) 和 被用于免疫组化在小鼠样本上浓度为1:10,000 (图 2a). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:700; 图 s4b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 s4b). NPJ Parkinsons Dis (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; pigs ; 图 s9
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在pigs 样本上 (图 s9). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 9e
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, 18197)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 9e). Front Med (Lausanne) (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在小鼠样本上 (图 3c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1 ug/ml; 图 4d
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, 18197)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1 ug/ml (图 4d). J Cell Commun Signal (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Cell Death Dis (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:6,400; 图 2c
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在小鼠样本上浓度为1:6,400 (图 2c). Front Pharmacol (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:200; 图 2a
  • 免疫组化; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a) 和 被用于免疫组化在人类样本上浓度为1:200 (图 1a). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • proximity ligation assay; 人类; 1:500; 图 4g
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于proximity ligation assay在人类样本上浓度为1:500 (图 4g). PLoS Genet (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92729)被用于被用于免疫组化在小鼠样本上浓度为1:200. Oncol Rep (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5d). EMBO J (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:3000; 图 4i, s4d
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, Ab29)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4i, s4d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫印迹; 人类; 1:2000; 图 2b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2b). Oncol Lett (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5a). Mar Drugs (2020) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫组化; 斑马鱼; 1:2000; 图 5a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫组化在斑马鱼样本上浓度为1:2000 (图 5a). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:900; 图 4a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, 18197)被用于被用于免疫组化在小鼠样本上浓度为1:900 (图 4a). J Cell Mol Med (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 s11a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 s11a). Theranostics (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). elife (2020) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫组化; 人类; 1:1000; 图 5e
  • 免疫印迹; 人类; 图 s2d
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5e) 和 被用于免疫印迹在人类样本上 (图 s2d). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4b
  • 免疫印迹; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Polymers (Basel) (2020) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫印迹; 人类; 1:2000; 图 2e
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2e). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫印迹在小鼠样本上 (图 4b). Neuron (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a). elife (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 牛; 图 8
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在牛样本上 (图 8). Anim Reprod Sci (2020) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫细胞化学; 人类; 1:100; 图 4e, 4f
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4e, 4f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5e
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5e). Cancer Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 9a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 9a). Cells (2019) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫组化; 人类; 图 s6a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫组化在人类样本上 (图 s6a). Cell Rep (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上 (图 3c). EMBO J (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000; 图 1a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, Ab29)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000 (图 1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 5a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). PLoS ONE (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 1e
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). J Clin Invest (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 s2b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上 (图 s2b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 3d
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000 (图 3d). J Cell Physiol (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 1:50; 图 s1f
  • 免疫印迹; 人类; 1:100; 图 1e, 1h
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s1f) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 1e, 1h). Nat Commun (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s8a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s8a). Development (2018) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫印迹; 人类; 图 s6b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, EPR3821)被用于被用于免疫印迹在人类样本上 (图 s6b). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫印迹; 人类; 图 s1b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, EPR3821)被用于被用于免疫印迹在人类样本上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫细胞化学在人类样本上 (图 2). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 斑马鱼; 1:500; 表 2
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, Ab29)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500 (表 2). Dev Biol (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 6l
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000 (图 6l). Oncotarget (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:500; 表 2
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, PC10)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:500 (表 2). Front Neuroanat (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 大鼠; 图 7b
  • 免疫印迹; 大鼠; 图 7a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在大鼠样本上 (图 7b) 和 被用于免疫印迹在大鼠样本上 (图 7a). Am J Pathol (2017) ncbi
小鼠 单克隆(PC10)
  • reverse phase protein lysate microarray; 人类; 图 st6
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s7a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫印迹; 人类; 1:5000; 图 6B; 6D; 6F
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6B; 6D; 6F). Onco Targets Ther (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 s6
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s6). Nat Commun (2017) ncbi
小鼠 单克隆(PC10)
  • reverse phase protein lysate microarray; 人类; 图 3a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:200; 图 1n
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1n). Cell (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s5a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab15497)被用于被用于免疫印迹在大鼠样本上 (图 5b). Sci Rep (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 猫; 1:1000; 图 5d
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, Ab29)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:1000 (图 5d). Cell Cycle (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; brownbanded bambooshark; 1:250; 图 6e
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在brownbanded bambooshark样本上浓度为1:250 (图 6e). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(abcam, ab18197)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cancer (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在小鼠样本上 (图 5a). Vascul Pharmacol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 3
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(EPR3821)
  • 免疫印迹; 人类; 1:5000; 图 4a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab92552)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4a). Oncotarget (2016) ncbi
小鼠 单克隆(PC10)
  • proximity ligation assay; 人类; 图 3
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(abcam, PC10)被用于被用于proximity ligation assay在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 图 2
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2). Biomed Res Int (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 大鼠; 1:1000; 图 s7
  • 免疫印迹; 小鼠; 1:1000; 图 s7
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s7) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Nat Commun (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 图 2e
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2e). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 图 3c
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫细胞化学在人类样本上 (图 3c). EMBO Rep (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; pigs ; 1:500; 图 3K
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:500 (图 3K). Biores Open Access (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 2). Cell Med (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, Ab29)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; fruit fly ; 1:1000; 图 4c
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, PC10)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 4c). Mol Cell Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4). Int J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s8
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab15497)被用于被用于免疫印迹在小鼠样本上 (图 s8). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, Ab18197)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1). J Cell Sci (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Int J Mol Sci (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 大鼠; 图 2
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在大鼠样本上 (图 2). Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab18197)被用于被用于免疫细胞化学在人类样本上 (图 1b). Vascul Pharmacol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(abcam, ab29)被用于被用于免疫印迹在人类样本上 (图 2a). Int J Mol Sci (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, PC10)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; fruit fly ; 1:20; 图 10
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:20 (图 10). PLoS Genet (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(AbCam, ab29)被用于被用于免疫组化-石蜡切片在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:2000; 图 2e
  • 免疫印迹; 小鼠; 1:2000; 图 5c
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2e) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5c). Mol Med Rep (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Rep (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在人类样本上. Circulation (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Mech Dev (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在小鼠样本上 和 被用于免疫组化在人类样本上. J Cell Physiol (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:20000
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20000. Toxicology (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在大鼠样本上. World J Gastroenterol (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1f). Nat Cell Biol (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 大鼠
  • 抑制或激活实验; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在大鼠样本上, 被用于抑制或激活实验在人类样本上 和 被用于免疫印迹在人类样本上. J Neurosci (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Development (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, ab29)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司增殖细胞核抗原抗体(Abcam, Ab29)被用于被用于免疫组化在小鼠样本上浓度为1:500. Development (2013) ncbi
赛默飞世尔
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 图 2f
赛默飞世尔增殖细胞核抗原抗体(Thermo Scientific, PC-10)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2f). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1d
赛默飞世尔增殖细胞核抗原抗体(Thermo Fisher Scientific, PA5-27214)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1d). J Steroid Biochem Mol Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2b
赛默飞世尔增殖细胞核抗原抗体(生活技术, PA527214)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2b). Protoplasma (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:500; 表 1
赛默飞世尔增殖细胞核抗原抗体(Thermo Fisher, PC10)被用于被用于免疫组化在人类样本上浓度为1:500 (表 1). Ann Anat (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; domestic rabbit; 图 4a
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, 13-3900)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 4a). Int Neurourol J (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 斑马鱼; 图 4
赛默飞世尔增殖细胞核抗原抗体(ZYMED, 13-3900)被用于被用于免疫组化在斑马鱼样本上 (图 4). Stem Cell Reports (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 1b
赛默飞世尔增殖细胞核抗原抗体(Thermo Fisher Scientific, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 1b). Cell Mol Neurobiol (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 1d
赛默飞世尔增殖细胞核抗原抗体(Neo Markers Inc/Lab Vision, PC10)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 1d). Anat Rec (Hoboken) (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 7
赛默飞世尔增殖细胞核抗原抗体(生活技术, 13-3900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 7). J Orthop Res (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 大鼠; 图 3a
赛默飞世尔增殖细胞核抗原抗体(Thermo Fisher, PC10)被用于被用于免疫组化在大鼠样本上 (图 3a). Reprod Sci (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔增殖细胞核抗原抗体(Thermo Scientific, PA5-27214)被用于. Toxicol Mech Methods (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔增殖细胞核抗原抗体(Thermo Scientific, PA5-27214)被用于. Evid Based Complement Alternat Med (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔增殖细胞核抗原抗体(Thermo LabVision, MS-106-B)被用于被用于免疫组化-石蜡切片在大鼠样本上. Andrologia (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔增殖细胞核抗原抗体(Thermo scientific, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 4
赛默飞世尔增殖细胞核抗原抗体(Biosource, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 4). FASEB J (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔增殖细胞核抗原抗体(Lab Vision, MS-106-P)被用于被用于免疫组化-石蜡切片在大鼠样本上. Int J Stem Cells (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, PC10)被用于被用于免疫印迹在人类样本上. Alcohol Clin Exp Res (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:100; 图 3
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, 13?C3900)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). J Bone Miner Res (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:100
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, 13-3900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. J Sex Med (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:100
赛默飞世尔增殖细胞核抗原抗体(Lab Vision, MS-106-R7)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Tumour Biol (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, 13-3900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1). Acta Cir Bras (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔增殖细胞核抗原抗体(Thermo Lab Vision, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上. Liver Int (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:100
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, 13-3900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛默飞世尔增殖细胞核抗原抗体(Thermo Scientific, PC10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Front Neuroanat (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, 133940)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Nat Med (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:400
赛默飞世尔增殖细胞核抗原抗体(Thermo, PC-10)被用于被用于免疫组化在人类样本上浓度为1:400. Nat Commun (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔增殖细胞核抗原抗体(Thermo LabVision, MS-106-B)被用于被用于免疫组化-石蜡切片在大鼠样本上. Toxicol Ind Health (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:400; 表 1
赛默飞世尔增殖细胞核抗原抗体(Thermo scientific, clone PC10)被用于被用于免疫组化在人类样本上浓度为1:400 (表 1). PLoS ONE (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, 13-3900)被用于被用于免疫组化在小鼠样本上 (图 4). Am J Physiol Lung Cell Mol Physiol (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; pigs ; 表 3
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化在pigs 样本上 (表 3). J Comp Pathol (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔增殖细胞核抗原抗体(Zymed, 13-3900)被用于被用于免疫组化在小鼠样本上 (图 4). Dev Biol (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 0.2 mg/ml
赛默飞世尔增殖细胞核抗原抗体(NeoMarkers, Ab-1)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为0.2 mg/ml. Saudi Med J (2013) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:50
赛默飞世尔增殖细胞核抗原抗体(Thermo Lab Vision, MS-106-B)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50. Toxicol Ind Health (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 大鼠; 1:300; 图 4
赛默飞世尔增殖细胞核抗原抗体(Zymed Laboratories, clone PC10)被用于被用于免疫印迹在大鼠样本上浓度为1:300 (图 4). PLoS ONE (2012) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 图 2
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化在人类样本上 (图 2). Cells Tissues Organs (2012) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; domestic rabbit; 图 3
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, PC10)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:200; 图 1
赛默飞世尔增殖细胞核抗原抗体(Zymed, 13-3900)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). Indian J Nephrol (2011) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔增殖细胞核抗原抗体(Zymed, 13-3900)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Bone Miner Res (2011) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔增殖细胞核抗原抗体(Zymed Laboratories, 13-3940)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Genes Dev (2011) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 2
赛默飞世尔增殖细胞核抗原抗体(ZYMED, pc10)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2010) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, 13-3900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Angle Orthod (2011) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 斑马鱼; 1:150; 图 4
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:150 (图 4). J Neurosci (2010) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; Pacific oyster; 1:100
  • 免疫印迹; Pacific oyster; 1:500
赛默飞世尔增殖细胞核抗原抗体(Invitrogen, PC10)被用于被用于免疫组化-石蜡切片在Pacific oyster样本上浓度为1:100 和 被用于免疫印迹在Pacific oyster样本上浓度为1:500. Cell Tissue Res (2010) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Blood (2010) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:400; 图 2
赛默飞世尔增殖细胞核抗原抗体(Biosource, PC10)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 2). Int J Cancer (2009) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 1
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 1). J Immunol (2009) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫细胞化学在人类样本上. Mol Cell Endocrinol (2008) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; budgerigar; 1:100
赛默飞世尔增殖细胞核抗原抗体(Caltag, 60782705)被用于被用于免疫组化-石蜡切片在budgerigar样本上浓度为1:100. J Comp Neurol (2008) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
赛默飞世尔增殖细胞核抗原抗体(NeoMarker, PC10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). Oncol Rep (2008) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 4
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 4). Wound Repair Regen (2007) ncbi
小鼠 单克隆(PC10)
  • 免疫沉淀; 人类; 图 3e
赛默飞世尔增殖细胞核抗原抗体(Zymed Laboratories, PC10)被用于被用于免疫沉淀在人类样本上 (图 3e). J Biol Chem (2007) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:2000; 图 7
赛默飞世尔增殖细胞核抗原抗体(Zymed Laboratories, 13-3900)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). Am J Physiol Heart Circ Physiol (2007) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:2000; 图 7
赛默飞世尔增殖细胞核抗原抗体(Zymed Laboratories, 13-3900)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). Dev Dyn (2007) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 表 1
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (表 1). J Surg Res (2007) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在人类样本上. J Thorac Cardiovasc Surg (2007) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; pigs ; 2 ug/ml; 图 3
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为2 ug/ml (图 3). Domest Anim Endocrinol (2007) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 8
赛默飞世尔增殖细胞核抗原抗体(Zymed, 13-3900)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 8). Anticancer Res (2006) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:100; 图 2
赛默飞世尔增殖细胞核抗原抗体(Zymed, noca)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Cancer Res (2006) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:50
赛默飞世尔增殖细胞核抗原抗体(Zymed Laboratories, pc10)被用于被用于免疫组化在人类样本上浓度为1:50. Chin Med J (Engl) (2006) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔增殖细胞核抗原抗体(Zymed, noca)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Cancer Res (2006) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Am J Physiol Regul Integr Comp Physiol (2006) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 3
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 3). Am J Pathol (2005) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2005) ncbi
小鼠 单克隆(PC10)
  • 免疫沉淀; 仓鼠; 图 3
  • 免疫印迹; 仓鼠; 图 1
赛默飞世尔增殖细胞核抗原抗体(NeoMarkers, PC10)被用于被用于免疫沉淀在仓鼠样本上 (图 3) 和 被用于免疫印迹在仓鼠样本上 (图 1). J Biol Chem (2004) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类; 1:40; 图 1
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化在人类样本上浓度为1:40 (图 1). Fertil Steril (2003) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 4
赛默飞世尔增殖细胞核抗原抗体(Zymed, clone PC10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 4). J Pathol (2003) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类
赛默飞世尔增殖细胞核抗原抗体(分子探针, PC10)被用于被用于免疫细胞化学在人类样本上. Proc Natl Acad Sci U S A (2003) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Bone Miner Res (2002) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; duck; 图 3
赛默飞世尔增殖细胞核抗原抗体(Zymed, 13-3900)被用于被用于免疫组化在duck样本上 (图 3). J Virol (2002) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上. Clin Cancer Res (2002) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在大鼠样本上. Kidney Int (2001) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔增殖细胞核抗原抗体(Zymed, clone PC10)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Kidney Int (2001) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫印迹; 大鼠
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Kidney Int (2001) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛默飞世尔增殖细胞核抗原抗体(Zymed, clone PC10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). J Pathol (2000) ncbi
小鼠 单克隆(PC10)
  • 流式细胞仪; 人类
赛默飞世尔增殖细胞核抗原抗体(Caltag, PC10)被用于被用于流式细胞仪在人类样本上. Cell Death Differ (1999) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; pigs ; 1:100
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100. Arterioscler Thromb Vasc Biol (1999) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; fission yeast; 图 5
赛默飞世尔增殖细胞核抗原抗体(Zymed, 13-3900)被用于被用于免疫印迹在fission yeast样本上 (图 5). J Cell Sci (1999) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛默飞世尔增殖细胞核抗原抗体(Zymed, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Cell Biol (1998) ncbi
BioLegend
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 图 2b
BioLegend增殖细胞核抗原抗体(Biolegend, 307902)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Sci Rep (2021) ncbi
小鼠 单克隆(PC10)
BioLegend增殖细胞核抗原抗体(BioLegend, 307901)被用于. Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(PC10)
  • 流式细胞仪; 人类; 图 s3
BioLegend增殖细胞核抗原抗体(BioLegend, 307908)被用于被用于流式细胞仪在人类样本上 (图 s3). Stem Cell Reports (2020) ncbi
小鼠 单克隆(PC10)
BioLegend增殖细胞核抗原抗体(BioLegend, 307901)被用于. elife (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 6d
BioLegend增殖细胞核抗原抗体(BioLegend, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d). J Clin Invest (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:200; 图 4c
BioLegend增殖细胞核抗原抗体(BioLegend, 307902)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). Nature (2017) ncbi
Novus Biologicals
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 表 1
  • 免疫印迹; 大鼠; 1:1000; 表 1
Novus Biologicals增殖细胞核抗原抗体(Novus Biologicals, NB500-106)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (表 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (表 1). Am J Pathol (2017) ncbi
小鼠 单克隆(PC10)
  • 染色质免疫沉淀 ; brewer's yeast; 图 1
Novus Biologicals增殖细胞核抗原抗体(Santa Cruz, NB500-106)被用于被用于染色质免疫沉淀 在brewer's yeast样本上 (图 1). Nucleic Acids Res (2016) ncbi
GeneTex
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; fishes ; 1:600; 图 5c
GeneTex增殖细胞核抗原抗体(Genetex Inc., GTX-20029)被用于被用于免疫组化-石蜡切片在fishes 样本上浓度为1:600 (图 5c). PLoS ONE (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 乌颊鱼; 1:300; 图 s1
GeneTex增殖细胞核抗原抗体(Genetex, GTX-20029)被用于被用于免疫组化-石蜡切片在乌颊鱼样本上浓度为1:300 (图 s1). PLoS ONE (2015) ncbi
MyBioSource
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
MyBioSource增殖细胞核抗原抗体(MyBioSource, MBS240535)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). Arterioscler Thromb Vasc Biol (2017) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Cancers (Basel) (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:500; 图 5e
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(CST, 2586S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5e). Cell Death Dis (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586S)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 s2). Cell Prolif (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2b). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:200; 图 1d
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, 2586)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). Sci Rep (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:500
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, 2586)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cell Rep (2021) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, 2586)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2c). PLoS Genet (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s1b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(CST, 2586)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s1b). MBio (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, 2586)被用于被用于免疫组化在人类样本上. Cell Rep (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4c
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4c). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在小鼠样本上 (图 5a). Biomed Pharmacother (2020) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
  • 免疫细胞化学; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell signaling, 2586)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d) 和 被用于免疫细胞化学在小鼠样本上 (图 5e). EBioMedicine (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:600; 图 ex1c
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell signaling, 2586)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 ex1c). Nature (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在人类样本上 (图 2b). Biomed Res Int (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(CST, 2586)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Theranostics (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫细胞化学在小鼠样本上 (图 2e). elife (2019) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586s)被用于被用于免疫印迹在人类样本上 (图 7e). J Cell Mol Med (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 s4e
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4e). Nat Cell Biol (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在小鼠样本上 (图 5b). Cell Signal (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586 s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Genome Biol (2018) ncbi
小鼠 单克隆(PC10)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Exp Mol Med (2018) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). Cancer Res (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:2000; 图 3b
  • 免疫组化; 小鼠; 1:4000; 图 7b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(cell signalling, 2586)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3b) 和 被用于免疫组化在小鼠样本上浓度为1:4000 (图 7b). Sci Rep (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 3a
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(cell signalling, 2586)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, 2586)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫细胞化学; 人类; 图 3f
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(CST, 2586)被用于被用于免疫细胞化学在人类样本上 (图 3f). Nature (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在人类样本上 (图 6). Genome Biol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586S)被用于被用于免疫印迹在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell signaling, PC10)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586S)被用于被用于免疫印迹在人类样本上. Autophagy (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(CST, 2586)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cell Cycle (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(cell signalling, PC10)被用于被用于免疫组化在小鼠样本上 (图 5b). Oncogene (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Tech, 2586)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 人类; 图 8
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, 2586)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8). BMC Cancer (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在人类样本上 (图 3a). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signalling, 2586)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Oncogene (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 2b
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, 2586)被用于被用于免疫印迹在小鼠样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 6c). PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, PC10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. J Cell Physiol (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫印迹在人类样本上 (图 6b). Neuroendocrinology (2016) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, #2586)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 大鼠
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell signaling, 2586)被用于被用于免疫组化在大鼠样本上. CNS Neurosci Ther (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 鸡; 1:1000; 图 2a-d
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫组化在鸡样本上浓度为1:1000 (图 2a-d). Dis Model Mech (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 小鼠; 1:300; 图 2, 4, 5
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling, 2586)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2, 4, 5). J Biol Chem (2015) ncbi
小鼠 单克隆(PC10)
  • 免疫印迹; 小鼠; 图 13
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, 2586)被用于被用于免疫印迹在小鼠样本上 (图 13). BMC Nephrol (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化-冰冻切片; 小鼠; 1:3000
  • 免疫印迹; 小鼠; 1:3000
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, 2586)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 和 被用于免疫印迹在小鼠样本上浓度为1:3000. FASEB J (2014) ncbi
小鼠 单克隆(PC10)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司增殖细胞核抗原抗体(Cell Signaling Technology, PC10)被用于被用于免疫组化在人类样本上. Cell Mol Life Sci (2014) ncbi
BioVision
  • 免疫组化; 小鼠; 1:100; 图 7
BioVision增殖细胞核抗原抗体(Biovision, 3350R-100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7). PLoS ONE (2013) ncbi
碧迪BD
小鼠 单克隆(24/PCNA)
  • 免疫印迹; 人类; 图 s1a
碧迪BD增殖细胞核抗原抗体(BD Bioscience, 610664)被用于被用于免疫印迹在人类样本上 (图 s1a). Nat Cell Biol (2021) ncbi
小鼠 单克隆(24/PCNA)
  • 免疫印迹; 人类; 图 s5c
碧迪BD增殖细胞核抗原抗体(BD Biosciences, 610664)被用于被用于免疫印迹在人类样本上 (图 s5c). Oncogene (2019) ncbi
小鼠 单克隆(24/PCNA)
  • 免疫印迹; 人类; 图 1b
碧迪BD增殖细胞核抗原抗体(BD transduction lab, 610665)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Cell (2017) ncbi
小鼠 单克隆(24/PCNA)
  • 免疫组化; 小鼠; 1:100; 图 1
碧迪BD增殖细胞核抗原抗体(BD Transduction Laboratories, 610664)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(24/PCNA)
  • 免疫组化; 小鼠; 1:50; 图 2
碧迪BD增殖细胞核抗原抗体(BD Bioscience, 610664)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2). Oncoscience (2016) ncbi
小鼠 单克隆(24/PCNA)
  • 免疫组化; 小鼠; 1:300; 图 2A;2B
碧迪BD增殖细胞核抗原抗体(BD, 610664)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2A;2B). Oncoscience (2016) ncbi
小鼠 单克隆(24/PCNA)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
碧迪BD增殖细胞核抗原抗体(BD, 610665)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(24/PCNA)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
碧迪BD增殖细胞核抗原抗体(BD Biosciences Pharmingen, 610665)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). Mol Cancer (2015) ncbi
小鼠 单克隆(24/PCNA)
  • 免疫印迹; 人类; 1:5000
碧迪BD增殖细胞核抗原抗体(BR Transduction Laboratories, 610665)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cell Signal (2015) ncbi
文章列表
  1. Xu Y, Chen X, Pan S, Wang Z, Zhu X. TM7SF2 regulates cell proliferation and apoptosis by activation of C-Raf/ERK pathway in cervical cancer. Cell Death Discov. 2021;7:299 pubmed 出版商
  2. Choe D, Lee E, Beeghly Fadiel A, Wilson A, Whalen M, Adunyah S, et al. High-Fat Diet-Induced Obese Effects of Adipocyte-Specific CXCR2 Conditional Knockout in the Peritoneal Tumor Microenvironment of Ovarian Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  3. McClenahan F, Dimitriou C, Koutsakis C, Dimitrakopoulos D, Arampatzis A, Kakouri P, et al. Isolation of neural stem and oligodendrocyte progenitor cells from the brain of live rats. Stem Cell Reports. 2021;16:2534-2547 pubmed 出版商
  4. Mahata T, Sengar A, Basak M, Das K, Pramanick A, Verma S, et al. Hepatic Regulator of G Protein Signaling 6 (RGS6) drives non-alcoholic fatty liver disease by promoting oxidative stress and ATM-dependent cell death. Redox Biol. 2021;46:102105 pubmed 出版商
  5. Sun H, Ni H, McCracken J, Akakpo J, Fulte S, McKeen T, et al. Liver-specific deletion of mechanistic target of rapamycin does not protect against acetaminophen-induced liver injury in mice. Liver Res. 2021;5:79-87 pubmed 出版商
  6. Keane L, Cheray M, Saidi D, Kirby C, Friess L, González Rodríguez P, et al. Inhibition of microglial EZH2 leads to anti-tumoral effects in pediatric diffuse midline gliomas. Neurooncol Adv. 2021;3:vdab096 pubmed 出版商
  7. Gustorff C, Scheuer T, Schmitz T, Buhrer C, Endesfelder S. GABAB Receptor-Mediated Impairment of Intermediate Progenitor Maturation During Postnatal Hippocampal Neurogenesis of Newborn Rats. Front Cell Neurosci. 2021;15:651072 pubmed 出版商
  8. Vanhunsel S, Bergmans S, Beckers A, Etienne I, Van Houcke J, Seuntjens E, et al. The killifish visual system as an in vivo model to study brain aging and rejuvenation. NPJ Aging Mech Dis. 2021;7:22 pubmed 出版商
  9. Wang Z, Guo M, Cui Q, Yuan H, Shan Ji Fu -, Liu B, et al. PARP1 deficiency protects against hyperglycemia-induced neointimal hyperplasia by upregulating TFPI2 activity in diabetic mice. Redox Biol. 2021;46:102084 pubmed 出版商
  10. Jokoji G, Maeda S, Oishi K, Ijuin T, Nakajima M, Tawaratsumida H, et al. CDC5L promotes early chondrocyte differentiation and proliferation by modulating pre-mRNA splicing of SOX9, COL2A1, and WEE1. J Biol Chem. 2021;297:100994 pubmed 出版商
  11. Tulotta C, Lefley D, Moore C, Amariutei A, Spicer Hadlington A, Quayle L, et al. IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer. 2021;7:95 pubmed 出版商
  12. Yoo J, Lee D, Park S, Shin H, Lee K, Kim D, et al. Trophoblast glycoprotein is a marker for efficient sorting of ventral mesencephalic dopaminergic precursors derived from human pluripotent stem cells. NPJ Parkinsons Dis. 2021;7:61 pubmed 出版商
  13. Bailey K, Cartwright S, Patel N, Remmers N, Lazenby A, Hollingsworth M, et al. Porcine pancreatic ductal epithelial cells transformed with KRASG12D and SV40T are tumorigenic. Sci Rep. 2021;11:13436 pubmed 出版商
  14. Tian X, Wang Y, Lu Y, Wang W, Du J, Chen S, et al. Conditional depletion of macrophages ameliorates cholestatic liver injury and fibrosis via lncRNA-H19. Cell Death Dis. 2021;12:646 pubmed 出版商
  15. Hatzopoulos G, Kükenshöner T, Banterle N, Favez T, Flückiger I, Hamel V, et al. Tuning SAS-6 architecture with monobodies impairs distinct steps of centriole assembly. Nat Commun. 2021;12:3805 pubmed 出版商
  16. Liu C, Chi K, Geng X, Hong Q, Mao Z, Huang Q, et al. Exogenous Biological Renal Support Improves Kidney Function in Mice With Rhabdomyolysis-Induced Acute Kidney Injury. Front Med (Lausanne). 2021;8:655787 pubmed 出版商
  17. Huang S, Luo W, Wu G, Shen Q, Zhuang Z, Yang D, et al. Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging (Albany NY). 2021;13:14892-14909 pubmed 出版商
  18. Wang X, Li Z, Shao Q, Zhang C, Wang J, Han Z, et al. The intact parasympathetic nerve promotes submandibular gland regeneration through ductal cell proliferation. Cell Prolif. 2021;54:e13078 pubmed 出版商
  19. Littlejohn E, DeSana A, Williams H, Chapman R, Joseph B, Juras J, et al. IGF1-Stimulated Posttraumatic Hippocampal Remodeling Is Not Dependent on mTOR. Front Cell Dev Biol. 2021;9:663456 pubmed 出版商
  20. Williams H, Wadey K, Frankow A, Blythe H, Forbes T, Johnson J, et al. Aneurysm severity is suppressed by deletion of CCN4. J Cell Commun Signal. 2021;15:421-432 pubmed 出版商
  21. Zhang T, He M, Zhao L, Qin S, Zhu Z, Du X, et al. HDAC6 regulates primordial follicle activation through mTOR signaling pathway. Cell Death Dis. 2021;12:559 pubmed 出版商
  22. Prokakis E, Dyas A, Grün R, Fritzsche S, Bedi U, Kazerouni Z, et al. USP22 promotes HER2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene. 2021;40:4004-4018 pubmed 出版商
  23. Kuai L, Luo Y, Qu K, Ru Y, Luo Y, Ding X, et al. Transcriptomic Analysis of the Mechanisms for Alleviating Psoriatic Dermatitis Using Taodan Granules in an Imiquimod-Induced Psoriasis-like Mouse Model. Front Pharmacol. 2021;12:632414 pubmed 出版商
  24. Mizukoshi M, Kaku M, Thant L, Kitami K, Arai M, Saito I, et al. In vivo cell proliferation analysis and cell-tracing reveal the global cellular dynamics of periodontal ligament cells under mechanical-loading. Sci Rep. 2021;11:9813 pubmed 出版商
  25. Pramanick A, Chakraborti S, Mahata T, Basak M, Das K, Verma S, et al. G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol. 2021;43:101965 pubmed 出版商
  26. Wang H, Gong P, Chen T, Gao S, Wu Z, Wang X, et al. Colorectal Cancer Stem Cell States Uncovered by Simultaneous Single-Cell Analysis of Transcriptome and Telomeres. Adv Sci (Weinh). 2021;8:2004320 pubmed 出版商
  27. Wang S, Li S, Li Y, Jiang Q, Li X, Wang Y, et al. Non-muscle myosin heavy chain 9 maintains intestinal homeostasis by preventing epithelium necroptosis and colitis adenoma formation. Stem Cell Reports. 2021;16:1290-1301 pubmed 出版商
  28. Fang W, Sofia Acevedo D, Smart C, Zinda B, Alissa N, Warren K, et al. Expression of CCL2/CCR2 signaling proteins in breast carcinoma cells is associated with invasive progression. Sci Rep. 2021;11:8708 pubmed 出版商
  29. Park K, Ryoo J, Jeong H, Kim M, Lee S, Hwang S, et al. Aicardi-Goutières syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription-replication conflict regions. PLoS Genet. 2021;17:e1009523 pubmed 出版商
  30. Swahari V, Nakamura A, Hollville E, Stroud H, Simon J, Ptacek T, et al. MicroRNA-29 is an essential regulator of brain maturation through regulation of CH methylation. Cell Rep. 2021;35:108946 pubmed 出版商
  31. Andrade J, Shi C, Costa A, Choi J, Kim J, Doddaballapur A, et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol. 2021;23:413-423 pubmed 出版商
  32. Liu X, Zhang H, Zhou P, Yu Y, Zhang H, Chen L, et al. CREB1 acts via the miR‑922/ARID2 axis to enhance malignant behavior of liver cancer cells. Oncol Rep. 2021;45: pubmed 出版商
  33. Lagnado A, Leslie J, Ruchaud Sparagano M, Victorelli S, Hirsova P, Ogrodnik M, et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 2021;40:e106048 pubmed 出版商
  34. Du J, Yu Q, Liu Y, Du S, Huang L, Xu D, et al. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics. 2021;11:4207-4231 pubmed 出版商
  35. Ryu Y, Lee D, Shim J, Park J, Kim Y, Choi S, et al. KY19382, a novel activator of Wnt/β-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br J Pharmacol. 2021;178:2533-2546 pubmed 出版商
  36. Baxley R, Leung W, Schmit M, Matson J, Yin L, Oram M, et al. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun. 2021;12:1626 pubmed 出版商
  37. Macri S, Di Poï N. Heterochronic Developmental Shifts Underlying Squamate Cerebellar Diversity Unveil the Key Features of Amniote Cerebellogenesis. Front Cell Dev Biol. 2020;8:593377 pubmed 出版商
  38. Dewhurst M, Ow J, Zafer G, Van Hul N, Wollmann H, Bisteau X, et al. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet. 2020;16:e1009084 pubmed 出版商
  39. Watts L, Natsume T, Saito Y, Garzón J, Dong Q, Boteva L, et al. The RIF1-long splice variant promotes G1 phase 53BP1 nuclear bodies to protect against replication stress. elife. 2020;9: pubmed 出版商
  40. Liu W, Li J, Zhang D, Chen B, Wang X, Zhang X, et al. Trefoil factor 1 and gastrokine 2 inhibit Helicobacter pylori-induced proliferation and inflammation in gastric cardia and distal carcinogenesis. Oncol Lett. 2020;20:318 pubmed 出版商
  41. Tyrtyshnaia A, Egorova E, Starinets A, Ponomarenko A, Ermolenko E, Manzhulo I. N-Docosahexaenoylethanolamine Attenuates Neuroinflammation and Improves Hippocampal Neurogenesis in Rats with Sciatic Nerve Chronic Constriction Injury. Mar Drugs. 2020;18: pubmed 出版商
  42. Hoang T, Wang J, Boyd P, Wang F, Santiago C, Jiang L, et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science. 2020;370: pubmed 出版商
  43. Zhao L, Fan M, Zhao L, Yun H, Yang Y, Wang C, et al. Fibroblast growth factor 1 ameliorates adipose tissue inflammation and systemic insulin resistance via enhancing adipocyte mTORC2/Rictor signal. J Cell Mol Med. 2020;24:12813-12825 pubmed 出版商
  44. Sepe L, Hartl K, Iftekhar A, Berger H, Kumar N, Goosmann C, et al. Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells. MBio. 2020;11: pubmed 出版商
  45. Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics. 2020;10:10712-10728 pubmed 出版商
  46. Hasenpusch Theil K, Laclef C, Colligan M, Fitzgerald E, Howe K, Carroll E, et al. A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. elife. 2020;9: pubmed 出版商
  47. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  48. Zanchetta F, Trinca R, Gomes Silva J, Breder J, Cantarutti T, Consonni S, et al. Effects of Electrospun Fibrous Membranes of PolyCaprolactone and Chitosan/Poly(Ethylene Oxide) on Mouse Acute Skin Lesions. Polymers (Basel). 2020;12: pubmed 出版商
  49. Ge W, Tan S, Wang S, Li L, Sun X, Shen W, et al. Single-cell Transcriptome Profiling reveals Dermal and Epithelial cell fate decisions during Embryonic Hair Follicle Development. Theranostics. 2020;10:7581-7598 pubmed 出版商
  50. Viloria K, Nasteska D, Briant L, Heising S, Larner D, Fine N, et al. Vitamin-D-Binding Protein Contributes to the Maintenance of α Cell Function and Glucagon Secretion. Cell Rep. 2020;31:107761 pubmed 出版商
  51. Liu H, Guo D, Sha Y, Zhang C, Jiang Y, Hong L, et al. ANXA7 promotes the cell cycle, proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells by up-regulating CDC5L. Aging (Albany NY). 2020;12:11100-11115 pubmed 出版商
  52. Escande Beillard N, Loh A, Saleem S, Kanata K, Hashimoto Y, Altunoglu U, et al. Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2. Neuron. 2020;107:82-94.e6 pubmed 出版商
  53. Centrone M, Gena P, Ranieri M, Di Mise A, D Agostino M, Mastrodonato M, et al. In Vitro and In Vivo Nutraceutical Characterization of Two Chickpea Accessions: Differential Effects on Hepatic Lipid Over-Accumulation. Antioxidants (Basel). 2020;9: pubmed 出版商
  54. Blackwood C, Bailetti A, Nandi S, Gridley T, Hebert J. Notch Dosage: Jagged1 Haploinsufficiency Is Associated With Reduced Neuronal Division and Disruption of Periglomerular Interneurons in Mice. Front Cell Dev Biol. 2020;8:113 pubmed 出版商
  55. Che H, Li J, Li Y, Ma C, Liu H, Qin J, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. elife. 2020;9: pubmed 出版商
  56. Fong L, Taccioli C, Palamarchuk A, Tagliazucchi G, Jing R, Smalley K, et al. Abrogation of esophageal carcinoma development in miR-31 knockout rats. Proc Natl Acad Sci U S A. 2020;117:6075-6085 pubmed 出版商
  57. Huang G, Liu L, Wang H, Gou M, Gong P, Tian C, et al. Tet1 Deficiency Leads to Premature Reproductive Aging by Reducing Spermatogonia Stem Cells and Germ Cell Differentiation. iScience. 2020;23:100908 pubmed 出版商
  58. Sanz Gómez N, de Pedro I, Ortigosa B, Santamaria D, Malumbres M, de Carcer G, et al. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ. 2020;27:2451-2467 pubmed 出版商
  59. Wutz G, Ladurner R, St Hilaire B, Stocsits R, Nagasaka K, Pignard B, et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. elife. 2020;9: pubmed 出版商
  60. Lai S, Lin H, Liu Y, Yang L, Lu D. Monocarboxylate Transporter 4 Regulates Glioblastoma Motility and Monocyte Binding Ability. Cancers (Basel). 2020;12: pubmed 出版商
  61. Fu C, Mao W, Gao R, Deng Y, Gao L, Wu J, et al. Prostaglandin F2α-PTGFR signaling promotes proliferation of endometrial epithelial cells of cattle through cell cycle regulation. Anim Reprod Sci. 2020;213:106276 pubmed 出版商
  62. Zhang Y, Mao X, Chen W, Guo X, Yu L, Jiang F, et al. A Discovery of Clinically Approved Formula FBRP for Repositioning to Treat HCC by Inhibiting PI3K/AKT/NF-κB Activation. Mol Ther Nucleic Acids. 2020;19:890-904 pubmed 出版商
  63. Liao S, Chen H, Liu M, Gan L, Li C, Zhang W, et al. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging (Albany NY). 2020;12:1527-1544 pubmed 出版商
  64. Famulari E, Navarro Tableros V, Herrera Sanchez M, Bortolussi G, Gai M, Conti L, et al. Human liver stem cells express UGT1A1 and improve phenotype of immunocompromised Crigler Najjar syndrome type I mice. Sci Rep. 2020;10:887 pubmed 出版商
  65. Li C, Chen W, Wang J, Xia M, Jia Z, Guo C, et al. Nicotinamide riboside rescues angiotensin II-induced cerebral small vessel disease in mice. CNS Neurosci Ther. 2020;26:438-447 pubmed 出版商
  66. Suzuki D, Flahou C, Yoshikawa N, Stirblyte I, Hayashi Y, Sawaguchi A, et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports. 2020;14:49-59 pubmed 出版商
  67. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  68. Ding X, Hu H, Huang K, Wei R, Min J, Qi C, et al. Ubiquitination of NOTCH2 by DTX3 suppresses the proliferation and migration of human esophageal carcinoma. Cancer Sci. 2020;111:489-501 pubmed 出版商
  69. Francis R, Guo H, Streutker C, Ahmed M, Yung T, Dirks P, et al. Gastrointestinal transcription factors drive lineage-specific developmental programs in organ specification and cancer. Sci Adv. 2019;5:eaax8898 pubmed 出版商
  70. Piprek R, Kolasa M, Podkowa D, Kloc M, Kubiak J. N-Cadherin Is Critical for the Survival of Germ Cells, the Formation of Steroidogenic Cells, and the Architecture of Developing Mouse Gonads. Cells. 2019;8: pubmed 出版商
  71. Vijayaraj P, Minasyan A, Durra A, Karumbayaram S, Mehrabi M, Aros C, et al. Modeling Progressive Fibrosis with Pluripotent Stem Cells Identifies an Anti-fibrotic Small Molecule. Cell Rep. 2019;29:3488-3505.e9 pubmed 出版商
  72. Sarek G, Kotsantis P, Ruis P, Van Ly D, Margalef P, Borel V, et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019;: pubmed 出版商
  73. Zhan Y, Li R, Feng C, Li X, Huang S, Wang L, et al. Chlorogenic acid inhibits esophageal squamous cell carcinoma growth in vitro and in vivo by downregulating the expression of BMI1 and SOX2. Biomed Pharmacother. 2020;121:109602 pubmed 出版商
  74. Xu M, Qin J, Wang L, Lee H, Kao C, Liu D, et al. Nuclear receptors regulate alternative lengthening of telomeres through a novel noncanonical FANCD2 pathway. Sci Adv. 2019;5:eaax6366 pubmed 出版商
  75. Singh A, Oehler J, Torrecilla I, Kilgas S, Li S, Vaz B, et al. The p97-Ataxin 3 complex regulates homeostasis of the DNA damage response E3 ubiquitin ligase RNF8. EMBO J. 2019;38:e102361 pubmed 出版商
  76. Wessel S, Mohni K, Luzwick J, Dungrawala H, Cortez D. Functional Analysis of the Replication Fork Proteome Identifies BET Proteins as PCNA Regulators. Cell Rep. 2019;28:3497-3509.e4 pubmed 出版商
  77. Matsuno Y, Atsumi Y, Shimizu A, Katayama K, Fujimori H, Hyodo M, et al. Replication stress triggers microsatellite destabilization and hypermutation leading to clonal expansion in vitro. Nat Commun. 2019;10:3925 pubmed 出版商
  78. Yu S, He J. Stochastic cell-cycle entry and cell-state-dependent fate outputs of injury-reactivated tectal radial glia in zebrafish. elife. 2019;8: pubmed 出版商
  79. Salomies L, Eymann J, Khan I, Di Po N. The alternative regenerative strategy of bearded dragon unveils the key processes underlying vertebrate tooth renewal. elife. 2019;8: pubmed 出版商
  80. Wang D, Zheng X, Fu B, Nian Z, Qian Y, Sun R, et al. Hepatectomy promotes recurrence of liver cancer by enhancing IL-11-STAT3 signaling. EBioMedicine. 2019;46:119-132 pubmed 出版商
  81. Zheng H, Zhao Y, Xu Y, Zhang Z, Zhu J, Fan Y, et al. Long-time qingyan formula extract treatment exerts estrogenic activities on reproductive tissues without side effects in ovariectomized rats and via active ER to ERE-independent gene regulation. Aging (Albany NY). 2019;11:4032-4049 pubmed 出版商
  82. Long J, Idoko Akoh A, Mistry B, Goldhill D, Staller E, Schreyer J, et al. Species specific differences in use of ANP32 proteins by influenza A virus. elife. 2019;8: pubmed 出版商
  83. Rühl J, Citterio C, Engelmann C, Haigh T, Dzionek A, Dreyer J, et al. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas. J Clin Invest. 2019;129:2071-2087 pubmed 出版商
  84. Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 2019;569:66-72 pubmed 出版商
  85. Ghaffari R, Di Bona K, Riley C, Richburg J. Copper transporter 1 (CTR1) expression by mouse testicular germ cells, but not Sertoli cells, is essential for functional spermatogenesis. PLoS ONE. 2019;14:e0215522 pubmed 出版商
  86. Szymkowicz D, Sims K, Schwendinger K, Tatnall C, Powell R, Bruce T, et al. Exposure to arsenic during embryogenesis impairs olfactory sensory neuron differentiation and function into adulthood. Toxicology. 2019;420:73-84 pubmed 出版商
  87. Li Y, Li H, Duan Y, Cai X, You D, Zhou F, et al. Blockage of TGF-α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. Biomed Res Int. 2019;2019:8231267 pubmed 出版商
  88. Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, et al. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest. 2019;130: pubmed 出版商
  89. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  90. Jia Q, Yang F, Huang W, Zhang Y, Bao B, Li K, et al. Low Levels of Sox2 are required for Melanoma Tumor-Repopulating Cell Dormancy. Theranostics. 2019;9:424-435 pubmed 出版商
  91. Yoon J, McArthur M, Park J, Basu D, Wakamiya M, Prakash L, et al. Error-Prone Replication through UV Lesions by DNA Polymerase θ Protects against Skin Cancers. Cell. 2019;176:1295-1309.e15 pubmed 出版商
  92. Del Rosario B, Kriz A, Del Rosario A, Anselmo A, Fry C, White F, et al. Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition. elife. 2019;8: pubmed 出版商
  93. Jeong W, Park J, Kim W, Ro E, Jeon S, Lee S, et al. WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun. 2019;10:295 pubmed 出版商
  94. Xia J, Chiu L, Nehring R, Bravo Núñez M, Mei Q, Perez M, et al. Bacteria-to-Human Protein Networks Reveal Origins of Endogenous DNA Damage. Cell. 2019;176:127-143.e24 pubmed 出版商
  95. Moquin D, Genois M, Zhang J, Ouyang J, Yadav T, Buisson R, et al. Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination. Genes Dev. 2019;33:75-89 pubmed 出版商
  96. Mohni K, Wessel S, Zhao R, Wojciechowski A, Luzwick J, Layden H, et al. HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA. Cell. 2019;176:144-153.e13 pubmed 出版商
  97. Koren E, Yosefzon Y, Ankawa R, Soteriou D, Jacob A, Nevelsky A, et al. ARTS mediates apoptosis and regeneration of the intestinal stem cell niche. Nat Commun. 2018;9:4582 pubmed 出版商
  98. Liao L, Zhang S, Zhou G, Ye L, Huang J, Zhao L, et al. Deletion of Runx2 in condylar chondrocytes disrupts TMJ tissue homeostasis. J Cell Physiol. 2019;234:3436-3444 pubmed 出版商
  99. Russell J, Lu W, Okabe H, Abrams M, Oertel M, Poddar M, et al. Hepatocyte-Specific β-Catenin Deletion During Severe Liver Injury Provokes Cholangiocytes to Differentiate Into Hepatocytes. Hepatology. 2019;69:742-759 pubmed 出版商
  100. Saldivar J, Hamperl S, Bocek M, Chung M, Bass T, Cisneros Soberanis F, et al. An intrinsic S/G2 checkpoint enforced by ATR. Science. 2018;361:806-810 pubmed 出版商
  101. Lai C, Liu H, Tin K, Huang Y, Yeh K, Peng H, et al. Identification of UAP1L1 as a critical factor for protein O-GlcNAcylation and cell proliferation in human hepatoma cells. Oncogene. 2019;38:317-331 pubmed 出版商
  102. Bornelöv S, Reynolds N, Xenophontos M, Gharbi S, Johnstone E, Floyd R, et al. The Nucleosome Remodeling and Deacetylation Complex Modulates Chromatin Structure at Sites of Active Transcription to Fine-Tune Gene Expression. Mol Cell. 2018;71:56-72.e4 pubmed 出版商
  103. Li M, Xu X, Chang C, Zheng L, Shen B, Liu Y. SUMO2 conjugation of PCNA facilitates chromatin remodeling to resolve transcription-replication conflicts. Nat Commun. 2018;9:2706 pubmed 出版商
  104. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  105. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  106. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  107. Lei T, Zhang P, Zhang X, Xiao X, Zhang J, Qiu T, et al. Cyclin K regulates prereplicative complex assembly to promote mammalian cell proliferation. Nat Commun. 2018;9:1876 pubmed 出版商
  108. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  109. Lee C, Hsieh T. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal. 2018;47:16-26 pubmed 出版商
  110. Galanos P, Pappas G, Polyzos A, Kotsinas A, Svolaki I, Giakoumakis N, et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018;19:37 pubmed 出版商
  111. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  112. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  113. Tusi B, Wolock S, Weinreb C, Hwang Y, Hidalgo D, Zilionis R, et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature. 2018;555:54-60 pubmed 出版商
  114. Kou W, Xu X, Ji S, Chen M, Liu D, Wang K, et al. The inhibition of the effect and mechanism of vascular intimal hyperplasia in Tiam1 knockout mice. Biochem Biophys Res Commun. 2018;497:248-255 pubmed 出版商
  115. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  116. Soncin F, Khater M, To C, Pizzo D, Farah O, Wakeland A, et al. Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development. 2018;145: pubmed 出版商
  117. Lu L, Finegold M, Johnson R. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp Mol Med. 2018;50:e423 pubmed 出版商
  118. Margalef P, Kotsantis P, Borel V, Bellelli R, Panier S, Boulton S. Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe. Cell. 2018;172:439-453.e14 pubmed 出版商
  119. Qin D, Yan Y, Hu B, Zhang W, Li H, Li X, et al. Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget. 2017;8:98823-98836 pubmed 出版商
  120. Robles Valero J, Lorenzo Martín L, Menacho Márquez M, Fernández Pisonero I, Abad A, Camos M, et al. A Paradoxical Tumor-Suppressor Role for the Rac1 Exchange Factor Vav1 in T Cell Acute Lymphoblastic Leukemia. Cancer Cell. 2017;32:608-623.e9 pubmed 出版商
  121. Somyajit K, Gupta R, Sedlackova H, Neelsen K, Ochs F, Rask M, et al. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science. 2017;358:797-802 pubmed 出版商
  122. Ong D, Hu B, Ho Y, Sauvé C, Bristow C, Wang Q, et al. PAF promotes stemness and radioresistance of glioma stem cells. Proc Natl Acad Sci U S A. 2017;114:E9086-E9095 pubmed 出版商
  123. Otto T, Candido S, Pilarz M, Sicinska E, Bronson R, Bowden M, et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A. 2017;114:10660-10665 pubmed 出版商
  124. Guo H, Kazadaeva Y, Ortega F, Manjunath N, Desai T. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol. 2017;430:214-223 pubmed 出版商
  125. Ngo H, Kim D, Cha Y, Na H, Surh Y. Nrf2 Mutagenic Activation Drives Hepatocarcinogenesis. Cancer Res. 2017;77:4797-4808 pubmed 出版商
  126. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  127. Bj Rås K, Sousa M, Sharma A, Fonseca D, S Gaard C, Bj Rås M, et al. Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication. Nucleic Acids Res. 2017;45:8291-8301 pubmed 出版商
  128. Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee J, et al. Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy. Mol Cell. 2017;66:684-697.e9 pubmed 出版商
  129. Young C, Eckert R, Adhikary G, Crumrine D, Elias P, Blumenberg M, et al. Embryonic AP1 Transcription Factor Deficiency Causes a Collodion Baby-Like Phenotype. J Invest Dermatol. 2017;137:1868-1877 pubmed 出版商
  130. Solek C, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol. 2017;427:131-147 pubmed 出版商
  131. Janda C, Dang L, You C, Chang J, de Lau W, Zhong Z, et al. Surrogate Wnt agonists that phenocopy canonical Wnt and ?-catenin signalling. Nature. 2017;545:234-237 pubmed 出版商
  132. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  133. Kapil S, Sharma B, Patil M, Elattar S, Yuan J, Hou S, et al. The cell polarity protein Scrib functions as a tumor suppressor in liver cancer. Oncotarget. 2017;8:26515-26531 pubmed 出版商
  134. Yuan X, Sun X, Shi X, Jiang C, Yu D, Zhang W, et al. USP39 regulates the growth of SMMC-7721 cells via FoxM1. Exp Ther Med. 2017;13:1506-1513 pubmed 出版商
  135. Moreno N, González A. Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis. Front Neuroanat. 2017;11:24 pubmed 出版商
  136. Morita M, Iwasaki R, Sato Y, Kobayashi T, Watanabe R, Oike T, et al. Elevation of pro-inflammatory cytokine levels following anti-resorptive drug treatment is required for osteonecrosis development in infectious osteomyelitis. Sci Rep. 2017;7:46322 pubmed 出版商
  137. Kang H, Park J, Choi K, Kim Y, Choi H, Jung C, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616-623 pubmed 出版商
  138. Chauvigné F, Ollé J, Gonzalez W, Duncan N, Gimenez I, Cerdà J. Toward developing recombinant gonadotropin-based hormone therapies for increasing fertility in the flatfish Senegalese sole. PLoS ONE. 2017;12:e0174387 pubmed 出版商
  139. Manzanares M, Usui A, Campbell D, Dumur C, Maldonado G, Fausther M, et al. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Am J Pathol. 2017;187:1068-1092 pubmed 出版商
  140. Xiang Y, Laurent B, Hsu C, Nachtergaele S, Lu Z, Sheng W, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543:573-576 pubmed 出版商
  141. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  142. Martín Ibáñez R, Pardo M, Giralt A, Miguez A, Guardia I, Marion Poll L, et al. Helios expression coordinates the development of a subset of striatopallidal medium spiny neurons. Development. 2017;144:1566-1577 pubmed 出版商
  143. Helle J, Keiler A, Zierau O, Dörfelt P, Vollmer G, Lehmann L, et al. Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the 17?-estradiol regulated mRNA transcriptome of the rat uterus. J Steroid Biochem Mol Biol. 2017;171:133-143 pubmed 出版商
  144. Na T, Kim G, Oh H, Lee M, Han Y, Kim K, et al. The trisaccharide raffinose modulates epidermal differentiation through activation of liver X receptor. Sci Rep. 2017;7:43823 pubmed 出版商
  145. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  146. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  147. Li J, Liu Y, Yin Y. ARHGAP1 overexpression inhibits proliferation, migration and invasion of C-33A and SiHa cell lines. Onco Targets Ther. 2017;10:691-701 pubmed 出版商
  148. Yang Y, Hu S, Liu J, Cui Y, Fan Y, Lv T, et al. CD8+ T cells promote proliferation of benign prostatic hyperplasia epithelial cells under low androgen level via modulation of CCL5/STAT5/CCND1 signaling pathway. Sci Rep. 2017;7:42893 pubmed 出版商
  149. Ibrahim M, Elwan W. Role of topical dehydroepiandrosterone in ameliorating isotretinoin-induced Meibomian gland dysfunction in adult male albino rat. Ann Anat. 2017;211:78-87 pubmed 出版商
  150. Maskey R, Flatten K, Sieben C, Peterson K, Baker D, Nam H, et al. Spartan deficiency causes accumulation of Topoisomerase 1 cleavage complexes and tumorigenesis. Nucleic Acids Res. 2017;45:4564-4576 pubmed 出版商
  151. Dietsch F, Donzeau M, Cordonnier A, Weiss E, Chatton B, Vigneron M. A fast method for analyzing essential protein mutants in human cells. Biotechniques. 2017;62:80-82 pubmed 出版商
  152. Liu Z, Yanagisawa K, Griesing S, Iwai M, Kano K, Hotta N, et al. TTF-1/NKX2-1 binds to DDB1 and confers replication stress resistance to lung adenocarcinomas. Oncogene. 2017;36:3740-3748 pubmed 出版商
  153. Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, et al. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res. 2017;45:4532-4549 pubmed 出版商
  154. Bartova E, Suchankova J, Legartova S, Malyšková B, Hornáček M, Skalníková M, et al. PCNA is recruited to irradiated chromatin in late S-phase and is most pronounced in G2 phase of the cell cycle. Protoplasma. 2017;254:2035-2043 pubmed 出版商
  155. Ren W, Yin J, Xiao H, Chen S, Liu G, Tan B, et al. Intestinal Microbiota-Derived GABA Mediates Interleukin-17 Expression during Enterotoxigenic Escherichia coli Infection. Front Immunol. 2016;7:685 pubmed 出版商
  156. Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel S, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495-505 pubmed 出版商
  157. Berghoff S, Gerndt N, Winchenbach J, Stumpf S, Hosang L, Odoardi F, et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun. 2017;8:14241 pubmed 出版商
  158. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  159. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience. 2016;3:337-350 pubmed 出版商
  160. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. Loss of the SWI/SNF ATPase subunits BRM and BRG1 drives lung cancer development. Oncoscience. 2016;3:322-336 pubmed 出版商
  161. Huang Y, Chen N, Miao D. Radioprotective effects of pyrroloquinoline quinone on parotid glands in C57BL/6J mice. Exp Ther Med. 2016;12:3685-3693 pubmed 出版商
  162. Stock P, Bielohuby M, Staege M, Hsu M, Bidlingmaier M, Christ B. Impairment of Host Liver Repopulation by Transplanted Hepatocytes in Aged Rats and the Release by Short-Term Growth Hormone Treatment. Am J Pathol. 2017;187:553-569 pubmed 出版商
  163. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  164. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  165. Shi N, Li C, Cui X, Tomarev S, Chen S. Olfactomedin 2 Regulates Smooth Muscle Phenotypic Modulation and Vascular Remodeling Through Mediating Runt-Related Transcription Factor 2 Binding to Serum Response Factor. Arterioscler Thromb Vasc Biol. 2017;37:446-454 pubmed 出版商
  166. Mórocz M, Zsigmond E, Toth R, Enyedi M, Pintér L, Haracska L. DNA-dependent protease activity of human Spartan facilitates replication of DNA-protein crosslink-containing DNA. Nucleic Acids Res. 2017;45:3172-3188 pubmed 出版商
  167. Li C, Miao Y, Lingeman R, Hickey R, Malkas L. Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis. PLoS ONE. 2016;11:e0169259 pubmed 出版商
  168. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  169. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  170. Mousa H, Shalaby S, Gouda Z, Ahmed F, El Khodary A. Efficacy of human umbilical cord derived-mesenchymal stem cells in treatment of rat bone marrow exposed to gamma irradiation. Ann Anat. 2017;210:64-75 pubmed 出版商
  171. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  172. Jo U, Cai W, Wang J, Kwon Y, D Andrea A, Kim H. PCNA-Dependent Cleavage and Degradation of SDE2 Regulates Response to Replication Stress. PLoS Genet. 2016;12:e1006465 pubmed 出版商
  173. Liao X, Li J, Dong X, Wang X, Xiang Y, Li H, et al. ER? inhibited myocardin-induced differentiation in uterine fibroids. Exp Cell Res. 2017;350:73-82 pubmed 出版商
  174. Wang R, Zhang Y, Xu L, Lin Y, Yang X, Bai L, et al. Protein Inhibitor of Activated STAT3 Suppresses Oxidized LDL-induced Cell Responses during Atherosclerosis in Apolipoprotein E-deficient Mice. Sci Rep. 2016;6:36790 pubmed 出版商
  175. Poncelet L, Garigliany M, Ando K, Franssen M, Desmecht D, Brion J. Cell cycle S phase markers are expressed in cerebral neuron nuclei of cats infected by the Feline Panleukopenia Virus. Cell Cycle. 2016;15:3482-3489 pubmed 出版商
  176. Despras E, Sittewelle M, Pouvelle C, Delrieu N, Cordonnier A, Kannouche P. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat Commun. 2016;7:13326 pubmed 出版商
  177. Atkinson C, Martin K, Fraser G, Collin S. Morphology and distribution of taste papillae and oral denticles in the developing oropharyngeal cavity of the bamboo shark, Chiloscyllium punctatum. Biol Open. 2016;5:1759-1769 pubmed 出版商
  178. Dilley R, Verma P, Cho N, Winters H, Wondisford A, Greenberg R. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature. 2016;539:54-58 pubmed 出版商
  179. Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016;15:64 pubmed
  180. Dönmez M, Inci K, Zeybek N, Dogan H, Ergen A. The Early Histological Effects of Intravesical Instillation of Platelet-Rich Plasma in Cystitis Models. Int Neurourol J. 2016;20:188-196 pubmed
  181. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  182. Wu R, Wang Z, Zhang H, Gan H, Zhang Z. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res. 2017;45:169-180 pubmed 出版商
  183. Kehrli K, Phelps M, Lazarchuk P, Chen E, Monnat R, Sidorova J. Class I Histone Deacetylase HDAC1 and WRN RECQ Helicase Contribute Additively to Protect Replication Forks upon Hydroxyurea-induced Arrest. J Biol Chem. 2016;291:24487-24503 pubmed
  184. Prasad A, Ketsawatsomkron P, Nuno D, Koval O, Dibbern M, Venema A, et al. Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol. 2016;87:172-179 pubmed 出版商
  185. Chen Y, Wang X, Duan C, Chen J, Su M, Jin Y, et al. Loss of TAB3 expression by shRNA exhibits suppressive bioactivity and increased chemical sensitivity of ovarian cancer cell lines via the NF-?B pathway. Cell Prolif. 2016;49:657-668 pubmed 出版商
  186. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  187. Gao Y, Li J, Qiao N, Meng Q, Zhang M, Wang X, et al. Adrenomedullin blockade suppresses sunitinib-resistant renal cell carcinoma growth by targeting the ERK/MAPK pathway. Oncotarget. 2016;7:63374-63387 pubmed 出版商
  188. Olsen J, Wong L, Deimling S, Miles A, Guo H, Li Y, et al. G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports. 2016;7:454-470 pubmed 出版商
  189. Urban V, Dobrovolna J, Huhn D, Fryzelkova J, Bartek J, Janscak P. RECQ5 helicase promotes resolution of conflicts between replication and transcription in human cells. J Cell Biol. 2016;214:401-15 pubmed 出版商
  190. Shi Y, He Z, Jia Z, Xu C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol Med Rep. 2016;14:2921-8 pubmed 出版商
  191. Shen H, Zhao L, Feng X, Xu C, Li C, Niu Y. Lin28A activates androgen receptor via regulation of c-myc and promotes malignancy of ER-/Her2+ breast cancer. Oncotarget. 2016;7:60407-60418 pubmed 出版商
  192. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  193. Engel N, Ali I, Adamus A, Frank M, Dad A, Ali S, et al. Antitumor evaluation of two selected Pakistani plant extracts on human bone and breast cancer cell lines. BMC Complement Altern Med. 2016;16:244 pubmed 出版商
  194. Nelson D, Jaber Hijazi F, Cole J, Robertson N, Pawlikowski J, Norris K, et al. Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biol. 2016;17:158 pubmed 出版商
  195. Chen C, Tsao N, Huang L, Yen Y, Liu X, Lehman C, et al. The Impact of dUTPase on Ribonucleotide Reductase-Induced Genome Instability in Cancer Cells. Cell Rep. 2016;16:1287-1299 pubmed 出版商
  196. Yu X, Sun K, Tang X, Zhou C, Sun H, Yan Z, et al. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer. Oncol Lett. 2016;12:983-988 pubmed
  197. Ocón B, Aranda C, Gámez Belmonte R, Suárez M, Zarzuelo A, Martinez Augustin O, et al. The glucocorticoid budesonide has protective and deleterious effects in experimental colitis in mice. Biochem Pharmacol. 2016;116:73-88 pubmed 出版商
  198. Hampp S, Kiessling T, Buechle K, Mansilla S, Thomale J, Rall M, et al. DNA damage tolerance pathway involving DNA polymerase ? and the tumor suppressor p53 regulates DNA replication fork progression. Proc Natl Acad Sci U S A. 2016;113:E4311-9 pubmed 出版商
  199. Yang C, Suzuki M, Yamakawa S, Uno S, Ishii A, Yamazaki S, et al. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat Commun. 2016;7:12135 pubmed 出版商
  200. Gao Y, Mutter Rottmayer E, Greenwalt A, Goldfarb D, Yan F, Yang Y, et al. A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis. Nat Commun. 2016;7:12105 pubmed 出版商
  201. Guan C, Zhang J, Zhang J, Shi H, Ni R. Enhanced expression of early mitotic inhibitor-1 predicts a poor prognosis in esophageal squamous cell carcinoma patients. Oncol Lett. 2016;12:114-120 pubmed
  202. Hrecka K, Hao C, Shun M, Kaur S, Swanson S, Florens L, et al. HIV-1 and HIV-2 exhibit divergent interactions with HLTF and UNG2 DNA repair proteins. Proc Natl Acad Sci U S A. 2016;113:E3921-30 pubmed 出版商
  203. Barrionuevo F, Hurtado A, Kim G, Real F, Bakkali M, Kopp J, et al. Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration. elife. 2016;5: pubmed 出版商
  204. Trapé A, Liu S, Cortés A, Ueno N, Gonzalez Angulo A. Effects of CDK4/6 Inhibition in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Cells with Acquired Resistance to Paclitaxel. J Cancer. 2016;7:947-56 pubmed 出版商
  205. Wan F, Bai H, Liu J, Tian M, Wang Y, Niu X, et al. Proliferation and Glia-Directed Differentiation of Neural Stem Cells in the Subventricular Zone of the Lateral Ventricle and the Migratory Pathway to the Lesions after Cortical Devascularization of Adult Rats. Biomed Res Int. 2016;2016:3625959 pubmed 出版商
  206. Fang W, Yao M, Brummer G, Acevedo D, Alhakamy N, Berkland C, et al. Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget. 2016;7:49349-49367 pubmed 出版商
  207. Gupta G, Agrawal T, Rai V, Del Core M, Hunter W, Agrawal D. Vitamin D Supplementation Reduces Intimal Hyperplasia and Restenosis following Coronary Intervention in Atherosclerotic Swine. PLoS ONE. 2016;11:e0156857 pubmed 出版商
  208. Kais Z, Rondinelli B, Holmes A, O Leary C, Kozono D, D Andrea A, et al. FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors and Promotes Alternative End-Joining DNA Repair. Cell Rep. 2016;15:2488-99 pubmed 出版商
  209. Wisnovsky S, Jean S, Kelley S. Mitochondrial DNA repair and replication proteins revealed by targeted chemical probes. Nat Chem Biol. 2016;12:567-73 pubmed 出版商
  210. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  211. Romanello M, Schiavone D, Frey A, Sale J. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA. EMBO J. 2016;35:1452-64 pubmed 出版商
  212. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  213. Lin Y, Warren C, Li J, McKinsey T, Russell B. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal. 2016;28:1015-24 pubmed 出版商
  214. Fusté N, Fernández Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, et al. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun. 2016;7:11581 pubmed 出版商
  215. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  216. Ren W, Yin J, Chen S, Duan J, Liu G, Li T, et al. Proteome analysis for the global proteins in the jejunum tissues of enterotoxigenic Escherichia coli -infected piglets. Sci Rep. 2016;6:25640 pubmed 出版商
  217. Sominsky L, Ziko I, Soch A, Smith J, Spencer S. Neonatal overfeeding induces early decline of the ovarian reserve: Implications for the role of leptin. Mol Cell Endocrinol. 2016;431:24-35 pubmed 出版商
  218. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  219. Choe K, Nicolae C, Constantin D, Imamura Kawasawa Y, Delgado Diaz M, De S, et al. HUWE1 interacts with PCNA to alleviate replication stress. EMBO Rep. 2016;17:874-86 pubmed 出版商
  220. Mohr M, Garcia F, Doncarlos L, Sisk C. Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty. Endocrinology. 2016;157:2393-402 pubmed 出版商
  221. Guo J, Wang X, Lu X, Jing R, Li J, Li C, et al. Unraveling molecular effects of ADAR1 overexpression in HEK293T cells by label-free quantitative proteomics. Cell Cycle. 2016;15:1591-601 pubmed 出版商
  222. Raredon M, Rocco K, Gheorghe C, Sivarapatna A, Ghaedi M, Balestrini J, et al. Biomimetic Culture Reactor for Whole-Lung Engineering. Biores Open Access. 2016;5:72-83 pubmed 出版商
  223. Lust K, Sinn R, Pérez Saturnino A, Centanin L, Wittbrodt J. De novo neurogenesis by targeted expression of atoh7 to Müller glia cells. Development. 2016;143:1874-83 pubmed 出版商
  224. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  225. Yin Y, Ren X, Smith C, Guo Q, Malabunga M, Guernah I, et al. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody. Dis Model Mech. 2016;9:563-71 pubmed 出版商
  226. Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss D, Frappart L, et al. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget. 2016;7:23006-18 pubmed 出版商
  227. Muramatsu T, Kozaki K, Imoto S, Yamaguchi R, Tsuda H, Kawano T, et al. The hypusine cascade promotes cancer progression and metastasis through the regulation of RhoA in squamous cell carcinoma. Oncogene. 2016;35:5304-5316 pubmed 出版商
  228. Zhao K, Zhang M, Zhang L, Wang P, Song G, Liu B, et al. Intracellular osteopontin stabilizes TRAF3 to positively regulate innate antiviral response. Sci Rep. 2016;6:23771 pubmed 出版商
  229. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  230. Gu L, Cong J, Zhang J, Tian Y, Zhai X. A microwave antigen retrieval method using two heating steps for enhanced immunostaining on aldehyde-fixed paraffin-embedded tissue sections. Histochem Cell Biol. 2016;145:675-80 pubmed 出版商
  231. Hasegawa K, Yasuda T, Shiraishi C, Fujiwara K, Przedborski S, Mochizuki H, et al. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults. Nat Commun. 2016;7:10943 pubmed 出版商
  232. Zhao H, Wang H, Bauzon F, Lu Z, Fu H, Cui J, et al. Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis. J Biol Chem. 2016;291:10201-9 pubmed 出版商
  233. Kemp M, Sancar A. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. J Biol Chem. 2016;291:9330-42 pubmed 出版商
  234. Di Pietro C, Marazziti D, La Sala G, Abbaszadeh Z, Golini E, Matteoni R, et al. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma. Cell Mol Neurobiol. 2017;37:145-154 pubmed 出版商
  235. Wu G, Zeng G. METCAM/MUC18 is a novel tumor and metastasis suppressor for the human ovarian cancer SKOV3 cells. BMC Cancer. 2016;16:136 pubmed 出版商
  236. Ivanova I, Maringele L. Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt. Nucleic Acids Res. 2016;44:3728-38 pubmed 出版商
  237. Raredon M, Ghaedi M, Calle E, Niklason L. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium. Cell Med. 2015;7:109-21 pubmed 出版商
  238. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  239. Franz A, Pirson P, Pilger D, Halder S, Achuthankutty D, Kashkar H, et al. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun. 2016;7:10612 pubmed 出版商
  240. Walter D, Hoffmann S, Komseli E, Rappsilber J, Gorgoulis V, Sørensen C. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun. 2016;7:10530 pubmed 出版商
  241. Stefanovic M, Tutusaus A, Martinez Nieto G, Bárcena C, de Gregorio E, Moutinho C, et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget. 2016;7:8253-67 pubmed 出版商
  242. Völker Albert M, Pusch M, Fedisch A, Schilcher P, Schmidt A, Imhof A. A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin. Mol Cell Proteomics. 2016;15:945-59 pubmed 出版商
  243. Wang Z, Huang M, Ma X, Li H, Tang T, Guo C. REV1 promotes PCNA monoubiquitylation through interacting with ubiquitylated RAD18. J Cell Sci. 2016;129:1223-33 pubmed 出版商
  244. Allaire J, Roy S, Ouellet C, Lemieux Ã, Jones C, Paquet M, et al. Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. Int J Cancer. 2016;138:2700-12 pubmed 出版商
  245. Bertoldo M, Guibert E, Faure M, Guillou F, Ramé C, Nadal Desbarats L, et al. Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Mol Cell Endocrinol. 2016;423:96-112 pubmed 出版商
  246. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  247. Park K, Yun H, Quang T, Oh H, Lee D, Auh Q, et al. 4-Methoxydalbergione suppresses growth and induces apoptosis in human osteosarcoma cells in vitro and in vivo xenograft model through down-regulation of the JAK2/STAT3 pathway. Oncotarget. 2016;7:6960-71 pubmed 出版商
  248. Benatti P, Belluti S, Miotto B, Neusiedler J, Dolfini D, Drac M, et al. Direct non transcriptional role of NF-Y in DNA replication. Biochim Biophys Acta. 2016;1863:673-85 pubmed 出版商
  249. Aini H, Itaka K, Fujisawa A, Uchida H, Uchida S, Fukushima S, et al. Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci Rep. 2016;6:18743 pubmed 出版商
  250. Hoffmann S, Smedegaard S, Nakamura K, Mortuza G, Räschle M, Ibañez de Opakua A, et al. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress. J Cell Biol. 2016;212:63-75 pubmed 出版商
  251. Eltony S, Elmottaleb N, Gomaa A, Anwar M, el Metwally T. Effect of All-Trans Retinoic Acid on the Pancreas of Streptozotocin-Induced Diabetic Rat. Anat Rec (Hoboken). 2016;299:334-51 pubmed 出版商
  252. Bishayee A, Mandal A, Bhattacharyya P, Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr Cancer. 2016;68:120-30 pubmed 出版商
  253. Egan C, Sodhi C, Good M, Lin J, Jia H, Yamaguchi Y, et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest. 2016;126:495-508 pubmed
  254. Grindheim A, Hollås H, Raddum A, Saraste J, Vedeler A. Reactive oxygen species exert opposite effects on Tyr23 phosphorylation of the nuclear and cortical pools of annexin A2. J Cell Sci. 2016;129:314-28 pubmed 出版商
  255. Ramos A, Gaspar V, Kelmer S, Sellani T, Batista A, De Lima Neto Q, et al. The kin17 Protein in Murine Melanoma Cells. Int J Mol Sci. 2015;16:27912-20 pubmed 出版商
  256. Eakins R, Walsh J, Randle L, Jenkins R, Schuppe Koistinen I, Rowe C, et al. Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome. Sci Rep. 2015;5:16423 pubmed 出版商
  257. Harley M, Murina O, Leitch A, Higgs M, Bicknell L, Yigit G, et al. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nat Genet. 2016;48:36-43 pubmed 出版商
  258. Lyon C, Wadey K, George S. Soluble N-cadherin: A novel inhibitor of VSMC proliferation and intimal thickening. Vascul Pharmacol. 2016;78:53-62 pubmed 出版商
  259. Boj M, Chauvigné F, Zapater C, Cerdà J. Gonadotropin-Activated Androgen-Dependent and Independent Pathways Regulate Aquaporin Expression during Teleost (Sparus aurata) Spermatogenesis. PLoS ONE. 2015;10:e0142512 pubmed 出版商
  260. Rodrigo Albors A, Tazaki A, Rost F, Nowoshilow S, Chara O, Tanaka E. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. elife. 2015;4:e10230 pubmed 出版商
  261. Kanu N, Zhang T, Burrell R, Chakraborty A, Cronshaw J, DaCosta C, et al. RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene. 2016;35:4009-19 pubmed 出版商
  262. Yu D, Makkar G, Dong T, Strickland D, Sarkar R, Monahan T. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS ONE. 2015;10:e0141397 pubmed 出版商
  263. Wang Z, Kim J, Teng Y, Ding H, Zhang J, Hai T, et al. Loss of ATF3 promotes hormone-induced prostate carcinogenesis and the emergence of CK5(+)CK8(+) epithelial cells. Oncogene. 2016;35:3555-64 pubmed 出版商
  264. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  265. Wu Y, Zhao H, Zhou L, Zhao C, Wu Y, Zhen L, et al. miR-134 Modulates the Proliferation of Human Cardiomyocyte Progenitor Cells by Targeting Meis2. Int J Mol Sci. 2015;16:25199-213 pubmed 出版商
  266. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  267. Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, et al. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS ONE. 2015;10:e0140645 pubmed 出版商
  268. Chou C, Chen S, Shun C, Tsao P, Yang Y, Yang J. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device. Sci Rep. 2015;5:15157 pubmed 出版商
  269. Carbone A, Carballo C, Ma R, Wang H, Deng X, Dahia C, et al. Indian hedgehog signaling and the role of graft tension in tendon-to-bone healing: Evaluation in a rat ACL reconstruction model. J Orthop Res. 2016;34:641-9 pubmed 出版商
  270. Othman E, Al Adly D, Elgamal D, Ghandour N, El Sharkawy S. Bisphenol A Concentrates Preferentially in Human Uterine Leiomyoma and Induces Proliferation in Rat Myometrium. Reprod Sci. 2016;23:508-14 pubmed 出版商
  271. Yao M, Xie C, Kiang M, Teng Y, Harman D, Tiffen J, et al. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells. Oncotarget. 2015;6:34458-74 pubmed 出版商
  272. Raman M, Sergeev M, Garnaas M, Lydeard J, Huttlin E, Goessling W, et al. Systematic proteomics of the VCP-UBXD adaptor network identifies a role for UBXN10 in regulating ciliogenesis. Nat Cell Biol. 2015;17:1356-69 pubmed 出版商
  273. Kaku M, Rosales Rocabado J, Kitami M, Ida T, Akiba Y, Yamauchi M, et al. Mechanical Loading Stimulates Expression of Collagen Cross-Linking Associated Enzymes in Periodontal Ligament. J Cell Physiol. 2016;231:926-33 pubmed 出版商
  274. Pearson H, McGlinn E, Phesse T, Schlüter H, Srikumar A, Gödde N, et al. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer. 2015;14:169 pubmed 出版商
  275. Forrest C, McNair K, Pisar M, Khalil O, Darlington L, Stone T. Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine. Neuroscience. 2015;310:91-105 pubmed 出版商
  276. Hasan S, Sultana S. Geraniol attenuates 2-acetylaminofluorene induced oxidative stress, inflammation and apoptosis in the liver of wistar rats. Toxicol Mech Methods. 2015;25:559-73 pubmed 出版商
  277. Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget. 2015;6:29209-23 pubmed 出版商
  278. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  279. Qi D, Wang Q, Li H, Zhang T, Lan R, Kwong D, et al. SILAC-based quantitative proteomics identified lysosome as a fast response target to PDT agent Gd-N induced oxidative stress in human ovarian cancer IGROV1 cells. Mol Biosyst. 2015;11:3059-67 pubmed 出版商
  280. Davila J, Laws M, Kannan A, Li Q, Taylor R, Bagchi M, et al. Rac1 Regulates Endometrial Secretory Function to Control Placental Development. PLoS Genet. 2015;11:e1005458 pubmed 出版商
  281. Cereijo R, Gallego Escuredo J, Moure R, Villarroya J, Domingo J, Fontdevila J, et al. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages. PLoS ONE. 2015;10:e0136571 pubmed 出版商
  282. Shimada M, Dumitrache L, Russell H, McKinnon P. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J. 2015;34:2465-80 pubmed 出版商
  283. Lee S, Kim J, Hong S, Lee A, Park E, Seo H, et al. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer. PLoS ONE. 2015;10:e0135582 pubmed 出版商
  284. Akbari M, Sykora P, Bohr V. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells. Sci Rep. 2015;5:12876 pubmed 出版商
  285. Rocha Caldas G, Oliveira A, Araújo A, Lafayette S, Albuquerque G, Silva Neto J, et al. Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (Eucalyptol). PLoS ONE. 2015;10:e0134558 pubmed 出版商
  286. Ruan Y, Hu K, Chen H. Autophagy inhibition enhances isorhamnetin‑induced mitochondria‑dependent apoptosis in non‑small cell lung cancer cells. Mol Med Rep. 2015;12:5796-806 pubmed 出版商
  287. Oláh G, Szczesny B, Brunyánszki A, López García I, Gerö D, Radák Z, et al. Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress. PLoS ONE. 2015;10:e0134227 pubmed 出版商
  288. Succoio M, Comegna M, D Ambrosio C, Scaloni A, Cimino F, Faraonio R. Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. J Proteomics. 2015;128:18-29 pubmed 出版商
  289. Chen W, Chen C, Chen N, Sung C, Wen Z. Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury. CNS Neurosci Ther. 2015;21:698-707 pubmed 出版商
  290. Li Y, Zhou Q, Hu Z, Yang B, Li Q, Wang J, et al. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice. PLoS ONE. 2015;10:e0132074 pubmed 出版商
  291. Giopanou I, Lilis I, Papaleonidopoulos V, Marazioti A, Spella M, Vreka M, et al. Comprehensive Evaluation of Nuclear Factor-κΒ Expression Patterns in Non-Small Cell Lung Cancer. PLoS ONE. 2015;10:e0132527 pubmed 出版商
  292. Gronowicz G, Secor E, Flynn J, Jellison E, Kuhn L. Therapeutic Touch Has Significant Effects on Mouse Breast Cancer Metastasis and Immune Responses but Not Primary Tumor Size. Evid Based Complement Alternat Med. 2015;2015:926565 pubmed 出版商
  293. Cenci G, Ciapponi L, Marzullo M, Raffa G, Morciano P, Raimondo D, et al. The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres. PLoS Genet. 2015;11:e1005260 pubmed 出版商
  294. Szwarc M, Kommagani R, Jacob A, Dougall W, Ittmann M, Lydon J. Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors. PLoS ONE. 2015;10:e0128467 pubmed 出版商
  295. Xu Y, Wu X, Her C. hMSH5 Facilitates the Repair of Camptothecin-induced Double-strand Breaks through an Interaction with FANCJ. J Biol Chem. 2015;290:18545-58 pubmed 出版商
  296. Kurppa K, Denessiouk K, Johnson M, Elenius K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene. 2016;35:1283-91 pubmed 出版商
  297. Schock E, Chang C, Struve J, Chang Y, Chang J, Delany M, et al. Using the avian mutant talpid2 as a disease model for understanding the oral-facial phenotypes of oral-facial-digital syndrome. Dis Model Mech. 2015;8:855-66 pubmed 出版商
  298. Holtzhausen A, Zhao F, Evans K, Tsutsui M, Orabona C, Tyler D, et al. Melanoma-Derived Wnt5a Promotes Local Dendritic-Cell Expression of IDO and Immunotolerance: Opportunities for Pharmacologic Enhancement of Immunotherapy. Cancer Immunol Res. 2015;3:1082-95 pubmed 出版商
  299. Chen C, Kim K, Lau L. The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene. 2016;35:1314-23 pubmed 出版商
  300. Tembe V, Martino Echarri E, Marzec K, Mok M, Brodie K, Mills K, et al. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function. Cell Signal. 2015;27:1763-71 pubmed 出版商
  301. Erboga M, Aktas C, Kurt O, Uygur R, Caglar V, Turan B, et al. Protective effects of thymoquinone on experimental testicular ischaemia-reperfusion injury: an apoptotic, proliferative and biochemical study. Andrologia. 2016;48:222-30 pubmed 出版商
  302. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  303. Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15:126 pubmed 出版商
  304. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  305. Chen Y, Li X, Guo L, Wu X, He C, Zhang S, et al. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol Med Rep. 2015;12:1645-52 pubmed 出版商
  306. Chong L, Hsu Y, Lee T, Lin Y, Chiu Y, Yang K, et al. Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells. BMC Gastroenterol. 2015;15:22 pubmed 出版商
  307. Markkanen E, Fischer R, Ledentcova M, Kessler B, Dianov G. Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability. Nucleic Acids Res. 2015;43:3667-79 pubmed 出版商
  308. Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep. 2015;12:1050-8 pubmed 出版商
  309. Williams J, Ni H, Haynes A, Manley S, Li Y, Jaeschke H, et al. Chronic Deletion and Acute Knockdown of Parkin Have Differential Responses to Acetaminophen-induced Mitophagy and Liver Injury in Mice. J Biol Chem. 2015;290:10934-46 pubmed 出版商
  310. Yan H, Solozobova V, Zhang P, Armant O, Kuehl B, Brenner Weiss G, et al. p53 is active in murine stem cells and alters the transcriptome in a manner that is reminiscent of mutant p53. Cell Death Dis. 2015;6:e1662 pubmed 出版商
  311. Rondinelli B, Schwerer H, Antonini E, Gaviraghi M, Lupi A, Frenquelli M, et al. H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Res. 2015;43:2560-74 pubmed 出版商
  312. Jeong H, Gil N, Lee H, Cho S, Kim K, Chun K, et al. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem. 2015;116:1602-12 pubmed 出版商
  313. Gibbs Seymour I, Markiewicz E, Bekker Jensen S, Mailand N, Hutchison C. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell. 2015;14:162-9 pubmed 出版商
  314. Ceccaldi R, Liu J, Amunugama R, Hajdu I, Primack B, Petalcorin M, et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature. 2015;518:258-62 pubmed 出版商
  315. Shen Z, Stanger B. YAP regulates S-phase entry in endothelial cells. PLoS ONE. 2015;10:e0117522 pubmed 出版商
  316. Bai M, Yuan M, Liao H, Chen J, Xie B, Yan D, et al. OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma. Oncol Rep. 2015;33:1745-52 pubmed 出版商
  317. Jiang X, Ma T, Zhang Y, Zhang H, Yin S, Zheng W, et al. Specific deletion of Cdh2 in Sertoli cells leads to altered meiotic progression and subfertility of mice. Biol Reprod. 2015;92:79 pubmed 出版商
  318. Schertzer M, Jouravleva K, Perderiset M, Dingli F, Loew D, Le Guen T, et al. Human regulator of telomere elongation helicase 1 (RTEL1) is required for the nuclear and cytoplasmic trafficking of pre-U2 RNA. Nucleic Acids Res. 2015;43:1834-47 pubmed 出版商
  319. Cai K, Wang Y, Smith E, Smedberg J, Yang D, Yang W, et al. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia. 2015;17:89-100 pubmed 出版商
  320. Warnier M, Roudbaraki M, Derouiche S, Delcourt P, Bokhobza A, Prevarskaya N, et al. CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis. Oncogene. 2015;34:5383-94 pubmed 出版商
  321. Liu S, Lee W, Lai D, Wu S, Liu C, Tien H, et al. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol Oncol. 2015;9:834-49 pubmed 出版商
  322. La Sala G, Marazziti D, Di Pietro C, Golini E, Matteoni R, Tocchini Valentini G. Modulation of Dhh signaling and altered Sertoli cell function in mice lacking the GPR37-prosaposin receptor. FASEB J. 2015;29:2059-69 pubmed 出版商
  323. Bárcena C, Stefanovic M, Tutusaus A, Martinez Nieto G, Martinez L, García Ruiz C, et al. Angiogenin secretion from hepatoma cells activates hepatic stellate cells to amplify a self-sustained cycle promoting liver cancer. Sci Rep. 2015;5:7916 pubmed 出版商
  324. Kehrli K, Sidorova J. Mitomycin C reduces abundance of replication forks but not rates of fork progression in primary and transformed human cells. Oncoscience. 2014;1:540-555 pubmed
  325. Mouraret N, Houssaïni A, Abid S, Quarck R, Marcos E, Parpaleix A, et al. Role for telomerase in pulmonary hypertension. Circulation. 2015;131:742-755 pubmed 出版商
  326. Cannito S, Turato C, Paternostro C, Biasiolo A, Colombatto S, Cambieri I, et al. Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells. Oncotarget. 2015;6:2206-21 pubmed
  327. Butin Israeli V, Adam S, Jain N, Otte G, Neems D, Wiesmüller L, et al. Role of lamin b1 in chromatin instability. Mol Cell Biol. 2015;35:884-98 pubmed 出版商
  328. Li W, Ouyang Z, Zhang Q, Wang L, Shen Y, Gu Y, et al. SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca(2+)-ATPase 2. Cell Death Dis. 2014;5:e1581 pubmed 出版商
  329. Bürgler S, Gimeno A, Parente Ribes A, Wang D, Os A, Devereux S, et al. Chronic lymphocytic leukemia cells express CD38 in response to Th1 cell-derived IFN-γ by a T-bet-dependent mechanism. J Immunol. 2015;194:827-35 pubmed 出版商
  330. Bursomanno S, Beli P, Khan A, Minocherhomji S, Wagner S, Bekker Jensen S, et al. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair (Amst). 2015;25:84-96 pubmed 出版商
  331. Qiao X, Roth I, Féraille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion. Cell Cycle. 2014;13:3059-75 pubmed 出版商
  332. Kamel Ismail Z, Morcos M, Eldin Mohammad M, Gamal Aboulkhair A. Enhancement of Neural Stem Cells after Induction of Depression in Male Albino Rats (A histological & Immunohistochemical Study). Int J Stem Cells. 2014;7:70-8 pubmed 出版商
  333. Trasino S, Benoit Y, Gudas L. Vitamin A deficiency causes hyperglycemia and loss of pancreatic β-cell mass. J Biol Chem. 2015;290:1456-73 pubmed 出版商
  334. Fang Q, Inanç B, Schamus S, Wang X, Wei L, Brown A, et al. HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β. Nat Commun. 2014;5:5513 pubmed 出版商
  335. Whittom A, Villarreal A, Soni M, Owusu Duku B, Meshram A, Rajkowska G, et al. Markers of apoptosis induction and proliferation in the orbitofrontal cortex in alcohol dependence. Alcohol Clin Exp Res. 2014;38:2790-9 pubmed 出版商
  336. Rigueur D, Brugger S, Anbarchian T, Kim J, Lee Y, Lyons K. The type I BMP receptor ACVR1/ALK2 is required for chondrogenesis during development. J Bone Miner Res. 2015;30:733-41 pubmed 出版商
  337. Felix Patrício B, Medeiros J, de Souza D, Costa W, Sampaio F. Penile histomorphometrical evaluation in hypertensive rats treated with sildenafil or enalapril alone or in combination: a comparison with normotensive and untreated hypertensive rats. J Sex Med. 2015;12:39-47 pubmed 出版商
  338. Ahmed H, Shousha W, Shalby A, El Mezayen H, Ismaiel N, Mahmoud N. Curcumin: a unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model. Tumour Biol. 2015;36:1667-78 pubmed 出版商
  339. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  340. Arora R, Lee Y, Wischnewski H, Brun C, Schwarz T, Azzalin C. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun. 2014;5:5220 pubmed 出版商
  341. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed 出版商
  342. Medeiros Júnior J, Oliveira F, Silva P, Furriel A, Sampaio F, Gregório B. Lard and/or canola oil-rich diets induce penile morphological alterations in a rat model. Acta Cir Bras. 2014;29 Suppl 1:39-44 pubmed
  343. Gulec S, Collins J. Silencing of the Menkes copper-transporting ATPase (Atp7a) gene increases cyclin D1 protein expression and impairs proliferation of rat intestinal epithelial (IEC-6) cells. J Trace Elem Med Biol. 2014;28:459-64 pubmed 出版商
  344. Centanin L, Ander J, Hoeckendorf B, Lust K, Kellner T, Kraemer I, et al. Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development. 2014;141:3472-82 pubmed 出版商
  345. Wallingford M, Giachelli C. Loss of PiT-1 results in abnormal endocytosis in the yolk sac visceral endoderm. Mech Dev. 2014;133:189-202 pubmed 出版商
  346. Carrillo Sepúlveda M, Keen H, Davis D, Grobe J, Sigmund C. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension. PLoS ONE. 2014;9:e103786 pubmed 出版商
  347. Curto G, Nieto Estévez V, Hurtado Chong A, Valero J, Gómez C, Alonso J, et al. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev. 2014;23:2813-30 pubmed 出版商
  348. Zarzosa A, Grassme K, Tanaka E, Taniguchi Y, Bramke S, Kurth T, et al. Axolotls with an under- or oversupply of neural crest can regulate the sizes of their dorsal root ganglia to normal levels. Dev Biol. 2014;394:65-82 pubmed 出版商
  349. Chen M, Huang Q, Xu W, She C, Xie Z, Mao Y, et al. Low-dose X-ray irradiation promotes osteoblast proliferation, differentiation and fracture healing. PLoS ONE. 2014;9:e104016 pubmed 出版商
  350. LeBlanc K, Walcott M, Gaur T, O Connell S, Basil K, Tadiri C, et al. Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading. J Cell Physiol. 2015;230:440-8 pubmed 出版商
  351. Putiri E, Tiedemann R, Liu C, Choi J, Robertson K. Impact of human MLL/COMPASS and polycomb complexes on the DNA methylome. Oncotarget. 2014;5:6338-52 pubmed
  352. Domitrovic R, Cvijanovic O, Susnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology. 2014;324:98-107 pubmed 出版商
  353. Kienzl Wagner K, Moschen A, Geiger S, Bichler A, Aigner F, Brandacher G, et al. The role of lipocalin-2 in liver regeneration. Liver Int. 2015;35:1195-202 pubmed 出版商
  354. Furriel A, Campos Silva P, Silva P, Costa W, Sampaio F, Gregório B. Diets rich in saturated and polyunsaturated fatty acids induce morphological alterations in the rat ventral prostate. PLoS ONE. 2014;9:e102876 pubmed 出版商
  355. Lo Sasso G, Ryu D, Mouchiroud L, Fernando S, Anderson C, Katsyuba E, et al. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS ONE. 2014;9:e102495 pubmed 出版商
  356. Lin B, Gupta D, Heinen C. Human pluripotent stem cells have a novel mismatch repair-dependent damage response. J Biol Chem. 2014;289:24314-24 pubmed 出版商
  357. Favaron P, Morini J, Mess A, Miglino M, Ambrosio C. Placentation and fetal membrane development in the South American coati, Nasua nasua (Mammalia, Carnivora, Procyonidae). Reprod Biol Endocrinol. 2014;12:57 pubmed 出版商
  358. Herrera A, Saade M, Menendez A, Marti E, Pons S. Sustained Wnt/?-catenin signalling causes neuroepithelial aberrations through the accumulation of aPKC at the apical pole. Nat Commun. 2014;5:4168 pubmed 出版商
  359. Gonzalez Gomez M, Meyer G. Dynamic expression of calretinin in embryonic and early fetal human cortex. Front Neuroanat. 2014;8:41 pubmed 出版商
  360. Hayashi A, Suenaga N, Shiomi Y, Nishitani H. PCNA-dependent ubiquitination of Cdt1 and p21 in mammalian cells. Methods Mol Biol. 2014;1170:367-82 pubmed 出版商
  361. Chong H, Chan J, Goh C, Gounko N, Luo B, Wang X, et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther. 2014;22:1593-604 pubmed 出版商
  362. Chien P, Hsieh H, Chi P, Yang C. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol. 2014;171:4504-19 pubmed 出版商
  363. Kim S, Lee S, Lee S, Park J, Ryu D. Arsenite-induced changes in hepatic protein abundance in cynomolgus monkeys (Macaca fascicularis). Proteomics. 2014;14:1833-43 pubmed 出版商
  364. Li X, Nadauld L, Ootani A, Corney D, Pai R, Gevaert O, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med. 2014;20:769-77 pubmed 出版商
  365. Katyal S, Lee Y, Nitiss K, Downing S, Li Y, Shimada M, et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci. 2014;17:813-21 pubmed 出版商
  366. Edwards J, Bruno J, Key P, Cheng Y. Absence of chloride intracellular channel 4 (CLIC4) predisposes to acute kidney injury but has minimal impact on recovery. BMC Nephrol. 2014;15:54 pubmed 出版商
  367. Akbari M, Keijzers G, Maynard S, Scheibye Knudsen M, Desler C, Hickson I, et al. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair (Amst). 2014;16:44-53 pubmed 出版商
  368. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  369. Chen W, Ho C, Chang Y, Chen H, Lin C, Ling T, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472 pubmed 出版商
  370. Hassan H, Varney M, Jain S, Weisenburger D, Singh R, Dave B. Disruption of chromosomal locus 1p36 differentially modulates TAp73 and ΔNp73 expression in follicular lymphoma. Leuk Lymphoma. 2014;55:2924-31 pubmed 出版商
  371. Namba F, Go H, Murphy J, La P, Yang G, Sengupta S, et al. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model. PLoS ONE. 2014;9:e90936 pubmed 出版商
  372. Qian H, Shi J, Fan T, Lv J, Chen S, Song C, et al. Sophocarpine attenuates liver fibrosis by inhibiting the TLR4 signaling pathway in rats. World J Gastroenterol. 2014;20:1822-32 pubmed 出版商
  373. Lee M, Wang L, Chang Z. The contribution of mitochondrial thymidylate synthesis in preventing the nuclear genome stress. Nucleic Acids Res. 2014;42:4972-84 pubmed 出版商
  374. Alabert C, Bukowski Wills J, Lee S, Kustatscher G, Nakamura K, de Lima Alves F, et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol. 2014;16:281-93 pubmed 出版商
  375. Son A, Sheleg M, Cooper M, Sun Y, Kleiman N, Zhou R. Formation of persistent hyperplastic primary vitreous in ephrin-A5-/- mice. Invest Ophthalmol Vis Sci. 2014;55:1594-606 pubmed 出版商
  376. Liang Q, Dexheimer T, Zhang P, Rosenthal A, Villamil M, You C, et al. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol. 2014;10:298-304 pubmed 出版商
  377. McQueen J, Reimer M, Holland P, Manso Y, McLaughlin M, Fowler J, et al. Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion. PLoS ONE. 2014;9:e87227 pubmed 出版商
  378. Xiao W, Feng Y, Holst J, Hartmann B, Yang H, Teitelbaum D. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition. FASEB J. 2014;28:2073-87 pubmed 出版商
  379. Chen M, Zhang Y, Yu V, Chong Y, Yoshioka T, Ge R. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction. Cell Death Differ. 2014;21:797-810 pubmed 出版商
  380. Redmond E, Liu W, Hamm K, Hatch E, Cahill P, Morrow D. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling. PLoS ONE. 2014;9:e84122 pubmed 出版商
  381. Liu F, Wang X, Hu G, Wang Y, Zhou J. The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function. J Biol Chem. 2014;289:3308-16 pubmed 出版商
  382. Uygur R, Aktas C, Caglar V, Uygur E, Erdogan H, Ozen O. Protective effects of melatonin against arsenic-induced apoptosis and oxidative stress in rat testes. Toxicol Ind Health. 2016;32:848-59 pubmed 出版商
  383. Li M, Zhang Q, Liu L, Lu W, Wei H, Li R, et al. Expression of the mismatch repair gene hMLH1 is enhanced in non-small cell lung cancer with EGFR mutations. PLoS ONE. 2013;8:e78500 pubmed 出版商
  384. Tseng M, Fu Q, Lor K, Fernandez Botran G, Deng Z, Graham U, et al. Persistent hepatic structural alterations following nanoceria vascular infusion in the rat. Toxicol Pathol. 2014;42:984-96 pubmed 出版商
  385. Huang Y, Dai L, Gaines D, Droz Rosario R, Lu H, Liu J, et al. BCCIP suppresses tumor initiation but is required for tumor progression. Cancer Res. 2013;73:7122-33 pubmed 出版商
  386. Xu W, Liu C, Kaartinen V, Chen H, Lu C, Zhang W, et al. TACE in perinatal mouse lung epithelial cells promotes lung saccular formation. Am J Physiol Lung Cell Mol Physiol. 2013;305:L953-63 pubmed 出版商
  387. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  388. Absalon S, Kochanek D, Raghavan V, Krichevsky A. MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33:14645-59 pubmed 出版商
  389. Bracarense A, Yamasaki L, Silva E, Oliveira R, Alfieri A. Helicobacter spp. infection induces changes in epithelial proliferation and E-cadherin expression in the gastric mucosa of pigs. J Comp Pathol. 2013;149:402-9 pubmed 出版商
  390. Estrada K, Wang W, Retting K, Chien C, Elkhoury F, Heuchel R, et al. Smad7 regulates terminal maturation of chondrocytes in the growth plate. Dev Biol. 2013;382:375-84 pubmed 出版商
  391. Knoblich K, Wang H, Sharma C, Fletcher A, Turley S, Hemler M. Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits ?-catenin degradation. Cell Mol Life Sci. 2014;71:1305-14 pubmed 出版商
  392. Yuan J, Zhang D, Wang L, Liu M, Mao J, Yin Y, et al. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells. 2013;31:2538-50 pubmed 出版商
  393. Yin Y, Betsuyaku T, Garbow J, Miao J, Govindan R, Ornitz D. Rapid induction of lung adenocarcinoma by fibroblast growth factor 9 signaling through FGF receptor 3. Cancer Res. 2013;73:5730-41 pubmed 出版商
  394. Kaplanoglu G, Bahcelioglu M, Gozil R, Helvacioglu F, Buru E, Tekindal M, et al. Effects of green tea and vitamin E in the testicular tissue of streptozotocin-induced diabetic rats. Saudi Med J. 2013;34:734-43 pubmed
  395. Palavicini J, Lloyd B, Hayes C, Bianchi E, Kang D, Dawson Scully K, et al. RanBP9 Plays a Critical Role in Neonatal Brain Development in Mice. PLoS ONE. 2013;8:e66908 pubmed 出版商
  396. Dieriks B, Waldvogel H, Monzo H, Faull R, Curtis M. GABA(A) receptor characterization and subunit localization in the human sub-ventricular zone. J Chem Neuroanat. 2013;52:58-68 pubmed 出版商
  397. Wei Q, Li J, Liu T, Tong X, Ye X. Phosphorylation of minichromosome maintenance protein 7 (MCM7) by cyclin/cyclin-dependent kinase affects its function in cell cycle regulation. J Biol Chem. 2013;288:19715-25 pubmed 出版商
  398. Oshikawa M, Okada K, Nakajima K, Ajioka I. Cortical excitatory neurons become protected from cell division during neurogenesis in an Rb family-dependent manner. Development. 2013;140:2310-20 pubmed 出版商
  399. Sigurdsson V, Ingthorsson S, Hilmarsdottir B, Gustafsdottir S, Franzdóttir S, Arason A, et al. Expression and functional role of sprouty-2 in breast morphogenesis. PLoS ONE. 2013;8:e60798 pubmed 出版商
  400. Kim H, Woo H, Ryu J, Bok J, Kim J, Choi S, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS ONE. 2013;8:e55609 pubmed 出版商
  401. Jin L, Craven R. The Rak/Frk tyrosine kinase associates with and internalizes the epidermal growth factor receptor. Oncogene. 2014;33:326-35 pubmed 出版商
  402. Toydemir T, Kanter M, Erboga M, Oguz S, Erenoglu C. Antioxidative, antiapoptotic, and proliferative effect of curcumin on liver regeneration after partial hepatectomy in rats. Toxicol Ind Health. 2015;31:162-72 pubmed 出版商
  403. Zhang Y, Lam O, Nguyen M, Ng G, Pear W, Ai W, et al. Mastermind-like transcriptional co-activator-mediated Notch signaling is indispensable for maintaining conjunctival epithelial identity. Development. 2013;140:594-605 pubmed 出版商
  404. Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 2013;32:340-53 pubmed 出版商
  405. Culver Cochran A, Chadwick B. The WSTF-ISWI chromatin remodeling complex transiently associates with the human inactive X chromosome during late S-phase prior to BRCA1 and γ-H2AX. PLoS ONE. 2012;7:e50023 pubmed 出版商
  406. Li R, Strykowski R, Meyer M, Mulcrone P, Krakora D, Suzuki M. Male-specific differences in proliferation, neurogenesis, and sensitivity to oxidative stress in neural progenitor cells derived from a rat model of ALS. PLoS ONE. 2012;7:e48581 pubmed 出版商
  407. Solarczyk K, Zarebski M, Dobrucki J. Inducing local DNA damage by visible light to study chromatin repair. DNA Repair (Amst). 2012;11:996-1002 pubmed 出版商
  408. Svilar D, Dyavaiah M, Brown A, Tang J, Li J, McDonald P, et al. Alkylation sensitivity screens reveal a conserved cross-species functionome. Mol Cancer Res. 2012;10:1580-96 pubmed 出版商
  409. Zhang C, Gurevich I, Aneskievich B. Organotypic modeling of human keratinocyte response to peroxisome proliferators. Cells Tissues Organs. 2012;196:431-41 pubmed 出版商
  410. Wen Q, Jin D, Zhou C, Zhou M, Luo W, Ma L. HGF-transgenic MSCs can improve the effects of tissue self-repair in a rabbit model of traumatic osteonecrosis of the femoral head. PLoS ONE. 2012;7:e37503 pubmed 出版商
  411. Restivo G, Nguyen B, Dziunycz P, Ristorcelli E, Ryan R, Özuysal Ö, et al. IRF6 is a mediator of Notch pro-differentiation and tumour suppressive function in keratinocytes. EMBO J. 2011;30:4571-85 pubmed 出版商
  412. Bollain y Goytia J, González Castañeda M, Torres Del Muro F, Daza Benítez L, Zapata Benavides P, Rodriguez Padilla C, et al. Increased excretion of urinary podocytes in lupus nephritis. Indian J Nephrol. 2011;21:166-71 pubmed 出版商
  413. Tan M, Lim H, Harper J. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol. 2011;31:3687-99 pubmed 出版商
  414. Estrada K, Retting K, Chin A, Lyons K. Smad6 is essential to limit BMP signaling during cartilage development. J Bone Miner Res. 2011;26:2498-510 pubmed 出版商
  415. Benatti P, Dolfini D, Vigano A, Ravo M, Weisz A, Imbriano C. Specific inhibition of NF-Y subunits triggers different cell proliferation defects. Nucleic Acids Res. 2011;39:5356-68 pubmed 出版商
  416. Das M, Garlick D, Greiner D, Davis R. The role of JNK in the development of hepatocellular carcinoma. Genes Dev. 2011;25:634-45 pubmed 出版商
  417. Day T, Palle K, Barkley L, Kakusho N, Zou Y, Tateishi S, et al. Phosphorylated Rad18 directs DNA polymerase η to sites of stalled replication. J Cell Biol. 2010;191:953-66 pubmed 出版商
  418. Baydoun H, Pancewicz J, Bai X, Nicot C. HTLV-I p30 inhibits multiple S phase entry checkpoints, decreases cyclin E-CDK2 interactions and delays cell cycle progression. Mol Cancer. 2010;9:302 pubmed 出版商
  419. Barnouti Z, Owtad P, Shen G, Petocz P, Darendeliler M. The biological mechanisms of PCNA and BMP in TMJ adaptive remodeling. Angle Orthod. 2011;81:91-99 pubmed 出版商
  420. Maurer C, Schonthaler H, Mueller K, Neuhauss S. Distinct retinal deficits in a zebrafish pyruvate dehydrogenase-deficient mutant. J Neurosci. 2010;30:11962-72 pubmed 出版商
  421. Franco A, Jouaux A, Mathieu M, Sourdaine P, Lelong C, Kellner K, et al. Proliferating cell nuclear antigen in gonad and associated storage tissue of the Pacific oyster Crassostrea gigas: seasonal immunodetection and expression in laser microdissected tissues. Cell Tissue Res. 2010;340:201-10 pubmed 出版商
  422. Craig V, Arnold I, Gerke C, Huynh M, Wündisch T, Neubauer A, et al. Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins. Blood. 2010;115:581-91 pubmed 出版商
  423. Chimploy K, Díaz G, Li Q, Carter O, Dashwood W, Mathews C, et al. E2F4 and ribonucleotide reductase mediate S-phase arrest in colon cancer cells treated with chlorophyllin. Int J Cancer. 2009;125:2086-94 pubmed 出版商
  424. Sayi A, Kohler E, Hitzler I, Arnold I, Schwendener R, Rehrauer H, et al. The CD4+ T cell-mediated IFN-gamma response to Helicobacter infection is essential for clearance and determines gastric cancer risk. J Immunol. 2009;182:7085-101 pubmed 出版商
  425. Gupta V, Bhasin S, Guo W, Singh R, Miki R, Chauhan P, et al. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol Cell Endocrinol. 2008;296:32-40 pubmed 出版商
  426. Striedter G, Charvet C. Developmental origins of species differences in telencephalon and tectum size: morphometric comparisons between a parakeet (Melopsittacus undulatus) and a quail (Colinus virgianus). J Comp Neurol. 2008;507:1663-75 pubmed 出版商
  427. Li M, Liu L, Wang Z, Wang L, Liu Z, Xu G, et al. Overexpression of hMSH2 and hMLH1 protein in certain gastric cancers and their surrounding mucosae. Oncol Rep. 2008;19:401-6 pubmed
  428. Fu X, Fang L, Li H, Li X, Cheng B, Sheng Z. Adipose tissue extract enhances skin wound healing. Wound Repair Regen. 2007;15:540-8 pubmed
  429. Klaile E, Müller M, Kannicht C, Otto W, Singer B, Reutter W, et al. The cell adhesion receptor carcinoembryonic antigen-related cell adhesion molecule 1 regulates nucleocytoplasmic trafficking of DNA polymerase delta-interacting protein 38. J Biol Chem. 2007;282:26629-40 pubmed
  430. Dupasquier C, Dibrov E, Kneesh A, Cheung P, Lee K, Alexander H, et al. Dietary flaxseed inhibits atherosclerosis in the LDL receptor-deficient mouse in part through antiproliferative and anti-inflammatory actions. Am J Physiol Heart Circ Physiol. 2007;293:H2394-402 pubmed
  431. Boyle S, Shioda T, Perantoni A, De Caestecker M. Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn. 2007;236:2321-30 pubmed
  432. Fuller T, Rose F, Singleton K, Linde Y, Hoff U, Freise C, et al. Glutamine donor pretreatment in rat kidney transplants with severe preservation reperfusion injury. J Surg Res. 2007;140:77-83 pubmed
  433. Olariu A, Cleaver K, Cameron H. Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. J Comp Neurol. 2007;501:659-67 pubmed
  434. Hammoud Z, Badve S, Saxena R, Kesler K, Rieger K, Malkas L, et al. A novel biomarker for the detection of esophageal adenocarcinoma. J Thorac Cardiovasc Surg. 2007;133:82-7 pubmed
  435. Masters R, Crean B, Yan W, Moss A, Ryan P, Wiley A, et al. Neonatal porcine endometrial development and epithelial proliferation affected by age and exposure to estrogen and relaxin. Domest Anim Endocrinol. 2007;33:335-46 pubmed
  436. Arellanes Robledo J, Marquez Rosado L, Perez Carreon J, Fattel Fazenda S, Aguirre García J, Villa Treviño S. Celecoxib induces regression of putative preneoplastic lesions in rat liver. Anticancer Res. 2006;26:1271-80 pubmed
  437. Adolphe C, Hetherington R, Ellis T, Wainwright B. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res. 2006;66:2081-8 pubmed
  438. Cao Y, Zhang M, Wang J, Zhang W, Li G, Zhao J. Recurrent intracranial hemangiopericytoma with multiple metastases. Chin Med J (Engl). 2006;119:169-73 pubmed
  439. Allen T, van Tuyl M, Iyengar P, Jothy S, Post M, Tsao M, et al. Grg1 acts as a lung-specific oncogene in a transgenic mouse model. Cancer Res. 2006;66:1294-301 pubmed
  440. Ray P, Tassi E, Liu X, Wellstein A. Role of fibroblast growth factor-binding protein in the pathogenesis of HIV-associated hemolytic uremic syndrome. Am J Physiol Regul Integr Comp Physiol. 2006;290:R105-13 pubmed
  441. Mueller A, O Rourke J, Chu P, Chu A, Dixon M, Bouley D, et al. The role of antigenic drive and tumor-infiltrating accessory cells in the pathogenesis of helicobacter-induced mucosa-associated lymphoid tissue lymphoma. Am J Pathol. 2005;167:797-812 pubmed
  442. Nesslein L, Melton K, Ikegami M, Na C, Wert S, Rice W, et al. Partial SP-B deficiency perturbs lung function and causes air space abnormalities. Am J Physiol Lung Cell Mol Physiol. 2005;288:L1154-61 pubmed
  443. Naryzhny S, Lee H. The post-translational modifications of proliferating cell nuclear antigen: acetylation, not phosphorylation, plays an important role in the regulation of its function. J Biol Chem. 2004;279:20194-9 pubmed
  444. Bar Shira Maymon B, Yogev L, Yavetz H, Lifschitz Mercer B, Schreiber L, Kleiman S, et al. Spermatogonial proliferation patterns in men with azoospermia of different etiologies. Fertil Steril. 2003;80:1175-80 pubmed
  445. Chang K, Huang X, Medeiros L, Jones D. Germinal centre-like versus undifferentiated stromal immunophenotypes in follicular lymphoma. J Pathol. 2003;201:404-12 pubmed
  446. Hoek M, Stillman B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci U S A. 2003;100:12183-8 pubmed
  447. Ritter C, Martin D, Lu Y, Slatopolsky E, Brown A. Reversal of secondary hyperparathyroidism by phosphate restriction restores parathyroid calcium-sensing receptor expression and function. J Bone Miner Res. 2002;17:2206-13 pubmed
  448. Addison W, Walters K, Wong W, Wilson J, Madej D, Jewell L, et al. Half-life of the duck hepatitis B virus covalently closed circular DNA pool in vivo following inhibition of viral replication. J Virol. 2002;76:6356-63 pubmed
  449. Piechocki M, Lonardo F, Ensley J, Nguyen T, Kim H, Yoo G. Anticancer activity of docetaxel in murine salivary gland carcinoma. Clin Cancer Res. 2002;8:870-7 pubmed
  450. Ritter C, Finch J, Slatopolsky E, Brown A. Parathyroid hyperplasia in uremic rats precedes down-regulation of the calcium receptor. Kidney Int. 2001;60:1737-44 pubmed
  451. Liu X, Aigner A, Wellstein A, Ray P. Up-regulation of a fibroblast growth factor binding protein in children with renal diseases. Kidney Int. 2001;59:1717-28 pubmed
  452. Dusso A, Pavlopoulos T, Naumovich L, Lu Y, Finch J, Brown A, et al. p21(WAF1) and transforming growth factor-alpha mediate dietary phosphate regulation of parathyroid cell growth. Kidney Int. 2001;59:855-65 pubmed
  453. Yakirevich E, Maroun L, Cohen O, Izhak O, Rennert G, Resnick M. Apoptosis, proliferation, and Fas (APO-1, CD95)/Fas ligand expression in medullary carcinoma of the breast. J Pathol. 2000;192:166-73 pubmed
  454. Naora H, Gougeon M. Interleukin-15 is a potent survival factor in the prevention of spontaneous but not CD95-induced apoptosis in CD4 and CD8 T lymphocytes of HIV-infected individuals. Correlation with its ability to increase BCL-2 expression. Cell Death Differ. 1999;6:1002-11 pubmed
  455. Southgate K, Mehta D, Izzat M, Newby A, Angelini G. Increased secretion of basement membrane-degrading metalloproteinases in pig saphenous vein into carotid artery interposition grafts. Arterioscler Thromb Vasc Biol. 1999;19:1640-9 pubmed
  456. Liang D, Hodson J, Forsburg S. Reduced dosage of a single fission yeast MCM protein causes genetic instability and S phase delay. J Cell Sci. 1999;112 ( Pt 4):559-67 pubmed
  457. Pozzi A, Wary K, Giancotti F, Gardner H. Integrin alpha1beta1 mediates a unique collagen-dependent proliferation pathway in vivo. J Cell Biol. 1998;142:587-94 pubmed